diff --git a/demo/mnist/.gitignore b/demo/mnist/.gitignore index 810910fd5c..8bd9837523 100644 --- a/demo/mnist/.gitignore +++ b/demo/mnist/.gitignore @@ -4,3 +4,4 @@ mnist_vgg_model plot.png train.log *pyc +.ipynb_checkpoints diff --git a/demo/mnist/api_train.py b/demo/mnist/api_train.py new file mode 100644 index 0000000000..f301da382f --- /dev/null +++ b/demo/mnist/api_train.py @@ -0,0 +1,205 @@ +""" +A very basic example for how to use current Raw SWIG API to train mnist network. + +Current implementation uses Raw SWIG, which means the API call is directly \ +passed to C++ side of Paddle. + +The user api could be simpler and carefully designed. +""" +import py_paddle.swig_paddle as api +from py_paddle import DataProviderConverter +import paddle.trainer.PyDataProvider2 as dp +import numpy as np +import random +from mnist_util import read_from_mnist +from paddle.trainer_config_helpers import * + + +def optimizer_config(): + settings( + learning_rate=1e-4, + learning_method=AdamOptimizer(), + batch_size=1000, + model_average=ModelAverage(average_window=0.5), + regularization=L2Regularization(rate=0.5)) + + +def network_config(): + imgs = data_layer(name='pixel', size=784) + hidden1 = fc_layer(input=imgs, size=200) + hidden2 = fc_layer(input=hidden1, size=200) + inference = fc_layer(input=hidden2, size=10, act=SoftmaxActivation()) + cost = classification_cost( + input=inference, label=data_layer( + name='label', size=10)) + outputs(cost) + + +def init_parameter(network): + assert isinstance(network, api.GradientMachine) + for each_param in network.getParameters(): + assert isinstance(each_param, api.Parameter) + array_size = len(each_param) + array = np.random.uniform(-1.0, 1.0, array_size).astype('float32') + each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(array) + + +def generator_to_batch(generator, batch_size): + ret_val = list() + for each_item in generator: + ret_val.append(each_item) + if len(ret_val) == batch_size: + yield ret_val + ret_val = list() + if len(ret_val) != 0: + yield ret_val + + +class BatchPool(object): + def __init__(self, generator, batch_size): + self.data = list(generator) + self.batch_size = batch_size + + def __call__(self): + random.shuffle(self.data) + for offset in xrange(0, len(self.data), self.batch_size): + limit = min(offset + self.batch_size, len(self.data)) + yield self.data[offset:limit] + + +def input_order_converter(generator): + for each_item in generator: + yield each_item['pixel'], each_item['label'] + + +def main(): + api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores + + # get enable_types for each optimizer. + # enable_types = [value, gradient, momentum, etc] + # For each optimizer(SGD, Adam), GradientMachine should enable different + # buffers. + opt_config_proto = parse_optimizer_config(optimizer_config) + opt_config = api.OptimizationConfig.createFromProto(opt_config_proto) + _temp_optimizer_ = api.ParameterOptimizer.create(opt_config) + enable_types = _temp_optimizer_.getParameterTypes() + + # Create Simple Gradient Machine. + model_config = parse_network_config(network_config) + m = api.GradientMachine.createFromConfigProto( + model_config, api.CREATE_MODE_NORMAL, enable_types) + + # This type check is not useful. Only enable type hint in IDE. + # Such as PyCharm + assert isinstance(m, api.GradientMachine) + + # Initialize Parameter by numpy. + init_parameter(network=m) + + # Create Local Updater. Local means not run in cluster. + # For a cluster training, here we can change to createRemoteUpdater + # in future. + updater = api.ParameterUpdater.createLocalUpdater(opt_config) + assert isinstance(updater, api.ParameterUpdater) + + # Initialize ParameterUpdater. + updater.init(m) + + # DataProvider Converter is a utility convert Python Object to Paddle C++ + # Input. The input format is as same as Paddle's DataProvider. + converter = DataProviderConverter( + input_types=[dp.dense_vector(784), dp.integer_value(10)]) + + train_file = './data/raw_data/train' + test_file = './data/raw_data/t10k' + + # start gradient machine. + # the gradient machine must be started before invoke forward/backward. + # not just for training, but also for inference. + m.start() + + # evaluator can print error rate, etc. It is a C++ class. + batch_evaluator = m.makeEvaluator() + test_evaluator = m.makeEvaluator() + + # Get Train Data. + # TrainData will stored in a data pool. Currently implementation is not care + # about memory, speed. Just a very naive implementation. + train_data_generator = input_order_converter(read_from_mnist(train_file)) + train_data = BatchPool(train_data_generator, 512) + + # outArgs is Neural Network forward result. Here is not useful, just passed + # to gradient_machine.forward + outArgs = api.Arguments.createArguments(0) + + for pass_id in xrange(2): # we train 2 passes. + updater.startPass() + + for batch_id, data_batch in enumerate(train_data()): + # data_batch is input images. + # here, for online learning, we could get data_batch from network. + + # Start update one batch. + pass_type = updater.startBatch(len(data_batch)) + + # Start BatchEvaluator. + # batch_evaluator can be used between start/finish. + batch_evaluator.start() + + # forwardBackward is a shortcut for forward and backward. + # It is sometimes faster than invoke forward/backward separately, + # because in GradientMachine, it may be async. + m.forwardBackward(converter(data_batch), outArgs, pass_type) + + for each_param in m.getParameters(): + updater.update(each_param) + + # Get cost. We use numpy to calculate total cost for this batch. + cost_vec = outArgs.getSlotValue(0) + cost_vec = cost_vec.copyToNumpyMat() + cost = cost_vec.sum() / len(data_batch) + + # Make evaluator works. + m.eval(batch_evaluator) + + # Print logs. + print 'Pass id', pass_id, 'Batch id', batch_id, 'with cost=', \ + cost, batch_evaluator + + batch_evaluator.finish() + # Finish batch. + # * will clear gradient. + # * ensure all values should be updated. + updater.finishBatch(cost) + + # testing stage. use test data set to test current network. + updater.apply() + test_evaluator.start() + test_data_generator = input_order_converter(read_from_mnist(test_file)) + for data_batch in generator_to_batch(test_data_generator, 512): + # in testing stage, only forward is needed. + m.forward(converter(data_batch), outArgs, api.PASS_TEST) + m.eval(test_evaluator) + + # print error rate for test data set + print 'Pass', pass_id, ' test evaluator: ', test_evaluator + test_evaluator.finish() + updater.restore() + + updater.catchUpWith() + params = m.getParameters() + for each_param in params: + assert isinstance(each_param, api.Parameter) + value = each_param.getBuf(api.PARAMETER_VALUE) + value = value.copyToNumpyArray() + + # Here, we could save parameter to every where you want + print each_param.getName(), value + + updater.finishPass() + + m.finish() + + +if __name__ == '__main__': + main() diff --git a/demo/mnist/mnist_provider.py b/demo/mnist/mnist_provider.py index 4635833d36..888cfef1e7 100644 --- a/demo/mnist/mnist_provider.py +++ b/demo/mnist/mnist_provider.py @@ -1,5 +1,5 @@ from paddle.trainer.PyDataProvider2 import * -import numpy +from mnist_util import read_from_mnist # Define a py data provider @@ -8,27 +8,5 @@ import numpy 'label': integer_value(10)}, cache=CacheType.CACHE_PASS_IN_MEM) def process(settings, filename): # settings is not used currently. - imgf = filename + "-images-idx3-ubyte" - labelf = filename + "-labels-idx1-ubyte" - f = open(imgf, "rb") - l = open(labelf, "rb") - - f.read(16) - l.read(8) - - # Define number of samples for train/test - if "train" in filename: - n = 60000 - else: - n = 10000 - - images = numpy.fromfile( - f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32') - images = images / 255.0 * 2.0 - 1.0 - labels = numpy.fromfile(l, 'ubyte', count=n).astype("int") - - for i in xrange(n): - yield {"pixel": images[i, :], 'label': labels[i]} - - f.close() - l.close() + for each in read_from_mnist(filename): + yield each diff --git a/demo/mnist/mnist_util.py b/demo/mnist/mnist_util.py new file mode 100644 index 0000000000..3fd88ae7ed --- /dev/null +++ b/demo/mnist/mnist_util.py @@ -0,0 +1,30 @@ +import numpy + +__all__ = ['read_from_mnist'] + + +def read_from_mnist(filename): + imgf = filename + "-images-idx3-ubyte" + labelf = filename + "-labels-idx1-ubyte" + f = open(imgf, "rb") + l = open(labelf, "rb") + + f.read(16) + l.read(8) + + # Define number of samples for train/test + if "train" in filename: + n = 60000 + else: + n = 10000 + + images = numpy.fromfile( + f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32') + images = images / 255.0 * 2.0 - 1.0 + labels = numpy.fromfile(l, 'ubyte', count=n).astype("int") + + for i in xrange(n): + yield {"pixel": images[i, :], 'label': labels[i]} + + f.close() + l.close() diff --git a/paddle/api/CMakeLists.txt b/paddle/api/CMakeLists.txt index ed69bd764f..da6dad10cd 100644 --- a/paddle/api/CMakeLists.txt +++ b/paddle/api/CMakeLists.txt @@ -1,10 +1,12 @@ set(API_SOURCES Arguments.cpp ConfigParser.cpp + Evaluator.cpp GradientMachine.cpp Matrix.cpp Parameter.cpp ParameterOptimizer.cpp + ParameterUpdater.cpp SequenceGenerator.cpp Trainer.cpp Util.cpp @@ -63,6 +65,15 @@ install(DIRECTORY ${PROJ_ROOT}/paddle/dist/ add_custom_target(python_api_wheel ALL DEPENDS ${PROJ_ROOT}/paddle/dist/.timestamp) +add_dependencies(python_api_wheel python_swig_sources + paddle_parameter + paddle_math + paddle_utils + paddle_gserver + paddle_pserver + paddle_trainer + paddle_api + paddle_cuda) if(WITH_TESTING) add_subdirectory(test) diff --git a/paddle/api/Evaluator.cpp b/paddle/api/Evaluator.cpp new file mode 100644 index 0000000000..c30e098763 --- /dev/null +++ b/paddle/api/Evaluator.cpp @@ -0,0 +1,29 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#include +#include "PaddleAPI.h" +#include "PaddleAPIPrivate.h" + +Evaluator::Evaluator() : m(new EvaluatorPrivate()) {} +Evaluator::~Evaluator() { delete m; } + +void Evaluator::start() { m->rawPtr->start(); } + +void Evaluator::finish() { m->rawPtr->finish(); } + +std::string Evaluator::toString() { + std::ostringstream sout; + m->rawPtr->printStats(sout); + return sout.str(); +} diff --git a/paddle/api/GradientMachine.cpp b/paddle/api/GradientMachine.cpp index ced2293376..66115f8293 100644 --- a/paddle/api/GradientMachine.cpp +++ b/paddle/api/GradientMachine.cpp @@ -64,6 +64,10 @@ GradientMachine* GradientMachine::createByModelConfig( return GradientMachine::createFromPaddleModelPtr(confPtr, mode, types); } +void GradientMachine::start() { m->machine->start(); } + +void GradientMachine::finish() { m->machine->finish(); } + void GradientMachine::onPassEnd() { m->machine->onPassEnd(); } void GradientMachine::prefetch(const Arguments& inArgs) { @@ -166,3 +170,13 @@ SequenceGenerator* GradientMachine::asSequenceGenerator( r->setBeamSize(beam_size); return r; } + +Evaluator* GradientMachine::makeEvaluator() { + auto ev = new Evaluator(); + ev->m->rawPtr = m->machine->makeEvaluator(); + return ev; +} + +void GradientMachine::eval(Evaluator* evaluator) { + m->machine->eval(evaluator->m->rawPtr); +} diff --git a/paddle/api/Paddle.swig b/paddle/api/Paddle.swig index 9194a6371b..3365927f9b 100644 --- a/paddle/api/Paddle.swig +++ b/paddle/api/Paddle.swig @@ -96,7 +96,9 @@ namespace std { %rename(__getitem__) Vector::get; %rename(__setitem__) Vector::set; %rename(__len__) Vector::getSize; +%rename(__len__) Parameter::getSize; %rename(__call__) ParameterTraverseCallback::apply; +%rename(__repr__) Evaluator::toString; %apply (float* INPLACE_ARRAY2, int DIM1, int DIM2) { (float* data, int dim1, int dim2) @@ -167,6 +169,7 @@ namespace std { %newobject GradientMachine::asSequenceGenerator; %newobject GradientMachine::getParameter; %newobject GradientMachine::getLayerOutput; +%newobject GradientMachine::makeEvaluator; %newobject TrainerConfig::createFromTrainerConfigFile; %newobject TrainerConfig::getModelConfig; %newobject TrainerConfig::getOptimizationConfig; @@ -174,6 +177,7 @@ namespace std { %newobject Parameter::getConfig; %newobject ParameterOptimizer::create; %newobject ParameterOptimizer::needSpecialTraversal; +%newobject ParameterUpdater::createLocalUpdater; %feature("director") UpdateCallback; %feature("autodoc", 1); // To generate method stub, for code hint in ide @@ -193,4 +197,4 @@ namespace std { %ignore OptimizationConfigPrivate; %ignore ParameterTraverseCallbackPrivate; %include "utils/GlobalConstants.h" -%include "api/PaddleAPI.h" \ No newline at end of file +%include "api/PaddleAPI.h" diff --git a/paddle/api/PaddleAPI.h b/paddle/api/PaddleAPI.h index 841942ddae..09c891871a 100644 --- a/paddle/api/PaddleAPI.h +++ b/paddle/api/PaddleAPI.h @@ -515,6 +515,7 @@ private: friend class TrainerConfig; friend class ParameterOptimizer; + friend class ParameterUpdater; friend class Trainer; }; @@ -545,6 +546,8 @@ public: ParameterConfig* getConfig(); void setValueUpdated(); + size_t getSize() const; + private: static Parameter* createFromRawPtr(void* ptr); static Parameter* createFromSharedPtr(void* ptr); @@ -553,6 +556,7 @@ private: ParameterPrivate* m; friend class UpdateCallbackWrapper; friend class GradientMachine; + friend class ParameterUpdater; }; struct ModelConfigPrivate; @@ -679,7 +683,7 @@ private: }; class SequenceGenerator; - +class Evaluator; struct GradientMachinePrivate; class GradientMachine { private: @@ -710,6 +714,13 @@ public: GradientMatchineCreateMode mode = CREATE_MODE_NORMAL, const std::vector& parameterTypes = defaultParamTypes); + /** + * @brief finish + */ + void finish(); + + void start(); + /** * Prefetch row ids of sparse parameter. */ @@ -767,6 +778,10 @@ public: size_t max_length = 100UL, size_t beam_size = -1UL); + Evaluator* makeEvaluator(); + + void eval(Evaluator* evaluator); + private: GradientMachinePrivate* m; @@ -778,6 +793,109 @@ private: // Not to use c++ 11 init-list, so we use static var as function default arg. static std::vector defaultParamTypes; friend class Trainer; + friend class ParameterUpdater; +}; + +struct ParameterUpdaterPrivate; +class ParameterUpdater { +private: + ParameterUpdater(); + +public: + static ParameterUpdater* createLocalUpdater(OptimizationConfig* config); + ~ParameterUpdater(); + + /** + * @brief initialize Parameter Updater by GradientMachine. + * @param gm + */ + void init(const GradientMachine& gm); + + /** + * @brief begin of a training/testing of one pass. + */ + void startPass(); + + /** + * @brief end of a traning/testing of one pass. + */ + void finishPass(); + + /** + * @brief begin of a training/testing of one batch. + * @param data batch's size + * @return PassType, mostly will be training. + */ + PassType startBatch(size_t batchSize); + + /** + * @brief end of a traning/testing of one batch + * @param cost current batch cost. + */ + void finishBatch(float cost); + + /** + * @brief update a parameter (by local optimizer or by cluster pserver) + * @param param + */ + void update(Parameter* param); + + /** + * @brief restore the average parameter. + * @note It is only used in AverageOptimizer. Restore will get the current + * PARAMETER_VALUE back. + */ + void restore(); + + /** + * @brief apply. Store the average parameter. + * @note It is only used in AverageOptimizer. Apply will store the current + * PARAMETER_VALUE to buffer, calcaualte current Average Parameter, and save + * it to PARAMETER_VALUE. + */ + void apply(); + + /** + * @brief catchUpWith The Regularization will be delayed in many situations( + * pserver, local sparse). Catch Up means catch the regularization up, apply + * regularization to all params. + */ + void catchUpWith(); + +private: + ParameterUpdaterPrivate* m; +}; + +struct EvaluatorPrivate; +class Evaluator { +private: + Evaluator(); + DISABLE_COPY(Evaluator); + +public: + ~Evaluator(); + + /** + * @brief begin an evaluate stage. + */ + void start(); + + /** + * @brief end an evaluate stage. + */ + void finish(); + + /** + * @brief toString will get a evaluate result. + * + * __repr__ method in python + */ + std::string toString(); + +private: + EvaluatorPrivate* m; + + friend class GradientMachine; }; struct TrainerPrivate; diff --git a/paddle/api/PaddleAPIPrivate.h b/paddle/api/PaddleAPIPrivate.h index d2b56fc41c..f41352bfec 100644 --- a/paddle/api/PaddleAPIPrivate.h +++ b/paddle/api/PaddleAPIPrivate.h @@ -11,12 +11,14 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - +#pragma once +#include +#include "PaddleAPI.h" +#include "paddle/gserver/evaluators/Evaluator.h" #include "paddle/gserver/gradientmachines/GradientMachine.h" +#include "paddle/parameter/ParameterUpdaterBase.h" #include "paddle/trainer/TrainerConfigHelper.h" -#pragma once - struct GradientMachinePrivate { std::shared_ptr machine; @@ -65,3 +67,31 @@ struct ArgumentsPrivate { return *(std::shared_ptr*)(rawPtr); } }; + +struct ParameterUpdaterPrivate { + std::unique_ptr updater; +}; + +struct ParameterPrivate { + std::shared_ptr sharedPtr; + paddle::Parameter* rawPtr; // rawPtr only used in ParameterUpdater, + // in other situation sharedPtr should + // contains value. + + ParameterPrivate() : sharedPtr(nullptr), rawPtr(nullptr) {} + + paddle::Parameter* getPtr() { + if (sharedPtr) { + return sharedPtr.get(); + } else { + return rawPtr; + } + } +}; + +struct EvaluatorPrivate { + paddle::Evaluator* rawPtr; + + EvaluatorPrivate() : rawPtr(nullptr) {} + ~EvaluatorPrivate() { delete rawPtr; } +}; diff --git a/paddle/api/Parameter.cpp b/paddle/api/Parameter.cpp index 4eed00a84a..ddc00d8d1a 100644 --- a/paddle/api/Parameter.cpp +++ b/paddle/api/Parameter.cpp @@ -14,21 +14,7 @@ limitations under the License. */ #include "paddle/parameter/Parameter.h" #include "PaddleAPI.h" - -struct ParameterPrivate { - std::shared_ptr sharedPtr; - paddle::Parameter* rawPtr; - - ParameterPrivate() : sharedPtr(nullptr), rawPtr(nullptr) {} - - paddle::Parameter* getPtr() { - if (sharedPtr) { - return sharedPtr.get(); - } else { - return rawPtr; - } - } -}; +#include "PaddleAPIPrivate.h" Parameter::Parameter() : m(new ParameterPrivate()) {} @@ -70,3 +56,5 @@ ParameterConfig* Parameter::getConfig() { size_t Parameter::getID() const { return m->getPtr()->getID(); } void Parameter::setValueUpdated() { m->getPtr()->setValueUpdated(); } + +size_t Parameter::getSize() const { return m->getPtr()->getSize(); } diff --git a/paddle/api/ParameterUpdater.cpp b/paddle/api/ParameterUpdater.cpp new file mode 100644 index 0000000000..7cd8ed7e39 --- /dev/null +++ b/paddle/api/ParameterUpdater.cpp @@ -0,0 +1,56 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "PaddleAPI.h" + +#include "PaddleAPIPrivate.h" +#include "paddle/trainer/ThreadParameterUpdater.h" + +ParameterUpdater::ParameterUpdater() : m(new ParameterUpdaterPrivate()) {} + +ParameterUpdater *ParameterUpdater::createLocalUpdater( + OptimizationConfig *config) { + auto param = new ParameterUpdater(); + param->m->updater.reset(new paddle::SgdThreadUpdater(config->m->getConfig())); + return param; +} + +ParameterUpdater::~ParameterUpdater() { delete m; } + +void ParameterUpdater::init(const GradientMachine &gm) { + m->updater->init(gm.m->machine->getNonStaticParameters()); +} + +void ParameterUpdater::startPass() { m->updater->startPass(); } + +void ParameterUpdater::finishPass() { m->updater->finishPass(); } + +PassType ParameterUpdater::startBatch(size_t batchSize) { + return m->updater->startBatch((int64_t)batchSize); +} + +void ParameterUpdater::finishBatch(float cost) { + m->updater->finishBatch(cost); +} + +void ParameterUpdater::update(Parameter *param) { + auto paddleParam = param->m->getPtr(); + m->updater->update(paddleParam); +} + +void ParameterUpdater::restore() { m->updater->restore(); } + +void ParameterUpdater::apply() { m->updater->apply(); } + +void ParameterUpdater::catchUpWith() { m->updater->catchUpWith(); } diff --git a/paddle/api/Vector.cpp b/paddle/api/Vector.cpp index 874f2fd044..db8f005929 100644 --- a/paddle/api/Vector.cpp +++ b/paddle/api/Vector.cpp @@ -253,7 +253,7 @@ void Vector::copyToNumpyArray(float** view_m_data, int* dim1) { *view_m_data = new float[*dim1]; if (auto cpuVec = dynamic_cast(m->vec.get())) { std::memcpy(*view_m_data, cpuVec->getData(), sizeof(float) * (*dim1)); - } else if (auto gpuVec = dynamic_cast(m->vec.get())) { + } else if (auto gpuVec = dynamic_cast(m->vec.get())) { hl_memcpy_device2host( *view_m_data, gpuVec->getData(), sizeof(float) * (*dim1)); } else { diff --git a/paddle/py_paddle/dataprovider_converter.py b/paddle/py_paddle/dataprovider_converter.py index edcefba6a8..981d10afda 100644 --- a/paddle/py_paddle/dataprovider_converter.py +++ b/paddle/py_paddle/dataprovider_converter.py @@ -15,6 +15,7 @@ import paddle.trainer.PyDataProvider2 as dp2 import collections import swig_paddle +import numpy __all__ = ['DataProviderConverter'] @@ -35,18 +36,18 @@ class IScanner(object): class DenseScanner(IScanner): def __init__(self, input_type, pos): IScanner.__init__(self, input_type, pos) - self.__mat__ = [] - self.__height__ = 0 + self.__mat__ = None def scan(self, dat): - self.__mat__.extend(dat) - self.__height__ += 1 + if self.__mat__ is None: + self.__mat__ = numpy.array([dat], dtype='float32') + else: + self.__mat__ = numpy.append(self.__mat__, [dat], axis=0) def finish_scan(self, argument): assert isinstance(argument, swig_paddle.Arguments) assert isinstance(self.input_type, dp2.InputType) - m = swig_paddle.Matrix.createDense(self.__mat__, self.__height__, - self.input_type.dim, False) + m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True, False) argument.setSlotValue(self.pos, m) diff --git a/paddle/utils/common.h b/paddle/utils/common.h index 3ff0b86947..202a9d980d 100644 --- a/paddle/utils/common.h +++ b/paddle/utils/common.h @@ -14,8 +14,6 @@ limitations under the License. */ #pragma once -namespace paddle { - /** * Disable copy macro. */ @@ -24,6 +22,8 @@ namespace paddle { class_name(const class_name &other) = delete; \ class_name &operator=(const class_name &other) = delete +namespace paddle { + #ifdef PADDLE_TYPE_DOUBLE using real = double; #else diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 2eb7b17a0b..674b5ac58b 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -3416,8 +3416,35 @@ def register_parse_config_hook(f): _parse_config_hooks.add(f) -def parse_config(config_file, config_arg_str): +def update_g_config(): ''' + Update g_config after execute config_file or config_functions. + ''' + for k, v in settings.iteritems(): + if v is None: + continue + g_config.opt_config.__setattr__(k, v) + + for k, v in trainer_settings.iteritems(): + if v is None: + continue + g_config.__setattr__(k, v) + + for name in g_config.model_config.input_layer_names: + assert name in g_layer_map, \ + 'input name "%s" does not correspond to a layer name' % name + assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \ + 'The type of input layer "%s" is not "data"' % name + for name in g_config.model_config.output_layer_names: + assert name in g_layer_map, \ + 'input name "%s" does not correspond to a layer name' % name + return g_config + + +def parse_config(trainer_config, config_arg_str): + ''' + @param trainer_config: can be a string of config file name or a function name + with config logic @param config_arg_str: a string of the form var1=val1,var2=val2. It will be passed to config script as a dictionary CONFIG_ARGS ''' @@ -3451,45 +3478,20 @@ def parse_config(config_file, config_arg_str): g_root_submodel.is_recurrent_layer_group = False g_current_submodel = g_root_submodel - # for paddle on spark, need support non-file config. - # you can use parse_config like below: - # - # from paddle.trainer.config_parser import parse_config - # def configs(): - # #your paddle config code, which is same as config file. - # - # config = parse_config(configs, "is_predict=1") - # # then you get config proto object. - if hasattr(config_file, '__call__'): - config_file.func_globals.update( + if hasattr(trainer_config, '__call__'): + trainer_config.func_globals.update( make_config_environment("", config_args)) - config_file() + trainer_config() else: - execfile(config_file, make_config_environment(config_file, config_args)) - for k, v in settings.iteritems(): - if v is None: - continue - g_config.opt_config.__setattr__(k, v) - - for k, v in trainer_settings.iteritems(): - if v is None: - continue - g_config.__setattr__(k, v) + execfile(trainer_config, + make_config_environment(trainer_config, config_args)) - for name in g_config.model_config.input_layer_names: - assert name in g_layer_map, \ - 'input name "%s" does not correspond to a layer name' % name - assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \ - 'The type of input layer "%s" is not "data"' % name - for name in g_config.model_config.output_layer_names: - assert name in g_layer_map, \ - 'input name "%s" does not correspond to a layer name' % name - return g_config + return update_g_config() -def parse_config_and_serialize(config_file, config_arg_str): +def parse_config_and_serialize(trainer_config, config_arg_str): try: - config = parse_config(config_file, config_arg_str) + config = parse_config(trainer_config, config_arg_str) #logger.info(config) return config.SerializeToString() except: diff --git a/python/paddle/trainer_config_helpers/__init__.py b/python/paddle/trainer_config_helpers/__init__.py index 0ff5edf825..13155ebddb 100644 --- a/python/paddle/trainer_config_helpers/__init__.py +++ b/python/paddle/trainer_config_helpers/__init__.py @@ -20,4 +20,6 @@ from layers import * from networks import * from optimizers import * from attrs import * +from config_parser_utils import * +# This will enable operator overload for LayerOutput import layer_math diff --git a/python/paddle/trainer_config_helpers/config_parser.py b/python/paddle/trainer_config_helpers/config_parser.py new file mode 100644 index 0000000000..4b91b8d282 --- /dev/null +++ b/python/paddle/trainer_config_helpers/config_parser.py @@ -0,0 +1,38 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.trainer.config_parser as config_parser +''' +This file is a wrapper of formal config_parser. The main idea of this file is to +separete different config logic into different function, such as network configuration + and optimizer configuration. +''' + +__all__ = [ + "parse_trainer_config", "parse_network_config", "parse_optimizer_config" +] + + +def parse_trainer_config(trainer_conf, config_arg_str): + return config_parser.parse_config(trainer_conf, config_arg_str) + + +def parse_network_config(network_conf): + config = config_parser.parse_config(network_conf, '') + return config.model_config + + +def parse_optimizer_config(optimizer_conf): + config = config_parser.parse_config(optimizer_conf, '') + return config.opt_config diff --git a/python/paddle/trainer_config_helpers/config_parser_utils.py b/python/paddle/trainer_config_helpers/config_parser_utils.py new file mode 100644 index 0000000000..681b177a55 --- /dev/null +++ b/python/paddle/trainer_config_helpers/config_parser_utils.py @@ -0,0 +1,38 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.trainer.config_parser as config_parser +''' +This file is a wrapper of formal config_parser. The main idea of this file is to +separete different config logic into different function, such as network configuration + and optimizer configuration. +''' + +__all__ = [ + "parse_trainer_config", "parse_network_config", "parse_optimizer_config" +] + + +def parse_trainer_config(trainer_conf, config_arg_str): + return config_parser.parse_config(trainer_conf, config_arg_str) + + +def parse_network_config(network_conf, config_arg_str=''): + config = config_parser.parse_config(network_conf, config_arg_str) + return config.model_config + + +def parse_optimizer_config(optimizer_conf, config_arg_str=''): + config = config_parser.parse_config(optimizer_conf, config_arg_str) + return config.opt_config