diff --git a/doc/fluid/design/algorithm/parameter_average.md b/doc/fluid/design/algorithm/parameter_average.md index 70c5cdecad..940d37fb31 100644 --- a/doc/fluid/design/algorithm/parameter_average.md +++ b/doc/fluid/design/algorithm/parameter_average.md @@ -5,10 +5,10 @@ In a large scale machine learning setup where the size of the training data is h Polyak and Juditsky (1992) showed that the test performance of simple average of parameters obtained by Stochastic Gradient Descent (SGD) is as good as that of parameter values that are obtained by training the model over and over again, over the training dataset. -Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for
. The averaging is done as follows: +Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for
. The averaging is done as follows:

-
+

We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above. diff --git a/doc/fluid/design/concurrent/channel.md b/doc/fluid/design/concurrent/channel.md index a5cf17faa8..df67438bcc 100644 --- a/doc/fluid/design/concurrent/channel.md +++ b/doc/fluid/design/concurrent/channel.md @@ -114,13 +114,13 @@ current thread under two conditions: #### Channel Send

-
+

#### Channel Receive

-
+

## Limitations and Considerations diff --git a/doc/fluid/design/concurrent/concurrent_programming.md b/doc/fluid/design/concurrent/concurrent_programming.md index 6460216606..1859f983e9 100644 --- a/doc/fluid/design/concurrent/concurrent_programming.md +++ b/doc/fluid/design/concurrent/concurrent_programming.md @@ -23,21 +23,25 @@ The following table compares concepts in Fluid and Go user-defined functions layers + control-flow and built-in functions intrinsics/operators + goroutines, channels class ThreadPool + runtime class Executor + diff --git a/doc/fluid/design/concurrent/select_op.md b/doc/fluid/design/concurrent/select_op.md index 98dd94a2be..4fcae57cc7 100644 --- a/doc/fluid/design/concurrent/select_op.md +++ b/doc/fluid/design/concurrent/select_op.md @@ -254,7 +254,7 @@ only one case will be executed. ### select_op flow

-
+

The select algorithm is inspired by golang's select routine. Please refer to diff --git a/doc/fluid/design/dist_train/distributed_architecture.md b/doc/fluid/design/dist_train/distributed_architecture.md index 3cd4750bce..229cb47c17 100644 --- a/doc/fluid/design/dist_train/distributed_architecture.md +++ b/doc/fluid/design/dist_train/distributed_architecture.md @@ -40,11 +40,11 @@ computation is only specified in Python code which sits outside of PaddlePaddle, Similar to how a compiler uses an intermediate representation (IR) so that the programmer does not need to manually optimize their code for most of the cases, we can have an intermediate representation in PaddlePaddle as well. The compiler optimizes the IR as follows: - + PaddlePaddle can support model parallelism by converting the IR so that the user no longer needs to manually perform the computation and operations in the Python component: - + The IR for PaddlePaddle after refactoring is called a `Block`, it specifies the computation dependency graph and the variables used in the computation. @@ -60,7 +60,7 @@ For a detailed explanation, refer to this document - The revamped distributed training architecture can address the above discussed limitations. Below is the illustration of how it does so: - + The major components are: *Python API*, *Distribute Transpiler* and *Remote Executor*. @@ -152,7 +152,7 @@ for data in train_reader(): `JobDesc` object describe the distributed job resource specification to run on Cluster environment. - + `RemoteExecutor.run` sends the `ProgramDesc` and [TrainingJob](https://github.com/PaddlePaddle/cloud/blob/unreleased-tpr/doc/autoscale/README.md#training-job-resource) @@ -171,7 +171,7 @@ In the future, a more general placement algorithm should be implemented, which m The local training architecture will be the same as the distributed training architecture, the difference is that everything runs locally, and there is just one PaddlePaddle runtime: - + ### Training Data diff --git a/doc/fluid/design/dist_train/multi_cpu.md b/doc/fluid/design/dist_train/multi_cpu.md index 586612622a..38222d0830 100644 --- a/doc/fluid/design/dist_train/multi_cpu.md +++ b/doc/fluid/design/dist_train/multi_cpu.md @@ -8,11 +8,11 @@ Op graph to a multi-CPU Op graph, and run `ParallelDo` Op to run the graph. ## Transpiler - + After converted: - + ## Implement diff --git a/doc/fluid/design/dist_train/parameter_server.md b/doc/fluid/design/dist_train/parameter_server.md index 179b5f8c29..73c85da5e8 100644 --- a/doc/fluid/design/dist_train/parameter_server.md +++ b/doc/fluid/design/dist_train/parameter_server.md @@ -41,11 +41,11 @@ We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*. Below is an example of converting the user defined graph to the subgraphs for the trainer and the parameter server: - + After converting: - + 1. The parameter variable W and its optimizer program are placed on the parameter server. 1. Operators are added to the program. @@ -69,8 +69,7 @@ In Fluid, we introduce [SelectedRows](../selected_rows.md) to represent a list o non-zero gradient data. So when we do parameter optimization both locally and remotely, we only need to send those non-zero rows to the optimizer operators: - - + ### Benefits - Model parallelism becomes easier to implement: it is an extension to diff --git a/doc/fluid/design/dynamic_rnn/rnn.md b/doc/fluid/design/dynamic_rnn/rnn.md index 9a61cd788a..7b61b050f6 100644 --- a/doc/fluid/design/dynamic_rnn/rnn.md +++ b/doc/fluid/design/dynamic_rnn/rnn.md @@ -5,7 +5,7 @@ This document describes the RNN (Recurrent Neural Network) operator and how it i ## RNN Algorithm Implementation

- +

The above diagram shows an RNN unrolled into a full network. diff --git a/doc/fluid/design/modules/batch_norm_op.md b/doc/fluid/design/modules/batch_norm_op.md index 211e060cc1..e451ffcc73 100644 --- a/doc/fluid/design/modules/batch_norm_op.md +++ b/doc/fluid/design/modules/batch_norm_op.md @@ -66,7 +66,7 @@ As most C++ operators do, `batch_norm_op` is defined by inputs, outputs, attribu The following graph showes the training computational process of `batch_norm_op`: - + cudnn provides APIs to finish the whole series of computation, we can use them in our GPU kernel. @@ -124,7 +124,7 @@ for pass_id in range(PASS_NUM): `is_infer` is an attribute. Once an operator is created, its attributes can not be changed. It suggests us that we shall maintain two `batch_norm_op` in the model, one's `is_infer` is `True`(we call it `infer_batch_norm_op`) and the other one's is `False`(we call it `train_batch_norm_op`). They share all parameters and variables, but be placed in two different branches. That is to say, if a network contains a `batch_norm_op`, it will fork into two branches, one go through `train_batch_norm_op` and the other one go through `infer_batch_norm_op`:
- +
Just like what is shown in the above graph, the net forks before `batch_norm_op` and will never merge again. All the operators after `batch_norm_op` will duplicate. diff --git a/doc/fluid/design/modules/regularization.md b/doc/fluid/design/modules/regularization.md index ffc3199a84..8cd5ff71d1 100644 --- a/doc/fluid/design/modules/regularization.md +++ b/doc/fluid/design/modules/regularization.md @@ -6,17 +6,17 @@ A central problem in machine learning is how to design an algorithm that will pe ### Parameter Norm Penalties Most common regularization approaches in deep learning are based on limiting the capacity of the models by adding a parameter norm penalty to the objective function `J`. This is given as follows: -
+
The parameter `alpha` is a hyperparameter that weights the relative contribution of the norm penalty term, `omega`, relative to the standard objective function `J`. The most commonly used norm penalties are the L2 norm penalty and the L1 norm penalty. These are given as follows: ##### L2 Regularization: -
+
##### L1 Regularization -
+
A much more detailed mathematical background of regularization can be found [here](http://www.deeplearningbook.org/contents/regularization.html). @@ -40,11 +40,11 @@ The idea of building ops for regularization is in sync with the refactored Paddl Below is an example of a really simple feed forward neural network. -
+
The Python API will modify this computation graph to add regularization operators. The modified computation graph will look as follows: -
+
    ### Python API implementation for Regularization diff --git a/doc/fluid/design/network/deep_speech_2.md b/doc/fluid/design/network/deep_speech_2.md index d3906143d3..f32a5b7e8a 100644 --- a/doc/fluid/design/network/deep_speech_2.md +++ b/doc/fluid/design/network/deep_speech_2.md @@ -116,7 +116,7 @@ The classical DS2 network contains 15 layers (from bottom to top): - **One** CTC-loss layer
-
+
Figure 1. Archetecture of Deep Speech 2 Network.
@@ -208,7 +208,7 @@ TODO by Assignees ### Beam Search with CTC and LM
-
+
Figure 2. Algorithm for CTC Beam Search Decoder.
diff --git a/doc/fluid/design/network/sequence_decoder.md b/doc/fluid/design/network/sequence_decoder.md index a56c1b5bca..f13d30ca9f 100644 --- a/doc/fluid/design/network/sequence_decoder.md +++ b/doc/fluid/design/network/sequence_decoder.md @@ -199,7 +199,7 @@ Packing the `selected_generation_scores` will get a `LoDTensor`, and each tail i ## LoD and shape changes during decoding

- +

According to the image above, the only phase that changes the LoD is beam search. diff --git a/doc/fluid/design/others/gan_api.md b/doc/fluid/design/others/gan_api.md index 8cc7930470..7167470088 100644 --- a/doc/fluid/design/others/gan_api.md +++ b/doc/fluid/design/others/gan_api.md @@ -7,14 +7,14 @@ It applies several important concepts in machine learning system design, includi In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN (Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [https://arxiv.org/abs/1511.06434]) as an example due to its good performance on image generation.

-
+
Figure 1. The overall running logic of GAN. The black solid arrows indicate the forward pass; the green dashed arrows indicate the backward pass of generator training; the red dashed arrows indicate the backward pass of the discriminator training. The BP pass of the green (red) arrow should only update the parameters in the green (red) boxes. The diamonds indicate the data providers. d\_loss and g\_loss marked in red and green are the two targets we would like to run.

The operators, layers and functions required/optional to build a GAN demo is summarized in https://github.com/PaddlePaddle/Paddle/issues/4563.

-
+
Figure 2. Photo borrowed from the original DC-GAN paper.

diff --git a/doc/fluid/dev/releasing_process.md b/doc/fluid/dev/releasing_process.md index d459b54e09..c5943ccd81 100644 --- a/doc/fluid/dev/releasing_process.md +++ b/doc/fluid/dev/releasing_process.md @@ -37,7 +37,7 @@ PaddlePaddle每次发新的版本,遵循以下流程: 可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m`和`cp27mu`的版本。然后按照上述的方法 使用`twine`工具上传即可。 - + * 注:CI环境使用 https://github.com/PaddlePaddle/buildtools 这里的DockerImage作为编译环境以支持更多的Linux 发型版,如果需要手动编译,也可以使用这些镜像。这些镜像也可以从 https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/ 下载得到。 diff --git a/doc/fluid/howto/performance/profiler.md b/doc/fluid/howto/performance/profiler.md index fe05534be7..ee96e7c74c 100644 --- a/doc/fluid/howto/performance/profiler.md +++ b/doc/fluid/howto/performance/profiler.md @@ -23,7 +23,7 @@ But how to record the time for the mixed C++ and CUDA program? There many C++ A The overall flow is shown as the following figure. -
+
### Event diff --git a/paddle/fluid/framework/block_desc.h b/paddle/fluid/framework/block_desc.h index 468423e0e8..873969b2a8 100644 --- a/paddle/fluid/framework/block_desc.h +++ b/paddle/fluid/framework/block_desc.h @@ -17,6 +17,7 @@ limitations under the License. */ #include #include #include +#include #include #include @@ -96,6 +97,8 @@ class BlockDesc { */ void RemoveOp(size_t s, size_t e); + void RemoveVar(const std::string &name) { vars_.erase(name); } + std::vector AllOps() const; size_t OpSize() const { return ops_.size(); } diff --git a/paddle/fluid/framework/lod_tensor.h b/paddle/fluid/framework/lod_tensor.h index dee505fee0..4f130d2659 100644 --- a/paddle/fluid/framework/lod_tensor.h +++ b/paddle/fluid/framework/lod_tensor.h @@ -142,6 +142,7 @@ class LoDTensor : public Tensor { return (lod_)[level].size() - 1; } + // Split LoDTensor and copy to each place specified in places. std::vector SplitLoDTensor( const std::vector places) const; diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index 1788514324..7be93fa600 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -150,13 +150,30 @@ void ParallelExecutor::BCastParamsToGPUs( #endif } -void ParallelExecutor::Run(const std::vector &fetch_tensors, - const std::string &fetched_var_name) { +void ParallelExecutor::Run( + const std::vector &fetch_tensors, + const std::string &fetched_var_name, + const std::unordered_map &feed_tensors) { platform::RecordBlock b(0); + SplitTensorToPlaces(feed_tensors); auto fetch_data = member_->executor_->Run(fetch_tensors); *member_->global_scope_->Var(fetched_var_name)->GetMutable() = fetch_data; } +void ParallelExecutor::SplitTensorToPlaces( + const std::unordered_map &feed_tensors) { + for (auto it : feed_tensors) { + auto lod_tensors = it.second.SplitLoDTensor(member_->places_); + for (size_t j = 0; j < member_->places_.size(); ++j) { + // TODO(panxy0718): Do I need to delete this var? + member_->local_scopes_[j] + ->Var(it.first) + ->GetMutable() + ->ShareDataWith(lod_tensors[j]); + } + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/parallel_executor.h b/paddle/fluid/framework/parallel_executor.h index 964b476234..c7c58b2b80 100644 --- a/paddle/fluid/framework/parallel_executor.h +++ b/paddle/fluid/framework/parallel_executor.h @@ -42,9 +42,13 @@ class ParallelExecutor { bool allow_op_delay); void Run(const std::vector& fetch_tensors, - const std::string& fetched_var_name = "fetched_var"); + const std::string& fetched_var_name, + const std::unordered_map& feed_tensors); private: + void SplitTensorToPlaces( + const std::unordered_map& feed_tensors); + ParallelExecutorPrivate* member_; void BCastParamsToGPUs(const ProgramDesc& startup_program) const; diff --git a/paddle/fluid/operators/CMakeLists.txt b/paddle/fluid/operators/CMakeLists.txt index 9ed79453b9..952ac8b1dc 100644 --- a/paddle/fluid/operators/CMakeLists.txt +++ b/paddle/fluid/operators/CMakeLists.txt @@ -193,6 +193,7 @@ if(WITH_DISTRIBUTE) set_source_files_properties(send_vars_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) op_library(send_barrier_op DEPS ${DISTRIBUTE_DEPS}) set_source_files_properties(send_barrier_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) + set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op listen_and_serv_op sum_op executor) else() set(DEPS_OPS ${DEPS_OPS} send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op) diff --git a/paddle/fluid/operators/detail/grpc_server.cc b/paddle/fluid/operators/detail/grpc_server.cc index 19bba46e3b..2e7bf1921a 100644 --- a/paddle/fluid/operators/detail/grpc_server.cc +++ b/paddle/fluid/operators/detail/grpc_server.cc @@ -186,7 +186,8 @@ void AsyncGRPCServer::WaitClientGet(int count) { void AsyncGRPCServer::RunSyncUpdate() { ::grpc::ServerBuilder builder; - builder.AddListeningPort(address_, ::grpc::InsecureServerCredentials()); + builder.AddListeningPort(address_, ::grpc::InsecureServerCredentials(), + &selected_port_); builder.SetMaxSendMessageSize(std::numeric_limits::max()); builder.SetMaxReceiveMessageSize(std::numeric_limits::max()); builder.RegisterService(&service_); @@ -196,7 +197,8 @@ void AsyncGRPCServer::RunSyncUpdate() { cq_prefetch_ = builder.AddCompletionQueue(); server_ = builder.BuildAndStart(); - LOG(INFO) << "Server listening on " << address_ << std::endl; + LOG(INFO) << "Server listening on " << address_ + << " selected port: " << selected_port_; std::function send_register = std::bind(&AsyncGRPCServer::TryToRegisterNewSendOne, this); diff --git a/paddle/fluid/operators/detail/grpc_server.h b/paddle/fluid/operators/detail/grpc_server.h index 5b5033018c..380447f47c 100644 --- a/paddle/fluid/operators/detail/grpc_server.h +++ b/paddle/fluid/operators/detail/grpc_server.h @@ -63,6 +63,8 @@ class AsyncGRPCServer final { void SetExecutor(framework::Executor *executor) { executor_ = executor; } + int GetSelectedPort() { return selected_port_; } + const ReceivedMessage Get() { return this->var_recv_queue_.Pop(); } void Push(const std::string &msg_name) { @@ -111,6 +113,7 @@ class AsyncGRPCServer final { int prefetch_blk_id_; framework::ProgramDesc *program_; framework::Executor *executor_; + int selected_port_; }; }; // namespace detail diff --git a/paddle/fluid/operators/fc_mkldnn_op.cc b/paddle/fluid/operators/fc_mkldnn_op.cc index 9c704a2949..847b7b0c12 100644 --- a/paddle/fluid/operators/fc_mkldnn_op.cc +++ b/paddle/fluid/operators/fc_mkldnn_op.cc @@ -27,8 +27,8 @@ template class MKLDNNMD { public: explicit MKLDNNMD(const T* in, const T* w, bool bias) - : in{paddle::framework::vectorize2int(in->dims())}, - w{paddle::framework::vectorize2int(w->dims())} { + : in(paddle::framework::vectorize2int(in->dims())), + w(paddle::framework::vectorize2int(w->dims())) { with_bias_ = bias; } @@ -78,7 +78,7 @@ class MKLDNNMD { class MKLDNNMemory { public: MKLDNNMemory(MKLDNNMD* t, const mkldnn::engine& e) - : md_{t}, engine_{e} {} + : md_(t), engine_(e) {} virtual ~MKLDNNMemory() = default; template diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc index 91a1f226cd..9188f2d989 100644 --- a/paddle/fluid/operators/listen_and_serv_op.cc +++ b/paddle/fluid/operators/listen_and_serv_op.cc @@ -12,20 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include #include +#include -#include "paddle/fluid/framework/executor.h" -#include "paddle/fluid/framework/lod_tensor.h" -#include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/framework/threadpool.h" -#include "paddle/fluid/operators/detail/grpc_server.h" +#include "paddle/fluid/operators/listen_and_serv_op.h" namespace paddle { namespace operators { -constexpr char kOptimizeBlock[] = "OptimizeBlock"; - void RunServer(std::shared_ptr service) { service->RunSyncUpdate(); VLOG(4) << "RunServer thread end"; @@ -66,143 +60,138 @@ static void ParallelExecuteBlocks( for (size_t i = 0; i < fs.size(); ++i) fs[i].wait(); } -class ListenAndServOp : public framework::OperatorBase { - public: - ListenAndServOp(const std::string &type, - const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : OperatorBase(type, inputs, outputs, attrs) { - if (!rpc_service_) { - std::string endpoint = Attr("endpoint"); - rpc_service_.reset(new detail::AsyncGRPCServer(endpoint)); - server_thread_.reset(new std::thread(RunServer, rpc_service_)); - } - } +ListenAndServOp::ListenAndServOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} - void Stop() override { - rpc_service_->Push(LISTEN_TERMINATE_MESSAGE); - server_thread_->join(); +int ListenAndServOp::GetSelectedPort() { + return rpc_service_->GetSelectedPort(); +} + +void ListenAndServOp::Stop() { + rpc_service_->Push(LISTEN_TERMINATE_MESSAGE); + server_thread_->join(); +} + +void ListenAndServOp::RunImpl(const framework::Scope &scope, + const platform::Place &dev_place) const { + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); + framework::Scope &recv_scope = scope.NewScope(); + + if (!rpc_service_) { + std::string endpoint = Attr("endpoint"); + rpc_service_.reset(new detail::AsyncGRPCServer(endpoint)); } - void RunImpl(const framework::Scope &scope, - const platform::Place &dev_place) const override { - platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); - auto &dev_ctx = *pool.Get(dev_place); - framework::Scope &recv_scope = scope.NewScope(); - - // FIXME(Yancey1989): initialize rpc server with lazy mode. - rpc_service_->SetScope(&recv_scope); - rpc_service_->SetDevCtx(&dev_ctx); - auto ins = Inputs("X"); - auto fan_in = Attr("Fanin"); - - auto *block = Attr(kOptimizeBlock); - auto *program = block->Program(); - size_t num_blocks = program->Size(); - PADDLE_ENFORCE_GE(num_blocks, 2, - "server program should have at least 2 blocks"); - - framework::Executor executor(dev_place); - std::vector block_list; - for (size_t blkid = 1; blkid < num_blocks; ++blkid) - block_list.push_back(blkid); - auto prepared = executor.Prepare(*program, block_list); - prepared.insert( - prepared.begin(), - std::shared_ptr(nullptr)); - - // TODO(qiao) set proper fields for table lookup and update - rpc_service_->SetExecutor(&executor); - rpc_service_->SetPrefetchBlkdId(0); - rpc_service_->SetProgram(program); - - // TODO(typhoonzero): change this to a while_op for every cluster-batch. - bool exit_flag = false; - // Record received sparse variables, so that - // we could reset those after execute optimize program - std::vector sparse_vars; - while (!exit_flag) { - // Get from multiple trainers, we don't care about the order in which - // the gradients arrives, just add suffix 0~n and merge the gradient. - rpc_service_->SetCond(0); - size_t recv_var_cnt = 0; - int batch_barrier = 0; - while (batch_barrier != fan_in) { - const detail::ReceivedMessage v = rpc_service_->Get(); - auto recv_var_name = v.first; - if (recv_var_name == LISTEN_TERMINATE_MESSAGE) { - LOG(INFO) << "received terminate message and exit"; - exit_flag = true; - break; - } else if (recv_var_name == BATCH_BARRIER_MESSAGE) { - VLOG(3) << "recv batch barrier message"; - batch_barrier++; - continue; - } else { - VLOG(3) << "received grad: " << recv_var_name; - recv_var_cnt++; - auto var = v.second->GetVar(); - if (var == nullptr) { - LOG(ERROR) << "Can not find server side var: " << recv_var_name; - PADDLE_THROW("Can not find server side var"); - } - if (var->IsType()) { - sparse_vars.push_back(var); - } - } - } - if (exit_flag) { - rpc_service_->SetCond(1); - rpc_service_->ShutDown(); + auto ins = Inputs("X"); + auto fan_in = Attr("Fanin"); + auto *block = Attr(kOptimizeBlock); + auto *program = block->Program(); + size_t num_blocks = program->Size(); + PADDLE_ENFORCE_GE(num_blocks, 2, + "server program should have at least 2 blocks"); + + framework::Executor executor(dev_place); + std::vector block_list; + for (size_t blkid = 1; blkid < num_blocks; ++blkid) { + block_list.push_back(blkid); + } + auto prepared = executor.Prepare(*program, block_list); + // Insert placeholder for block0 which holds current op itself. + prepared.insert(prepared.begin(), + std::shared_ptr(nullptr)); + + rpc_service_->SetScope(&recv_scope); + rpc_service_->SetDevCtx(&dev_ctx); + // TODO(qiao) set proper fields for table lookup and update + rpc_service_->SetExecutor(&executor); + rpc_service_->SetPrefetchBlkdId(0); + rpc_service_->SetProgram(program); + // start the server listening after all member initialized. + server_thread_.reset(new std::thread(RunServer, rpc_service_)); + // FIXME(typhoonzero): do we need to wait until the server port is ready? + sleep(5); + + // TODO(typhoonzero): change this to a while_op for every cluster-batch. + bool exit_flag = false; + // Record received sparse variables, so that + // we could reset those after execute optimize program + std::vector sparse_vars; + while (!exit_flag) { + // Get from multiple trainers, we don't care about the order in which + // the gradients arrives, just add suffix 0~n and merge the gradient. + rpc_service_->SetCond(0); + size_t recv_var_cnt = 0; + int batch_barrier = 0; + while (batch_barrier != fan_in) { + const detail::ReceivedMessage v = rpc_service_->Get(); + auto recv_var_name = v.first; + if (recv_var_name == LISTEN_TERMINATE_MESSAGE) { + LOG(INFO) << "received terminate message and exit"; + exit_flag = true; break; - } - - // NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads - // and this will still work. - - // The optimize blocks which have the same parent ID would run parallel - // TODO(Yancey1989): need to use ParallelExecutor for future - int32_t last_parent_blkid = program->Block(1).Parent(); - std::vector parallel_blkids; - parallel_blkids.push_back(1); - double ts = detail::GetTimestamp(); - for (size_t blkid = 2; blkid < num_blocks; ++blkid) { - if (program->Block(blkid).Parent() != last_parent_blkid) { - for (size_t idx : parallel_blkids) VLOG(3) << idx; - ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program, - &recv_scope); - parallel_blkids.clear(); - last_parent_blkid = program->Block(blkid).Parent(); + } else if (recv_var_name == BATCH_BARRIER_MESSAGE) { + VLOG(3) << "recv batch barrier message"; + batch_barrier++; + continue; + } else { + VLOG(3) << "received grad: " << recv_var_name; + recv_var_cnt++; + auto var = v.second->GetVar(); + if (var == nullptr) { + LOG(ERROR) << "Can not find server side var: " << recv_var_name; + PADDLE_THROW("Can not find server side var"); + } + if (var->IsType()) { + sparse_vars.push_back(var); } - parallel_blkids.push_back(blkid); - } - ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program, - &recv_scope); - - VLOG(3) << "run all blocks spent " << detail::GetTimestamp() - ts - << "(ms)"; - - // Reset the received sparse variables, the sum operator would not - // sum the input sparse variables which rows is empty at the next - // mini-batch. - // TODO(Yancey1989): move the reset action into an operator, we couldn't - // have any hide logic in the operator. - for (auto &var : sparse_vars) { - var->GetMutable()->mutable_rows()->clear(); } + } + if (exit_flag) { rpc_service_->SetCond(1); - // NOTE: does not consider barrier request retry in here, we may use - // global barrier id to resolve this. - rpc_service_->WaitClientGet(fan_in); - sparse_vars.clear(); - } // while(true) - } + rpc_service_->ShutDown(); + break; + } - protected: - std::shared_ptr rpc_service_; - std::shared_ptr server_thread_; -}; + // NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads + // and this will still work. + + // The optimize blocks which have the same parent ID would run parallel + // TODO(Yancey1989): need to use ParallelExecutor for future + int32_t last_parent_blkid = program->Block(1).Parent(); + std::vector parallel_blkids; + parallel_blkids.push_back(1); + double ts = detail::GetTimestamp(); + for (size_t blkid = 2; blkid < num_blocks; ++blkid) { + if (program->Block(blkid).Parent() != last_parent_blkid) { + ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program, + &recv_scope); + parallel_blkids.clear(); + last_parent_blkid = program->Block(blkid).Parent(); + } + parallel_blkids.push_back(blkid); + } + ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program, + &recv_scope); + VLOG(2) << "run all blocks spent " << detail::GetTimestamp() - ts << "(ms)"; + + // Reset the received sparse variables, the sum operator would not + // sum the input sparse variables which rows is empty at the next + // mini-batch. + // TODO(Yancey1989): move the reset action into an operator, we couldn't + // have any hide logic in the operator. + for (auto &var : sparse_vars) { + var->GetMutable()->mutable_rows()->clear(); + } + rpc_service_->SetCond(1); + // FIXME(typhoonzero): use another condition to sync wait clients get. + rpc_service_->WaitClientGet(fan_in); + sparse_vars.clear(); + } // while(true) +} class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker { public: diff --git a/paddle/fluid/operators/listen_and_serv_op.h b/paddle/fluid/operators/listen_and_serv_op.h new file mode 100644 index 0000000000..0da87afc96 --- /dev/null +++ b/paddle/fluid/operators/listen_and_serv_op.h @@ -0,0 +1,53 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include + +#include "paddle/fluid/framework/executor.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/threadpool.h" +#include "paddle/fluid/operators/detail/grpc_server.h" + +namespace paddle { +namespace operators { + +constexpr char kOptimizeBlock[] = "OptimizeBlock"; + +void RunServer(std::shared_ptr service); + +class ListenAndServOp : public framework::OperatorBase { + public: + ListenAndServOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs); + + int GetSelectedPort(); + + void Stop() override; + + void RunImpl(const framework::Scope &scope, + const platform::Place &dev_place) const override; + + protected: + mutable std::shared_ptr rpc_service_; + mutable std::shared_ptr server_thread_; +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/prior_box_op.cc b/paddle/fluid/operators/prior_box_op.cc index c22a55bce2..82e54139c8 100644 --- a/paddle/fluid/operators/prior_box_op.cc +++ b/paddle/fluid/operators/prior_box_op.cc @@ -73,7 +73,7 @@ class PriorBoxOp : public framework::OperatorWithKernel { const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), - platform::CPUPlace()); + ctx.device_context()); } }; @@ -171,6 +171,5 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(prior_box, ops::PriorBoxOp, ops::PriorBoxOpMaker, paddle::framework::EmptyGradOpMaker); -REGISTER_OP_CPU_KERNEL( - prior_box, ops::PriorBoxOpKernel, - ops::PriorBoxOpKernel); +REGISTER_OP_CPU_KERNEL(prior_box, ops::PriorBoxOpKernel, + ops::PriorBoxOpKernel); diff --git a/paddle/fluid/operators/prior_box_op.cu b/paddle/fluid/operators/prior_box_op.cu new file mode 100644 index 0000000000..76bf2b3b7d --- /dev/null +++ b/paddle/fluid/operators/prior_box_op.cu @@ -0,0 +1,167 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/prior_box_op.h" + +namespace paddle { +namespace operators { + +template +__device__ inline T clip(T in) { + return min(max(in, 0.), 1.); +} + +template +__global__ void GenPriorBox(T* out, const T* aspect_ratios, const int height, + const int width, const int im_height, + const int im_width, const int as_num, + const T offset, const T step_width, + const T step_height, const T* min_sizes, + const T* max_sizes, const int min_num, + bool is_clip) { + int num_priors = max_sizes ? as_num * min_num + min_num : as_num * min_num; + int box_num = height * width * num_priors; + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < box_num; + i += blockDim.x * gridDim.x) { + int h = i / (num_priors * width); + int w = (i / num_priors) % width; + int p = i % num_priors; + int m = max_sizes ? p / (as_num + 1) : p / as_num; + T cx = (w + offset) * step_width; + T cy = (h + offset) * step_height; + T bw, bh; + T min_size = min_sizes[m]; + if (max_sizes) { + int s = p % (as_num + 1); + if (s < as_num) { + T ar = aspect_ratios[s]; + bw = min_size * sqrt(ar) / 2.; + bh = min_size / sqrt(ar) / 2.; + } else { + T max_size = max_sizes[m]; + bw = sqrt(min_size * max_size) / 2.; + bh = bw; + } + } else { + int s = p % as_num; + T ar = aspect_ratios[s]; + bw = min_size * sqrt(ar) / 2.; + bh = min_size / sqrt(ar) / 2.; + } + T xmin = (cx - bw) / im_width; + T ymin = (cy - bh) / im_height; + T xmax = (cx + bw) / im_width; + T ymax = (cy + bh) / im_height; + out[i * 4] = is_clip ? clip(xmin) : xmin; + out[i * 4 + 1] = is_clip ? clip(ymin) : ymin; + out[i * 4 + 2] = is_clip ? clip(xmax) : xmax; + out[i * 4 + 3] = is_clip ? clip(ymax) : ymax; + } +} + +template +__global__ void SetVariance(T* out, const T* var, const int vnum, + const int num) { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num; + i += blockDim.x * gridDim.x) { + out[i] = var[i % vnum]; + } +} + +template +class PriorBoxOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* input = ctx.Input("Input"); + auto* image = ctx.Input("Image"); + auto* boxes = ctx.Output("Boxes"); + auto* vars = ctx.Output("Variances"); + + auto min_sizes = ctx.Attr>("min_sizes"); + auto max_sizes = ctx.Attr>("max_sizes"); + auto input_aspect_ratio = ctx.Attr>("aspect_ratios"); + auto variances = ctx.Attr>("variances"); + auto flip = ctx.Attr("flip"); + auto clip = ctx.Attr("clip"); + + std::vector aspect_ratios; + ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios); + + T step_w = static_cast(ctx.Attr("step_w")); + T step_h = static_cast(ctx.Attr("step_h")); + T offset = static_cast(ctx.Attr("offset")); + + auto im_width = image->dims()[3]; + auto im_height = image->dims()[2]; + + auto width = input->dims()[3]; + auto height = input->dims()[2]; + + T step_width, step_height; + if (step_w == 0 || step_h == 0) { + step_width = static_cast(im_width) / width; + step_height = static_cast(im_height) / height; + } else { + step_width = step_w; + step_height = step_h; + } + + int num_priors = aspect_ratios.size() * min_sizes.size(); + if (max_sizes.size() > 0) { + num_priors += max_sizes.size(); + } + int min_num = static_cast(min_sizes.size()); + int box_num = width * height * num_priors; + + int block = 512; + int grid = (box_num + block - 1) / block; + + auto stream = + ctx.template device_context().stream(); + + boxes->mutable_data(ctx.GetPlace()); + vars->mutable_data(ctx.GetPlace()); + + framework::Tensor r; + framework::TensorFromVector(aspect_ratios, ctx.device_context(), &r); + + framework::Tensor min; + framework::TensorFromVector(min_sizes, ctx.device_context(), &min); + + T* max_data = nullptr; + framework::Tensor max; + if (max_sizes.size() > 0) { + framework::TensorFromVector(max_sizes, ctx.device_context(), &max); + max_data = max.data(); + } + + GenPriorBox<<>>( + boxes->data(), r.data(), height, width, im_height, im_width, + aspect_ratios.size(), offset, step_width, step_height, min.data(), + max_data, min_num, clip); + + framework::Tensor v; + framework::TensorFromVector(variances, ctx.device_context(), &v); + grid = (box_num * 4 + block - 1) / block; + SetVariance<<>>(vars->data(), v.data(), + variances.size(), box_num * 4); + } +}; // namespace operators + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL(prior_box, ops::PriorBoxOpCUDAKernel, + ops::PriorBoxOpCUDAKernel); diff --git a/paddle/fluid/operators/prior_box_op.h b/paddle/fluid/operators/prior_box_op.h index 18bb2deb6b..1e4a12aac1 100644 --- a/paddle/fluid/operators/prior_box_op.h +++ b/paddle/fluid/operators/prior_box_op.h @@ -51,7 +51,7 @@ struct ClipFunctor { } }; -template +template class PriorBoxOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -106,49 +106,24 @@ class PriorBoxOpKernel : public framework::OpKernel { int idx = 0; for (size_t s = 0; s < min_sizes.size(); ++s) { auto min_size = min_sizes[s]; - // first prior: aspect_ratio = 1, size = min_size - box_width = box_height = min_size / 2.; - // xmin - e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width; - // ymin - e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height; - // xmax - e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width; - // ymax - e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height; - - idx++; - if (max_sizes.size() > 0) { - auto max_size = max_sizes[s]; - // second prior: aspect_ratio = 1, - // size = sqrt(min_size * max_size) - box_width = box_height = sqrt(min_size * max_size) / 2.; - // xmin + // priors with different aspect ratios + for (size_t r = 0; r < aspect_ratios.size(); ++r) { + float ar = aspect_ratios[r]; + box_width = min_size * sqrt(ar) / 2.; + box_height = min_size / sqrt(ar) / 2.; e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width; - // ymin e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height; - // xmax e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width; - // ymax e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height; idx++; } - - // rest of priors - for (size_t r = 0; r < aspect_ratios.size(); ++r) { - float ar = aspect_ratios[r]; - if (fabs(ar - 1.) < 1e-6) { - continue; - } - box_width = min_size * sqrt(ar) / 2.; - box_height = min_size / sqrt(ar) / 2.; - // xmin + if (max_sizes.size() > 0) { + auto max_size = max_sizes[s]; + // square prior with size sqrt(minSize * maxSize) + box_width = box_height = sqrt(min_size * max_size) / 2.; e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width; - // ymin e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height; - // xmax e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width; - // ymax e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height; idx++; } diff --git a/paddle/fluid/operators/send_recv_op_test.cc b/paddle/fluid/operators/send_recv_op_test.cc index 04392b3e05..542bc3fde2 100644 --- a/paddle/fluid/operators/send_recv_op_test.cc +++ b/paddle/fluid/operators/send_recv_op_test.cc @@ -20,6 +20,7 @@ limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/program_desc.h" +#include "paddle/fluid/operators/listen_and_serv_op.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/fluid/string/printf.h" @@ -34,6 +35,7 @@ namespace m = paddle::operators::math; // global for simplicity. std::unique_ptr listen_and_serv_op; +int selected_port; void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) { p::CPUDeviceContext ctx(place); @@ -128,14 +130,16 @@ void StartServerNet(bool is_sparse) { AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, optimize_block); f::AttributeMap attrs; - attrs.insert({"endpoint", std::string("127.0.0.1:6174")}); + attrs.insert({"endpoint", std::string("127.0.0.1:0")}); attrs.insert({"Fanin", 1}); attrs.insert({"ParamList", std::vector({"Out"})}); attrs.insert({"GradList", std::vector({"x1"})}); attrs.insert({"OptimizeBlock", optimize_block}); listen_and_serv_op = f::OpRegistry::CreateOp("listen_and_serv", {{"X", {"x1"}}}, {}, attrs); + LOG(INFO) << "selected port before run " << selected_port; listen_and_serv_op->Run(scope, place); + LOG(INFO) << "server exit"; } TEST(SendRecvOp, CPUDense) { @@ -149,12 +153,19 @@ TEST(SendRecvOp, CPUDense) { scope.Var("RPC_CLIENT_VAR"); f::AttributeMap attrs; - attrs.insert({"endpoints", std::vector({"127.0.0.1:6174"})}); - attrs.insert({"epmap", std::vector({"127.0.0.1:6174"})}); + selected_port = static_cast( + listen_and_serv_op.get()) + ->GetSelectedPort(); + LOG(INFO) << "selected port " << selected_port; + std::string endpoint = paddle::string::Sprintf("127.0.0.1:%d", selected_port); + attrs.insert({"endpoints", std::vector({endpoint})}); + attrs.insert({"epmap", std::vector({endpoint})}); auto send_op = f::OpRegistry::CreateOp( "send", {{"X", {"x1"}}}, {{"Out", {"Out"}}, {"RPCClient", {"RPC_CLIENT_VAR"}}}, attrs); + LOG(INFO) << "before run " << endpoint; send_op->Run(scope, place); + LOG(INFO) << "end run"; auto in_var = scope.Var("x1"); auto tensor = in_var->GetMutable(); @@ -167,6 +178,7 @@ TEST(SendRecvOp, CPUDense) { for (int64_t i = 0; i < target->numel(); ++i) { EXPECT_EQ(expected[i] * 2, actual[i]); } + LOG(INFO) << "before stop"; listen_and_serv_op->Stop(); server_thread.join(); listen_and_serv_op.reset(nullptr); @@ -182,8 +194,13 @@ TEST(SendRecvOp, CPUSparse) { InitSelectedRowsInScope(scope, place); scope.Var("RPC_CLIENT_VAR"); f::AttributeMap attrs; - attrs.insert({"endpoints", std::vector({"127.0.0.1:6174"})}); - attrs.insert({"epmap", std::vector({"127.0.0.1:6174"})}); + selected_port = static_cast( + listen_and_serv_op.get()) + ->GetSelectedPort(); + LOG(INFO) << "selected port " << selected_port; + std::string endpoint = paddle::string::Sprintf("127.0.0.1:%d", selected_port); + attrs.insert({"endpoints", std::vector({endpoint})}); + attrs.insert({"epmap", std::vector({endpoint})}); auto send_op = f::OpRegistry::CreateOp( "send", {{"X", {"x1"}}}, {{"Out", {"Out"}}, {"RPCClient", {"RPC_CLIENT_VAR"}}}, attrs); diff --git a/paddle/fluid/pybind/protobuf.cc b/paddle/fluid/pybind/protobuf.cc index 45a64f4384..985984983a 100644 --- a/paddle/fluid/pybind/protobuf.cc +++ b/paddle/fluid/pybind/protobuf.cc @@ -15,6 +15,8 @@ limitations under the License. */ #include "paddle/fluid/pybind/protobuf.h" #include #include +#include +#include #include "paddle/fluid/framework/backward.h" #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/op_desc.h" @@ -98,7 +100,7 @@ namespace pybind { using namespace paddle::framework; // NOLINT template -static py::bytes SerializeMessage(T &self) { +static py::bytes SerializeMessage(T &self) { // NOLINT // Check IsInitialized in Python std::string retv; PADDLE_ENFORCE(self.Proto()->SerializePartialToString(&retv), @@ -107,7 +109,7 @@ static py::bytes SerializeMessage(T &self) { } // Bind Methods -void BindProgramDesc(py::module &m) { +void BindProgramDesc(py::module &m) { // NOLINT py::class_(m, "ProgramDesc", "") .def(py::init<>()) .def("__init__", @@ -151,7 +153,7 @@ void BindProgramDesc(py::module &m) { }); } -void BindBlockDesc(py::module &m) { +void BindBlockDesc(py::module &m) { // NOLINT py::class_(m, "BlockDesc", "") .def_property_readonly("id", &BlockDesc::ID) .def_property_readonly("parent", &BlockDesc::Parent) @@ -200,13 +202,19 @@ void BindBlockDesc(py::module &m) { return self.FindVarRecursive(name); }, py::return_value_policy::reference) + .def("remove_var", + [](BlockDesc &self, py::bytes byte_name) { + std::string name = byte_name; + return self.RemoveVar(name); + }, + py::return_value_policy::reference) .def("all_vars", &BlockDesc::AllVars, py::return_value_policy::reference) .def("op_size", &BlockDesc::OpSize) .def("op", &BlockDesc::Op, py::return_value_policy::reference) .def("serialize_to_string", SerializeMessage); } -void BindVarDsec(py::module &m) { +void BindVarDsec(py::module &m) { // NOLINT py::class_ var_desc(m, "VarDesc", ""); var_desc .def("name", @@ -257,7 +265,7 @@ void BindVarDsec(py::module &m) { .value("RAW", proto::VarType::RAW); } -void BindOpDesc(py::module &m) { +void BindOpDesc(py::module &m) { // NOLINT py::enum_(m, "AttrType", "") .value("INT", proto::AttrType::INT) .value("INTS", proto::AttrType::INTS) diff --git a/python/paddle/fluid/distribute_transpiler.py b/python/paddle/fluid/distribute_transpiler.py index 9311fc9904..31bedb592f 100644 --- a/python/paddle/fluid/distribute_transpiler.py +++ b/python/paddle/fluid/distribute_transpiler.py @@ -408,11 +408,7 @@ class DistributeTranspiler: pserver_vars = pserver_program.global_block().vars created_var_map = dict() for _, var in pserver_vars.iteritems(): - tmpvar = s_prog.global_block().create_var( - name=var.name, - persistable=var.persistable, - dtype=var.dtype, - shape=var.shape) + tmpvar = s_prog.global_block().clone_variable(var) created_var_map[var.name] = tmpvar # 2. rename op outputs @@ -708,11 +704,7 @@ class DistributeTranspiler: varlist = [varlist] for var in varlist: - program.global_block().create_var( - name=var.name, - persistable=var.persistable, - dtype=var.dtype, - shape=var.shape) + program.global_block().clone_variable(var) optimize_block.append_op( type=opt_op.type, diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index e15456bfc0..39d4017861 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -946,13 +946,20 @@ class Block(object): The new variable cloned from 'var' in current block. """ assert isinstance(var, Variable) - return self.create_var( - name=var.name, - shape=var.shape, - dtype=var.dtype, - type=var.type, - lod_level=var.lod_level, - persistable=True) + ret_var = None + # make STEP_SCOPES var can be safely cloned. + if var.type == core.VarDesc.VarType.STEP_SCOPES: + ret_var = self.create_var( + name=var.name, persistable=var.persistable, type=var.type) + else: + ret_var = self.create_var( + name=var.name, + shape=var.shape, + dtype=var.dtype, + type=var.type, + lod_level=var.lod_level, + persistable=True) + return ret_var class Program(object): diff --git a/python/paddle/fluid/parallel_executor.py b/python/paddle/fluid/parallel_executor.py index a2c830b3c9..1b3ba414ec 100644 --- a/python/paddle/fluid/parallel_executor.py +++ b/python/paddle/fluid/parallel_executor.py @@ -26,25 +26,29 @@ class ParallelExecutor(object): use_cuda, num_threads=None, allow_op_delay=False): - places = [] + self._places = [] + self._act_places = [] if use_cuda: for i in xrange(core.get_cuda_device_count()): p = core.Place() - p.set_place(core.CUDAPlace(i)) - places.append(p) + self._act_places.append(core.CUDAPlace(i)) + p.set_place(self._act_places[-1]) + self._places.append(p) else: for i in xrange(multiprocessing.cpu_count()): p = core.Place() - p.set_place(core.CPUPlace()) - places.append(p) + self._act_places.append(core.CPUPlace(i)) + p.set_place(self._act_places[-1]) + self._places.append(p) + assert self._places, "no place for execution" if num_threads is None: if use_cuda: # Experiments on se-resnext shows that too many threads hurt # performance. Worth tunning for other models in the future. - num_threads = len(places) + num_threads = len(self._places) else: - min(len(places) * 2, multiprocessing.cpu_count()) + min(len(self._places) * 2, multiprocessing.cpu_count()) startup = framework.default_startup_program() main = framework.default_main_program() @@ -53,7 +57,7 @@ class ParallelExecutor(object): self.executor = core.ParallelExecutor( num_threads, True if use_cuda else False, # use_event - places, + self._places, set([ p.name for p in main.global_block().iter_parameters() if not p.stop_gradient @@ -65,8 +69,25 @@ class ParallelExecutor(object): allow_op_delay) self.scope = scope - def run(self, fetch_list): + def run(self, fetch_list, feed_dict={}): + """ + :param fetch_list: A list of variable names that will be fetched. + :param feed_dict: A dict mapping for feed variable name to LoDTensor + or numpy array. + :return: fetched value list. + """ + if not isinstance(feed_dict, dict): + raise TypeError("feed_dict should be a dict") + + feed_tensor_dict = {} + for i, feed_name in enumerate(feed_dict): + feed_tensor = feed_dict[feed_name] + if not isinstance(feed_tensor, core.LoDTensor): + feed_tensor = core.LoDTensor() + feed_tensor.set(feed_dict[feed_name], self._act_places[0]) + feed_tensor_dict[feed_name] = feed_tensor + fetch_var_name = '@FETCHED_VAR_NAME@' - self.executor.run(fetch_list, fetch_var_name) + self.executor.run(fetch_list, fetch_var_name, feed_tensor_dict) arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array() return [arr[i] for i in range(len(arr))] diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor.py b/python/paddle/fluid/tests/unittests/test_parallel_executor.py index a79e4b3e18..0cbef82e33 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor.py @@ -21,13 +21,17 @@ import paddle.dataset.mnist as mnist import paddle.dataset.wmt16 as wmt16 -def simple_fc_net(): - reader = fluid.layers.open_recordio_file( - filename='./mnist.recordio', - shapes=[[-1, 784], [-1, 1]], - lod_levels=[0, 0], - dtypes=['float32', 'int64']) - img, label = fluid.layers.read_file(reader) +def simple_fc_net(use_feed): + if use_feed: + img = fluid.layers.data(name='image', shape=[784], dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + else: + reader = fluid.layers.open_recordio_file( + filename='./mnist.recordio', + shapes=[[-1, 784], [-1, 1]], + lod_levels=[0, 0], + dtypes=['float32', 'int64']) + img, label = fluid.layers.read_file(reader) hidden = img for _ in xrange(4): hidden = fluid.layers.fc( @@ -42,13 +46,18 @@ def simple_fc_net(): return loss -def fc_with_batchnorm(): - reader = fluid.layers.open_recordio_file( - filename='./mnist.recordio', - shapes=[[-1, 784], [-1, 1]], - lod_levels=[0, 0], - dtypes=['float32', 'int64']) - img, label = fluid.layers.read_file(reader) +def fc_with_batchnorm(use_feed): + if use_feed: + img = fluid.layers.data(name='image', shape=[784], dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + else: + reader = fluid.layers.open_recordio_file( + filename='./mnist.recordio', + shapes=[[-1, 784], [-1, 1]], + lod_levels=[0, 0], + dtypes=['float32', 'int64']) + img, label = fluid.layers.read_file(reader) + hidden = img for _ in xrange(1): hidden = fluid.layers.fc( @@ -135,7 +144,9 @@ def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio): return fluid.layers.elementwise_add(x=short, y=scale, act='relu') -def SE_ResNeXt152Small(batch_size=2): +def SE_ResNeXt152Small(batch_size=2, use_feed=False): + assert not use_feed, "SE_ResNeXt doesn't support feed yet" + img = fluid.layers.fill_constant( shape=[batch_size, 3, 224, 224], dtype='float32', value=0.0) label = fluid.layers.fill_constant( @@ -185,30 +196,28 @@ class TestParallelExecutorBase(unittest.TestCase): memory_opt=True, iter=10, batch_size=None, - allow_op_delay=False): + allow_op_delay=False, + feed_dict={}): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): - loss = method() + loss = method(use_feed=len(feed_dict) > 0) adam = fluid.optimizer.Adam() adam.minimize(loss) if memory_opt: fluid.memory_optimize(main) - exe = fluid.ParallelExecutor( - loss_name=loss.name, - use_cuda=True, - allow_op_delay=allow_op_delay) + exe = fluid.ParallelExecutor(loss_name=loss.name, use_cuda=True) if batch_size is not None: batch_size *= fluid.core.get_cuda_device_count() begin = time.time() - first_loss, = exe.run([loss.name]) + first_loss, = exe.run([loss.name], feed_dict=feed_dict) first_loss = numpy.array(first_loss) for i in xrange(iter): - exe.run([]) + exe.run([], feed_dict=feed_dict) - last_loss, = exe.run([loss.name]) + last_loss, = exe.run([loss.name], feed_dict=feed_dict) end = time.time() if batch_size is not None: @@ -242,9 +251,19 @@ class TestMNIST(TestParallelExecutorBase): self.check_network_convergence(simple_fc_net) self.check_network_convergence(simple_fc_net, allow_op_delay=True) + img = numpy.zeros(shape=[32, 784], dtype='float32') + label = numpy.ones(shape=[32, 1], dtype='int64') + self.check_network_convergence( + simple_fc_net, feed_dict={"image": img, + "label": label}) + def test_batchnorm_fc(self): self.check_network_convergence(fc_with_batchnorm) - self.check_network_convergence(fc_with_batchnorm, allow_op_delay=True) + img = numpy.zeros(shape=[32, 784], dtype='float32') + label = numpy.ones(shape=[32, 1], dtype='int64') + self.check_network_convergence( + fc_with_batchnorm, feed_dict={"image": img, + "label": label}) class TestResnet(TestParallelExecutorBase): @@ -400,7 +419,8 @@ def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head): import transformer_model -def transformer(): +def transformer(use_feed): + assert not use_feed, "transfomer doesn't support feed yet" return transformer_model.transformer( ModelHyperParams.src_vocab_size + 1, ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1, diff --git a/python/paddle/fluid/tests/unittests/test_prior_box_op.py b/python/paddle/fluid/tests/unittests/test_prior_box_op.py index c21138c13e..bcbc02a2ba 100644 --- a/python/paddle/fluid/tests/unittests/test_prior_box_op.py +++ b/python/paddle/fluid/tests/unittests/test_prior_box_op.py @@ -28,7 +28,6 @@ class TestPriorBoxOp(OpTest): self.attrs = { 'min_sizes': self.min_sizes, - 'max_sizes': self.max_sizes, 'aspect_ratios': self.aspect_ratios, 'variances': self.variances, 'flip': self.flip, @@ -37,25 +36,28 @@ class TestPriorBoxOp(OpTest): 'step_h': self.step_h, 'offset': self.offset } + if len(self.max_sizes) > 0: + self.attrs['max_sizes'] = self.max_sizes self.outputs = {'Boxes': self.out_boxes, 'Variances': self.out_var} def test_check_output(self): self.check_output() - def test_check_grad(self): - return - def setUp(self): self.op_type = "prior_box" self.set_data() + def set_max_sizes(self): + max_sizes = [5, 10] + self.max_sizes = np.array(max_sizes).astype('float32').tolist() + def init_test_params(self): - self.layer_w = 4 - self.layer_h = 4 + self.layer_w = 32 + self.layer_h = 32 - self.image_w = 20 - self.image_h = 20 + self.image_w = 40 + self.image_h = 40 self.step_w = float(self.image_w) / float(self.layer_w) self.step_h = float(self.image_h) / float(self.layer_h) @@ -66,8 +68,7 @@ class TestPriorBoxOp(OpTest): self.min_sizes = [2, 4] self.min_sizes = np.array(self.min_sizes).astype('float32').tolist() - self.max_sizes = [5, 10] - self.max_sizes = np.array(self.max_sizes).astype('float32').tolist() + self.set_max_sizes() self.aspect_ratios = [2.0, 3.0] self.flip = True self.real_aspect_ratios = [1, 2.0, 1.0 / 2.0, 3.0, 1.0 / 3.0] @@ -79,7 +80,7 @@ class TestPriorBoxOp(OpTest): self.clip = True self.num_priors = len(self.real_aspect_ratios) * len(self.min_sizes) - if len(self.max_sizes) > 1: + if len(self.max_sizes) > 0: self.num_priors += len(self.max_sizes) self.offset = 0.5 @@ -105,35 +106,27 @@ class TestPriorBoxOp(OpTest): idx = 0 for s in range(len(self.min_sizes)): min_size = self.min_sizes[s] - c_w = c_h = min_size / 2. - out_boxes[h, w, idx, :] = [ - (c_x - c_w) / self.image_w, (c_y - c_h) / self.image_h, - (c_x + c_w) / self.image_w, (c_y + c_h) / self.image_h - ] - idx += 1 - - if len(self.max_sizes) > 0: - max_size = self.max_sizes[s] - # second prior: aspect_ratio = 1, - c_w = c_h = math.sqrt(min_size * max_size) / 2 + # rest of priors + for r in range(len(self.real_aspect_ratios)): + ar = self.real_aspect_ratios[r] + c_w = min_size * math.sqrt(ar) / 2 + c_h = (min_size / math.sqrt(ar)) / 2 out_boxes[h, w, idx, :] = [(c_x - c_w) / self.image_w, (c_y - c_h) / self.image_h, (c_x + c_w) / self.image_w, (c_y + c_h) / self.image_h] idx += 1 - # rest of priors - for r in range(len(self.real_aspect_ratios)): - ar = self.real_aspect_ratios[r] - if math.fabs(ar - 1.) < 1e-6: - continue - c_w = min_size * math.sqrt(ar) / 2 - c_h = (min_size / math.sqrt(ar)) / 2 + if len(self.max_sizes) > 0: + max_size = self.max_sizes[s] + # second prior: aspect_ratio = 1, + c_w = c_h = math.sqrt(min_size * max_size) / 2 out_boxes[h, w, idx, :] = [(c_x - c_w) / self.image_w, (c_y - c_h) / self.image_h, (c_x + c_w) / self.image_w, (c_y + c_h) / self.image_h] idx += 1 + # clip the prior's coordidate such that it is within[0, 1] if self.clip: out_boxes = np.clip(out_boxes, 0.0, 1.0) @@ -144,5 +137,10 @@ class TestPriorBoxOp(OpTest): self.out_var = out_var.astype('float32') +class TestPriorBoxOpWithMaxSize(TestPriorBoxOp): + def set_max_sizes(self): + self.max_sizes = [] + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_protobuf_descs.py b/python/paddle/fluid/tests/unittests/test_protobuf_descs.py index e4cf4a8bce..f98a8bbc68 100644 --- a/python/paddle/fluid/tests/unittests/test_protobuf_descs.py +++ b/python/paddle/fluid/tests/unittests/test_protobuf_descs.py @@ -19,9 +19,9 @@ from paddle.fluid.framework import Program class TestOpDesc(unittest.TestCase): def test_op_desc(self): - prog = core.ProgramDesc() - self.assertIsNotNone(prog) - block = prog.block(0) + program_desc = core.ProgramDesc() + self.assertIsNotNone(program_desc) + block = program_desc.block(0) self.assertIsNotNone(block) op = block.append_op() self.assertIsNotNone(op) @@ -67,7 +67,7 @@ class TestOpDesc(unittest.TestCase): self.assertEqual(8, len(op.attr_names())) - op.set_block_attr("block_attr", prog.block(0)) + op.set_block_attr("block_attr", program_desc.block(0)) self.assertEqual(0, op.block_attr("block_attr")) mul_op = block.append_op() @@ -88,20 +88,20 @@ class TestProgramDesc(unittest.TestCase): del program_desc def test_append_block(self): - prog_desc = core.ProgramDesc() - self.assertIsNotNone(prog_desc) - block_root = prog_desc.block(0) + program_desc = core.ProgramDesc() + self.assertIsNotNone(program_desc) + block_root = program_desc.block(0) self.assertIsNotNone(block_root) self.assertEqual(block_root.id, 0) - block1 = prog_desc.append_block(block_root) - block2 = prog_desc.append_block(block1) + block1 = program_desc.append_block(block_root) + block2 = program_desc.append_block(block1) self.assertIsNotNone(block1) self.assertEqual(block1.id, block2.parent) self.assertEqual(block_root.id, block1.parent) - block3 = prog_desc.append_block(block_root) + block3 = program_desc.append_block(block_root) self.assertEqual(block3.parent, block_root.id) - self.assertEqual(prog_desc.block(1).id, 1) - self.assertEqual(4, prog_desc.num_blocks()) + self.assertEqual(program_desc.block(1).id, 1) + self.assertEqual(4, program_desc.num_blocks()) class TestVarDesc(unittest.TestCase): @@ -162,9 +162,9 @@ class TestVarDesc(unittest.TestCase): class TestBlockDesc(unittest.TestCase): def test_add_var(self): - prog = core.ProgramDesc() - self.assertIsNotNone(prog) - block = prog.block(0) + program_desc = core.ProgramDesc() + self.assertIsNotNone(program_desc) + block = program_desc.block(0) self.assertIsNotNone(block) var1 = block.var("var1") var2 = block.var("var2") @@ -175,9 +175,9 @@ class TestBlockDesc(unittest.TestCase): self.assertEqual(var2_re, var2) def test_add_op(self): - prog = core.ProgramDesc() - self.assertIsNotNone(prog) - block = prog.block(0) + program_desc = core.ProgramDesc() + self.assertIsNotNone(program_desc) + block = program_desc.block(0) self.assertIsNotNone(block) op1 = block.append_op() op2 = block.append_op() @@ -189,9 +189,9 @@ class TestBlockDesc(unittest.TestCase): def test_remove_op(self): program = Program() - prog = program.desc - self.assertIsNotNone(prog) - block = prog.block(0) + program_desc = program.desc + self.assertIsNotNone(program_desc) + block = program_desc.block(0) self.assertIsNotNone(block) op0 = block.append_op()