From 56a722a1d01eb49bfbe5120065c615ecf1e16fe5 Mon Sep 17 00:00:00 2001 From: caoying03 Date: Mon, 10 Jul 2017 14:22:18 +0800 Subject: [PATCH 1/9] output all beam search results in layer group. --- .../RecurrentGradientMachine.cpp | 104 ++++++++++++------ .../RecurrentGradientMachine.h | 7 +- paddle/parameter/Argument.cpp | 36 +++--- paddle/parameter/Argument.h | 1 + .../paddle/trainer_config_helpers/networks.py | 13 +-- 5 files changed, 102 insertions(+), 59 deletions(-) diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp index 41e0929959..4cb5b8ec2d 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp @@ -1012,11 +1012,6 @@ void RecurrentGradientMachine::generateSequence() { /* width */ resultNum, false, /* useGpu */ false); - Matrix::resizeOrCreate(generator_.outArg.value, - /* height */ maxGenWordCount, - /* width */ 1, - false, - /* useGpu */ false); } ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions, numSequences + 1, @@ -1026,7 +1021,7 @@ void RecurrentGradientMachine::generateSequence() { } else { oneWaySearch(numSequences); } - if (dataArgsSize_) createDataOutlink(batchMachineIdVec_); + if (dataArgsSize_) createDataOutlink(); size_t size = generator_.ids.size(); generator_.outArg.ids->resize(size); @@ -1106,6 +1101,7 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) { } batchMachineIdVec_.clear(); + batchMachineStartPos_.clear(); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); starts[0] = 0; generator_.ids.clear(); @@ -1312,13 +1308,20 @@ void RecurrentGradientMachine::fillGenOutputs() { finalPaths_[i].resize(minFinalPathsSize); } - batchMachineIdVec_.clear(); generator_.ids.clear(); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); starts[0] = 0; if (numResults > 1) { - real* probs = generator_.outArg.in->getData(); + int idsProbSaveSize = 0; + for (auto inSeq : finalPaths_) { + for (auto path : inSeq) idsProbSaveSize += path.ids.size(); + idsProbSaveSize += inSeq.size(); + } + Matrix::resizeOrCreate( + generator_.outArg.value, idsProbSaveSize, 1, false, false); real* idsProb = generator_.outArg.value->getData(); + + real* probs = generator_.outArg.in->getData(); size_t curPos = 0; for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) { @@ -1333,24 +1336,16 @@ void RecurrentGradientMachine::fillGenOutputs() { curPos += genLen; idsProb[curPos++] = -1.0; probs[i * numResults + j] = path.logProb; - - if (!j && dataArgsSize_) { - // in beam search, here only reserved the top 1 generated result - // for out_links that are not the generated word indices. - batchMachineIdVec_.insert(batchMachineIdVec_.end(), - path.machineIdVec.begin(), - path.machineIdVec.end()); - } } starts[i + 1] = generator_.ids.size(); } } else { for (size_t i = 0; i < finalPaths_.size(); ++i) { CHECK(!finalPaths_[i].empty()); - generator_.ids.insert(generator_.ids.begin(), - finalPaths_[i][0].ids.begin(), - finalPaths_[i][0].ids.end()); - starts[i + 1] = starts[i] + finalPaths_[i][0].ids.size(); + Path& path = finalPaths_[i][0]; + generator_.ids.insert( + generator_.ids.begin(), path.ids.begin(), path.ids.end()); + starts[i + 1] = starts[i] + path.ids.size(); } } } @@ -1364,25 +1359,70 @@ void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) { } } -void RecurrentGradientMachine::createDataOutlink( - std::vector& machineIdVec) { - size_t seqNum = - getBeamSize() > 1UL ? finalPaths_.size() : finalPaths_[0].size(); - std::vector starts(seqNum + 1, 0); - for (size_t i = 0; i < seqNum; ++i) { - size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size() - : finalPaths_[0][i].ids.size(); - starts[i + 1] = starts[i] + seqLen; +void RecurrentGradientMachine::createDataOutlinkSelRowsInfo( + bool isSeq, std::vector& outArgs) { + batchMachineIdVec_.clear(); + + size_t seqIdx = 0; + for (size_t i = 0; i < finalPaths_.size(); ++i) { + for (size_t j = 0; j < finalPaths_[i].size(); ++j) { + std::vector& machineIdVec = finalPaths_[i][j].machineIdVec; + if (isSeq) { + for (size_t i = 0; i < machineIdVec.size(); ++i) { + size_t rowId = machineIdVec[i]; + int* seqPos = + outArgs[i].sequenceStartPositions->getMutableData(false); + batchMachineIdVec_.push_back(seqPos[rowId]); + } + } else { + batchMachineIdVec_.insert( + batchMachineIdVec_.end(), machineIdVec.begin(), machineIdVec.end()); + } + seqIdx++; + } + } +} + +void RecurrentGradientMachine::createDataOutlinkCopySizeInfo( + bool isSeq, std::vector& outArgs, std::vector& copySize) { + size_t totalSeqNum = std::accumulate( + finalPaths_.begin(), + finalPaths_.end(), + 0UL, + [](size_t a, const std::vector& b) { return a + b.size(); }); + copySize.resize(totalSeqNum, 1); + + batchMachineStartPos_.resize(totalSeqNum + 1, 0); + if (isSeq) { + ICpuGpuVectorPtr inputSeqStartPos = outArgs[0].sequenceStartPositions; + CHECK_EQ(inputSeqStartPos->getSize() - 1, finalPaths_.size()); + int* starts = inputSeqStartPos->getMutableData(false); + int seqId = 0; + for (int i = 0; i < finalPaths_.size(); ++i) { + for (int j = 0; j < finalPaths_[i].size(); ++j) { + copySize[seqId] = starts[i + 1] - starts[i]; + batchMachineStartPos_[seqId + 1] = + batchMachineStartPos_[seqId] + finalPaths_[i][j].ids.size(); + seqId++; + } + } } +} +void RecurrentGradientMachine::createDataOutlink() { for (size_t i = 0; i < dataArgsSize_; i++) { + bool isSeq = dataArgsFrame_[i][0].hasSeq(); + std::vector copySize; + createDataOutlinkCopySizeInfo(isSeq, dataArgsFrame_[i], copySize); + createDataOutlinkSelRowsInfo(isSeq, dataArgsFrame_[i]); + dataArgs_[i].concat(dataArgsFrame_[i], - machineIdVec, - starts, + batchMachineIdVec_, + batchMachineStartPos_, + copySize, useGpu_, HPPL_STREAM_1, PASS_TEST); - auto dataAgent = dynamic_cast(outFrameLines_[i + 1].agentLayer.get()); CHECK_NOTNULL(dataAgent); diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h index fb3fc5877a..bd096770b7 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h @@ -480,7 +480,11 @@ private: * @param machineIdVec : select a row of output matrix in each frame * that the generation process expanded. */ - void createDataOutlink(std::vector& machineIdVec); + void createDataOutlink(); + void createDataOutlinkCopySizeInfo(bool isSeq, + std::vector& outArgs, + std::vector& copySize); + void createDataOutlinkSelRowsInfo(bool isSeq, std::vector& outArgs); /* * @brief used in beam search, connect previous frame to form recurrent link @@ -543,6 +547,7 @@ private: std::vector topIds_; std::vector seqIds_; std::vector batchMachineIdVec_; + std::vector batchMachineStartPos_; std::vector> finalPaths_; std::vector minFinalPathLogProb_; BeamSearchControlCallbacks* beamSearchCtrlCallbacks_; diff --git a/paddle/parameter/Argument.cpp b/paddle/parameter/Argument.cpp index ef72b973c1..e7522def08 100644 --- a/paddle/parameter/Argument.cpp +++ b/paddle/parameter/Argument.cpp @@ -276,17 +276,21 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src, void Argument::concat(const std::vector& args, const std::vector& selectRows, const std::vector& seqStartPos, + const std::vector& copySize, bool useGpu, hl_stream_t stream, PassType passType) { CHECK(!subSequenceStartPositions) << "undefined behavior for subsequence positions"; - size_t batchSize = selectRows.size(); + size_t batchSize = 0; + for (size_t i = 0; i < copySize.size(); ++i) + batchSize += copySize[i] * (seqStartPos[i + 1] - seqStartPos[i]); + auto copyArg = [batchSize, stream](MatrixPtr& dst, MatrixPtr src, - int startRow, - int pos, + int desStartRow, + int srcStartRow, int size, bool useGpu) { if (!src) { @@ -300,8 +304,8 @@ void Argument::concat(const std::vector& args, dst->resize(batchSize, width); } - MatrixPtr tmpMatrix = dst->subMatrix(startRow, size); - tmpMatrix->copyFrom(*src->subMatrix(pos, size), stream); + MatrixPtr tmpMatrix = dst->subMatrix(desStartRow, size); + tmpMatrix->copyFrom(*src->subMatrix(srcStartRow, size), stream); }; auto copyIds = [batchSize, stream](IVectorPtr& dst, @@ -339,24 +343,24 @@ void Argument::concat(const std::vector& args, dataId = args[0].dataId; CHECK_NE(seqStartPos.size(), 0UL); - size_t sampleNum = seqStartPos.size() - 1; - for (size_t i = 0; i < sampleNum; ++i) { + int desStartRow = 0; + for (size_t i = 0; i < copySize.size(); ++i) { int startPos = seqStartPos[i]; int endPos = seqStartPos[i + 1]; CHECK_GE(args.size(), static_cast(endPos - startPos)); for (int j = startPos; j < endPos; ++j) { const Argument& arg = args[j - startPos]; - CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have" - << " same dataId"; - const int copySize = 1; - const int rowIdx = selectRows[j]; - copyArg(in, arg.in, j, rowIdx, copySize, useGpu); - copyArg(value, arg.value, j, rowIdx, copySize, useGpu); + CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have the " + << "same dataId"; + const int srcStartRow = selectRows[j]; + copyArg(in, arg.in, desStartRow, srcStartRow, copySize[i], useGpu); + copyArg(value, arg.value, desStartRow, srcStartRow, copySize[i], useGpu); if (passType != PASS_TEST) { - copyArg(grad, arg.grad, j, rowIdx, copySize, useGpu); + copyArg(grad, arg.grad, desStartRow, srcStartRow, copySize[i], useGpu); } - copyIds(ids, arg.ids, j, rowIdx, copySize, useGpu); - copyStrs(strs, arg.strs, j, rowIdx, copySize, useGpu); + copyIds(ids, arg.ids, desStartRow, srcStartRow, copySize[i], useGpu); + copyStrs(strs, arg.strs, desStartRow, srcStartRow, copySize[i], useGpu); + desStartRow += copySize[i]; } } ICpuGpuVector::resizeOrCreate( diff --git a/paddle/parameter/Argument.h b/paddle/parameter/Argument.h index 0ccdef802e..be87175658 100644 --- a/paddle/parameter/Argument.h +++ b/paddle/parameter/Argument.h @@ -240,6 +240,7 @@ struct Argument { void concat(const std::vector& args, const std::vector& selectRows, const std::vector& seqStartPos, + const std::vector& copySize, bool useGpu, hl_stream_t stream, PassType passType); diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py index b77932ce5f..c0b2ced234 100755 --- a/python/paddle/trainer_config_helpers/networks.py +++ b/python/paddle/trainer_config_helpers/networks.py @@ -1370,14 +1370,7 @@ def simple_attention(encoded_sequence, param_attr=softmax_param_attr, name="%s_softmax" % name, bias_attr=False) - - scaled = scaling_layer( - weight=attention_weight, - input=encoded_sequence, - name='%s_scaling' % name) - - return pooling_layer( - input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name) + return attention_weight def inputs(layers, *args): @@ -1395,7 +1388,7 @@ def inputs(layers, *args): if len(args) != 0: layers.extend(args) - Inputs(* [l.name for l in layers]) + Inputs(*[l.name for l in layers]) def outputs(layers, *args): @@ -1438,7 +1431,7 @@ def outputs(layers, *args): assert len(layers) > 0 if HasInputsSet(): # input already set - Outputs(* [l.name for l in layers]) + Outputs(*[l.name for l in layers]) return # just return outputs. if len(layers) != 1: From 4c134c7c7d201a9f28449974d489111b51c6f6fb Mon Sep 17 00:00:00 2001 From: caoying03 Date: Fri, 14 Jul 2017 17:21:36 +0800 Subject: [PATCH 2/9] add comments. --- .../RecurrentGradientMachine.h | 38 ++++++++++++++++--- paddle/parameter/Argument.cpp | 4 +- .../paddle/trainer_config_helpers/networks.py | 4 +- 3 files changed, 36 insertions(+), 10 deletions(-) diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h index a3d04b207c..cc0eda9f13 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h @@ -190,7 +190,7 @@ public: std::vector ids; /** - * @brief idsProb, log probability of each generated words. + * @brief idsProb, log probability of each generated word. */ std::vector idsProb; @@ -472,16 +472,42 @@ private: void copyDataOutlinkFrame(size_t machineCur); /* - * @brief In generation, if the layer group has more than 1 outlink, outlinks - * except the first one are data outlinks. This function creates the data - * outlinks. - * @note In beam search, only one generated sequence with the hightest log - * probabilites are retained. + * @brief In generation, if the layer group has more than 1 outlink, outlink + * except the first one is a data outlink. In RecurrentLayerGroup, each time + * step is a separate Network, outputs of a layer inside the + * RecurrentLayerGroup are stored in separate Arguments. If one layer is + * specified as an outlink of RecurrentLayerGroup. This function will + * collect outputs in each time step of each generated sequence which are + * dispersed in separate Arguments to form a new single Argument as output of + * RecurrentLayerGroup. */ void createDataOutlink(); + + /* + * @brief decide to select how many rows from the Matrix stored the forward + * pass results from a start position. + * + * @param isSeq: a flag indicating whetehr the layer to be output of the + * RecurrentGradientMachine is a sequence or not + * @param outArgs: all of the the returned Arguments of the forward pass + * during the generation process. + * @param copySize: the returned result, number of rows to select from the + * Matrix stored the forward pass results from a start position. + */ void createDataOutlinkCopySizeInfo(bool isSeq, std::vector& outArgs, std::vector& copySize); + + /* + * @brief decide index of the start row for each time step of a generated + * sequence in Matrix stored the entire beam search batch's forward pass + * results. + * + * @param isSeq: a flag indicating whetehr the layer to be output of the + * RecurrentGradientMachine is a sequence or not + * @param outArgs: all of the the returned Arguments of the forward pass + * during the generation process. + */ void createDataOutlinkSelRowsInfo(bool isSeq, std::vector& outArgs); /* diff --git a/paddle/parameter/Argument.cpp b/paddle/parameter/Argument.cpp index f45a51d7b1..9a9092af9b 100644 --- a/paddle/parameter/Argument.cpp +++ b/paddle/parameter/Argument.cpp @@ -352,8 +352,8 @@ void Argument::concat(const std::vector& args, CHECK_GE(args.size(), static_cast(endPos - startPos)); for (int j = startPos; j < endPos; ++j) { const Argument& arg = args[j - startPos]; - CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have the " - << "same dataId"; + CHECK_EQ(arg.dataId, dataId) << "Arguments to concatenate should have " + << "the same dataId."; const int srcStartRow = selectRows[j]; copyArg(in, arg.in, desStartRow, srcStartRow, copySize[i], useGpu); copyArg(value, arg.value, desStartRow, srcStartRow, copySize[i], useGpu); diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py index 30c826ffc8..810bea913e 100755 --- a/python/paddle/trainer_config_helpers/networks.py +++ b/python/paddle/trainer_config_helpers/networks.py @@ -1375,9 +1375,9 @@ def simple_attention(encoded_sequence, weight=attention_weight, input=encoded_sequence, name='%s_scaling' % name) + return pooling_layer( - input=scaled, pooling_type=SumPooling(), - name="%s_pooling" % name), attention_weight + input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name) def inputs(layers, *args): From 59b3df31aa3f960753bf0d0d922319124e04301e Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Sun, 20 Aug 2017 14:52:23 +0800 Subject: [PATCH 3/9] Extract OpInfo into a library Fix cycle dependencies, Fix #3583. --- paddle/framework/CMakeLists.txt | 4 +-- paddle/framework/backward_test.cc | 4 +-- paddle/framework/grad_op_builder.cc | 20 +++++++------- paddle/framework/op_info.cc | 30 +++++++++++++++++++++ paddle/framework/op_info.h | 42 +++++++++++++++++++++++++++++ paddle/framework/op_registry.cc | 37 +++++++++++++------------ paddle/framework/op_registry.h | 35 ++++++------------------ paddle/framework/operator.cc | 8 +++--- paddle/framework/operator.h | 27 ++++++++++--------- paddle/framework/operator_test.cc | 9 ++++--- paddle/framework/pybind.cc | 2 +- paddle/operators/net_op.cc | 5 ++-- paddle/operators/net_op.h | 6 +++-- paddle/operators/recurrent_op.cc | 8 +++--- paddle/operators/recurrent_op.h | 10 ++++--- 15 files changed, 152 insertions(+), 95 deletions(-) create mode 100644 paddle/framework/op_info.cc create mode 100644 paddle/framework/op_info.h diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 68304c9fc8..59012ea8c1 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -18,8 +18,8 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope) proto_library(framework_proto SRCS framework.proto) cc_library(attribute SRCS attribute.cc DEPS framework_proto) - -cc_library(operator SRCS operator.cc DEPS framework_proto device_context tensor scope attribute) +cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) +cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator) diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index 2c5ec76dfe..bcdfae132c 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -72,8 +72,8 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { class FcOp : public operators::NetOp { public: - FcOp(const std::string &type, const VarNameMap &inputs, - const VarNameMap &outputs, const AttributeMap &attrs) + FcOp(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, const AttributeMap &attrs) : NetOp(type, inputs, outputs, attrs) { AddOp(OpRegistry::CreateOp("mul", {{"X", {Input("X")}}, {"Y", {Input("W")}}}, diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc index 0a2a41f6b6..fcc5d7a216 100644 --- a/paddle/framework/grad_op_builder.cc +++ b/paddle/framework/grad_op_builder.cc @@ -20,11 +20,11 @@ namespace framework { enum class OpArgType { IN, OUT }; static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, - bool is_grad, OperatorBase::VarNameMap* vars) { + bool is_grad, VariableNameMap* vars) { const auto& src_inout = src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs(); auto& dst_inout = *vars; - const OpProto* proto = OpRegistry::op_info_map().at(src_op->Type()).proto_; + const OpProto* proto = OpInfoMap().at(src_op->Type()).proto_; const auto& src_arg_list = src_type == OpArgType::IN ? proto->inputs() : proto->outputs(); for (const auto& arg : src_arg_list) { @@ -40,25 +40,25 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, } OperatorBase* BuildGradOp(const OperatorBase* op) { - auto it = OpRegistry::op_info_map().find(op->Type()); - PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), - "'%s' has not been registered.", op->Type()); + auto it = OpInfoMap().find(op->Type()); + PADDLE_ENFORCE(it != OpInfoMap().end(), "'%s' has not been registered.", + op->Type()); PADDLE_ENFORCE(it->second.proto_ != nullptr, "'%s' has no OpProto.", op->Type()); std::string grad_op_type = it->second.grad_op_type_; PADDLE_ENFORCE(!grad_op_type.empty(), "'%s' has no gradient operator.", op->Type()); - OperatorBase::VarNameMap inputs; - OperatorBase::VarNameMap outputs; + VariableNameMap inputs; + VariableNameMap outputs; TransOpArg(op, OpArgType::IN, false, &inputs); // I TransOpArg(op, OpArgType::OUT, false, &inputs); // O TransOpArg(op, OpArgType::OUT, true, &inputs); // OG TransOpArg(op, OpArgType::IN, true, &outputs); // IG - it = OpRegistry::op_info_map().find(grad_op_type); - PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), - "'%s' has not been registered.", grad_op_type); + it = OpInfoMap().find(grad_op_type); + PADDLE_ENFORCE(it != OpInfoMap().end(), "'%s' has not been registered.", + grad_op_type); return it->second.creator_(grad_op_type, inputs, outputs, op->Attrs()); } diff --git a/paddle/framework/op_info.cc b/paddle/framework/op_info.cc new file mode 100644 index 0000000000..f928ac6473 --- /dev/null +++ b/paddle/framework/op_info.cc @@ -0,0 +1,30 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/op_info.h" + +namespace paddle { +namespace framework { + +static std::unordered_map* + g_op_info_map = nullptr; +std::unordered_map& OpInfoMap() { + if (g_op_info_map == nullptr) { + g_op_info_map = + new std::unordered_map(); + } + return *g_op_info_map; +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h new file mode 100644 index 0000000000..fdd0ed77d4 --- /dev/null +++ b/paddle/framework/op_info.h @@ -0,0 +1,42 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include +#include +#include + +#include "paddle/framework/attribute.h" + +namespace paddle { +namespace framework { +class OperatorBase; +using VariableNameMap = std::map>; + +using OpCreator = std::function; + +struct OpInfo { + OpCreator creator_; + std::string grad_op_type_; + OpProto* proto_; + OpAttrChecker* checker_; +}; + +extern std::unordered_map& OpInfoMap(); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index 8eae86e960..e03dc3a73d 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -19,32 +19,20 @@ limitations under the License. */ namespace paddle { namespace framework { -std::unique_ptr OpRegistry::CreateOp(const std::string& type, - const VarNameMap& inputs, - const VarNameMap& outputs, - AttributeMap attrs) { - auto it = op_info_map().find(type); - PADDLE_ENFORCE(it != op_info_map().end(), +std::unique_ptr OpRegistry::CreateOp( + const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, AttributeMap attrs) { + auto it = OpInfoMap().find(type); + PADDLE_ENFORCE(it != OpInfoMap().end(), "Operator '%s' has not been registered.", type); it->second.checker_->Check(attrs); auto op = it->second.creator_(type, inputs, outputs, attrs); return std::unique_ptr(op); } -std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { - VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); - VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); - AttributeMap attrs; - for (auto& attr : op_desc.attrs()) { - attrs[attr.name()] = GetAttrValue(attr); - } - - return CreateOp(op_desc.type(), inputs, outputs, attrs); -} - -OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap( +static VariableNameMap ConvertOpDescVarsToVarNameMap( const google::protobuf::RepeatedPtrField& op_desc_vars) { - VarNameMap ret_val; + VariableNameMap ret_val; for (auto& var : op_desc_vars) { auto& var_names = ret_val[var.parameter()]; auto& var_names_in_proto = var.arguments(); @@ -55,6 +43,17 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap( return ret_val; } +std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { + VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); + VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); + AttributeMap attrs; + for (auto& attr : op_desc.attrs()) { + attrs[attr.name()] = GetAttrValue(attr); + } + + return CreateOp(op_desc.type(), inputs, outputs, attrs); +} + std::unique_ptr OpRegistry::CreateGradOp(const OperatorBase& op) { PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops"); return std::unique_ptr(BuildGradOp(&op)); diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 4c2d13d639..06530bc7d0 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -23,6 +23,7 @@ limitations under the License. */ #include "paddle/framework/attribute.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/grad_op_builder.h" +#include "paddle/framework/op_info.h" #include "paddle/framework/operator.h" #include "paddle/framework/scope.h" @@ -30,28 +31,16 @@ namespace paddle { namespace framework { class OpRegistry { - using VarNameMap = OperatorBase::VarNameMap; - using OpCreator = std::function; - public: - struct OpInfo { - OpCreator creator_; - std::string grad_op_type_; - OpProto* proto_; - OpAttrChecker* checker_; - }; - template static void RegisterOp(const std::string& op_type, const std::string& grad_op_type) { - PADDLE_ENFORCE(op_info_map().count(op_type) == 0, + PADDLE_ENFORCE(OpInfoMap().count(op_type) == 0, "'%s' is registered more than once.", op_type); OpInfo op_info; - op_info.creator_ = [](const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, - const AttributeMap& attrs) { + op_info.creator_ = []( + const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) { return new OpType(type, inputs, outputs, attrs); }; op_info.grad_op_type_ = grad_op_type; @@ -70,7 +59,7 @@ class OpRegistry { op_info.proto_ = nullptr; op_info.checker_ = nullptr; } - op_info_map().insert(std::make_pair(op_type, op_info)); + OpInfoMap().insert(std::make_pair(op_type, op_info)); // register gradient op if (!grad_op_type.empty()) { RegisterOp(grad_op_type, ""); @@ -78,21 +67,13 @@ class OpRegistry { } static std::unique_ptr CreateOp(const std::string& type, - const VarNameMap& inputs, - const VarNameMap& outputs, + const VariableNameMap& inputs, + const VariableNameMap& outputs, AttributeMap attrs); static std::unique_ptr CreateOp(const OpDesc& op_desc); - static VarNameMap ConvertOpDescVarsToVarNameMap( - const google::protobuf::RepeatedPtrField& op_desc_vars); - static std::unique_ptr CreateGradOp(const OperatorBase& op); - - static std::unordered_map& op_info_map() { - static std::unordered_map op_info_map_; - return op_info_map_; - } }; class Registrar { diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index eadd8f3316..48a7fe64ac 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -115,8 +115,8 @@ void OperatorBase::Rename(const std::string& old_name, } OperatorBase::OperatorBase(const std::string& type, - const OperatorBase::VarNameMap& inputs, - const OperatorBase::VarNameMap& outputs, + const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) { static std::atomic gUniqId(0UL); @@ -141,9 +141,9 @@ std::vector OperatorBase::OutputVars(bool has_intermediate) const { } return ret_val; } - auto it = OpRegistry::op_info_map().find(type_); + auto it = OpInfoMap().find(type_); PADDLE_ENFORCE( - it != OpRegistry::op_info_map().end(), + it != OpInfoMap().end(), "Operator %s not registered, cannot figure out intermediate outputs", type_); PADDLE_ENFORCE( diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 8072980889..83dab8631d 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -19,6 +19,7 @@ limitations under the License. */ #include #include +#include "op_info.h" #include "paddle/framework/attribute.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/scope.h" @@ -62,10 +63,8 @@ class ExecutionContext; */ class OperatorBase { public: - using VarNameMap = std::map>; - - OperatorBase(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs); + OperatorBase(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs); virtual ~OperatorBase() {} @@ -93,8 +92,8 @@ class OperatorBase { /// rename inputs outputs name void Rename(const std::string& old_name, const std::string& new_name); - const VarNameMap& Inputs() const { return inputs_; } - const VarNameMap& Outputs() const { return outputs_; } + const VariableNameMap& Inputs() const { return inputs_; } + const VariableNameMap& Outputs() const { return outputs_; } //! Get a input with argument's name described in `op_proto` const std::string& Input(const std::string& name) const; //! Get a input which has multiple variables. @@ -122,11 +121,11 @@ class OperatorBase { // I (Inputs)opear // O (Outputs) // OG (Output Gradients) - VarNameMap inputs_; + VariableNameMap inputs_; // NOTE: in case of OpGrad, outputs_ contains // IG (Inputs Gradients) - VarNameMap outputs_; + VariableNameMap outputs_; AttributeMap attrs_; }; @@ -142,9 +141,11 @@ class OperatorBase { // You can also use // using PARENT_CLASS::PARENT_CLASS; // to use parent's constructor. -#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \ - CLS(const std::string& type, const VarNameMap& inputs, \ - const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \ +#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \ + CLS(const std::string& type, \ + const ::paddle::framework::VariableNameMap& inputs, \ + const ::paddle::framework::VariableNameMap& outputs, \ + const paddle::framework::AttributeMap& attrs) \ : PARENT_CLS(type, inputs, outputs, attrs) {} class NOP : public OperatorBase { @@ -389,8 +390,8 @@ class OperatorWithKernel : public OperatorBase { using OpKernelMap = std::unordered_map, OpKernelHash>; - OperatorWithKernel(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs) + OperatorWithKernel(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void InferShape(const Scope& scope) const override { diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 2425b87779..1d7efb7b94 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -23,8 +23,8 @@ static int op_run_num = 0; class OpWithoutKernelTest : public OperatorBase { public: - OpWithoutKernelTest(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs) + OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs), x(1) {} void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, @@ -249,8 +249,9 @@ TEST(OpKernel, multi_inputs) { class OperatorClone : public paddle::framework::OperatorBase { public: DEFINE_OP_CLONE_METHOD(OperatorClone); - OperatorClone(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, + OperatorClone(const std::string& type, + const paddle::framework::VariableNameMap& inputs, + const paddle::framework::VariableNameMap& outputs, const paddle::framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void InferShape(const paddle::framework::Scope& scope) const override {} diff --git a/paddle/framework/pybind.cc b/paddle/framework/pybind.cc index f0114b9e49..1aec483573 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/framework/pybind.cc @@ -138,7 +138,7 @@ All parameter, weight, gradient are variables in Paddle. //! @note: Be careful! PyBind will return std::string as an unicode, not //! Python str. If you want a str object, you should cast them in Python. m.def("get_all_op_protos", []() -> std::vector { - auto &op_info_map = OpRegistry::op_info_map(); + auto &op_info_map = OpInfoMap(); std::vector ret_values; for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) { const OpProto *proto = it->second.proto_; diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index a7d7105110..9bfa712d98 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -81,9 +81,8 @@ std::vector NetOp::OutputVars(bool has_intermediate) const { return ret_val; } -NetOp::NetOp(const std::string& type, - const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, +NetOp::NetOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index 885ac6eeca..05b475d88f 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -38,8 +38,10 @@ class NetOp : public framework::OperatorBase { public: static const char kAll[]; NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {} - NetOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const framework::AttributeMap& attrs); + + NetOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs); NetOp(const NetOp& o) : framework::OperatorBase(o.type_, {}, {}, o.attrs_) { this->ops_.reserve(o.ops_.size()); diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index 78ce0ba3c0..16bd249cb3 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -131,8 +131,8 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{ "memories", "pre_memories", "boot_memories@grad"}; RecurrentOp::RecurrentOp(const std::string& type, - const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) { rnn::InitArgument(kArgName, &arg_, *this); @@ -223,8 +223,8 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { } RecurrentGradientOp::RecurrentGradientOp( - const std::string& type, const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, + const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) { rnn::InitArgument(kArgName, &arg_, *this); diff --git a/paddle/operators/recurrent_op.h b/paddle/operators/recurrent_op.h index bcfa817de8..1033d657a3 100644 --- a/paddle/operators/recurrent_op.h +++ b/paddle/operators/recurrent_op.h @@ -114,8 +114,9 @@ class RecurrentGradientAlgorithm { class RecurrentOp : public framework::OperatorBase { public: - RecurrentOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const framework::AttributeMap& attrs); + RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs); RecurrentOp(const RecurrentOp& o) : framework::OperatorBase( @@ -150,8 +151,9 @@ class RecurrentOp : public framework::OperatorBase { class RecurrentGradientOp : public framework::OperatorBase { public: - RecurrentGradientOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, + RecurrentGradientOp(const std::string& type, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs); RecurrentGradientOp(const RecurrentGradientOp& o) From 7f6b5044b640edcbd77bbb368509569776f7e0ee Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Sun, 20 Aug 2017 15:28:00 +0800 Subject: [PATCH 4/9] Make OpInfoMap as a class * Add Get/Has methods to OpInfoMap * Add PADDLE_ENFORCE for OpInfo to get field. --- paddle/framework/grad_op_builder.cc | 20 +++------- paddle/framework/op_info.cc | 9 ++--- paddle/framework/op_info.h | 61 ++++++++++++++++++++++++++++- paddle/framework/op_registry.cc | 8 ++-- paddle/framework/op_registry.h | 4 +- paddle/framework/operator.cc | 12 +----- paddle/framework/pybind.cc | 17 ++++---- 7 files changed, 84 insertions(+), 47 deletions(-) diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc index fcc5d7a216..b02a599a80 100644 --- a/paddle/framework/grad_op_builder.cc +++ b/paddle/framework/grad_op_builder.cc @@ -24,9 +24,9 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, const auto& src_inout = src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs(); auto& dst_inout = *vars; - const OpProto* proto = OpInfoMap().at(src_op->Type()).proto_; + auto& proto = OpInfoMap::Instance().Get(src_op->Type()).Proto(); const auto& src_arg_list = - src_type == OpArgType::IN ? proto->inputs() : proto->outputs(); + src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); for (const auto& arg : src_arg_list) { if (arg.not_in_gradient() && !is_grad) continue; const std::string src_name = arg.name(); @@ -40,14 +40,8 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, } OperatorBase* BuildGradOp(const OperatorBase* op) { - auto it = OpInfoMap().find(op->Type()); - PADDLE_ENFORCE(it != OpInfoMap().end(), "'%s' has not been registered.", - op->Type()); - PADDLE_ENFORCE(it->second.proto_ != nullptr, "'%s' has no OpProto.", - op->Type()); - std::string grad_op_type = it->second.grad_op_type_; - PADDLE_ENFORCE(!grad_op_type.empty(), "'%s' has no gradient operator.", - op->Type()); + auto& info = OpInfoMap::Instance().Get(op->Type()); + PADDLE_ENFORCE(info.HasGradientOp()); VariableNameMap inputs; VariableNameMap outputs; @@ -56,10 +50,8 @@ OperatorBase* BuildGradOp(const OperatorBase* op) { TransOpArg(op, OpArgType::OUT, true, &inputs); // OG TransOpArg(op, OpArgType::IN, true, &outputs); // IG - it = OpInfoMap().find(grad_op_type); - PADDLE_ENFORCE(it != OpInfoMap().end(), "'%s' has not been registered.", - grad_op_type); - return it->second.creator_(grad_op_type, inputs, outputs, op->Attrs()); + auto& grad_info = OpInfoMap::Instance().Get(info.grad_op_type_); + return grad_info.Creator()(info.grad_op_type_, inputs, outputs, op->Attrs()); } } // namespace framework diff --git a/paddle/framework/op_info.cc b/paddle/framework/op_info.cc index f928ac6473..81ba29797c 100644 --- a/paddle/framework/op_info.cc +++ b/paddle/framework/op_info.cc @@ -17,12 +17,11 @@ namespace paddle { namespace framework { -static std::unordered_map* - g_op_info_map = nullptr; -std::unordered_map& OpInfoMap() { +static OpInfoMap* g_op_info_map = nullptr; + +OpInfoMap& OpInfoMap::Instance() { if (g_op_info_map == nullptr) { - g_op_info_map = - new std::unordered_map(); + g_op_info_map = new OpInfoMap(); } return *g_op_info_map; } diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h index fdd0ed77d4..94245c6c44 100644 --- a/paddle/framework/op_info.h +++ b/paddle/framework/op_info.h @@ -34,9 +34,68 @@ struct OpInfo { std::string grad_op_type_; OpProto* proto_; OpAttrChecker* checker_; + + bool HasOpProtoAndChecker() const { + return proto_ != nullptr && checker_ != nullptr; + } + + const OpProto& Proto() const { + PADDLE_ENFORCE_NOT_NULL(proto_, "Operator Proto has not been registered"); + PADDLE_ENFORCE(proto_->IsInitialized(), + "Operator Proto must be initialized in op info"); + return *proto_; + } + + const OpAttrChecker& Checker() const { + PADDLE_ENFORCE_NOT_NULL(checker_, + "Operator Checker has not been registered"); + return *checker_; + } + + const OpCreator& Creator() const { + PADDLE_ENFORCE_NOT_NULL(creator_, + "Operator Creator has not been registered"); + return creator_; + } + + bool HasGradientOp() const { return !grad_op_type_.empty(); } }; -extern std::unordered_map& OpInfoMap(); +class OpInfoMap { + public: + static OpInfoMap& Instance(); + + OpInfoMap(const OpInfoMap& o) = delete; + OpInfoMap(OpInfoMap&& o) = delete; + OpInfoMap& operator=(const OpInfoMap& o) = delete; + OpInfoMap& operator=(OpInfoMap&& o) = delete; + + bool Has(const std::string& op_type) const { + return map_.find(op_type) != map_.end(); + } + + void Insert(const std::string& type, const OpInfo& info) { + PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type); + map_.insert({type, info}); + } + + const OpInfo& Get(const std::string& type) const { + auto it = map_.find(type); + PADDLE_ENFORCE(it != map_.end(), "Operator %s are not found", type); + return it->second; + } + + template + void IterAllInfo(Callback callback) { + for (auto& it : map_) { + callback(it.first, it.second); + } + } + + private: + OpInfoMap() = default; + std::unordered_map map_; +}; } // namespace framework } // namespace paddle diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index e03dc3a73d..b0e85dd49f 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -22,11 +22,9 @@ namespace framework { std::unique_ptr OpRegistry::CreateOp( const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, AttributeMap attrs) { - auto it = OpInfoMap().find(type); - PADDLE_ENFORCE(it != OpInfoMap().end(), - "Operator '%s' has not been registered.", type); - it->second.checker_->Check(attrs); - auto op = it->second.creator_(type, inputs, outputs, attrs); + auto& info = OpInfoMap::Instance().Get(type); + info.Checker().Check(attrs); + auto op = info.Creator()(type, inputs, outputs, attrs); return std::unique_ptr(op); } diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 06530bc7d0..2d09cde41e 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -35,7 +35,7 @@ class OpRegistry { template static void RegisterOp(const std::string& op_type, const std::string& grad_op_type) { - PADDLE_ENFORCE(OpInfoMap().count(op_type) == 0, + PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), "'%s' is registered more than once.", op_type); OpInfo op_info; op_info.creator_ = []( @@ -59,7 +59,7 @@ class OpRegistry { op_info.proto_ = nullptr; op_info.checker_ = nullptr; } - OpInfoMap().insert(std::make_pair(op_type, op_info)); + OpInfoMap::Instance().Insert(op_type, op_info); // register gradient op if (!grad_op_type.empty()) { RegisterOp(grad_op_type, ""); diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 48a7fe64ac..7abbde610f 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -141,18 +141,10 @@ std::vector OperatorBase::OutputVars(bool has_intermediate) const { } return ret_val; } - auto it = OpInfoMap().find(type_); - PADDLE_ENFORCE( - it != OpInfoMap().end(), - "Operator %s not registered, cannot figure out intermediate outputs", - type_); - PADDLE_ENFORCE( - it->second.proto_ != nullptr, - "Operator %s has no OpProto, cannot figure out intermediate outputs", - type_); + auto& info = OpInfoMap::Instance().Get(Type()); // get all OpProto::Var for outputs - for (auto& o : it->second.proto_->outputs()) { + for (auto& o : info.Proto().outputs()) { // ignore all intermediate output if (o.intermediate()) continue; auto out = outputs_.find(o.name()); diff --git a/paddle/framework/pybind.cc b/paddle/framework/pybind.cc index 1aec483573..6212c84909 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/framework/pybind.cc @@ -138,19 +138,16 @@ All parameter, weight, gradient are variables in Paddle. //! @note: Be careful! PyBind will return std::string as an unicode, not //! Python str. If you want a str object, you should cast them in Python. m.def("get_all_op_protos", []() -> std::vector { - auto &op_info_map = OpInfoMap(); std::vector ret_values; - for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) { - const OpProto *proto = it->second.proto_; - if (proto == nullptr) { - continue; - } - PADDLE_ENFORCE(proto->IsInitialized(), "OpProto must all be initialized"); + + OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type, + const OpInfo &info) { + if (!info.HasOpProtoAndChecker()) return; std::string str; - PADDLE_ENFORCE(proto->SerializeToString(&str), + PADDLE_ENFORCE(info.Proto().SerializeToString(&str), "Serialize OpProto Error. This could be a bug of Paddle."); - ret_values.push_back(py::bytes(str)); - } + ret_values.emplace_back(str); + }); return ret_values; }); m.def_submodule( From c108d6108cbdd28424397341fb67be01a2f63413 Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Mon, 21 Aug 2017 14:03:12 +0800 Subject: [PATCH 5/9] Identity operator and its gradient --- paddle/framework/CMakeLists.txt | 3 +- paddle/framework/pybind.cc | 1 + paddle/operators/CMakeLists.txt | 1 + paddle/operators/identity_op.cc | 71 +++++++++++++++++++ paddle/operators/identity_op.cu | 17 +++++ paddle/operators/identity_op.h | 32 +++++++++ .../paddle/v2/framework/tests/CMakeLists.txt | 1 + .../v2/framework/tests/test_identity_op.py | 24 +++++++ 8 files changed, 149 insertions(+), 1 deletion(-) create mode 100644 paddle/operators/identity_op.cc create mode 100644 paddle/operators/identity_op.cu create mode 100644 paddle/operators/identity_op.h create mode 100644 python/paddle/v2/framework/tests/test_identity_op.py diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 68304c9fc8..f249512f47 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -55,5 +55,6 @@ cc_library(paddle_pybind SHARED recurrent_op uniform_random_op gaussian_random_op - fill_zeros_like_op) + fill_zeros_like_op + identity_op) endif(WITH_PYTHON) diff --git a/paddle/framework/pybind.cc b/paddle/framework/pybind.cc index f0114b9e49..ddb244623f 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/framework/pybind.cc @@ -42,6 +42,7 @@ USE_OP(fill_zeros_like); USE_OP_ITSELF(recurrent_op); USE_OP(gaussian_random); USE_OP(uniform_random); +USE_OP(identity); namespace paddle { namespace framework { diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index a7c89787e4..20e562c7d3 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -68,3 +68,4 @@ op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc DEPS framework_proto tensor op_registry operator net_op) op_library(uniform_random_op SRCS uniform_random_op.cc uniform_random_op.cu) +op_library(identity_op SRCS identity_op.cc identity_op.cu DEPS net_op) diff --git a/paddle/operators/identity_op.cc b/paddle/operators/identity_op.cc new file mode 100644 index 0000000000..cac44020bc --- /dev/null +++ b/paddle/operators/identity_op.cc @@ -0,0 +1,71 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/identity_op.h" +#include "paddle/operators/net_op.h" + +namespace paddle { +namespace operators { + +class IdentityOp : public framework::OperatorWithKernel { + public: + IdentityOp(const std::string &type, const VarNameMap &inputs, + const VarNameMap &outputs, const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto *in = ctx.Input("X"); + auto *out = ctx.Output("Out"); + out->Resize(in->dims()); + } +}; + +class IdentityOpMaker : public framework::OpProtoAndCheckerMaker { + public: + IdentityOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input tensor of identity operator.").NotInGradient(); + AddOutput("Out", "The output tensor of identity operator.").NotInGradient(); + AddComment(R"DOC(Identity operator + +The equation is: Out = X +)DOC"); + } +}; + +// Identity Op's gradient is identity op, too. +// Grad(Out=identity_op(X)) => Grad(X) = identity_op(Grad(Out)) +class IdentityGradOp : public NetOp { + public: + IdentityGradOp(const std::string &type, const VarNameMap &inputs, + const VarNameMap &outputs, + const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + AddOp(framework::OpRegistry::CreateOp( + "identity", {{"X", {Input(framework::GradVarName("Out"))}}}, + {{"Out", {Output(framework::GradVarName("X"))}}}, {})); + CompleteAddOp(false); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP(identity, ops::IdentityOp, ops::IdentityOpMaker, identity_grad, + ops::IdentityGradOp); +REGISTER_OP_CPU_KERNEL(identity, ops::IdentityKernel); diff --git a/paddle/operators/identity_op.cu b/paddle/operators/identity_op.cu new file mode 100644 index 0000000000..3053104bbe --- /dev/null +++ b/paddle/operators/identity_op.cu @@ -0,0 +1,17 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/identity_op.h" + +REGISTER_OP_GPU_KERNEL(identity, paddle::operators::IdentityKernel); diff --git a/paddle/operators/identity_op.h b/paddle/operators/identity_op.h new file mode 100644 index 0000000000..14a832257b --- /dev/null +++ b/paddle/operators/identity_op.h @@ -0,0 +1,32 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_registry.h" +#include "paddle/memory/memcpy.h" +namespace paddle { +namespace operators { +template +class IdentityKernel : public framework::OpKernel { + public: + virtual void Compute(const framework::ExecutionContext& context) const { + auto* tensor = context.Output("Out"); + auto* in = context.Input("X"); + tensor->CopyFrom(*in, in->place()); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index ce57a07130..cf7baa5556 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -27,3 +27,4 @@ py_test(test_uniform_random_op SRCS test_uniform_random_op.py) py_test(test_recurrent_op SRCS test_recurrent_op.py) py_test(test_sgd_op SRCS test_sgd_op.py) py_test(test_gradient_checker SRCS test_gradient_checker.py) +py_test(test_identity_op SRCS test_identity_op.py) diff --git a/python/paddle/v2/framework/tests/test_identity_op.py b/python/paddle/v2/framework/tests/test_identity_op.py new file mode 100644 index 0000000000..181d9c0c21 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_identity_op.py @@ -0,0 +1,24 @@ +import unittest +from op_test_util import OpTestMeta +from gradient_checker import GradientChecker, create_op +import numpy as np + + +class IdentityTest(unittest.TestCase): + __metaclass__ = OpTestMeta + + def setUp(self): + self.type = "identity" + self.inputs = {'X': np.random.random((32, 784)).astype("float32")} + self.outputs = {'Out': self.inputs['X']} + + +class IdentityGradOpTest(GradientChecker): + def test_normal(self): + op = create_op("identity") + inputs = {"X": np.random.random((10, 10)).astype("float32")} + self.check_grad(op, inputs, set("X"), "Out") + + +if __name__ == '__main__': + unittest.main() From d3f219aa9911015bd8c4a1316b85620a07eb9f49 Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Mon, 21 Aug 2017 18:09:17 +0800 Subject: [PATCH 6/9] Change IdentityOp to ScaleOp --- paddle/framework/CMakeLists.txt | 2 +- paddle/framework/pybind.cc | 3 +- paddle/framework/tensor.h | 5 +- paddle/operators/CMakeLists.txt | 2 +- paddle/operators/identity_op.cc | 71 ------------ paddle/operators/net_op.cc | 9 +- paddle/operators/scale_op.cc | 102 ++++++++++++++++++ .../operators/{identity_op.cu => scale_op.cu} | 5 +- .../operators/{identity_op.h => scale_op.h} | 16 ++- .../paddle/v2/framework/tests/CMakeLists.txt | 2 +- .../v2/framework/tests/gradient_checker.py | 7 +- ...ty_op.py => test_scale_and_identity_op.py} | 19 ++++ 12 files changed, 158 insertions(+), 85 deletions(-) delete mode 100644 paddle/operators/identity_op.cc create mode 100644 paddle/operators/scale_op.cc rename paddle/operators/{identity_op.cu => scale_op.cu} (81%) rename paddle/operators/{identity_op.h => scale_op.h} (66%) rename python/paddle/v2/framework/tests/{test_identity_op.py => test_scale_and_identity_op.py} (51%) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index f249512f47..5df14ae78d 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -56,5 +56,5 @@ cc_library(paddle_pybind SHARED uniform_random_op gaussian_random_op fill_zeros_like_op - identity_op) + scale_op) endif(WITH_PYTHON) diff --git a/paddle/framework/pybind.cc b/paddle/framework/pybind.cc index ddb244623f..3aaf0de150 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/framework/pybind.cc @@ -42,7 +42,8 @@ USE_OP(fill_zeros_like); USE_OP_ITSELF(recurrent_op); USE_OP(gaussian_random); USE_OP(uniform_random); -USE_OP(identity); +USE_OP(scale); +USE_OP_ITSELF(identity); namespace paddle { namespace framework { diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index b8c779f4e5..643f875491 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -105,7 +105,10 @@ class Tensor { template inline Tensor Slice(const int& begin_idx, const int& end_idx) const; - platform::Place place() const { return holder_->place(); } + platform::Place place() const { + PADDLE_ENFORCE_NOT_NULL(holder_, "Tensor get place() must contains holder"); + return holder_->place(); + } private: template diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 20e562c7d3..0ba598823b 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -68,4 +68,4 @@ op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc DEPS framework_proto tensor op_registry operator net_op) op_library(uniform_random_op SRCS uniform_random_op.cc uniform_random_op.cu) -op_library(identity_op SRCS identity_op.cc identity_op.cu DEPS net_op) +op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op) diff --git a/paddle/operators/identity_op.cc b/paddle/operators/identity_op.cc deleted file mode 100644 index cac44020bc..0000000000 --- a/paddle/operators/identity_op.cc +++ /dev/null @@ -1,71 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/operators/identity_op.h" -#include "paddle/operators/net_op.h" - -namespace paddle { -namespace operators { - -class IdentityOp : public framework::OperatorWithKernel { - public: - IdentityOp(const std::string &type, const VarNameMap &inputs, - const VarNameMap &outputs, const framework::AttributeMap &attrs) - : OperatorWithKernel(type, inputs, outputs, attrs) {} - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto *in = ctx.Input("X"); - auto *out = ctx.Output("Out"); - out->Resize(in->dims()); - } -}; - -class IdentityOpMaker : public framework::OpProtoAndCheckerMaker { - public: - IdentityOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The input tensor of identity operator.").NotInGradient(); - AddOutput("Out", "The output tensor of identity operator.").NotInGradient(); - AddComment(R"DOC(Identity operator - -The equation is: Out = X -)DOC"); - } -}; - -// Identity Op's gradient is identity op, too. -// Grad(Out=identity_op(X)) => Grad(X) = identity_op(Grad(Out)) -class IdentityGradOp : public NetOp { - public: - IdentityGradOp(const std::string &type, const VarNameMap &inputs, - const VarNameMap &outputs, - const framework::AttributeMap &attrs) - : NetOp(type, inputs, outputs, attrs) { - AddOp(framework::OpRegistry::CreateOp( - "identity", {{"X", {Input(framework::GradVarName("Out"))}}}, - {{"Out", {Output(framework::GradVarName("X"))}}}, {})); - CompleteAddOp(false); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; - -REGISTER_OP(identity, ops::IdentityOp, ops::IdentityOpMaker, identity_grad, - ops::IdentityGradOp); -REGISTER_OP_CPU_KERNEL(identity, ops::IdentityKernel); diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index a7d7105110..7e3779ed2e 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -68,10 +68,15 @@ std::string NetOp::DebugString() const { bool NetOp::IsNetOp() const { return true; } std::vector NetOp::OutputVars(bool has_intermediate) const { + std::vector all; + for (auto& pair : this->outputs_) { + for (auto& var_name : pair.second) { + all.push_back(var_name); + } + } if (has_intermediate) { - return this->outputs_.at(kAll); + return all; } - auto& all = this->outputs_.at(kAll); std::vector ret_val; for (auto& each : all) { if (!Contains(intermediate_outputs_, each)) { diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc new file mode 100644 index 0000000000..3b18ff078e --- /dev/null +++ b/paddle/operators/scale_op.cc @@ -0,0 +1,102 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/scale_op.h" +#include "paddle/operators/net_op.h" + +namespace paddle { +namespace operators { + +class ScaleOp : public framework::OperatorWithKernel { + public: + ScaleOp(const std::string &type, const VarNameMap &inputs, + const VarNameMap &outputs, const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto *in = ctx.Input("X"); + auto *out = ctx.Output("Out"); + out->Resize(in->dims()); + } +}; + +template +class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input tensor of scale operator.").NotInGradient(); + AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); + AddComment(R"DOC(Scale operator + +The equation is: Out = scale*X +)DOC"); + AddAttr("scale", "scale of scale operator.").SetDefault(1.0); + } +}; + +// Identity Op's gradient is identity op, too. +// Grad(Out=scale(X)) => Grad(X) = scale(Grad(Out)) +template +class ScaleGradOp : public NetOp { + public: + ScaleGradOp(const std::string &type, const VarNameMap &inputs, + const VarNameMap &outputs, const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + AddOp(framework::OpRegistry::CreateOp( + "scale", {{"X", {Input(framework::GradVarName("Out"))}}}, + {{"Out", {Output(framework::GradVarName("X"))}}}, + {{"scale", GetAttr("scale")}})); + CompleteAddOp(false); + } +}; + +// identity is a alias of scale op. This is also a example for creating a alias +// operator. +template +class IdentityOpMaker : public framework::OpProtoAndCheckerMaker { + public: + IdentityOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "input tensor of identity op"); + AddOutput("Out", "output tensor of identity op"); + AddComment("identity operator. Just a alias of scale op which scale = 1.0"); + } +}; + +template +class IdentityOp : public NetOp { + public: + IdentityOp(const std::string &type, const VarNameMap &inputs, + const VarNameMap &outputs, const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + AddOp(framework::OpRegistry::CreateOp( + "scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}}, + {{"scale", static_cast(1)}})); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker, scale_grad, + ops::ScaleGradOp); +REGISTER_OP_CPU_KERNEL(scale, + ops::ScaleKernel); +REGISTER_OP_WITHOUT_GRADIENT(identity, ops::IdentityOp, + ops::IdentityOpMaker); diff --git a/paddle/operators/identity_op.cu b/paddle/operators/scale_op.cu similarity index 81% rename from paddle/operators/identity_op.cu rename to paddle/operators/scale_op.cu index 3053104bbe..63efbe0da8 100644 --- a/paddle/operators/identity_op.cu +++ b/paddle/operators/scale_op.cu @@ -12,6 +12,7 @@ See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/operators/identity_op.h" +#include "paddle/operators/scale_op.h" -REGISTER_OP_GPU_KERNEL(identity, paddle::operators::IdentityKernel); +REGISTER_OP_GPU_KERNEL( + scale, paddle::operators::ScaleKernel); diff --git a/paddle/operators/identity_op.h b/paddle/operators/scale_op.h similarity index 66% rename from paddle/operators/identity_op.h rename to paddle/operators/scale_op.h index 14a832257b..aea64f1b04 100644 --- a/paddle/operators/identity_op.h +++ b/paddle/operators/scale_op.h @@ -14,17 +14,25 @@ #pragma once +#include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" -#include "paddle/memory/memcpy.h" + namespace paddle { namespace operators { -template -class IdentityKernel : public framework::OpKernel { +template +class ScaleKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& context) const { auto* tensor = context.Output("Out"); auto* in = context.Input("X"); - tensor->CopyFrom(*in, in->place()); + tensor->mutable_data(in->place()); + + auto scale = static_cast(context.op_.GetAttr("scale")); + + auto eigen_out = framework::EigenVector::Flatten(*tensor); + auto eigen_in = framework::EigenVector::Flatten(*in); + auto& dev = context.GetEigenDevice(); + eigen_out.device(dev) = scale * eigen_in; } }; diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index cf7baa5556..0e8811bfe7 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -27,4 +27,4 @@ py_test(test_uniform_random_op SRCS test_uniform_random_op.py) py_test(test_recurrent_op SRCS test_recurrent_op.py) py_test(test_sgd_op SRCS test_sgd_op.py) py_test(test_gradient_checker SRCS test_gradient_checker.py) -py_test(test_identity_op SRCS test_identity_op.py) +py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py) diff --git a/python/paddle/v2/framework/tests/gradient_checker.py b/python/paddle/v2/framework/tests/gradient_checker.py index 8b8e2f444b..c22c6f8831 100644 --- a/python/paddle/v2/framework/tests/gradient_checker.py +++ b/python/paddle/v2/framework/tests/gradient_checker.py @@ -160,8 +160,13 @@ class GradientChecker(unittest.TestCase): grad_tensor.set(data, place) # run backward op - for name in backward_op.outputs(): + backward_outs = backward_op.outputs() + backward_names = [ + item for key in backward_outs for item in backward_outs[key] + ] + for name in backward_names: scope.new_var(name) + backward_op.infer_shape(scope) backward_op.run(scope, ctx) diff --git a/python/paddle/v2/framework/tests/test_identity_op.py b/python/paddle/v2/framework/tests/test_scale_and_identity_op.py similarity index 51% rename from python/paddle/v2/framework/tests/test_identity_op.py rename to python/paddle/v2/framework/tests/test_scale_and_identity_op.py index 181d9c0c21..69b301c376 100644 --- a/python/paddle/v2/framework/tests/test_identity_op.py +++ b/python/paddle/v2/framework/tests/test_scale_and_identity_op.py @@ -2,6 +2,7 @@ import unittest from op_test_util import OpTestMeta from gradient_checker import GradientChecker, create_op import numpy as np +from paddle.v2.framework.op import Operator class IdentityTest(unittest.TestCase): @@ -20,5 +21,23 @@ class IdentityGradOpTest(GradientChecker): self.check_grad(op, inputs, set("X"), "Out") +class ScaleTest(unittest.TestCase): + __metaclass__ = OpTestMeta + + def setUp(self): + self.type = "scale" + self.inputs = {'X': np.random.random((32, 784)).astype("float32")} + self.attrs = {'scale': -2.3} + self.outputs = {'Out': self.inputs['X'] * self.attrs['scale']} + + +class ScaleGradTest(GradientChecker): + def test_normal(self): + op = Operator("scale", X="X", Out="Out", scale=3.2) + self.check_grad(op, + {"X": np.random.random((10, 10)).astype("float32")}, + set("X"), "Out") + + if __name__ == '__main__': unittest.main() From 3bf440023abd5801f21b98d027623b6cb3959a0b Mon Sep 17 00:00:00 2001 From: caoying03 Date: Tue, 22 Aug 2017 21:03:46 +0800 Subject: [PATCH 7/9] follow comments. --- paddle/gserver/gradientmachines/RecurrentGradientMachine.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h index cc0eda9f13..c16fae6d17 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h @@ -503,9 +503,9 @@ private: * sequence in Matrix stored the entire beam search batch's forward pass * results. * - * @param isSeq: a flag indicating whetehr the layer to be output of the + * @param isSeq: a flag indicating whether the layer to be output of the * RecurrentGradientMachine is a sequence or not - * @param outArgs: all of the the returned Arguments of the forward pass + * @param outArgs: all of the returned Arguments of the forward pass * during the generation process. */ void createDataOutlinkSelRowsInfo(bool isSeq, std::vector& outArgs); From 760cb6c8615fe3eece8d831ef78e10da4b552246 Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Wed, 23 Aug 2017 15:47:18 +0800 Subject: [PATCH 8/9] Follow jiayi's comment --- paddle/framework/operator.h | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 83dab8631d..8397570d26 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -132,21 +132,21 @@ class OperatorBase { // Macro for define a clone method. // If you are writing an kernel operator, `Clone` will be defined when you // register it. i.e. `Clone` method is not needed to define by yourself. -#define DEFINE_OP_CLONE_METHOD(CLS) \ +#define DEFINE_OP_CLONE_METHOD(cls) \ std::unique_ptr Clone() const final { \ - return std::unique_ptr(new CLS(*this)); \ + return std::unique_ptr(new cls(*this)); \ } // Macro for define a default constructor for Operator. // You can also use // using PARENT_CLASS::PARENT_CLASS; // to use parent's constructor. -#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \ - CLS(const std::string& type, \ +#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls) \ + cls(const std::string& type, \ const ::paddle::framework::VariableNameMap& inputs, \ const ::paddle::framework::VariableNameMap& outputs, \ const paddle::framework::AttributeMap& attrs) \ - : PARENT_CLS(type, inputs, outputs, attrs) {} + : parent_cls(type, inputs, outputs, attrs) {} class NOP : public OperatorBase { public: From bfcaf880d0eed61291f0483091382131ef6cde88 Mon Sep 17 00:00:00 2001 From: dangqingqing Date: Wed, 23 Aug 2017 18:48:05 +0800 Subject: [PATCH 9/9] Move pybind from package paddle/framework into paddle/pybind. --- paddle/CMakeLists.txt | 1 + paddle/framework/CMakeLists.txt | 20 -------------------- paddle/pybind/CMakeLists.txt | 19 +++++++++++++++++++ paddle/{framework => pybind}/pybind.cc | 18 ++++++++++-------- paddle/{framework => pybind}/tensor_py.h | 11 +++++++---- 5 files changed, 37 insertions(+), 32 deletions(-) create mode 100644 paddle/pybind/CMakeLists.txt rename paddle/{framework => pybind}/pybind.cc (95%) rename paddle/{framework => pybind}/tensor_py.h (92%) diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index cf61a243e9..ec866b2907 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -15,6 +15,7 @@ if(Boost_FOUND) add_subdirectory(platform) add_subdirectory(framework) add_subdirectory(operators) + add_subdirectory(pybind) endif() if(WITH_C_API) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index ad219887d6..c0838d9b75 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -39,23 +39,3 @@ add_custom_command(TARGET framework_py_proto POST_BUILD cc_library(backward SRCS backward.cc DEPS net_op) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context) - -if(WITH_PYTHON) -cc_library(paddle_pybind SHARED - SRCS pybind.cc - DEPS pybind python backward - sgd_op - gather_op - add_op - mul_op - rowwise_add_op - sigmoid_op - softmax_op - mean_op - cross_entropy_op - recurrent_op - uniform_random_op - gaussian_random_op - fill_zeros_like_op - scale_op) -endif(WITH_PYTHON) diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt new file mode 100644 index 0000000000..10be83efc6 --- /dev/null +++ b/paddle/pybind/CMakeLists.txt @@ -0,0 +1,19 @@ +if(WITH_PYTHON) +cc_library(paddle_pybind SHARED + SRCS pybind.cc + DEPS pybind python backward + sgd_op + gather_op + add_op + mul_op + rowwise_add_op + sigmoid_op + softmax_op + mean_op + cross_entropy_op + recurrent_op + uniform_random_op + gaussian_random_op + fill_zeros_like_op + scale_op) +endif(WITH_PYTHON) diff --git a/paddle/framework/pybind.cc b/paddle/pybind/pybind.cc similarity index 95% rename from paddle/framework/pybind.cc rename to paddle/pybind/pybind.cc index b5ae81ebca..cdf739c3a2 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -18,11 +18,11 @@ limitations under the License. */ #include "paddle/framework/backward.h" #include "paddle/framework/op_registry.h" -#include "paddle/framework/tensor_py.h" #include "paddle/operators/net_op.h" #include "paddle/operators/recurrent_op.h" #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" +#include "paddle/pybind/tensor_py.h" #include "paddle/string/to_string.h" #include "pybind11/numpy.h" #include "pybind11/pybind11.h" @@ -134,7 +134,8 @@ All parameter, weight, gradient are variables in Paddle. py::return_value_policy::reference) .def("find_var", &Scope::FindVar, py::return_value_policy::reference) .def(py::init<>()) - .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); }, + .def("new_scope", + [](Scope &self) -> Scope * { return &self.NewScope(); }, py::return_value_policy::reference) .def("drop_kids", &Scope::DropKids); @@ -222,8 +223,10 @@ All parameter, weight, gradient are variables in Paddle. retv->SetType("plain_net"); return retv; }) - .def("append_op", [](operators::NetOp &self, - const OperatorBase &op) { self.AppendOp(op); }) + .def("append_op", + [](operators::NetOp &self, const OperatorBase &op) { + self.AppendOp(op); + }) .def("complete_add_op", &operators::NetOp::CompleteAddOp) .def("complete_add_op", [](std::shared_ptr &self) { self->CompleteAddOp(); @@ -243,10 +246,9 @@ All parameter, weight, gradient are variables in Paddle. auto rnn_op = OpRegistry::CreateOp(desc); return static_cast(rnn_op.release()); }) - .def("set_stepnet", [](operators::RecurrentOp &self, - const operators::NetOp &net) -> void { - self.set_stepnet(net.Clone()); - }); + .def("set_stepnet", + [](operators::RecurrentOp &self, const operators::NetOp &net) + -> void { self.set_stepnet(net.Clone()); }); m.def("unique_integer", UniqueIntegerGenerator); diff --git a/paddle/framework/tensor_py.h b/paddle/pybind/tensor_py.h similarity index 92% rename from paddle/framework/tensor_py.h rename to paddle/pybind/tensor_py.h index 4e1ab77b15..39ba60b4dc 100644 --- a/paddle/framework/tensor_py.h +++ b/paddle/pybind/tensor_py.h @@ -63,8 +63,11 @@ struct CastToPyBufferImpl { } return py::buffer_info( dst_tensor.mutable_data(dst_tensor.holder_->place()), - sizeof(CUR_TYPE), py::format_descriptor::format(), - (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides); + sizeof(CUR_TYPE), + py::format_descriptor::format(), + (size_t)framework::arity(dst_tensor.dims()), + dims_outside, + strides); } else { constexpr bool less = I + 1 < std::tuple_size>::value; return CastToPyBufferImpl()(tensor); @@ -107,8 +110,8 @@ void PyCUDATensorSetFromArray( self.Resize(framework::make_ddim(dims)); auto *dst = self.mutable_data(place); - paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(), - cudaMemcpyHostToDevice); + paddle::platform::GpuMemcpySync( + dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice); } #endif