diff --git a/demo/mnist/.gitignore b/demo/mnist/.gitignore index 810910fd5c..8bd9837523 100644 --- a/demo/mnist/.gitignore +++ b/demo/mnist/.gitignore @@ -4,3 +4,4 @@ mnist_vgg_model plot.png train.log *pyc +.ipynb_checkpoints diff --git a/demo/mnist/api_train.py b/demo/mnist/api_train.py new file mode 100644 index 0000000000..f301da382f --- /dev/null +++ b/demo/mnist/api_train.py @@ -0,0 +1,205 @@ +""" +A very basic example for how to use current Raw SWIG API to train mnist network. + +Current implementation uses Raw SWIG, which means the API call is directly \ +passed to C++ side of Paddle. + +The user api could be simpler and carefully designed. +""" +import py_paddle.swig_paddle as api +from py_paddle import DataProviderConverter +import paddle.trainer.PyDataProvider2 as dp +import numpy as np +import random +from mnist_util import read_from_mnist +from paddle.trainer_config_helpers import * + + +def optimizer_config(): + settings( + learning_rate=1e-4, + learning_method=AdamOptimizer(), + batch_size=1000, + model_average=ModelAverage(average_window=0.5), + regularization=L2Regularization(rate=0.5)) + + +def network_config(): + imgs = data_layer(name='pixel', size=784) + hidden1 = fc_layer(input=imgs, size=200) + hidden2 = fc_layer(input=hidden1, size=200) + inference = fc_layer(input=hidden2, size=10, act=SoftmaxActivation()) + cost = classification_cost( + input=inference, label=data_layer( + name='label', size=10)) + outputs(cost) + + +def init_parameter(network): + assert isinstance(network, api.GradientMachine) + for each_param in network.getParameters(): + assert isinstance(each_param, api.Parameter) + array_size = len(each_param) + array = np.random.uniform(-1.0, 1.0, array_size).astype('float32') + each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(array) + + +def generator_to_batch(generator, batch_size): + ret_val = list() + for each_item in generator: + ret_val.append(each_item) + if len(ret_val) == batch_size: + yield ret_val + ret_val = list() + if len(ret_val) != 0: + yield ret_val + + +class BatchPool(object): + def __init__(self, generator, batch_size): + self.data = list(generator) + self.batch_size = batch_size + + def __call__(self): + random.shuffle(self.data) + for offset in xrange(0, len(self.data), self.batch_size): + limit = min(offset + self.batch_size, len(self.data)) + yield self.data[offset:limit] + + +def input_order_converter(generator): + for each_item in generator: + yield each_item['pixel'], each_item['label'] + + +def main(): + api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores + + # get enable_types for each optimizer. + # enable_types = [value, gradient, momentum, etc] + # For each optimizer(SGD, Adam), GradientMachine should enable different + # buffers. + opt_config_proto = parse_optimizer_config(optimizer_config) + opt_config = api.OptimizationConfig.createFromProto(opt_config_proto) + _temp_optimizer_ = api.ParameterOptimizer.create(opt_config) + enable_types = _temp_optimizer_.getParameterTypes() + + # Create Simple Gradient Machine. + model_config = parse_network_config(network_config) + m = api.GradientMachine.createFromConfigProto( + model_config, api.CREATE_MODE_NORMAL, enable_types) + + # This type check is not useful. Only enable type hint in IDE. + # Such as PyCharm + assert isinstance(m, api.GradientMachine) + + # Initialize Parameter by numpy. + init_parameter(network=m) + + # Create Local Updater. Local means not run in cluster. + # For a cluster training, here we can change to createRemoteUpdater + # in future. + updater = api.ParameterUpdater.createLocalUpdater(opt_config) + assert isinstance(updater, api.ParameterUpdater) + + # Initialize ParameterUpdater. + updater.init(m) + + # DataProvider Converter is a utility convert Python Object to Paddle C++ + # Input. The input format is as same as Paddle's DataProvider. + converter = DataProviderConverter( + input_types=[dp.dense_vector(784), dp.integer_value(10)]) + + train_file = './data/raw_data/train' + test_file = './data/raw_data/t10k' + + # start gradient machine. + # the gradient machine must be started before invoke forward/backward. + # not just for training, but also for inference. + m.start() + + # evaluator can print error rate, etc. It is a C++ class. + batch_evaluator = m.makeEvaluator() + test_evaluator = m.makeEvaluator() + + # Get Train Data. + # TrainData will stored in a data pool. Currently implementation is not care + # about memory, speed. Just a very naive implementation. + train_data_generator = input_order_converter(read_from_mnist(train_file)) + train_data = BatchPool(train_data_generator, 512) + + # outArgs is Neural Network forward result. Here is not useful, just passed + # to gradient_machine.forward + outArgs = api.Arguments.createArguments(0) + + for pass_id in xrange(2): # we train 2 passes. + updater.startPass() + + for batch_id, data_batch in enumerate(train_data()): + # data_batch is input images. + # here, for online learning, we could get data_batch from network. + + # Start update one batch. + pass_type = updater.startBatch(len(data_batch)) + + # Start BatchEvaluator. + # batch_evaluator can be used between start/finish. + batch_evaluator.start() + + # forwardBackward is a shortcut for forward and backward. + # It is sometimes faster than invoke forward/backward separately, + # because in GradientMachine, it may be async. + m.forwardBackward(converter(data_batch), outArgs, pass_type) + + for each_param in m.getParameters(): + updater.update(each_param) + + # Get cost. We use numpy to calculate total cost for this batch. + cost_vec = outArgs.getSlotValue(0) + cost_vec = cost_vec.copyToNumpyMat() + cost = cost_vec.sum() / len(data_batch) + + # Make evaluator works. + m.eval(batch_evaluator) + + # Print logs. + print 'Pass id', pass_id, 'Batch id', batch_id, 'with cost=', \ + cost, batch_evaluator + + batch_evaluator.finish() + # Finish batch. + # * will clear gradient. + # * ensure all values should be updated. + updater.finishBatch(cost) + + # testing stage. use test data set to test current network. + updater.apply() + test_evaluator.start() + test_data_generator = input_order_converter(read_from_mnist(test_file)) + for data_batch in generator_to_batch(test_data_generator, 512): + # in testing stage, only forward is needed. + m.forward(converter(data_batch), outArgs, api.PASS_TEST) + m.eval(test_evaluator) + + # print error rate for test data set + print 'Pass', pass_id, ' test evaluator: ', test_evaluator + test_evaluator.finish() + updater.restore() + + updater.catchUpWith() + params = m.getParameters() + for each_param in params: + assert isinstance(each_param, api.Parameter) + value = each_param.getBuf(api.PARAMETER_VALUE) + value = value.copyToNumpyArray() + + # Here, we could save parameter to every where you want + print each_param.getName(), value + + updater.finishPass() + + m.finish() + + +if __name__ == '__main__': + main() diff --git a/demo/mnist/mnist_provider.py b/demo/mnist/mnist_provider.py index 4635833d36..888cfef1e7 100644 --- a/demo/mnist/mnist_provider.py +++ b/demo/mnist/mnist_provider.py @@ -1,5 +1,5 @@ from paddle.trainer.PyDataProvider2 import * -import numpy +from mnist_util import read_from_mnist # Define a py data provider @@ -8,27 +8,5 @@ import numpy 'label': integer_value(10)}, cache=CacheType.CACHE_PASS_IN_MEM) def process(settings, filename): # settings is not used currently. - imgf = filename + "-images-idx3-ubyte" - labelf = filename + "-labels-idx1-ubyte" - f = open(imgf, "rb") - l = open(labelf, "rb") - - f.read(16) - l.read(8) - - # Define number of samples for train/test - if "train" in filename: - n = 60000 - else: - n = 10000 - - images = numpy.fromfile( - f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32') - images = images / 255.0 * 2.0 - 1.0 - labels = numpy.fromfile(l, 'ubyte', count=n).astype("int") - - for i in xrange(n): - yield {"pixel": images[i, :], 'label': labels[i]} - - f.close() - l.close() + for each in read_from_mnist(filename): + yield each diff --git a/demo/mnist/mnist_util.py b/demo/mnist/mnist_util.py new file mode 100644 index 0000000000..3fd88ae7ed --- /dev/null +++ b/demo/mnist/mnist_util.py @@ -0,0 +1,30 @@ +import numpy + +__all__ = ['read_from_mnist'] + + +def read_from_mnist(filename): + imgf = filename + "-images-idx3-ubyte" + labelf = filename + "-labels-idx1-ubyte" + f = open(imgf, "rb") + l = open(labelf, "rb") + + f.read(16) + l.read(8) + + # Define number of samples for train/test + if "train" in filename: + n = 60000 + else: + n = 10000 + + images = numpy.fromfile( + f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32') + images = images / 255.0 * 2.0 - 1.0 + labels = numpy.fromfile(l, 'ubyte', count=n).astype("int") + + for i in xrange(n): + yield {"pixel": images[i, :], 'label': labels[i]} + + f.close() + l.close() diff --git a/demo/quick_start/api_predict.sh b/demo/quick_start/api_predict.sh index c90d3b7054..4d9aa9e885 100755 --- a/demo/quick_start/api_predict.sh +++ b/demo/quick_start/api_predict.sh @@ -17,7 +17,7 @@ set -e #Note the default model is pass-00002, you shold make sure the model path #exists or change the mode path. #only test on trainer_config.lr.py -model=output/pass-00001/ +model=output/model/pass-00001/ config=trainer_config.lr.py label=data/labels.list dict=data/dict.txt diff --git a/demo/quick_start/cluster/cluster_train.sh b/demo/quick_start/cluster/cluster_train.sh new file mode 100755 index 0000000000..aac9b89b14 --- /dev/null +++ b/demo/quick_start/cluster/cluster_train.sh @@ -0,0 +1,44 @@ +#!/bin/bash +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +set -e + +# Should run pserver.sh before run this script. +bin_dir=$(cd `dirname $0`; pwd) +home_dir=$(cd "${bin_dir}/.."; pwd) +source "$bin_dir/env.sh" + +model_dir="$bin_dir/output" +log_file="$bin_dir/train.log" + +pushd "$home_dir" +cfg=trainer_config.lr.py +paddle train \ + --config=$cfg \ + --save_dir=${model_dir} \ + --trainer_count=4 \ + --local=0 \ + --log_period=100 \ + --num_passes=15 \ + --use_gpu=false \ + --show_parameter_stats_period=100 \ + --test_all_data_in_one_period=1 \ + --num_gradient_servers=1 \ + --nics=`get_nics` \ + --port=7164 \ + --ports_num=1 \ + --pservers="127.0.0.1" \ + --comment="paddle_trainer" \ + 2>&1 | tee "$log_file" +popd diff --git a/demo/quick_start/cluster/env.sh b/demo/quick_start/cluster/env.sh new file mode 100644 index 0000000000..a404993835 --- /dev/null +++ b/demo/quick_start/cluster/env.sh @@ -0,0 +1,28 @@ +#!/bin/bash +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +set -e + +function get_nics() { + machine=`uname -s` + local nics="" + if [ "$machine" == "Linux" ]; then + nics="lo" + elif [ "$machine" == "Darwin" ]; then + nics="lo0" + else + nics="unsupport" + fi + echo $nics +} diff --git a/demo/quick_start/cluster/pserver.sh b/demo/quick_start/cluster/pserver.sh new file mode 100755 index 0000000000..b187c1d9b9 --- /dev/null +++ b/demo/quick_start/cluster/pserver.sh @@ -0,0 +1,26 @@ +#!/bin/bash +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +set -e +bin_dir=$(cd `dirname $0`; pwd) +source "$bin_dir/env.sh" + +paddle pserver \ + --nics=`get_nics` \ + --port=7164 \ + --ports_num=1 \ + --ports_num_for_sparse=1 \ + --num_gradient_servers=1 \ + --comment="paddle_pserver" \ + 2>&1 | tee 'pserver.log' diff --git a/doc/faq/index_cn.rst b/doc/faq/index_cn.rst index ea0ef25f00..7d425a05d4 100644 --- a/doc/faq/index_cn.rst +++ b/doc/faq/index_cn.rst @@ -72,7 +72,7 @@ PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需 减少数据载入的耗时 ++++++++++++++++++ -使用 :code:`pydataprovider`时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。 +使用\ :code:`pydataprovider`\ 时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。 :code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。 .. literalinclude:: src/reduce_min_pool_size.py diff --git a/doc/tutorials/gan/gan.png b/doc/tutorials/gan/gan.png new file mode 100644 index 0000000000..001ed6cc19 Binary files /dev/null and b/doc/tutorials/gan/gan.png differ diff --git a/doc/tutorials/gan/index_en.md b/doc/tutorials/gan/index_en.md new file mode 100644 index 0000000000..99c8d73011 --- /dev/null +++ b/doc/tutorials/gan/index_en.md @@ -0,0 +1,143 @@ +# Generative Adversarial Networks (GAN) + +This demo implements GAN training described in the original [GAN paper](https://arxiv.org/abs/1406.2661) and deep convolutional generative adversarial networks [DCGAN paper](https://arxiv.org/abs/1511.06434). + +The high-level structure of GAN is shown in Figure. 1 below. It is composed of two major parts: a generator and a discriminator, both of which are based on neural networks. The generator takes in some kind of noise with a known distribution and transforms it into an image. The discriminator takes in an image and determines whether it is artificially generated by the generator or a real image. So the generator and the discriminator are in a competitive game in which generator is trying to generate image to look as real as possible to fool the discriminator, while the discriminator is trying to distinguish between real and fake images. + +

+ +

+

+ Figure 1. GAN-Model-Structure + figure credit +

+ +The generator and discriminator take turn to be trained using SGD. The objective function of the generator is for its generated images being classified as real by the discriminator, and the objective function of the discriminator is to correctly classify real and fake images. When the GAN model is trained to converge to the equilibrium state, the generator will transform the given noise distribution to the distribution of real images, and the discriminator will not be able to distinguish between real and fake images at all. + +## Implementation of GAN Model Structure +Since GAN model involves multiple neural networks, it requires to use paddle python API. So the code walk-through below can also partially serve as an introduction to the usage of Paddle Python API. + +There are three networks defined in gan_conf.py, namely **generator_training**, **discriminator_training** and **generator**. The relationship to the model structure we defined above is that **discriminator_training** is the discriminator, **generator** is the generator, and the **generator_training** combined the generator and discriminator since training generator would require the discriminator to provide loss function. This relationship is described in the following code: +```python +if is_generator_training: + noise = data_layer(name="noise", size=noise_dim) + sample = generator(noise) + +if is_discriminator_training: + sample = data_layer(name="sample", size=sample_dim) + +if is_generator_training or is_discriminator_training: + label = data_layer(name="label", size=1) + prob = discriminator(sample) + cost = cross_entropy(input=prob, label=label) + classification_error_evaluator( + input=prob, label=label, name=mode + '_error') + outputs(cost) + +if is_generator: + noise = data_layer(name="noise", size=noise_dim) + outputs(generator(noise)) +``` + +In order to train the networks defined in gan_conf.py, one first needs to initialize a Paddle environment, parse the config, create GradientMachine from the config and create trainer from GradientMachine as done in the code chunk below: +```python +import py_paddle.swig_paddle as api +# init paddle environment +api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', + '--log_period=100', '--gpu_id=' + args.gpu_id, + '--save_dir=' + "./%s_params/" % data_source) + +# Parse config +gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source) +dis_conf = parse_config(conf, "mode=discriminator_training,data=" + data_source) +generator_conf = parse_config(conf, "mode=generator,data=" + data_source) + +# Create GradientMachine +dis_training_machine = api.GradientMachine.createFromConfigProto( +dis_conf.model_config) +gen_training_machine = api.GradientMachine.createFromConfigProto( +gen_conf.model_config) +generator_machine = api.GradientMachine.createFromConfigProto( +generator_conf.model_config) + +# Create trainer +dis_trainer = api.Trainer.create(dis_conf, dis_training_machine) +gen_trainer = api.Trainer.create(gen_conf, gen_training_machine) +``` + +In order to balance the strength between generator and discriminator, we schedule to train whichever one is performing worse by comparing their loss function value. The loss function value can be calculated by a forward pass through the GradientMachine. +```python +def get_training_loss(training_machine, inputs): + outputs = api.Arguments.createArguments(0) + training_machine.forward(inputs, outputs, api.PASS_TEST) + loss = outputs.getSlotValue(0).copyToNumpyMat() + return numpy.mean(loss) +``` + +After training one network, one needs to sync the new parameters to the other networks. The code below demonstrates one example of such use case: +```python +# Train the gen_training +gen_trainer.trainOneDataBatch(batch_size, data_batch_gen) + +# Copy the parameters from gen_training to dis_training and generator +copy_shared_parameters(gen_training_machine, +dis_training_machine) +copy_shared_parameters(gen_training_machine, generator_machine) +``` + + +## A Toy Example +With the infrastructure explained above, we can now walk you through a toy example of generating two dimensional uniform distribution using 10 dimensional Gaussian noise. + +The Gaussian noises are generated using the code below: +```python +def get_noise(batch_size, noise_dim): + return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32') +``` + +The real samples (2-D uniform) are generated using the code below: +```python +# synthesize 2-D uniform data in gan_trainer.py:114 +def load_uniform_data(): + data = numpy.random.rand(1000000, 2).astype('float32') + return data +``` + +The generator and discriminator network are built using fully-connected layer and batch_norm layer, and are defined in gan_conf.py. + +To train the GAN model, one can use the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu). +```bash +$python gan_trainer.py -d uniform --useGpu 1 +``` +The generated samples can be found in ./uniform_samples/ and one example is shown below as Figure 2. One can see that it roughly recovers the 2D uniform distribution. + +

+ +

+

+ Figure 2. Uniform Sample +

+ +## MNIST Example +### Data preparation +To download the MNIST data, one can use the following commands: +```bash +$cd data/ +$./get_mnist_data.sh +``` + +### Model description +Following the DC-Gan paper (https://arxiv.org/abs/1511.06434), we use convolution/convolution-transpose layer in the discriminator/generator network to better deal with images. The details of the network structures are defined in gan_conf_image.py. + +### Training the model +To train the GAN model on mnist data, one can use the following command: +```bash +$python gan_trainer.py -d mnist --useGpu 1 +``` +The generated sample images can be found at ./mnist_samples/ and one example is shown below as Figure 3. +

+ +

+

+ Figure 3. MNIST Sample +

diff --git a/doc/tutorials/gan/mnist_sample.png b/doc/tutorials/gan/mnist_sample.png new file mode 100644 index 0000000000..f9c7bf7ddd Binary files /dev/null and b/doc/tutorials/gan/mnist_sample.png differ diff --git a/doc/tutorials/gan/uniform_sample.png b/doc/tutorials/gan/uniform_sample.png new file mode 100644 index 0000000000..4a96c45cae Binary files /dev/null and b/doc/tutorials/gan/uniform_sample.png differ diff --git a/paddle/api/CMakeLists.txt b/paddle/api/CMakeLists.txt index ed69bd764f..da6dad10cd 100644 --- a/paddle/api/CMakeLists.txt +++ b/paddle/api/CMakeLists.txt @@ -1,10 +1,12 @@ set(API_SOURCES Arguments.cpp ConfigParser.cpp + Evaluator.cpp GradientMachine.cpp Matrix.cpp Parameter.cpp ParameterOptimizer.cpp + ParameterUpdater.cpp SequenceGenerator.cpp Trainer.cpp Util.cpp @@ -63,6 +65,15 @@ install(DIRECTORY ${PROJ_ROOT}/paddle/dist/ add_custom_target(python_api_wheel ALL DEPENDS ${PROJ_ROOT}/paddle/dist/.timestamp) +add_dependencies(python_api_wheel python_swig_sources + paddle_parameter + paddle_math + paddle_utils + paddle_gserver + paddle_pserver + paddle_trainer + paddle_api + paddle_cuda) if(WITH_TESTING) add_subdirectory(test) diff --git a/paddle/utils/DisableCopy.h b/paddle/api/Evaluator.cpp similarity index 60% rename from paddle/utils/DisableCopy.h rename to paddle/api/Evaluator.cpp index 41de98bbde..c30e098763 100644 --- a/paddle/utils/DisableCopy.h +++ b/paddle/api/Evaluator.cpp @@ -11,13 +11,19 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include +#include "PaddleAPI.h" +#include "PaddleAPIPrivate.h" -#pragma once +Evaluator::Evaluator() : m(new EvaluatorPrivate()) {} +Evaluator::~Evaluator() { delete m; } -/** - * Disable copy macro. - */ -#define DISABLE_COPY(CLASS_NAME) \ - CLASS_NAME(CLASS_NAME &&) = delete; \ - CLASS_NAME(const CLASS_NAME &other) = delete; \ - CLASS_NAME &operator=(const CLASS_NAME &other) = delete +void Evaluator::start() { m->rawPtr->start(); } + +void Evaluator::finish() { m->rawPtr->finish(); } + +std::string Evaluator::toString() { + std::ostringstream sout; + m->rawPtr->printStats(sout); + return sout.str(); +} diff --git a/paddle/api/GradientMachine.cpp b/paddle/api/GradientMachine.cpp index 297eaa19bb..66115f8293 100644 --- a/paddle/api/GradientMachine.cpp +++ b/paddle/api/GradientMachine.cpp @@ -64,6 +64,18 @@ GradientMachine* GradientMachine::createByModelConfig( return GradientMachine::createFromPaddleModelPtr(confPtr, mode, types); } +void GradientMachine::start() { m->machine->start(); } + +void GradientMachine::finish() { m->machine->finish(); } + +void GradientMachine::onPassEnd() { m->machine->onPassEnd(); } + +void GradientMachine::prefetch(const Arguments& inArgs) { + auto& in = + m->cast>(inArgs.getInternalArgumentsPtr()); + m->machine->prefetch(in); +} + void GradientMachine::forward(const Arguments& inArgs, Arguments* outArgs, PassType passType) { @@ -158,3 +170,13 @@ SequenceGenerator* GradientMachine::asSequenceGenerator( r->setBeamSize(beam_size); return r; } + +Evaluator* GradientMachine::makeEvaluator() { + auto ev = new Evaluator(); + ev->m->rawPtr = m->machine->makeEvaluator(); + return ev; +} + +void GradientMachine::eval(Evaluator* evaluator) { + m->machine->eval(evaluator->m->rawPtr); +} diff --git a/paddle/api/Paddle.swig b/paddle/api/Paddle.swig index 9194a6371b..3365927f9b 100644 --- a/paddle/api/Paddle.swig +++ b/paddle/api/Paddle.swig @@ -96,7 +96,9 @@ namespace std { %rename(__getitem__) Vector::get; %rename(__setitem__) Vector::set; %rename(__len__) Vector::getSize; +%rename(__len__) Parameter::getSize; %rename(__call__) ParameterTraverseCallback::apply; +%rename(__repr__) Evaluator::toString; %apply (float* INPLACE_ARRAY2, int DIM1, int DIM2) { (float* data, int dim1, int dim2) @@ -167,6 +169,7 @@ namespace std { %newobject GradientMachine::asSequenceGenerator; %newobject GradientMachine::getParameter; %newobject GradientMachine::getLayerOutput; +%newobject GradientMachine::makeEvaluator; %newobject TrainerConfig::createFromTrainerConfigFile; %newobject TrainerConfig::getModelConfig; %newobject TrainerConfig::getOptimizationConfig; @@ -174,6 +177,7 @@ namespace std { %newobject Parameter::getConfig; %newobject ParameterOptimizer::create; %newobject ParameterOptimizer::needSpecialTraversal; +%newobject ParameterUpdater::createLocalUpdater; %feature("director") UpdateCallback; %feature("autodoc", 1); // To generate method stub, for code hint in ide @@ -193,4 +197,4 @@ namespace std { %ignore OptimizationConfigPrivate; %ignore ParameterTraverseCallbackPrivate; %include "utils/GlobalConstants.h" -%include "api/PaddleAPI.h" \ No newline at end of file +%include "api/PaddleAPI.h" diff --git a/paddle/api/PaddleAPI.h b/paddle/api/PaddleAPI.h index 84a66719c3..09c891871a 100644 --- a/paddle/api/PaddleAPI.h +++ b/paddle/api/PaddleAPI.h @@ -20,15 +20,11 @@ limitations under the License. */ #include #include #include "paddle/utils/GlobalConstants.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" /// Import PaddlePaddle's enumeration into global namespace. using namespace paddle::enumeration_wrapper; // NOLINT -#define DISABLE_COPY_AND_ASSIGN(classname) \ - classname(const classname& other); \ - classname& operator=(const classname& other) - /** * @brief Initialize paddle. * @@ -102,7 +98,7 @@ const size_t NO_SPARSE_ID = -1UL; struct MatrixPrivate; class Matrix { Matrix(); // User Cannot Create Matrix. - DISABLE_COPY_AND_ASSIGN(Matrix); + DISABLE_COPY(Matrix); static Matrix* createByPaddleMatrixPtr(void* sharedPtr); public: @@ -242,7 +238,7 @@ private: struct VectorPrivate; class Vector { - DISABLE_COPY_AND_ASSIGN(Vector); + DISABLE_COPY(Vector); Vector(); static Vector* createByPaddleVectorPtr(void* ptr); @@ -322,7 +318,7 @@ private: struct IVectorPrivate; class IVector { IVector(); - DISABLE_COPY_AND_ASSIGN(IVector); + DISABLE_COPY(IVector); static IVector* createByPaddleVectorPtr(void* ptr); public: @@ -402,7 +398,7 @@ struct ArgumentsPrivate; class Arguments { private: Arguments(); // Internal Create. - DISABLE_COPY_AND_ASSIGN(Arguments); + DISABLE_COPY(Arguments); public: /** @@ -472,7 +468,7 @@ enum GradientMatchineCreateMode { struct ParameterConfigPrivate; class ParameterConfig { - DISABLE_COPY_AND_ASSIGN(ParameterConfig); + DISABLE_COPY(ParameterConfig); ParameterConfig(); /** @@ -502,7 +498,7 @@ private: struct OptimizationConfigPrivate; class OptimizationConfig { - DISABLE_COPY_AND_ASSIGN(OptimizationConfig); + DISABLE_COPY(OptimizationConfig); OptimizationConfig(); public: @@ -519,6 +515,7 @@ private: friend class TrainerConfig; friend class ParameterOptimizer; + friend class ParameterUpdater; friend class Trainer; }; @@ -526,7 +523,7 @@ struct ParameterPrivate; class Parameter { private: Parameter(); - DISABLE_COPY_AND_ASSIGN(Parameter); + DISABLE_COPY(Parameter); public: virtual ~Parameter(); @@ -549,6 +546,8 @@ public: ParameterConfig* getConfig(); void setValueUpdated(); + size_t getSize() const; + private: static Parameter* createFromRawPtr(void* ptr); static Parameter* createFromSharedPtr(void* ptr); @@ -557,6 +556,7 @@ private: ParameterPrivate* m; friend class UpdateCallbackWrapper; friend class GradientMachine; + friend class ParameterUpdater; }; struct ModelConfigPrivate; @@ -568,7 +568,7 @@ struct ModelConfigPrivate; class ModelConfig { private: ModelConfig(); - DISABLE_COPY_AND_ASSIGN(ModelConfig); + DISABLE_COPY(ModelConfig); public: virtual ~ModelConfig(); @@ -589,7 +589,7 @@ struct TrainerConfigPrivate; class TrainerConfig { private: TrainerConfig(); - DISABLE_COPY_AND_ASSIGN(TrainerConfig); + DISABLE_COPY(TrainerConfig); public: virtual ~TrainerConfig(); @@ -629,7 +629,7 @@ public: struct ParameterTraverseCallbackPrivate; class ParameterTraverseCallback { - DISABLE_COPY_AND_ASSIGN(ParameterTraverseCallback); + DISABLE_COPY(ParameterTraverseCallback); ParameterTraverseCallback(); public: @@ -651,7 +651,7 @@ private: */ struct ParameterOptimizerPrivate; class ParameterOptimizer { - DISABLE_COPY_AND_ASSIGN(ParameterOptimizer); + DISABLE_COPY(ParameterOptimizer); ParameterOptimizer(); public: @@ -683,12 +683,12 @@ private: }; class SequenceGenerator; - +class Evaluator; struct GradientMachinePrivate; class GradientMachine { private: GradientMachine(); - DISABLE_COPY_AND_ASSIGN(GradientMachine); + DISABLE_COPY(GradientMachine); public: virtual ~GradientMachine(); @@ -714,6 +714,23 @@ public: GradientMatchineCreateMode mode = CREATE_MODE_NORMAL, const std::vector& parameterTypes = defaultParamTypes); + /** + * @brief finish + */ + void finish(); + + void start(); + + /** + * Prefetch row ids of sparse parameter. + */ + void prefetch(const Arguments& inArgs); + + /** + * Do some thing when train pass ended. + */ + void onPassEnd(); + /** * The forward stage of GradientMachine. * @@ -761,6 +778,10 @@ public: size_t max_length = 100UL, size_t beam_size = -1UL); + Evaluator* makeEvaluator(); + + void eval(Evaluator* evaluator); + private: GradientMachinePrivate* m; @@ -772,6 +793,109 @@ private: // Not to use c++ 11 init-list, so we use static var as function default arg. static std::vector defaultParamTypes; friend class Trainer; + friend class ParameterUpdater; +}; + +struct ParameterUpdaterPrivate; +class ParameterUpdater { +private: + ParameterUpdater(); + +public: + static ParameterUpdater* createLocalUpdater(OptimizationConfig* config); + ~ParameterUpdater(); + + /** + * @brief initialize Parameter Updater by GradientMachine. + * @param gm + */ + void init(const GradientMachine& gm); + + /** + * @brief begin of a training/testing of one pass. + */ + void startPass(); + + /** + * @brief end of a traning/testing of one pass. + */ + void finishPass(); + + /** + * @brief begin of a training/testing of one batch. + * @param data batch's size + * @return PassType, mostly will be training. + */ + PassType startBatch(size_t batchSize); + + /** + * @brief end of a traning/testing of one batch + * @param cost current batch cost. + */ + void finishBatch(float cost); + + /** + * @brief update a parameter (by local optimizer or by cluster pserver) + * @param param + */ + void update(Parameter* param); + + /** + * @brief restore the average parameter. + * @note It is only used in AverageOptimizer. Restore will get the current + * PARAMETER_VALUE back. + */ + void restore(); + + /** + * @brief apply. Store the average parameter. + * @note It is only used in AverageOptimizer. Apply will store the current + * PARAMETER_VALUE to buffer, calcaualte current Average Parameter, and save + * it to PARAMETER_VALUE. + */ + void apply(); + + /** + * @brief catchUpWith The Regularization will be delayed in many situations( + * pserver, local sparse). Catch Up means catch the regularization up, apply + * regularization to all params. + */ + void catchUpWith(); + +private: + ParameterUpdaterPrivate* m; +}; + +struct EvaluatorPrivate; +class Evaluator { +private: + Evaluator(); + DISABLE_COPY(Evaluator); + +public: + ~Evaluator(); + + /** + * @brief begin an evaluate stage. + */ + void start(); + + /** + * @brief end an evaluate stage. + */ + void finish(); + + /** + * @brief toString will get a evaluate result. + * + * __repr__ method in python + */ + std::string toString(); + +private: + EvaluatorPrivate* m; + + friend class GradientMachine; }; struct TrainerPrivate; @@ -780,7 +904,7 @@ private: TrainerPrivate* m; Trainer(); Trainer(TrainerConfig* optConfig, GradientMachine* gm); - DISABLE_COPY_AND_ASSIGN(Trainer); + DISABLE_COPY(Trainer); public: virtual ~Trainer(); @@ -846,7 +970,7 @@ public: struct SequenceGeneratorPrivate; class SequenceGenerator { - DISABLE_COPY_AND_ASSIGN(SequenceGenerator); + DISABLE_COPY(SequenceGenerator); SequenceGenerator(); public: diff --git a/paddle/api/PaddleAPIPrivate.h b/paddle/api/PaddleAPIPrivate.h index d2b56fc41c..f41352bfec 100644 --- a/paddle/api/PaddleAPIPrivate.h +++ b/paddle/api/PaddleAPIPrivate.h @@ -11,12 +11,14 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - +#pragma once +#include +#include "PaddleAPI.h" +#include "paddle/gserver/evaluators/Evaluator.h" #include "paddle/gserver/gradientmachines/GradientMachine.h" +#include "paddle/parameter/ParameterUpdaterBase.h" #include "paddle/trainer/TrainerConfigHelper.h" -#pragma once - struct GradientMachinePrivate { std::shared_ptr machine; @@ -65,3 +67,31 @@ struct ArgumentsPrivate { return *(std::shared_ptr*)(rawPtr); } }; + +struct ParameterUpdaterPrivate { + std::unique_ptr updater; +}; + +struct ParameterPrivate { + std::shared_ptr sharedPtr; + paddle::Parameter* rawPtr; // rawPtr only used in ParameterUpdater, + // in other situation sharedPtr should + // contains value. + + ParameterPrivate() : sharedPtr(nullptr), rawPtr(nullptr) {} + + paddle::Parameter* getPtr() { + if (sharedPtr) { + return sharedPtr.get(); + } else { + return rawPtr; + } + } +}; + +struct EvaluatorPrivate { + paddle::Evaluator* rawPtr; + + EvaluatorPrivate() : rawPtr(nullptr) {} + ~EvaluatorPrivate() { delete rawPtr; } +}; diff --git a/paddle/api/Parameter.cpp b/paddle/api/Parameter.cpp index 4eed00a84a..ddc00d8d1a 100644 --- a/paddle/api/Parameter.cpp +++ b/paddle/api/Parameter.cpp @@ -14,21 +14,7 @@ limitations under the License. */ #include "paddle/parameter/Parameter.h" #include "PaddleAPI.h" - -struct ParameterPrivate { - std::shared_ptr sharedPtr; - paddle::Parameter* rawPtr; - - ParameterPrivate() : sharedPtr(nullptr), rawPtr(nullptr) {} - - paddle::Parameter* getPtr() { - if (sharedPtr) { - return sharedPtr.get(); - } else { - return rawPtr; - } - } -}; +#include "PaddleAPIPrivate.h" Parameter::Parameter() : m(new ParameterPrivate()) {} @@ -70,3 +56,5 @@ ParameterConfig* Parameter::getConfig() { size_t Parameter::getID() const { return m->getPtr()->getID(); } void Parameter::setValueUpdated() { m->getPtr()->setValueUpdated(); } + +size_t Parameter::getSize() const { return m->getPtr()->getSize(); } diff --git a/paddle/api/ParameterUpdater.cpp b/paddle/api/ParameterUpdater.cpp new file mode 100644 index 0000000000..7cd8ed7e39 --- /dev/null +++ b/paddle/api/ParameterUpdater.cpp @@ -0,0 +1,56 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "PaddleAPI.h" + +#include "PaddleAPIPrivate.h" +#include "paddle/trainer/ThreadParameterUpdater.h" + +ParameterUpdater::ParameterUpdater() : m(new ParameterUpdaterPrivate()) {} + +ParameterUpdater *ParameterUpdater::createLocalUpdater( + OptimizationConfig *config) { + auto param = new ParameterUpdater(); + param->m->updater.reset(new paddle::SgdThreadUpdater(config->m->getConfig())); + return param; +} + +ParameterUpdater::~ParameterUpdater() { delete m; } + +void ParameterUpdater::init(const GradientMachine &gm) { + m->updater->init(gm.m->machine->getNonStaticParameters()); +} + +void ParameterUpdater::startPass() { m->updater->startPass(); } + +void ParameterUpdater::finishPass() { m->updater->finishPass(); } + +PassType ParameterUpdater::startBatch(size_t batchSize) { + return m->updater->startBatch((int64_t)batchSize); +} + +void ParameterUpdater::finishBatch(float cost) { + m->updater->finishBatch(cost); +} + +void ParameterUpdater::update(Parameter *param) { + auto paddleParam = param->m->getPtr(); + m->updater->update(paddleParam); +} + +void ParameterUpdater::restore() { m->updater->restore(); } + +void ParameterUpdater::apply() { m->updater->apply(); } + +void ParameterUpdater::catchUpWith() { m->updater->catchUpWith(); } diff --git a/paddle/api/Vector.cpp b/paddle/api/Vector.cpp index 874f2fd044..db8f005929 100644 --- a/paddle/api/Vector.cpp +++ b/paddle/api/Vector.cpp @@ -253,7 +253,7 @@ void Vector::copyToNumpyArray(float** view_m_data, int* dim1) { *view_m_data = new float[*dim1]; if (auto cpuVec = dynamic_cast(m->vec.get())) { std::memcpy(*view_m_data, cpuVec->getData(), sizeof(float) * (*dim1)); - } else if (auto gpuVec = dynamic_cast(m->vec.get())) { + } else if (auto gpuVec = dynamic_cast(m->vec.get())) { hl_memcpy_device2host( *view_m_data, gpuVec->getData(), sizeof(float) * (*dim1)); } else { diff --git a/paddle/api/paddle_ld_flags.py b/paddle/api/paddle_ld_flags.py index 7c8206e3fe..b4d27b1cc7 100644 --- a/paddle/api/paddle_ld_flags.py +++ b/paddle/api/paddle_ld_flags.py @@ -141,9 +141,12 @@ try: def c_flag(self): if self.with_coverage: - return ["-fprofile-arcs", "-ftest-coverage", "-O0", "-g"] + return [ + "-fprofile-arcs", "-ftest-coverage", "-O0", "-g", + "-std=c++11" + ] else: - return None + return ["-std=c++11"] except ImportError: class PaddleLDFlag(object): diff --git a/paddle/cuda/include/hl_base.h b/paddle/cuda/include/hl_base.h index 84c5f2d5c9..5b9884b786 100644 --- a/paddle/cuda/include/hl_base.h +++ b/paddle/cuda/include/hl_base.h @@ -16,7 +16,31 @@ limitations under the License. */ #define HL_BASE_H_ #include -#include "paddle/utils/TypeDefs.h" + +#ifdef PADDLE_TYPE_DOUBLE +#define HL_FLOAT_MAX 3.40282347e+38F +#define HL_FLOAT_MIN 1.17549435e-38F +using real = double; +#else +#define HL_FLOAT_MAX 1.7976931348623157e+308 +#define HL_FLOAT_MIN 2.2250738585072014e-308 +using real = float; +#endif + +/** + * The maximum input value for exp, used to avoid overflow problem. + * currently only used for tanh function. + */ +#define EXP_MAX_INPUT 40.0 + +/** + * @brief DIVUP(x, y) is similar to ceil(x / y). + * @note For CUDA, DIVUP will be used to specify + * the size of blockDim. + */ +#ifndef DIVUP +#define DIVUP(x, y) (((x) + (y)-1) / (y)) +#endif /** * HPPL is an internal high performance parallel computing library @@ -181,46 +205,6 @@ typedef struct { size_t nnz; } _hl_sparse_matrix_s, *hl_sparse_matrix_s; -#ifndef PADDLE_TYPE_DOUBLE -/** - * HPPL data type: real (float or double) - * - * if real == float - * - * HL_FLOAT_MAX: 3.40282347e+38F - * - * HL_FLOAT_MIN: 1.17549435e-38F - */ -#define HL_FLOAT_MAX 3.40282347e+38F -/** - * if real == double - * - * HL_FLOAT_MAX: 1.7976931348623157e+308 - * - * HL_FLOAT_MIN: 2.2250738585072014e-308 - */ -#define HL_FLOAT_MIN 1.17549435e-38F -#else -#define HL_FLOAT_MAX 1.7976931348623157e+308 -#define HL_FLOAT_MIN 2.2250738585072014e-308 -#endif - -/** - * The maximum input value for exp, used to avoid overflow problem. - * - * Currently only used for tanh function. - */ -#define EXP_MAX_INPUT 40.0 - -/** - * @brief DIVUP(x, y) is similar to ceil(x / y). - * @note For CUDA, DIVUP will be used to specify - * the size of blockDim. - */ -#ifndef DIVUP -#define DIVUP(x, y) (((x) + (y)-1) / (y)) -#endif - #ifdef __NVCC__ #include "cuda_runtime.h" diff --git a/paddle/gserver/dataproviders/DataProvider.h b/paddle/gserver/dataproviders/DataProvider.h index 9b7f7e36ce..5f031fc7c0 100644 --- a/paddle/gserver/dataproviders/DataProvider.h +++ b/paddle/gserver/dataproviders/DataProvider.h @@ -34,8 +34,8 @@ limitations under the License. */ #include "paddle/utils/Logging.h" #include "paddle/utils/Queue.h" #include "paddle/utils/ThreadLocal.h" -#include "paddle/utils/TypeDefs.h" #include "paddle/utils/Util.h" +#include "paddle/utils/common.h" namespace paddle { /** diff --git a/paddle/gserver/layers/GruCompute.h b/paddle/gserver/layers/GruCompute.h index 42c0019319..a56af21317 100644 --- a/paddle/gserver/layers/GruCompute.h +++ b/paddle/gserver/layers/GruCompute.h @@ -16,7 +16,7 @@ limitations under the License. */ #include "ModelConfig.pb.h" #include "hl_gpu.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/gserver/layers/LstmCompute.h b/paddle/gserver/layers/LstmCompute.h index 140a4c6ecf..0d65b4158e 100644 --- a/paddle/gserver/layers/LstmCompute.h +++ b/paddle/gserver/layers/LstmCompute.h @@ -16,7 +16,7 @@ limitations under the License. */ #include "ModelConfig.pb.h" #include "hl_gpu.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/gserver/layers/MultinomialSampler.h b/paddle/gserver/layers/MultinomialSampler.h index 677b047029..b48073c80b 100644 --- a/paddle/gserver/layers/MultinomialSampler.h +++ b/paddle/gserver/layers/MultinomialSampler.h @@ -16,7 +16,7 @@ limitations under the License. */ #include #include -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/math/BaseMatrix.h b/paddle/math/BaseMatrix.h index 2933c20fba..8f9bc9e823 100644 --- a/paddle/math/BaseMatrix.h +++ b/paddle/math/BaseMatrix.h @@ -16,7 +16,7 @@ limitations under the License. */ #include #include #include "TensorExpression.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/math/Matrix.h b/paddle/math/Matrix.h index 25ce09e346..bda863de38 100644 --- a/paddle/math/Matrix.h +++ b/paddle/math/Matrix.h @@ -27,7 +27,7 @@ limitations under the License. */ #include "MemoryHandle.h" #include "Vector.h" #include "paddle/utils/ThreadLocal.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/math/TensorExpression.h b/paddle/math/TensorExpression.h index 9bd789e8c5..f3d60e4003 100644 --- a/paddle/math/TensorExpression.h +++ b/paddle/math/TensorExpression.h @@ -17,7 +17,7 @@ limitations under the License. */ #include #include "hl_tensor_ops.h" #include "paddle/utils/Logging.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/math/Vector.h b/paddle/math/Vector.h index 8a24103bd4..b4347a70f8 100644 --- a/paddle/math/Vector.h +++ b/paddle/math/Vector.h @@ -22,7 +22,7 @@ limitations under the License. */ #include "BaseMatrix.h" #include "MemoryHandle.h" #include "paddle/utils/Thread.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/parameter/ParallelParameter.h b/paddle/parameter/ParallelParameter.h index 417e386dc7..1ee220d2dc 100644 --- a/paddle/parameter/ParallelParameter.h +++ b/paddle/parameter/ParallelParameter.h @@ -28,7 +28,7 @@ limitations under the License. */ #include "paddle/parameter/ParameterUpdateFunctions.h" #include "paddle/utils/Flags.h" #include "paddle/utils/Locks.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" #include "ParameterConfig.pb.h" diff --git a/paddle/parameter/Parameter.h b/paddle/parameter/Parameter.h index 532c6770e5..e05137b315 100644 --- a/paddle/parameter/Parameter.h +++ b/paddle/parameter/Parameter.h @@ -29,8 +29,8 @@ limitations under the License. */ #include "paddle/utils/GlobalConstants.h" #include "paddle/utils/Locks.h" #include "paddle/utils/ThreadLocal.h" -#include "paddle/utils/TypeDefs.h" #include "paddle/utils/Util.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/parameter/ParameterUpdateFunctions.h b/paddle/parameter/ParameterUpdateFunctions.h index 2d277e47e7..2cb3798717 100644 --- a/paddle/parameter/ParameterUpdateFunctions.h +++ b/paddle/parameter/ParameterUpdateFunctions.h @@ -15,7 +15,7 @@ limitations under the License. */ #pragma once #include "paddle/math/Vector.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/pserver/BaseClient.h b/paddle/pserver/BaseClient.h index 262afafbe2..ccf05ae1ca 100644 --- a/paddle/pserver/BaseClient.h +++ b/paddle/pserver/BaseClient.h @@ -18,7 +18,7 @@ limitations under the License. */ #include "paddle/math/Matrix.h" #include "paddle/pserver/ProtoServer.h" #include "paddle/utils/Queue.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" namespace paddle { diff --git a/paddle/pserver/ParameterClient2.h b/paddle/pserver/ParameterClient2.h index eed71ccb43..70cfc6d700 100644 --- a/paddle/pserver/ParameterClient2.h +++ b/paddle/pserver/ParameterClient2.h @@ -26,8 +26,8 @@ limitations under the License. */ #include "paddle/utils/Flags.h" #include "paddle/utils/Locks.h" #include "paddle/utils/Queue.h" -#include "paddle/utils/TypeDefs.h" #include "paddle/utils/Util.h" +#include "paddle/utils/common.h" #include "ParameterService.pb.h" diff --git a/paddle/pserver/ParameterServer2.h b/paddle/pserver/ParameterServer2.h index b0cf22e1fb..79d1eb97ff 100644 --- a/paddle/pserver/ParameterServer2.h +++ b/paddle/pserver/ParameterServer2.h @@ -32,7 +32,7 @@ limitations under the License. */ #include "paddle/utils/Locks.h" #include "paddle/utils/Stat.h" #include "paddle/utils/ThreadLocal.h" -#include "paddle/utils/TypeDefs.h" +#include "paddle/utils/common.h" #include "ParameterService.pb.h" diff --git a/paddle/py_paddle/dataprovider_converter.py b/paddle/py_paddle/dataprovider_converter.py index edcefba6a8..981d10afda 100644 --- a/paddle/py_paddle/dataprovider_converter.py +++ b/paddle/py_paddle/dataprovider_converter.py @@ -15,6 +15,7 @@ import paddle.trainer.PyDataProvider2 as dp2 import collections import swig_paddle +import numpy __all__ = ['DataProviderConverter'] @@ -35,18 +36,18 @@ class IScanner(object): class DenseScanner(IScanner): def __init__(self, input_type, pos): IScanner.__init__(self, input_type, pos) - self.__mat__ = [] - self.__height__ = 0 + self.__mat__ = None def scan(self, dat): - self.__mat__.extend(dat) - self.__height__ += 1 + if self.__mat__ is None: + self.__mat__ = numpy.array([dat], dtype='float32') + else: + self.__mat__ = numpy.append(self.__mat__, [dat], axis=0) def finish_scan(self, argument): assert isinstance(argument, swig_paddle.Arguments) assert isinstance(self.input_type, dp2.InputType) - m = swig_paddle.Matrix.createDense(self.__mat__, self.__height__, - self.input_type.dim, False) + m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True, False) argument.setSlotValue(self.pos, m) diff --git a/paddle/setup.py.in b/paddle/setup.py.in index b4c38a41b8..464ad63286 100644 --- a/paddle/setup.py.in +++ b/paddle/setup.py.in @@ -30,8 +30,10 @@ is_lin = (system == 'linux') # The extra links will passed from COMAKE # because generate paddle LDFLAGS is too complicated to do in setup.py # it just read COMAKE generated LDFLAGS. +extra_comps = [] extra_links = [] obj = api.paddle_ld_flags.PaddleLDFlag() +extra_comps = obj.c_flag() ldflags = obj.ldflag_str() if ldflags is not None: extra_links.extend(ldflags.split(" ")) @@ -51,20 +53,15 @@ elif is_osx == True: include_dirs = [np.get_include(), "../"] # include numpy and paddle. -extra_c = obj.c_flag() - -attr=dict() -if extra_c is not None: - attr["extra_compile_args"] = extra_c - setup(name="py_paddle", version="@PADDLE_VERSION@", ext_modules=[ Extension('py_paddle._swig_paddle', # Build SWIG Extension. ['Paddle_wrap.cxx'], + language = "c++", include_dirs = include_dirs, extra_link_args = extra_links, - **attr + extra_compile_args = extra_comps ) ], packages=['py_paddle'], diff --git a/paddle/trainer/ThreadParameterUpdater.h b/paddle/trainer/ThreadParameterUpdater.h index 880f1f9ddc..bc08a9e9f0 100644 --- a/paddle/trainer/ThreadParameterUpdater.h +++ b/paddle/trainer/ThreadParameterUpdater.h @@ -33,8 +33,8 @@ namespace paddle { because at the current moment, the merging on CPU is happening on the main thread, and the its parameter size can be much larger than the one GPU. Thus, for GPU, the parameter updates happens in updateImpl() function, which - is called by gradient machines as a callback function as a callback function - supplied to backward() and forwardBackward(). + is called by gradient machines as a callback function supplied to backward() + and forwardBackward(). For CPU, the parameter updates happens in separate threads maintained by this class. */ diff --git a/paddle/utils/CpuId.h b/paddle/utils/CpuId.h index 7a354da758..1218e8194c 100644 --- a/paddle/utils/CpuId.h +++ b/paddle/utils/CpuId.h @@ -11,7 +11,7 @@ limitations under the License. */ #pragma once -#include "DisableCopy.h" +#include "common.h" namespace paddle { diff --git a/paddle/utils/Locks.h b/paddle/utils/Locks.h index 0f922f3548..a21872e89e 100644 --- a/paddle/utils/Locks.h +++ b/paddle/utils/Locks.h @@ -19,7 +19,7 @@ limitations under the License. */ #include #include -#include "DisableCopy.h" +#include "common.h" namespace paddle { diff --git a/paddle/utils/Util.h b/paddle/utils/Util.h index e5a89070f1..dc15ada586 100644 --- a/paddle/utils/Util.h +++ b/paddle/utils/Util.h @@ -26,12 +26,11 @@ limitations under the License. */ #include #include -#include "DisableCopy.h" #include "Logging.h" #include "TrainerConfig.pb.h" +#include "common.h" #include "Flags.h" -#include "TypeDefs.h" #include "hl_gpu.h" /** diff --git a/paddle/utils/Version.h b/paddle/utils/Version.h index d1a07d9485..aa5df32438 100644 --- a/paddle/utils/Version.h +++ b/paddle/utils/Version.h @@ -15,7 +15,7 @@ limitations under the License. */ #pragma once #include #include -#include "TypeDefs.h" +#include "common.h" namespace paddle { diff --git a/paddle/utils/TypeDefs.h b/paddle/utils/common.h similarity index 71% rename from paddle/utils/TypeDefs.h rename to paddle/utils/common.h index c50a05e82d..202a9d980d 100644 --- a/paddle/utils/TypeDefs.h +++ b/paddle/utils/common.h @@ -14,13 +14,20 @@ limitations under the License. */ #pragma once +/** + * Disable copy macro. + */ +#define DISABLE_COPY(class_name) \ + class_name(class_name &&) = delete; \ + class_name(const class_name &other) = delete; \ + class_name &operator=(const class_name &other) = delete + namespace paddle { + #ifdef PADDLE_TYPE_DOUBLE -typedef double real; +using real = double; #else -typedef float real; +using real = float; #endif } // namespace paddle - -using paddle::real; diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 8397659fff..bdd0e001fe 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -3419,8 +3419,35 @@ def register_parse_config_hook(f): _parse_config_hooks.add(f) -def parse_config(config_file, config_arg_str): +def update_g_config(): ''' + Update g_config after execute config_file or config_functions. + ''' + for k, v in settings.iteritems(): + if v is None: + continue + g_config.opt_config.__setattr__(k, v) + + for k, v in trainer_settings.iteritems(): + if v is None: + continue + g_config.__setattr__(k, v) + + for name in g_config.model_config.input_layer_names: + assert name in g_layer_map, \ + 'input name "%s" does not correspond to a layer name' % name + assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \ + 'The type of input layer "%s" is not "data"' % name + for name in g_config.model_config.output_layer_names: + assert name in g_layer_map, \ + 'input name "%s" does not correspond to a layer name' % name + return g_config + + +def parse_config(trainer_config, config_arg_str): + ''' + @param trainer_config: can be a string of config file name or a function name + with config logic @param config_arg_str: a string of the form var1=val1,var2=val2. It will be passed to config script as a dictionary CONFIG_ARGS ''' @@ -3454,46 +3481,21 @@ def parse_config(config_file, config_arg_str): g_root_submodel.is_recurrent_layer_group = False g_current_submodel = g_root_submodel - # for paddle on spark, need support non-file config. - # you can use parse_config like below: - # - # from paddle.trainer.config_parser import parse_config - # def configs(): - # #your paddle config code, which is same as config file. - # - # config = parse_config(configs, "is_predict=1") - # # then you get config proto object. - if hasattr(config_file, '__call__'): - config_file.func_globals.update( + if hasattr(trainer_config, '__call__'): + trainer_config.func_globals.update( make_config_environment("", config_args)) - config_file() + trainer_config() else: - execfile(config_file, make_config_environment(config_file, config_args)) - for k, v in settings.iteritems(): - if v is None: - continue - g_config.opt_config.__setattr__(k, v) - - for k, v in trainer_settings.iteritems(): - if v is None: - continue - g_config.__setattr__(k, v) + execfile(trainer_config, + make_config_environment(trainer_config, config_args)) - for name in g_config.model_config.input_layer_names: - assert name in g_layer_map, \ - 'input name "%s" does not correspond to a layer name' % name - assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \ - 'The type of input layer "%s" is not "data"' % name - for name in g_config.model_config.output_layer_names: - assert name in g_layer_map, \ - 'input name "%s" does not correspond to a layer name' % name - return g_config + return update_g_config() -def parse_config_and_serialize(config_file, config_arg_str): +def parse_config_and_serialize(trainer_config, config_arg_str): try: - config = parse_config(config_file, config_arg_str) - # logger.info(config) + config = parse_config(trainer_config, config_arg_str) + #logger.info(config) return config.SerializeToString() except: traceback.print_exc() diff --git a/python/paddle/trainer_config_helpers/__init__.py b/python/paddle/trainer_config_helpers/__init__.py index a2335768b9..13155ebddb 100644 --- a/python/paddle/trainer_config_helpers/__init__.py +++ b/python/paddle/trainer_config_helpers/__init__.py @@ -20,6 +20,6 @@ from layers import * from networks import * from optimizers import * from attrs import * - +from config_parser_utils import * # This will enable operator overload for LayerOutput -import math as layer_math +import layer_math diff --git a/python/paddle/trainer_config_helpers/attrs.py b/python/paddle/trainer_config_helpers/attrs.py index 59bb18bfca..bf02088346 100644 --- a/python/paddle/trainer_config_helpers/attrs.py +++ b/python/paddle/trainer_config_helpers/attrs.py @@ -19,34 +19,34 @@ __all__ = [ def convert_and_compare(x, Type): - """ - Convert x to be the same type as Type and then convert back to - check whether there is a loss of information - :param x: object to be checked - :param Type: target type to check x over - + """ + Convert x to be the same type as Type and then convert back to + check whether there is a loss of information + :param x: object to be checked + :param Type: target type to check x over + """ return type(x)(Type(x)) == x def is_compatible_with(x, Type): - """ - Check if x has a type compatible with Type - :param x: object to be checked - :param Type: target type to check x over - + """ + Check if x has a type compatible with Type + :param x: object to be checked + :param Type: target type to check x over + """ if type(x) == Type: return True try: if float == Type or int == Type: - # avoid those types that can be converted to float/int but not very - # meaningful and could potentially lead to error - # i.e., str and bool typed value should not be used for initializing float/int variable + # avoid those types that can be converted to float/int but not very + # meaningful and could potentially lead to error + # i.e., str and bool typed value should not be used for initializing float/int variable if not isinstance(x, str) and not isinstance(x, bool): return convert_and_compare(x, Type) elif bool == Type: - # should not use string type to initialize bool variable + # should not use string type to initialize bool variable if not isinstance(x, str): return convert_and_compare(x, Type) else: @@ -88,6 +88,10 @@ class ParameterAttribute(object): :type learning_rate: float or None :param momentum: The parameter momentum. None means use global value. :type momentum: float or None + :param gradient_clipping_threshold: gradient clipping threshold. If gradient + value larger than some value, will be + clipped. + :type gradient_clipping_threshold: float :param sparse_update: Enable sparse update for this parameter. It will enable both local and remote sparse update. :type sparse_update: bool @@ -104,6 +108,7 @@ class ParameterAttribute(object): l2_rate=None, learning_rate=None, momentum=None, + gradient_clipping_threshold=None, sparse_update=False): # initialize strategy. if is_static: @@ -152,6 +157,11 @@ class ParameterAttribute(object): self.attr['sparse_update'] = True self.attr['sparse_remote_update'] = True + if gradient_clipping_threshold is not None and \ + is_compatible_with(gradient_clipping_threshold, float): + self.attr['gradient_clipping_threshold'] = \ + gradient_clipping_threshold + def set_default_parameter_name(self, name): """ Set default parameter name. If parameter not set, then will use default diff --git a/python/paddle/trainer_config_helpers/config_parser.py b/python/paddle/trainer_config_helpers/config_parser.py new file mode 100644 index 0000000000..4b91b8d282 --- /dev/null +++ b/python/paddle/trainer_config_helpers/config_parser.py @@ -0,0 +1,38 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.trainer.config_parser as config_parser +''' +This file is a wrapper of formal config_parser. The main idea of this file is to +separete different config logic into different function, such as network configuration + and optimizer configuration. +''' + +__all__ = [ + "parse_trainer_config", "parse_network_config", "parse_optimizer_config" +] + + +def parse_trainer_config(trainer_conf, config_arg_str): + return config_parser.parse_config(trainer_conf, config_arg_str) + + +def parse_network_config(network_conf): + config = config_parser.parse_config(network_conf, '') + return config.model_config + + +def parse_optimizer_config(optimizer_conf): + config = config_parser.parse_config(optimizer_conf, '') + return config.opt_config diff --git a/python/paddle/trainer_config_helpers/config_parser_utils.py b/python/paddle/trainer_config_helpers/config_parser_utils.py new file mode 100644 index 0000000000..681b177a55 --- /dev/null +++ b/python/paddle/trainer_config_helpers/config_parser_utils.py @@ -0,0 +1,38 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.trainer.config_parser as config_parser +''' +This file is a wrapper of formal config_parser. The main idea of this file is to +separete different config logic into different function, such as network configuration + and optimizer configuration. +''' + +__all__ = [ + "parse_trainer_config", "parse_network_config", "parse_optimizer_config" +] + + +def parse_trainer_config(trainer_conf, config_arg_str): + return config_parser.parse_config(trainer_conf, config_arg_str) + + +def parse_network_config(network_conf, config_arg_str=''): + config = config_parser.parse_config(network_conf, config_arg_str) + return config.model_config + + +def parse_optimizer_config(optimizer_conf, config_arg_str=''): + config = config_parser.parse_config(optimizer_conf, config_arg_str) + return config.opt_config diff --git a/python/paddle/trainer_config_helpers/math.py b/python/paddle/trainer_config_helpers/layer_math.py similarity index 100% rename from python/paddle/trainer_config_helpers/math.py rename to python/paddle/trainer_config_helpers/layer_math.py