diff --git a/.gitignore b/.gitignore
index 2badc3bdaa..9e3a0b499f 100644
--- a/.gitignore
+++ b/.gitignore
@@ -25,12 +25,3 @@ third_party/
# clion workspace.
cmake-build-*
-
-# generated while compiling
-paddle/pybind/pybind.h
-CMakeFiles
-cmake_install.cmake
-paddle/.timestamp
-python/paddlepaddle.egg-info/
-paddle/fluid/pybind/pybind.h
-python/paddle/version.py
diff --git a/benchmark/cluster/README.md b/benchmark/cluster/README.md
index b619613ea7..64816098a5 100644
--- a/benchmark/cluster/README.md
+++ b/benchmark/cluster/README.md
@@ -36,11 +36,41 @@
- Trainer Count: 100
- Metrics: mini-batch / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - |
-| TensorFlow | - | - | - | - |
+
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+
+
+
### Measure the Performance for Different PServer Count
@@ -48,11 +78,41 @@
- Batch Size: 64
- Metrics: mini-batch / sec
-| PServer Count | 10 | 20 | 40 | 60 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - |
-| TensorFlow | - | - | - | - |
+
+
+
+
+PServer Count |
+10 |
+20 |
+40 |
+60 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+
+
+
### Measure Parallel Efficiency By Increasing Trainer Count
@@ -67,11 +127,69 @@ The parallel efficiency is:
$E = \div(S, N)$
-| Trainer Counter | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
-| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - | - | - | - | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - | - | - | - | - | - | - | - | - |
-| TensorFlow | - | - | - | - | - | - | - | - | - | - | - | - | - |
+
+
+
+Trainer Counter |
+1 |
+10 |
+20 |
+30 |
+40 |
+50 |
+60 |
+70 |
+80 |
+90 |
+100 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+
+
## Reproduce the benchmark
diff --git a/benchmark/cluster/vgg16/README.md b/benchmark/cluster/vgg16/README.md
index cd681a1a28..d56a912b9b 100644
--- a/benchmark/cluster/vgg16/README.md
+++ b/benchmark/cluster/vgg16/README.md
@@ -16,11 +16,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Metrics: samples / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 15.44 | 16.32 | 16.74 | 16.79 |
-| PaddlePaddle v2 | 15.97 | 17.04 | 17.60 | 17.83 |
-| TensorFlow | 9.09 | 9.10 | 9.24 | 8.66 |
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 15.44 |
+ 16.32 |
+ 16.74 |
+ 16.79 |
+
+
+PaddlePaddle v2 |
+ 15.97 |
+ 17.04 |
+ 17.60 |
+ 17.83 |
+
+
+TensorFlow |
+ 9.09 |
+ 9.10 |
+ 9.24 |
+ 8.66 |
+
+
+
+
### Different Batch Size
@@ -28,12 +58,40 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Trainer Count: 20
- Metrics: samples / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 190.20 | 222.15 | 247.40 | 258.18 |
-| PaddlePaddle v2 | 170.96 | 233.71 | 256.14 | 329.23 |
-| TensorFlow | - | - | - | - |
-
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 190.20 |
+ 222.15 |
+ 247.40 |
+ 258.18 |
+
+
+PaddlePaddle v2 |
+ 170.96 |
+ 233.71 |
+ 256.14 |
+ 329.23 |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
### Accelerate Rate
@@ -41,11 +99,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Batch Size: 128
- Metrics: samples / sec
-| Trainer Count | 20 | 40 | 80 | 100 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 263.29 (78.64%) | 518.80 (77.47%) | 836.26 (62.44%) | 1019.29 (60.89%) |
-| PaddlePaddle v2 (need more tests) | 326.85 (92.85%) | 534.58 (75.93%) | 853.30 (60.60%) | 1041.99 (59.20%) |
-| TensorFlow | - | - | - | - |
+
+
+
+Trainer Count |
+20 |
+40 |
+80 |
+100 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 263.29 (78.64%) |
+ 518.80 (77.47%) |
+ 836.26 (62.44%) |
+ 1019.29 (60.89%) |
+
+
+PaddlePaddle v2 (need more tests) |
+ 326.85 (92.85%) |
+ 534.58 (75.93%) |
+ 853.30 (60.60%) |
+ 1041.99 (59.20%) |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
+
### Different Pserver Count
@@ -53,11 +141,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Batch Size: 128
- Metrics: samples/ sec
-| PServer Count | 3 | 6 |10 | 20 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid(should fix in next PR) | 589.1 | 592.6 | 656.4 | 655.8 |
-| PaddlePaddle v2 | 593.4 | 791.3 | 729.7 | 821.7 |
-| TensorFlow | - | - | - | - |
+
+
+
+PServer Count |
+3 |
+6 |
+10 |
+20 |
+
+
+
+
+ PaddlePaddle Fluid(should fix in next PR) |
+ 589.1 |
+ 592.6 |
+ 656.4 |
+ 655.8 |
+
+
+PaddlePaddle v2 (need more tests) |
+ 593.4 |
+ 791.3 |
+ 729.7 |
+ 821.7 |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
+
*The performance gap between Fuild and v2 comes from the network interference.*
diff --git a/cmake/external/mklml.cmake b/cmake/external/mklml.cmake
index df3f0c7f0c..796bcf28a1 100644
--- a/cmake/external/mklml.cmake
+++ b/cmake/external/mklml.cmake
@@ -28,7 +28,7 @@ INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.1.20171007")
-SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.11/${MKLML_VER}.tgz")
+SET(MKLML_URL "http://paddlepaddledeps.bj.bcebos.com/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml")
diff --git a/cmake/external/snappystream.cmake b/cmake/external/snappystream.cmake
index 5377a0b046..8f7a3bf8ee 100644
--- a/cmake/external/snappystream.cmake
+++ b/cmake/external/snappystream.cmake
@@ -54,5 +54,7 @@ add_library(snappystream STATIC IMPORTED GLOBAL)
set_property(TARGET snappystream PROPERTY IMPORTED_LOCATION
"${SNAPPYSTREAM_INSTALL_DIR}/lib/libsnappystream.a")
-include_directories(${SNAPPYSTREAM_INCLUDE_DIR})
+include_directories(${SNAPPYSTREAM_INCLUDE_DIR}) # For snappysteam to include its own headers.
+include_directories(${THIRD_PARTY_PATH}/install) # For Paddle to include snappy stream headers.
+
add_dependencies(snappystream extern_snappystream)
diff --git a/cmake/external/warpctc.cmake b/cmake/external/warpctc.cmake
index 9a9a20f897..a631ad14b1 100644
--- a/cmake/external/warpctc.cmake
+++ b/cmake/external/warpctc.cmake
@@ -62,7 +62,8 @@ ExternalProject_Add(
)
MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}")
-INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR})
+INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) # For warpctc code to include its headers.
+INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include warpctc headers.
ADD_LIBRARY(warpctc SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES})
diff --git a/cmake/external/zlib.cmake b/cmake/external/zlib.cmake
index 20b8506e67..c3d7323545 100644
--- a/cmake/external/zlib.cmake
+++ b/cmake/external/zlib.cmake
@@ -25,7 +25,8 @@ ELSE(WIN32)
SET(ZLIB_LIBRARIES "${ZLIB_INSTALL_DIR}/lib/libz.a" CACHE FILEPATH "zlib library." FORCE)
ENDIF(WIN32)
-INCLUDE_DIRECTORIES(${ZLIB_INCLUDE_DIR})
+INCLUDE_DIRECTORIES(${ZLIB_INCLUDE_DIR}) # For zlib code to include its own headers.
+INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include zlib.h.
ExternalProject_Add(
extern_zlib
diff --git a/cmake/generic.cmake b/cmake/generic.cmake
index 3fe750f47e..e8bc285bdc 100644
--- a/cmake/generic.cmake
+++ b/cmake/generic.cmake
@@ -251,7 +251,7 @@ function(cc_test TARGET_NAME)
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog)
add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
- WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
endfunction(cc_test)
@@ -561,9 +561,9 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
- COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python ${py_test_ENVS}
+ COMMAND env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
- WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
endfunction()
diff --git a/doc/fluid/CMakeLists.txt b/doc/fluid/CMakeLists.txt
index 9fe79323ef..8086507bb4 100644
--- a/doc/fluid/CMakeLists.txt
+++ b/doc/fluid/CMakeLists.txt
@@ -27,7 +27,7 @@ sphinx_add_target(paddle_fluid_docs
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
-add_dependencies(paddle_fluid_docs gen_proto_py)
+add_dependencies(paddle_fluid_docs gen_proto_py paddle_python)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
@@ -50,6 +50,6 @@ sphinx_add_target(paddle_fluid_docs_cn
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
-add_dependencies(paddle_fluid_docs_cn gen_proto_py)
+add_dependencies(paddle_fluid_docs_cn gen_proto_py paddle_python)
add_subdirectory(api)
diff --git a/doc/fluid/api/CMakeLists.txt b/doc/fluid/api/CMakeLists.txt
index ca40dfb964..48b396f078 100644
--- a/doc/fluid/api/CMakeLists.txt
+++ b/doc/fluid/api/CMakeLists.txt
@@ -19,4 +19,4 @@ sphinx_add_target(paddle_fluid_apis
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
-add_dependencies(paddle_fluid_apis gen_proto_py framework_py_proto copy_paddle_pybind)
+add_dependencies(paddle_fluid_apis gen_proto_py framework_py_proto copy_paddle_pybind paddle_python)
diff --git a/doc/fluid/api/layers.rst b/doc/fluid/api/layers.rst
index ae35d8c534..22e6fb13d7 100644
--- a/doc/fluid/api/layers.rst
+++ b/doc/fluid/api/layers.rst
@@ -494,6 +494,12 @@ reshape
.. autofunction:: paddle.fluid.layers.reshape
:noindex:
+pad
+---
+
+.. autofunction:: paddle.fluid.layers.pad
+ :noindex:
+
scale
-----
diff --git a/doc/fluid/design/algorithm/parameter_average.md b/doc/fluid/design/algorithm/parameter_average.md
index 2c4edee9fe..940d37fb31 100644
--- a/doc/fluid/design/algorithm/parameter_average.md
+++ b/doc/fluid/design/algorithm/parameter_average.md
@@ -5,9 +5,11 @@ In a large scale machine learning setup where the size of the training data is h
Polyak and Juditsky (1992) showed that the test performance of simple average of parameters obtained by Stochastic Gradient Descent (SGD) is as good as that of parameter values that are obtained by training the model over and over again, over the training dataset.
-Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for 
. The averaging is done as follows:
+Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for 
. The averaging is done as follows:
-
+
+
+
We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above.
diff --git a/doc/fluid/design/concepts/README.md b/doc/fluid/design/concepts/README.md
index ed3f5aab28..8ded0ad22f 100644
--- a/doc/fluid/design/concepts/README.md
+++ b/doc/fluid/design/concepts/README.md
@@ -6,11 +6,33 @@ Here are some initial thoughts. Your comments are welcome!
I think we need only the following few CMake functions to make a project description mean and clean:
-| C++ | CUDA C++ | Go |
-|---|---|---|
-| cc_library | nv_library | go_library |
-| cc_binary | nv_binary | go_binary |
-| cc_test | nv_test | go_test |
+
+
+
+C++ |
+CUDA C++ |
+Go |
+
+
+
+
+cc_library |
+nv_library |
+go_library |
+
+
+cc_binary |
+nv_binary |
+go_binary |
+
+
+ cc_test |
+ nv_test |
+ go_test |
+
+
+
+
- The `_library` functions generate .a files from source code.
- The `_binary` functions generate executable binary files.
diff --git a/doc/fluid/design/concepts/block.md b/doc/fluid/design/concepts/block.md
index 907a2def55..3b626bd89c 100644
--- a/doc/fluid/design/concepts/block.md
+++ b/doc/fluid/design/concepts/block.md
@@ -14,11 +14,29 @@ In programming languages, a block is a pair of curly braces that includes local
Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning:
-| programming languages | PaddlePaddle |
-|-----------------------|-----------------------|
-| for, while loop | RNN, WhileOp |
-| if, if-else, switch | IfElseOp, SwitchOp |
-| sequential execution | a sequence of layers |
+
+
+
+programming languages |
+PaddlePaddle |
+
+
+
+
+for, while loop |
+RNN, WhileOp |
+
+
+if, if-else, switch |
+IfElseOp, SwitchOp |
+
+
+sequential execution |
+a sequence of layers |
+
+
+
+
A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes.
@@ -26,12 +44,33 @@ A key difference is that a C++ program describes a one pass computation, whereas
The existence of the backward pass makes the execution of a block of PaddlePaddle different from traditional programs:
-| programming languages | PaddlePaddle |
-|-----------------------|---------------------------------|
-| stack | scope hierarchy |
-| stack frame | scope |
-| push at entering block| push at entering block |
-| pop at leaving block | destroy when minibatch completes|
+
+
+
+programming languages |
+PaddlePaddle |
+
+
+
+
+stack |
+scope hierarchy |
+
+
+stack frame |
+scope |
+
+
+push at entering block |
+push at entering block |
+
+
+pop at leaving block |
+destroy when minibatch completes |
+
+
+
+
1. In traditional programs:
diff --git a/doc/fluid/design/concepts/functions_operators_layers.md b/doc/fluid/design/concepts/functions_operators_layers.md
index 984b59f4c6..30bc488a18 100644
--- a/doc/fluid/design/concepts/functions_operators_layers.md
+++ b/doc/fluid/design/concepts/functions_operators_layers.md
@@ -86,12 +86,40 @@ def layer.fc(X):
We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example:
-
-| C++ functions/functors | mul | add | | |
-|------------------------|--------------|--------------|-------------|----------|
-| C++ operator class | mulOp | addOp | FCOp | |
-| Python binding | operator.mul | operator.add | operator.fc | |
-| Python function | | | | layer.fc |
+
+
+
+C++ functions/functors |
+mul |
+add |
+ |
+ |
+
+
+
+
+C++ operator class |
+mulOp |
+addOp |
+FCOp |
+ |
+
+
+Python binding |
+operator.mul |
+ operator.add |
+operator.fc |
+ |
+
+
+Python function |
+ |
+ |
+ |
+layer.fc |
+
+
+
This is how we differentiate layer and operators in PaddlePaddle:
diff --git a/doc/fluid/design/concepts/lod_tensor.md b/doc/fluid/design/concepts/lod_tensor.md
index 10a8a7867f..a88292e788 100644
--- a/doc/fluid/design/concepts/lod_tensor.md
+++ b/doc/fluid/design/concepts/lod_tensor.md
@@ -2,12 +2,38 @@
Like other deep learning systems, PaddlePaddle supports training models from sequence data. Also, like other systems, PaddlePaddle represent a mini-batch of sequences as a Tensor. What is different is that PaddlePaddle doesn't require all sequences in a mini-batch to be of the same length. Thus no need for padding zeros.
-| | TensorFlow | PaddlePaddle |
-|-----------------------|------------|--------------|
-| RNN | Support | Support |
-| recursive RNN | Support | Support |
-| padding zeros | Must | No need |
-| blob data type | Tensor | LoDTensor |
+
+
+
+ |
+TensorFlow |
+PaddlePaddle |
+
+
+
+
+RNN |
+Support |
+Support |
+
+
+recursive RNN |
+Support |
+Support |
+
+
+padding zeros |
+ Must |
+No need |
+
+
+ blob data type |
+ Tensor |
+ LoDTensor |
+
+
+
+
PaddlePaddle achieves this flexibility by passing through a new data type, *LoD Tensor*, which is a Tensor attached with segmentation index known as *LoD*, between operators. The LoD index doesn't only segment a tensor, but also recursively segments sub-sequences. This document presents the design of LoD and LoDTensor.
diff --git a/doc/fluid/design/concepts/var_desc.md b/doc/fluid/design/concepts/var_desc.md
index fcba08c07f..6750323c01 100644
--- a/doc/fluid/design/concepts/var_desc.md
+++ b/doc/fluid/design/concepts/var_desc.md
@@ -10,10 +10,27 @@ PaddlePaddle uses proto message to describe compile time program because :
The computation `Program` consists of nested `Blocks`. Each `Block` will consist of data(i.e. `Variable`) and `Operations`. The concept to represent them is in the table below.
-| |compile time|runtime|
-|---|---|---|
-|Data|VarDesc(proto)|Variable(cpp)|
-|Operation|OpDesc(proto)|Operator(cpp)|
+
+
+
+ |
+compile time |
+runtime |
+
+
+
+
+Data |
+VarDesc(proto) |
+Variable(cpp) |
+
+
+Operation |
+OpDesc(proto) |
+Operator(cpp) |
+
+
+
## Definition of VarType
diff --git a/doc/fluid/design/concurrent/channel.md b/doc/fluid/design/concurrent/channel.md
index a00a3325e7..df67438bcc 100644
--- a/doc/fluid/design/concurrent/channel.md
+++ b/doc/fluid/design/concurrent/channel.md
@@ -2,7 +2,7 @@
## Introduction
-A Channel is a data structure that allows for synchronous interprocess
+A Channel is a data structure that allows for synchronous interprocess
communication via message passing. It is a fundemental component of CSP
(communicating sequential processes), and allows for users to pass data
between threads without having to worry about synchronization.
@@ -18,7 +18,7 @@ Creates a new channel that takes in variables of a specific dtype.
- **fluid.make_channel(dtype, capacity=0)**
- **dtype**: The data type of variables being sent/received through channel
- - **capacity**: The capacity of the channel. A capacity of 0 represents
+ - **capacity**: The capacity of the channel. A capacity of 0 represents
an unbuffered channel. Capacity > 0 represents a buffered channel
```
@@ -40,8 +40,8 @@ fluid.channel_close(ch)
### Send data to a channel
-Sends a variable to a channel. Currently, variables of dtype `LoDTensor`,
-`LoDRankTable`, `LoDTensorArray`, `SelectedRows`, `ReaderHolder`, and
+Sends a variable to a channel. Currently, variables of dtype `LoDTensor`,
+`LoDRankTable`, `LoDTensorArray`, `SelectedRows`, `ReaderHolder`, and
`ChannelHolder` are supported.
By default, the data of the Variable is moved from the sender to the receiver,
@@ -52,7 +52,7 @@ however the user can optionally copy the data before performing the send.
- **variable**: The variable to send to the channel
- **is_copy**: If set to True, channel_send will perform a variable assign
to copy the source variable to a new variable to be sent.
-
+
```
ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
var = fill_constant(shape=[1],dtype=core.VarDesc.VarType.INT32, value=100)
@@ -68,7 +68,7 @@ receiving variable.
- **channel**: The channel to receive the variable from
- **return_variable**: The destination variable used to store the data of the
variable received from the channel
-
+
```
ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
var = fill_constant(shape=[1],dtype=core.VarDesc.VarType.INT32, value=-1)
@@ -84,9 +84,9 @@ internal queues, locks, and conditional variables.
### QueueMessage
QueueMessage encapsulates the state of the channel send/receive operation to be
-put in the **sendq/recvq**. It contains a condition variable used to lock the
+put in the **sendq/recvq**. It contains a condition variable used to lock the
thread (when there are no available sends/receives). In addition, it contains
-a callback function to notify a thread when the QueueMessage is being
+a callback function to notify a thread when the QueueMessage is being
processed by the channel.
### Queues
@@ -108,21 +108,21 @@ channel_recv operation will put a new QueueMessage on the recvq and block the
current thread under two conditions:
1. The channel is buffered and there is no data on the buff_
2. The channel is unbuffered and does not have a sender
-
+
### State diagram
#### Channel Send
-
+
-
+
#### Channel Receive
-
+
-
+
## Limitations and Considerations
### Variable Copy
@@ -135,5 +135,5 @@ be sent before it is sent.
Please note that this is acheived by adding an **assign** operator and creating
a temporary variable that is sent in place of the original variable. Please
-note that **assign** operator has limited support for only certain variables
+note that **assign** operator has limited support for only certain variables
datatypes.
diff --git a/doc/fluid/design/concurrent/concurrent_programming.md b/doc/fluid/design/concurrent/concurrent_programming.md
index f022e67fd3..1859f983e9 100644
--- a/doc/fluid/design/concurrent/concurrent_programming.md
+++ b/doc/fluid/design/concurrent/concurrent_programming.md
@@ -10,12 +10,42 @@ The answer relies on the fact that a `ProgramDesc` is similar to an abstract syn
The following table compares concepts in Fluid and Go
-| Go | Fluid |
-|----|-------|
-|user-defined functions | [layers](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/fluid) |
-| control-flow and built-in functions | [intrinsics/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators) |
-| goroutines, channels | [class ThreadPool](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h) |
-| runtime | [class Executor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) |
+
+
## An Example Concurrent Program
@@ -77,11 +107,11 @@ message ProgramDesc {
read(output = X)
kube_get_workers_addrs(output = L)
Y = tensor_array(len(L))
- parallel_for(input = X, output = Y,
+ parallel_for(input = X, output = Y,
attrs = {L, block_id(1)}) # referring to block 1
]
}
-
+
block[1] = Block {
parent = 0,
vars = [x, y, index],
@@ -102,7 +132,7 @@ func main() { //// block 0
X = fluid.read(...)
L = fluid.k8s.get_worker_addrs()
Y = fluid.tensor_array(len(L))
- fluid.parallel_for(X, L,
+ fluid.parallel_for(X, L,
func(index int) { //// block 1
x = X[index]
fluid.send(L[index], x)
@@ -116,7 +146,7 @@ An explanation of the above program:
- `fluid.k8s` is a package that provides access to Kubernetes API.
- `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod).
-- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
+- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and
2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread
diff --git a/doc/fluid/design/concurrent/csp.md b/doc/fluid/design/concurrent/csp.md
index 10d936860f..66d19f44ba 100644
--- a/doc/fluid/design/concurrent/csp.md
+++ b/doc/fluid/design/concurrent/csp.md
@@ -13,14 +13,41 @@ Most DL systems, including TensorFlow, Caffe2, and MxNet, can asynchronously exe
There were many concurrent programming models, implemented in various forms:
-| concurrent programming model | implementation |
-|-----|-----|
-| mutex | types and functions in standard libraries |
-| semaphore | types and functions in standard libraries |
-| communicating sequential processes (CSP) | Go programming language |
-| actor model | Erlang programming language |
-| message passing | MPI |
-| bulk synchronous parallel (BSP) | Pregel distributed programming framework |
+
+
+
+concurrent programming model |
+implementation |
+
+
+
+
+mutex |
+types and functions in standard libraries |
+
+
+semaphore |
+ types and functions in standard libraries |
+
+
+ communicating sequential processes (CSP) |
+ Go programming language |
+
+
+ actor model |
+ Erlang programming language |
+
+
+ message passing |
+ MPI |
+
+
+ bulk synchronous parallel (BSP) |
+ Pregel distributed programming framework |
+
+
+
+
Since Fluid was designed to be a programming language, we would like to implement CSP in Fluid.
@@ -118,9 +145,9 @@ There are four types of actions with a channel:
```go
close(ch)
```
-
+
Please be aware that a closed channel is not a nil channel, which is `var ch chan int`.
-
+
There are some [axioms with channels](https://dave.cheney.net/2014/03/19/channel-axioms):
1. A send to a nil channel blocks forever
diff --git a/doc/fluid/design/concurrent/select_op.md b/doc/fluid/design/concurrent/select_op.md
index 52c226bc94..4fcae57cc7 100644
--- a/doc/fluid/design/concurrent/select_op.md
+++ b/doc/fluid/design/concurrent/select_op.md
@@ -2,13 +2,13 @@
## Introduction
-In golang, the [**select**](https://golang.org/ref/spec#Select_statements)
-statement lets a goroutine wait on multiple communication operations at the
-same time. The **select** blocks until one of its cases can run, then
-executes the case. If multiple cases are ready to run, then one case is
+In golang, the [**select**](https://golang.org/ref/spec#Select_statements)
+statement lets a goroutine wait on multiple communication operations at the
+same time. The **select** blocks until one of its cases can run, then
+executes the case. If multiple cases are ready to run, then one case is
choosen at random to be executed.
-With the introduction of CSP for Paddle, we mimic this behavior by
+With the introduction of CSP for Paddle, we mimic this behavior by
creating a ***select_op***.
## How to use it
@@ -17,11 +17,11 @@ The **select_op** is available as a c++ operator. However most users
will prefer to use the much simplier Python API.
- **fluid.Select()**: Creates a select operator and adds it to the current
-block within the main program. Also creates a sub block and adds it to the
-main program. This sub block is used to hold all variables and operators
+block within the main program. Also creates a sub block and adds it to the
+main program. This sub block is used to hold all variables and operators
used by the case statements.
-
-Within the select block, users can add cases by
+
+Within the select block, users can add cases by
calling **select.case** or **select.default** method.
- **fluid.Select.case(channel_action, channel, result_variable)**: Represents
@@ -37,13 +37,13 @@ execute.
```
ch1 = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
-
+
x = fill_constant(shape=[1], dtype=core.VarDesc.VarType.INT32, value=0)
y = fill_constant(shape=[1], dtype=core.VarDesc.VarType.INT32, value=1)
-
+
while_cond = fill_constant(shape=[1], dtype=core.VarDesc.VarType.BOOL, value=True)
while_op = While(cond=while_cond)
-
+
with while_op.block():
with fluid.Select() as select:
with select.case(fluid.channel_send, channel, x):
@@ -99,17 +99,17 @@ blocks {
}
}
// Create "select" operator.
- // inputs:
+ // inputs:
// X: All input variables used by operators within the select block
// case_to_execute: Variable filled in by select_op when it determines
// which case to execute.
//
// outputs:
- // Out: All output variables referenced by operators within select block.
- //
+ // Out: All output variables referenced by operators within select block.
+ //
// attrs:
// sub_block: The block id containing the select "cases"
- // cases: Serialized list of all cases in the select op.
+ // cases: Serialized list of all cases in the select op.
// Each case is serialized as: ',,,'
// where type is 0 for default, 1 for send, and 2 for receive.
// No channel and values are needed for default cases.
@@ -150,7 +150,7 @@ into **X**. It will also create a temp variable called **case_to_execute**. Th
filled in by the select_op after it has completed processing the case statements.
If there are no available cases to execute (ie: all cases are blocked on channel operations, and
-there is no default statement), then the select_op will block the current thread. The thread will
+there is no default statement), then the select_op will block the current thread. The thread will
unblock once there is a channel operation affecting one of the case statements, at which point, the
**select_op** will set the **case_to_execute** variable to the index of the case to execute.
@@ -247,17 +247,17 @@ blocks {
```
-Cases are represented by a **conditional_block operator**, whose's condition is set as the output of
-equal(**case_to_execute**, **case_index**). Since each case index is unique in this sub-block,
+Cases are represented by a **conditional_block operator**, whose's condition is set as the output of
+equal(**case_to_execute**, **case_index**). Since each case index is unique in this sub-block,
only one case will be executed.
### select_op flow
-
+
-The select algorithm is inspired by golang's select routine. Please refer to
+The select algorithm is inspired by golang's select routine. Please refer to
http://www.tapirgames.com/blog/golang-concurrent-select-implementation for more information.
## Backward Pass
diff --git a/doc/fluid/design/dist_train/distributed_architecture.md b/doc/fluid/design/dist_train/distributed_architecture.md
index a405cb6aaf..229cb47c17 100644
--- a/doc/fluid/design/dist_train/distributed_architecture.md
+++ b/doc/fluid/design/dist_train/distributed_architecture.md
@@ -40,11 +40,11 @@ computation is only specified in Python code which sits outside of PaddlePaddle,
Similar to how a compiler uses an intermediate representation (IR) so that the programmer does not need to manually optimize their code for most of the cases, we can have an intermediate representation in PaddlePaddle as well. The compiler optimizes the IR as follows:
-
+
PaddlePaddle can support model parallelism by converting the IR so that the user no longer needs to manually perform the computation and operations in the Python component:
-
+
The IR for PaddlePaddle after refactoring is called a `Block`, it specifies the computation dependency graph and the variables used in the computation.
@@ -60,7 +60,7 @@ For a detailed explanation, refer to this document -
The revamped distributed training architecture can address the above discussed limitations. Below is the illustration of how it does so:
-
+
The major components are: *Python API*, *Distribute Transpiler* and *Remote Executor*.
@@ -152,7 +152,7 @@ for data in train_reader():
`JobDesc` object describe the distributed job resource specification to run on
Cluster environment.
-
+
`RemoteExecutor.run` sends the `ProgramDesc` and
[TrainingJob](https://github.com/PaddlePaddle/cloud/blob/unreleased-tpr/doc/autoscale/README.md#training-job-resource)
@@ -171,7 +171,7 @@ In the future, a more general placement algorithm should be implemented, which m
The local training architecture will be the same as the distributed training architecture, the difference is that everything runs locally, and there is just one PaddlePaddle runtime:
-
+
### Training Data
diff --git a/doc/fluid/design/dist_train/multi_cpu.md b/doc/fluid/design/dist_train/multi_cpu.md
index a8d8ee0422..38222d0830 100644
--- a/doc/fluid/design/dist_train/multi_cpu.md
+++ b/doc/fluid/design/dist_train/multi_cpu.md
@@ -8,11 +8,11 @@ Op graph to a multi-CPU Op graph, and run `ParallelDo` Op to run the graph.
## Transpiler
-
+
After converted:
-
+
## Implement
diff --git a/doc/fluid/design/dist_train/parameter_server.md b/doc/fluid/design/dist_train/parameter_server.md
index 6ce48dfbfc..73c85da5e8 100644
--- a/doc/fluid/design/dist_train/parameter_server.md
+++ b/doc/fluid/design/dist_train/parameter_server.md
@@ -41,11 +41,11 @@ We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*.
Below is an example of converting the user defined graph to the
subgraphs for the trainer and the parameter server:
-
+
After converting:
-
+
1. The parameter variable W and its optimizer program are placed on the parameter server.
1. Operators are added to the program.
@@ -69,8 +69,7 @@ In Fluid, we introduce [SelectedRows](../selected_rows.md) to represent a list o
non-zero gradient data. So when we do parameter optimization both locally and remotely,
we only need to send those non-zero rows to the optimizer operators:
-
-
+
### Benefits
- Model parallelism becomes easier to implement: it is an extension to
diff --git a/doc/fluid/design/dynamic_rnn/rnn.md b/doc/fluid/design/dynamic_rnn/rnn.md
index 6f414e5549..7b61b050f6 100644
--- a/doc/fluid/design/dynamic_rnn/rnn.md
+++ b/doc/fluid/design/dynamic_rnn/rnn.md
@@ -5,7 +5,7 @@ This document describes the RNN (Recurrent Neural Network) operator and how it i
## RNN Algorithm Implementation
-
+
The above diagram shows an RNN unrolled into a full network.
@@ -22,7 +22,7 @@ There are several important concepts here:
There could be local variables defined in each step-net. PaddlePaddle runtime realizes these variables in *step-scopes* which are created for each step.
-
+
Figure 2 illustrates the RNN's data flow
@@ -93,7 +93,7 @@ For example, we could have a 2-level RNN, where the top level corresponds to par
The following figure illustrates feeding in text into the lower level, one sentence at a step, and the feeding in step outputs to the top level. The final top level output is about the whole text.
-
+
```python
@@ -149,5 +149,5 @@ If the `output_all_steps` is set to False, it will only output the final time st
-
+
diff --git a/doc/fluid/design/modules/batch_norm_op.md b/doc/fluid/design/modules/batch_norm_op.md
index d1392619c4..e451ffcc73 100644
--- a/doc/fluid/design/modules/batch_norm_op.md
+++ b/doc/fluid/design/modules/batch_norm_op.md
@@ -2,7 +2,7 @@
## What is batch normalization
-Batch normalization is a frequently-used method in deep network training. It adjusts the mean and variance of a layer's output, and make the data distribution easier for next layer's training.
+Batch normalization is a frequently-used method in deep network training. It adjusts the mean and variance of a layer's output, and make the data distribution easier for next layer's training.
The principle of batch normalization can be summarized into a simple function:
@@ -66,7 +66,7 @@ As most C++ operators do, `batch_norm_op` is defined by inputs, outputs, attribu
The following graph showes the training computational process of `batch_norm_op`:
-
+
cudnn provides APIs to finish the whole series of computation, we can use them in our GPU kernel.
@@ -74,13 +74,13 @@ cudnn provides APIs to finish the whole series of computation, we can use them i
`batch_norm_op` is warpped as a layer in Python:
-```python
-def batch_norm_layer(net,
+```python
+def batch_norm_layer(net,
input,
- output,
- scale,
- bias,
- use_global_est = False,
+ output,
+ scale,
+ bias,
+ use_global_est = False,
epsilon = 1e-6,
momentum = 0.99):
mean_cache = scope.new_var(name = 'estimated_mean', trainable = False)
@@ -119,15 +119,15 @@ for pass_id in range(PASS_NUM):
if pass_id % 100 == 0:
net.infer(test_image) # run inferencing model
# ...
-```
+```
`is_infer` is an attribute. Once an operator is created, its attributes can not be changed. It suggests us that we shall maintain two `batch_norm_op` in the model, one's `is_infer` is `True`(we call it `infer_batch_norm_op`) and the other one's is `False`(we call it `train_batch_norm_op`). They share all parameters and variables, but be placed in two different branches. That is to say, if a network contains a `batch_norm_op`, it will fork into two branches, one go through `train_batch_norm_op` and the other one go through `infer_batch_norm_op`:
-

+
-Just like what is shown in the above graph, the net forks before `batch_norm_op` and will never merge again. All the operators after `batch_norm_op` will duplicate.
+Just like what is shown in the above graph, the net forks before `batch_norm_op` and will never merge again. All the operators after `batch_norm_op` will duplicate.
When the net runs in training mode, the end of the left branch will be set as the running target, so the dependency tracking process will ignore right branch automatically. When the net runs in inferencing mode, the process is reversed.
diff --git a/doc/fluid/design/modules/python_api.md b/doc/fluid/design/modules/python_api.md
index 73f6d7b90c..f83ad3b6a4 100644
--- a/doc/fluid/design/modules/python_api.md
+++ b/doc/fluid/design/modules/python_api.md
@@ -2,12 +2,33 @@
Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program.
-| Python classes | Protobuf messages |
-| --- | --- |
-| Program | ProgramDesc |
-| Block | BlockDesc |
-| Operator | OpDesc |
-| Variable | VarDesc |
+
+
+
+Python classes |
+Protobuf messages |
+
+
+
+
+Program |
+ProgramDesc |
+
+
+Block |
+BlockDesc |
+
+
+Operator |
+OpDesc |
+
+
+Variable |
+VarDesc |
+
+
+
+
Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages.
diff --git a/doc/fluid/design/modules/regularization.md b/doc/fluid/design/modules/regularization.md
index 21280ac898..8cd5ff71d1 100644
--- a/doc/fluid/design/modules/regularization.md
+++ b/doc/fluid/design/modules/regularization.md
@@ -6,23 +6,23 @@ A central problem in machine learning is how to design an algorithm that will pe
### Parameter Norm Penalties
Most common regularization approaches in deep learning are based on limiting the capacity of the models by adding a parameter norm penalty to the objective function `J`. This is given as follows:
-
+
The parameter `alpha` is a hyperparameter that weights the relative contribution of the norm penalty term, `omega`, relative to the standard objective function `J`.
The most commonly used norm penalties are the L2 norm penalty and the L1 norm penalty. These are given as follows:
##### L2 Regularization:
-
+
##### L1 Regularization
-
+
A much more detailed mathematical background of regularization can be found [here](http://www.deeplearningbook.org/contents/regularization.html).
## Regularization Survey
-A detailed survey of regularization in various deep learning frameworks can be found [here](https://github.com/PaddlePaddle/Paddle/wiki/Regularization-Survey).
+A detailed survey of regularization in various deep learning frameworks can be found [here](https://github.com/PaddlePaddle/Paddle/wiki/Regularization-Survey).
## Proposal for Regularization in PaddlePaddle
@@ -32,41 +32,35 @@ In the new design, we propose to create new operations for regularization. For n
- L2_regularization_op
- L1_regularization_op
-These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes other than L1 and L2 norm penalties.
+These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes other than L1 and L2 norm penalties.
-The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API.
+The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API.
### Computation Graph
Below is an example of a really simple feed forward neural network.
-
+
The Python API will modify this computation graph to add regularization operators. The modified computation graph will look as follows:
-
+
### Python API implementation for Regularization
-Using the low level ops, `L2_regularization_op` and `L1_regularization_op`, any user can add regularization to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support regularization. An example of such an API can be seen in [Keras](https://keras.io/regularizers/). As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since regularization is a property of parameters, it makes sense to create these in the layer functions.
+Using the low level ops, `L2_regularization_op` and `L1_regularization_op`, any user can add regularization to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support regularization. An example of such an API can be seen in [Keras](https://keras.io/regularizers/). As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since regularization is a property of parameters, it makes sense to create these in the layer functions.
#### Creation of Regularization ops
There are two possibilities for creating the regularization ops:
-1. We create these ops immediately while building the computation graph.
-2. We add these ops in a lazy manner, just before the backward, similar to the way the optimization ops are added.
+1. We create these ops immediately while building the computation graph.
+2. We add these ops in a lazy manner, just before the backward, similar to the way the optimization ops are added.
-The proposal is to add these ops in a lazy manner just before the backward pass.
+The proposal is to add these ops in a lazy manner just before the backward pass.
#### Storage of Regularization attributes
-Since we want to create the regularization ops in a lazy manner, the regularization attributes (type of regularization and weight of regularization penalty) can be stored as attributes of the [`Parameter`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/framework.py#L421) class. This is because regularization is a property of the parameters and storing regularization properties with Parameters also allows for shared parameters.
+Since we want to create the regularization ops in a lazy manner, the regularization attributes (type of regularization and weight of regularization penalty) can be stored as attributes of the [`Parameter`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/framework.py#L421) class. This is because regularization is a property of the parameters and storing regularization properties with Parameters also allows for shared parameters.
#### High-level API
In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we also need to provide regularization functionality in layer functions. The design of these APIs can be postponed for later right now. A good reference for these APIs can be found in [Keras](https://keras.io/regularizers/) and also by looking at Tensorflow in [`tf.contrib.layers`](https://www.tensorflow.org/api_guides/python/contrib.layers).
-
-
-
-
-
-
diff --git a/doc/fluid/design/motivation/fluid.md b/doc/fluid/design/motivation/fluid.md
index 110b7d78bf..5e147f8263 100644
--- a/doc/fluid/design/motivation/fluid.md
+++ b/doc/fluid/design/motivation/fluid.md
@@ -10,11 +10,37 @@ Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution
Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented.
-| Existed since | model as sequence of layers | model as graph of operators | No model |
-|--|--|--|--|
-| 2013 | Caffe, Theano, Torch, PaddlePaddle | | |
-| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | |
-| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |
+
+
+
+Existed since |
+model as sequence of layers |
+model as graph of operators |
+No model |
+
+
+
+
+2013 |
+Caffe, Theano, Torch, PaddlePaddle |
+ |
+ |
+
+
+2015 |
+ |
+TensorFlow, MxNet, Caffe2, ONNX, n-graph |
+ |
+
+
+2016 |
+ |
+ |
+ PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |
+
+
+
+
From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these.
diff --git a/doc/fluid/design/motivation/refactorization.md b/doc/fluid/design/motivation/refactorization.md
index 7c39fabcc6..f199cc892f 100644
--- a/doc/fluid/design/motivation/refactorization.md
+++ b/doc/fluid/design/motivation/refactorization.md
@@ -36,11 +36,37 @@ At compile time, the Python program generates a protobuf message representation
At runtime, the C++ program realizes the graph and runs it.
-| | Representation (protobuf messages) | Realization (C++ class objects) |
-|---|---|---|
-|Data|[VarDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107)|[Variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24)|
-|Operation|[OpDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35)|[Operator](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64)|
-|Block|BlockDesc|Block|
+
+
+
+ |
+Representation (protobuf messages) |
+Realization (C++ class objects) |
+
+
+
+
+Data |
+
+VarDesc |
+
+Variable |
+
+
+Operation |
+
+OpDesc |
+
+Operator |
+
+
+Block |
+BlockDesc |
+Block |
+
+
+
+
The word *graph* is interchangeable with *block* in this document. A graph consists of computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(`{` and `}`).
diff --git a/doc/fluid/design/network/deep_speech_2.md b/doc/fluid/design/network/deep_speech_2.md
index af0c6ef36f..f32a5b7e8a 100644
--- a/doc/fluid/design/network/deep_speech_2.md
+++ b/doc/fluid/design/network/deep_speech_2.md
@@ -1,4 +1,4 @@
-# DeepSpeech2 on PaddlePaddle: Design Doc
+# DeepSpeech2 on PaddlePaddle: Design Doc
We are planning to build Deep Speech 2 (DS2) \[[1](#references)\], a powerful Automatic Speech Recognition (ASR) engine, on PaddlePaddle. For the first-stage plan, we have the following short-term goals:
@@ -68,11 +68,33 @@ We roughly break down the project into 14 tasks:
Tasks parallelizable within phases:
-Roadmap | Description | Parallelizable Tasks
------------ | :------------------------------------ | :--------------------
-Phase I | Simplified model & components | *Task 1* ~ *Task 8*
-Phase II | Standard model & benchmarking & profiling | *Task 9* ~ *Task 12*
-Phase III | Documentations | *Task13* ~ *Task14*
+
+
+
+Roadmap |
+Description |
+ Parallelizable Tasks |
+
+
+
+
+Phase I |
+Simplified model & components |
+Task 1 ~ Task 8 |
+
+
+Phase II |
+ Standard model & benchmarking & profiling |
+Task 9 ~ Task 12 |
+
+
+Phase III |
+ Documentations |
+ Task13 ~ Task14 |
+
+
+
+
Issue for each task will be created later. Contributions, discussions and comments are all highly appreciated and welcomed!
@@ -94,7 +116,7 @@ The classical DS2 network contains 15 layers (from bottom to top):
- **One** CTC-loss layer
-

+

Figure 1. Archetecture of Deep Speech 2 Network.
@@ -102,37 +124,82 @@ We don't have to persist on this 2-3-7-1-1-1 depth \[[2](#references)\]. Similar
Key ingredients about the layers:
-- **Data Layers**:
+- **Data Layers**:
- Frame sequences data of audio **spectrogram** (with FFT).
- - Token sequences data of **transcription** text (labels).
+ - Token sequences data of **transcription** text (labels).
- These two type of sequences do not have the same lengthes, thus a CTC-loss layer is required.
-- **2D Convolution Layers**:
+- **2D Convolution Layers**:
- Not only temporal convolution, but also **frequency convolution**. Like a 2D image convolution, but with a variable dimension (i.e. temporal dimension).
- With striding for only the first convlution layer.
- No pooling for all convolution layers.
-- **Uni-directional RNNs**
+- **Uni-directional RNNs**
- Uni-directional + row convolution: for low-latency inference.
- Bi-direcitional + without row convolution: if we don't care about the inference latency.
- **Row convolution**:
- For looking only a few steps ahead into the feature, instead of looking into a whole sequence in bi-directional RNNs.
- - Not nessesary if with bi-direcitional RNNs.
+ - Not nessesary if with bi-direcitional RNNs.
- "**Row**" means convolutions are done within each frequency dimension (row), and no convolution kernels shared across.
- **Batch Normalization Layers**:
- Added to all above layers (except for data and loss layer).
- Sequence-wise normalization for RNNs: BatchNorm only performed on input-state projection and not state-state projection, for efficiency consideration.
-
-
-Required Components | PaddlePaddle Support | Need to Develop
-:------------------------------------- | :-------------------------------------- | :-----------------------
-Data Layer I (Spectrogram) | Not supported yet. | TBD (Task 3)
-Data Layer II (Transcription) | `paddle.data_type.integer_value_sequence` | -
-2D Convolution Layer | `paddle.layer.image_conv_layer` | -
-DataType Converter (vec2seq) | `paddle.layer.block_expand` | -
-Bi-/Uni-directional RNNs | `paddle.layer.recurrent_group` | -
-Row Convolution Layer | Not supported yet. | TBD (Task 4)
-CTC-loss Layer | `paddle.layer.warp_ctc` | -
-Batch Normalization Layer | `paddle.layer.batch_norm` | -
-CTC-Beam search | Not supported yet. | TBD (Task 6)
+
+
+
+
+Required Components |
+ PaddlePaddle Support |
+ Need to Develop |
+
+
+
+
+Data Layer I (Spectrogram) |
+Not supported yet. |
+TBD (Task 3) |
+
+
+Data Layer II (Transcription) |
+ paddle.data_type.integer_value_sequence |
+ - |
+
+
+2D Convolution Layer |
+ paddle.layer.image_conv_layer |
+ - |
+
+
+DataType Converter (vec2seq) |
+ paddle.layer.block_expand |
+ - |
+
+
+Bi-/Uni-directional RNNs |
+paddle.layer.recurrent_group |
+ - |
+
+
+Row Convolution Layer |
+Not supported yet. |
+TBD (Task 4) |
+
+
+CTC-loss Layer |
+paddle.layer.warp_ctc |
+ - |
+
+
+Batch Normalization Layer |
+paddle.layer.batch_norm |
+ - |
+
+
+CTC-Beam search |
+Not supported yet. |
+ TBD (Task 6) |
+
+
+
+
### Row Convolution
@@ -141,18 +208,18 @@ TODO by Assignees
### Beam Search with CTC and LM
-

+

Figure 2. Algorithm for CTC Beam Search Decoder.
-- The **Beam Search Decoder** for DS2 CTC-trained network follows the similar approach in \[[3](#references)\] as shown in Figure 2, with two important modifications for the ambiguous parts:
- - 1) in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths;
+- The **Beam Search Decoder** for DS2 CTC-trained network follows the similar approach in \[[3](#references)\] as shown in Figure 2, with two important modifications for the ambiguous parts:
+ - 1) in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths;
- 2) the if condition ```if l^+ not in A_prev then``` after probabilities' computation is deprecated for it is hard to understand and seems unnecessary.
- An **external scorer** would be passed into the decoder to evaluate a candidate prefix during decoding whenever a white space appended in English decoding and any character appended in Mandarin decoding.
- Such external scorer consists of language model, word count or any other custom scorers.
- The **language model** is built from Task 5, with parameters should be carefully tuned to achieve minimum WER/CER (c.f. Task 7)
-- This decoder needs to perform with **high efficiency** for the convenience of parameters tuning and speech recognition in reality.
-
+- This decoder needs to perform with **high efficiency** for the convenience of parameters tuning and speech recognition in reality.
+
## Future Work
diff --git a/doc/fluid/design/network/sequence_decoder.md b/doc/fluid/design/network/sequence_decoder.md
index c4a9bbeeef..f13d30ca9f 100644
--- a/doc/fluid/design/network/sequence_decoder.md
+++ b/doc/fluid/design/network/sequence_decoder.md
@@ -199,7 +199,7 @@ Packing the `selected_generation_scores` will get a `LoDTensor`, and each tail i
## LoD and shape changes during decoding
-
+
According to the image above, the only phase that changes the LoD is beam search.
diff --git a/doc/fluid/design/others/gan_api.md b/doc/fluid/design/others/gan_api.md
index fb41df8615..7167470088 100644
--- a/doc/fluid/design/others/gan_api.md
+++ b/doc/fluid/design/others/gan_api.md
@@ -1,24 +1,24 @@
# Design for GAN
-GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas.
+GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas.
It applies several important concepts in machine learning system design, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.
In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN (Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [https://arxiv.org/abs/1511.06434]) as an example due to its good performance on image generation.
-
+
Figure 1. The overall running logic of GAN. The black solid arrows indicate the forward pass; the green dashed arrows indicate the backward pass of generator training; the red dashed arrows indicate the backward pass of the discriminator training. The BP pass of the green (red) arrow should only update the parameters in the green (red) boxes. The diamonds indicate the data providers. d\_loss and g\_loss marked in red and green are the two targets we would like to run.
The operators, layers and functions required/optional to build a GAN demo is summarized in https://github.com/PaddlePaddle/Paddle/issues/4563.
-
+
Figure 2. Photo borrowed from the original DC-GAN paper.
-## The Conditional-GAN might be a class.
+## The Conditional-GAN might be a class.
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:
- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API:
@@ -29,7 +29,7 @@ This design we adopt the popular open source design in https://github.com/carped
Returns a generated image.
- discriminator(image):
-Given an image, decide if it is from a real source or a fake one.
+Given an image, decide if it is from a real source or a fake one.
Returns a 0/1 binary label.
- build_model(self):
@@ -47,7 +47,7 @@ To be more detailed, we introduce our design of DCGAN as following:
```python
class DCGAN(object):
def __init__(self, y_dim=None):
-
+
# hyper parameters
self.y_dim = y_dim # conditional gan or not
self.batch_size = 100
@@ -82,18 +82,18 @@ class DCGAN(object):
# input z: the random noise
# input y: input data label (optional)
# output G_im: generated fake images
-
+
if not self.y_dim:
z = pd.layer.concat(1, [z, y])
-
+
G_h0 = pd.layer.fc(z, self.G_w0, self.G_b0)
G_h0_bn = pd.layer.batch_norm(G_h0)
G_h0_relu = pd.layer.relu(G_h0_bn)
-
+
G_h1 = pd.layer.deconv(G_h0_relu, self.G_w1, self.G_b1)
G_h1_bn = pd.layer.batch_norm(G_h1)
G_h1_relu = pd.layer.relu(G_h1_bn)
-
+
G_h2 = pd.layer.deconv(G_h1_relu, self.G_W2, self.G_b2))
G_im = pd.layer.tanh(G_im)
return G_im
@@ -111,11 +111,11 @@ class DCGAN(object):
D_h0 = pd.layer.conv2d(image, w=self.D_w0, b=self.D_b0)
D_h0_bn = pd.layer.batchnorm(h0)
D_h0_relu = pd.layer.lrelu(h0_bn)
-
+
D_h1 = pd.layer.conv2d(D_h0_relu, w=self.D_w1, b=self.D_b1)
D_h1_bn = pd.layer.batchnorm(D_h1)
D_h1_relu = pd.layer.lrelu(D_h1_bn)
-
+
D_h2 = pd.layer.fc(D_h1_relu, w=self.D_w2, b=self.D_b2)
return D_h2
```
@@ -123,7 +123,7 @@ class DCGAN(object):
### Class member function: Build the model
- Define data readers as placeholders to hold the data;
- Build generator and discriminators;
-- Define two training losses for discriminator and generator, respectively.
+- Define two training losses for discriminator and generator, respectively.
If we have execution dependency engine to back-trace all tensors, the module building our GAN model will be like this:
```python
class DCGAN(object):
@@ -133,7 +133,7 @@ class DCGAN(object):
self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self.z = pd.data(tf.float32, [None, self.z_size])
-
+
# step 1: generate images by generator, classify real/fake images with discriminator
if self.y_dim: # if conditional GAN, includes label
self.G = self.generator(self.z, self.y)
@@ -147,12 +147,12 @@ class DCGAN(object):
# generate fake images
self.sampled = self.sampler(self.z)
self.D_f = self.discriminator(self.images)
-
+
# step 2: define the two losses
self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
self.d_loss = self.d_loss_real + self.d_loss_fake
-
+
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
```
@@ -176,7 +176,7 @@ class DCGAN(object):
self.G = self.generator(self.z)
self.D_g = self.discriminator(self.G, self.y)
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_g, np.ones(self.batch_szie))
-
+
with pd.default_block().d_block():
if self.y_dim: # if conditional GAN, includes label
self.D_t = self.discriminator(self.images, self.y)
@@ -217,7 +217,7 @@ if __name__ == "__main__":
# load mnist data
data_X, data_y = self.load_mnist()
-
+
# Two subgraphs required!!!
with pd.block().d_block():
d_optim = pd.train.Adam(lr = .001, beta= .1)
@@ -228,7 +228,7 @@ if __name__ == "__main__":
# executor
sess = pd.executor()
-
+
# training
for epoch in xrange(10000):
for batch_id in range(N / batch_size):
@@ -239,7 +239,7 @@ if __name__ == "__main__":
batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])
if batch_id % 2 == 0:
- sess.run(d_step,
+ sess.run(d_step,
feed_dict = {dcgan.images: batch_im,
dcgan.y: batch_label,
dcgan.z: batch_z})
diff --git a/doc/fluid/dev/index_cn.rst b/doc/fluid/dev/index_cn.rst
index e70bf5dff3..f627437f35 100644
--- a/doc/fluid/dev/index_cn.rst
+++ b/doc/fluid/dev/index_cn.rst
@@ -4,9 +4,9 @@
.. toctree::
:maxdepth: 1
- new_op_en.md
- new_op_kernel_en.md
- use_eigen_en.md
+ new_op_cn.md
+ new_op_kernel.md
+ use_eigen_cn.md
name_convention.md
support_new_device.md
releasing_process.md
diff --git a/doc/fluid/dev/index_en.rst b/doc/fluid/dev/index_en.rst
index f0e9afcfcc..0b65fed67a 100644
--- a/doc/fluid/dev/index_en.rst
+++ b/doc/fluid/dev/index_en.rst
@@ -5,7 +5,7 @@ Development
:maxdepth: 1
new_op_en.md
- new_op_kernel_en.md
+ new_op_kernel.md
use_eigen_en.md
name_convention.md
support_new_device.md
diff --git a/doc/fluid/dev/new_op_cn.md b/doc/fluid/dev/new_op_cn.md
index 9299658567..0c3f88d9c3 100644
--- a/doc/fluid/dev/new_op_cn.md
+++ b/doc/fluid/dev/new_op_cn.md
@@ -26,13 +26,32 @@
依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorWithKernel`,后者继承自`OperatorBase`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
-
- 内容 | 定义位置
--------------- | :----------------------
-OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake
-Op定义 | `.cc`文件
-Kernel实现 | CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。
-注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中
+
+
+
+内容 |
+定义位置 |
+
+
+
+
+OpProtoMake定义 |
+`.cc`文件,Backward Op不需要定义OpProtoMake |
+
+
+Op定义 |
+ `.cc`文件 |
+
+
+Kernel实现 |
+ CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。 |
+
+
+注册Op |
+ Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中 |
+
+
+
实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
diff --git a/doc/fluid/dev/new_op_en.md b/doc/fluid/dev/new_op_en.md
index da8b1bdd10..a566a09131 100644
--- a/doc/fluid/dev/new_op_en.md
+++ b/doc/fluid/dev/new_op_en.md
@@ -33,6 +33,33 @@ Op definition | `.cc` files
Kernel implementation | The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files.
Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.
+
+
+
+Information |
+ Where is it defined |
+
+
+
+
+OpProtoMake definition |
+ `.cc`files, Backward Op does not need an OpProtoMake interface. |
+
+
+Op definition |
+ `.cc` files |
+
+
+Kernel implementation |
+ The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files. |
+
+
+Registering the Op |
+ Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation. |
+
+
+
+
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.**
@@ -279,7 +306,7 @@ A forward operator unit test inherits `unittest.TestCase` and defines metaclass
def test_check_output(self):
self.check_output()
-
+
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
diff --git a/doc/fluid/dev/new_op_kernel_en.md b/doc/fluid/dev/new_op_kernel.md
similarity index 100%
rename from doc/fluid/dev/new_op_kernel_en.md
rename to doc/fluid/dev/new_op_kernel.md
diff --git a/doc/fluid/dev/releasing_process.md b/doc/fluid/dev/releasing_process.md
index b978726109..c5943ccd81 100644
--- a/doc/fluid/dev/releasing_process.md
+++ b/doc/fluid/dev/releasing_process.md
@@ -37,7 +37,7 @@ PaddlePaddle每次发新的版本,遵循以下流程:
可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m`和`cp27mu`的版本。然后按照上述的方法
使用`twine`工具上传即可。
-
+
* 注:CI环境使用 https://github.com/PaddlePaddle/buildtools 这里的DockerImage作为编译环境以支持更多的Linux
发型版,如果需要手动编译,也可以使用这些镜像。这些镜像也可以从 https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/ 下载得到。
@@ -66,7 +66,7 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
* 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支
* 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。
* 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。
- * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
+ * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
* BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master`、`develop`与可能有的`release/版本号`分支,同时提起`Pull Request`。
@@ -78,13 +78,116 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
-| | 新手入门章节 | 识别数字 | 图像分类 | 词向量 | 情感分析 | 语意角色标注 | 机器翻译 | 个性化推荐 |
-| --- | --- | --- | --- | --- | --- | --- | --- | --- |
-| API.V2 + Docker + GPU | | | | | | | | |
-| API.V2 + Docker + CPU | | | | | | | | |
-| `paddle_trainer` + Docker + GPU | | | | | | | | |
-| `paddle_trainer` + Docker + CPU | | | | | | | | |
-| API.V2 + Ubuntu + GPU | | | | | | | | |
-| API.V2 + Ubuntu + CPU | | | | | | | | |
-| `paddle_trainer` + Ubuntu + GPU | | | | | | | | |
-| `paddle_trainer` + Ubuntu + CPU | | | | | | | | |
+
+
+
+ |
+新手入门章节 |
+ 识别数字 |
+ 图像分类 |
+词向量 |
+ 情感分析 |
+语意角色标注 |
+ 机器翻译 |
+个性化推荐 |
+
+
+
+
+
+API.V2 + Docker + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ API.V2 + Docker + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+`paddle_trainer` + Docker + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+`paddle_trainer` + Docker + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ API.V2 + Ubuntu + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+API.V2 + Ubuntu + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ `paddle_trainer` + Ubuntu + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ `paddle_trainer` + Ubuntu + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
diff --git a/doc/fluid/getstarted/concepts/save_model/model_format.md b/doc/fluid/getstarted/concepts/save_model/model_format.md
index e29129fddf..1f12ba0497 100644
--- a/doc/fluid/getstarted/concepts/save_model/model_format.md
+++ b/doc/fluid/getstarted/concepts/save_model/model_format.md
@@ -4,30 +4,70 @@
A model is an output of the training process. One complete model consists of two parts, the **topology** and the **parameters**. In order to support industrial deployment, the model format must be self-complete and must not expose any training source code.
-As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters.
+As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters.
## Implementation
-The topology is saved as a plain text in a detailed self-contain protobuf file.
+The topology is saved as a plain text in a detailed self-contain protobuf file.
The parameters are saved as a binary file. As we all know, the protobuf message has a limit of [64M size](https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.io.coded_stream#CodedInputStream.SetTotalBytesLimit.details). We have done a [benchmark experiment](https://github.com/PaddlePaddle/Paddle/pull/4610), which shows that protobuf is not fit for the task.
-As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is,
+As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is,
The table below shows a tensor's byte view in detail. Note that all the signed values are written in the little-endian format.
-|field name | type | description |
-| --- | --- | --- |
-| version | uint32_t | Version of saved file. Always 0 now. |
-| tensor desc length | uint32_t | TensorDesc(Protobuf message) length in bytes. |
-| tensor desc | void* | TensorDesc protobuf binary message |
-| tensor data | void* | Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` |
-| lod_level | uint64_t | Level of LoD |
-| length of lod[0] | uint64_t | [Optional] length of lod[0] in bytes. |
-| data of lod[0] | uint64_t* | [Optional] lod[0].data() |
-| ... | ... | ... |
-
+
+
+
+field name |
+type |
+description |
+
+
+
+
+ version |
+ uint32_t |
+ Version of saved file. Always 0 now. |
+
+
+ tensor desc length |
+ uint32_t |
+ TensorDesc(Protobuf message) length in bytes. |
+
+
+tensor desc |
+ void* |
+ TensorDesc protobuf binary message |
+
+
+ tensor data |
+ void* |
+ Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` |
+
+
+ lod_level |
+ uint64_t |
+ Level of LoD |
+
+
+ length of lod[0] |
+ uint64_t |
+ [Optional] length of lod[0] in bytes. |
+
+
+ data of lod[0] |
+ uint64_t* |
+ [Optional] lod[0].data() |
+
+
+... |
+ ... |
+ ... |
+
+
+
## Summary
diff --git a/doc/fluid/howto/cluster/fluid_cluster_train_cn.md b/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
index 1b6f767869..b99b90056b 100644
--- a/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
+++ b/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
@@ -65,10 +65,10 @@ exit(1)
**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是Parameter Server和Trainer。**
-### 分布式训练
+### 分布式训练
Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。
```python
-optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
+optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
```
将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下:
```python
@@ -99,15 +99,51 @@ for pass_id in range(100):
### 分布式训练脚本运行说明
分布式任务的运行需要将表格中说明的多个参数进行赋值:
-| 参数名 | 值类型 | 说明 | 示例 |
-|:-------------|:------|:---------------------------------------|:-------------|
-| trainer_id | int | 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 | 0/1/2/3 |
-| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 |
-| trainers | int | 训练节点的总个数,>0的数字 | 4 |
-| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 |
-| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER |
-
-**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
+
+
+
+参数名 |
+ 值类型 |
+说明 |
+ 示例 |
+
+
+
+
+trainer_id |
+ int |
+ 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 |
+ 0/1/2/3 |
+
+
+pservers |
+ str |
+ parameter server 列表 |
+ 127.0.0.1:6710,127.0.0.1:6711 |
+
+
+trainers |
+int |
+ 训练节点的总个数,>0的数字 |
+ 4 |
+
+
+ server_endpoint |
+ str |
+ 当前所起的服务节点的IP:PORT |
+ 127.0.0.1:8789 |
+
+
+ training_role |
+str |
+ 节点角色, TRAINER/PSERVER |
+ PSERVER |
+
+
+
+
+
+**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
```python
t = fluid.DistributeTranspiler()
diff --git a/doc/fluid/howto/optimization/cpu_profiling_cn.md b/doc/fluid/howto/optimization/cpu_profiling_cn.md
index 17f895573a..8266dec3c6 100644
--- a/doc/fluid/howto/optimization/cpu_profiling_cn.md
+++ b/doc/fluid/howto/optimization/cpu_profiling_cn.md
@@ -42,14 +42,40 @@ cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py
每一列的含义是:
-| 列名 | 含义 |
-| --- | --- |
-| ncalls | 函数的调用次数 |
-| tottime | 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
-| percall | tottime的每次调用平均时间 |
-| cumtime | 函数总时间。包含这个函数调用其他函数的时间 |
-| percall | cumtime的每次调用平均时间 |
-| filename:lineno(function) | 文件名, 行号,函数名 |
+
+
+
+列名 |
+含义 |
+
+
+
+
+ ncalls |
+ 函数的调用次数 |
+
+
+tottime |
+ 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
+
+
+ percall |
+ tottime的每次调用平均时间 |
+
+
+ cumtime |
+ 函数总时间。包含这个函数调用其他函数的时间 |
+
+
+ percall |
+ cumtime的每次调用平均时间 |
+
+
+ filename:lineno(function) |
+ 文件名, 行号,函数名 |
+
+
+
### 寻找性能瓶颈
diff --git a/doc/fluid/howto/optimization/cpu_profiling_en.md b/doc/fluid/howto/optimization/cpu_profiling_en.md
index abe4493c17..e95556dd60 100644
--- a/doc/fluid/howto/optimization/cpu_profiling_en.md
+++ b/doc/fluid/howto/optimization/cpu_profiling_en.md
@@ -57,14 +57,40 @@ port, we will see the output like the following:
where each line corresponds to Python function, and the meaning of
each column is as follows:
-| column | meaning |
-| --- | --- |
-| ncalls | the number of calls into a function |
-| tottime | the total execution time of the function, not including the execution time of other functions called by the function |
-| percall | tottime divided by ncalls |
-| cumtime | the total execution time of the function, including the execution time of other functions being called |
-| percall | cumtime divided by ncalls |
-| filename:lineno(function) | where the function is defined |
+
+
+
+column |
+meaning |
+
+
+
+
+ ncalls |
+ the number of calls into a function |
+
+
+tottime |
+ the total execution time of the function, not including the execution time of other functions called by the function |
+
+
+ percall |
+ tottime divided by ncalls |
+
+
+ cumtime |
+ the total execution time of the function, including the execution time of other functions being called |
+
+
+ percall |
+ cumtime divided by ncalls |
+
+
+ filename:lineno(function) |
+ where the function is define |
+
+
+
### Identify Performance Bottlenecks
diff --git a/doc/fluid/howto/performance/profiler.md b/doc/fluid/howto/performance/profiler.md
index b20b5efdc1..ee96e7c74c 100644
--- a/doc/fluid/howto/performance/profiler.md
+++ b/doc/fluid/howto/performance/profiler.md
@@ -23,7 +23,7 @@ But how to record the time for the mixed C++ and CUDA program? There many C++ A
The overall flow is shown as the following figure.
-
+
### Event
@@ -36,10 +36,10 @@ enum EventKind {
kPopRange};
```
- kMark: only a marker without time range.
-- kPushRange: mark the starting event for time range.
+- kPushRange: mark the starting event for time range.
- kPopRange: mark the ending event for time range.
-For the CPU code, the events only need to record the current time. For the CUDA code, the [event management functions of CUDA](http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT) are used. For many pieces of code, an event lists are used to record each piece.
+For the CPU code, the events only need to record the current time. For the CUDA code, the [event management functions of CUDA](http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT) are used. For many pieces of code, an event lists are used to record each piece.
```c++
class Event {
@@ -66,11 +66,11 @@ struct EventList {
};
```
-As mentioned above, there is no need to record the timeline when disabling the profiler. So there is a global state to enable or disable the profiler.
+As mentioned above, there is no need to record the timeline when disabling the profiler. So there is a global state to enable or disable the profiler.
```c++
enum ProfilerState {
- kDisabled,
+ kDisabled,
kCPU,
kCUDA
};
diff --git a/doc/fluid/images/2_level_rnn.dot b/doc/fluid/images/2_level_rnn.dot
new file mode 100644
index 0000000000..5d77865061
--- /dev/null
+++ b/doc/fluid/images/2_level_rnn.dot
@@ -0,0 +1,56 @@
+digraph G {
+
+ rnn [label="1st level RNN" shape=box]
+
+ subgraph cluster0 {
+ label = "time step 0"
+
+ sent0 [label="sentence"]
+ sent1 [label="sentence"]
+
+ rnn1 [label="2nd level RNN" shape=box]
+
+ sent0 -> rnn1
+ sent1 -> rnn1
+ }
+
+ subgraph cluster1 {
+ label = "time step 1"
+
+ sent2 [label="sentence"]
+ sent3 [label="sentence"]
+
+ rnn2 [label="2nd level RNN" shape=box]
+
+ sent2 -> rnn2
+ sent3 -> rnn2
+ }
+
+ subgraph cluster2 {
+ label = "time step 2"
+
+ sent4 [label="sentence"]
+ sent5 [label="sentence"]
+
+ rnn3 [label="2nd level RNN" shape=box]
+
+ sent4 -> rnn3
+ sent5 -> rnn3
+ }
+
+
+ para0 [label="paragraph info 0"]
+ para1 [label="paragraph info 1"]
+ para2 [label="paragraph info 2"]
+
+ rnn1 -> para0
+ rnn2 -> para1
+ rnn3 -> para2
+
+ para0 -> rnn
+ para1 -> rnn
+ para2 -> rnn
+
+ chapter [label="chapter info"]
+ rnn -> chapter
+}
diff --git a/doc/fluid/images/2_level_rnn.png b/doc/fluid/images/2_level_rnn.png
new file mode 100644
index 0000000000..0537a75beb
Binary files /dev/null and b/doc/fluid/images/2_level_rnn.png differ
diff --git a/doc/fluid/images/LOD-and-shape-changes-during-decoding.jpg b/doc/fluid/images/LOD-and-shape-changes-during-decoding.jpg
new file mode 100644
index 0000000000..8b0d90f7b9
Binary files /dev/null and b/doc/fluid/images/LOD-and-shape-changes-during-decoding.jpg differ
diff --git a/doc/fluid/images/asgd.gif b/doc/fluid/images/asgd.gif
new file mode 100644
index 0000000000..4a0da7bf6d
Binary files /dev/null and b/doc/fluid/images/asgd.gif differ
diff --git a/doc/fluid/images/batch_norm_fork.dot b/doc/fluid/images/batch_norm_fork.dot
new file mode 100644
index 0000000000..4bc47713cb
--- /dev/null
+++ b/doc/fluid/images/batch_norm_fork.dot
@@ -0,0 +1,25 @@
+digraph ImageBatchNormForkGragh {
+ subgraph cluster_before {
+ Prev [label="...", shape=plaintext];
+ Rnn [label="rnn_op", shape=box];
+ BatchNorm [label="batch_norm_op", shape=box];
+ Fc [label="fc_op", shape=box];
+ After [label="...", shape=plaintext];
+ Prev -> Rnn -> BatchNorm -> Fc -> After;
+ label="original";
+ }
+
+ subgraph cluster_after {
+ Prev2 [label="...", shape=plaintext];
+ Rnn2 [label="rnn_op", shape=box];
+ BatchNorm2_1 [label="train_batch_norm_op", shape=box];
+ BatchNorm2_2 [label="infer_batch_norm_op", shape=box];
+ Fc2_1 [label="fc_op", shape=box];
+ Fc2_2 [label="fc_op", shape=box];
+ After2_1 [label="...", shape=plaintext];
+ After2_2 [label="...", shape=plaintext];
+ Prev2 -> Rnn2 -> BatchNorm2_1 -> Fc2_1 -> After2_1;
+ Rnn2 -> BatchNorm2_2 ->Fc2_2 ->After2_2
+ label="forked";
+ }
+}
diff --git a/doc/fluid/images/batch_norm_fork.png b/doc/fluid/images/batch_norm_fork.png
new file mode 100644
index 0000000000..aded62bce5
Binary files /dev/null and b/doc/fluid/images/batch_norm_fork.png differ
diff --git a/doc/fluid/images/batch_norm_op_kernel.png b/doc/fluid/images/batch_norm_op_kernel.png
new file mode 100644
index 0000000000..a99ce81ff3
Binary files /dev/null and b/doc/fluid/images/batch_norm_op_kernel.png differ
diff --git a/doc/fluid/images/beam_search.png b/doc/fluid/images/beam_search.png
new file mode 100644
index 0000000000..7f7e35f342
Binary files /dev/null and b/doc/fluid/images/beam_search.png differ
diff --git a/doc/fluid/images/ci_build_whl.png b/doc/fluid/images/ci_build_whl.png
new file mode 100644
index 0000000000..232762b82a
Binary files /dev/null and b/doc/fluid/images/ci_build_whl.png differ
diff --git a/doc/fluid/images/compiler.graffle b/doc/fluid/images/compiler.graffle
new file mode 100644
index 0000000000..8cc678fea3
Binary files /dev/null and b/doc/fluid/images/compiler.graffle differ
diff --git a/doc/fluid/images/compiler.png b/doc/fluid/images/compiler.png
new file mode 100644
index 0000000000..65d34f841a
Binary files /dev/null and b/doc/fluid/images/compiler.png differ
diff --git a/doc/fluid/images/control_flow_graph.png b/doc/fluid/images/control_flow_graph.png
new file mode 100644
index 0000000000..3579998e58
Binary files /dev/null and b/doc/fluid/images/control_flow_graph.png differ
diff --git a/doc/fluid/images/dataflow_equations.png b/doc/fluid/images/dataflow_equations.png
new file mode 100644
index 0000000000..c10f7f69f4
Binary files /dev/null and b/doc/fluid/images/dataflow_equations.png differ
diff --git a/doc/fluid/images/dcgan.png b/doc/fluid/images/dcgan.png
new file mode 100644
index 0000000000..15e8e290a1
Binary files /dev/null and b/doc/fluid/images/dcgan.png differ
diff --git a/doc/fluid/images/deep_learning.png b/doc/fluid/images/deep_learning.png
new file mode 100644
index 0000000000..026becc4d9
Binary files /dev/null and b/doc/fluid/images/deep_learning.png differ
diff --git a/doc/fluid/images/dist-graph.graffle b/doc/fluid/images/dist-graph.graffle
new file mode 100644
index 0000000000..941399c6ce
Binary files /dev/null and b/doc/fluid/images/dist-graph.graffle differ
diff --git a/doc/fluid/images/dist-graph.png b/doc/fluid/images/dist-graph.png
new file mode 100644
index 0000000000..3546b09f1c
Binary files /dev/null and b/doc/fluid/images/dist-graph.png differ
diff --git a/doc/fluid/images/distributed_architecture.graffle b/doc/fluid/images/distributed_architecture.graffle
new file mode 100644
index 0000000000..d1b6014134
Binary files /dev/null and b/doc/fluid/images/distributed_architecture.graffle differ
diff --git a/doc/fluid/images/distributed_architecture.png b/doc/fluid/images/distributed_architecture.png
new file mode 100644
index 0000000000..29c7b0c078
Binary files /dev/null and b/doc/fluid/images/distributed_architecture.png differ
diff --git a/doc/fluid/images/ds2_network.png b/doc/fluid/images/ds2_network.png
new file mode 100644
index 0000000000..1a5b2184d4
Binary files /dev/null and b/doc/fluid/images/ds2_network.png differ
diff --git a/doc/fluid/images/feed_forward.png b/doc/fluid/images/feed_forward.png
new file mode 100644
index 0000000000..d312371a04
Binary files /dev/null and b/doc/fluid/images/feed_forward.png differ
diff --git a/doc/fluid/images/feed_forward_regularized.png b/doc/fluid/images/feed_forward_regularized.png
new file mode 100644
index 0000000000..677e99bfd9
Binary files /dev/null and b/doc/fluid/images/feed_forward_regularized.png differ
diff --git a/doc/fluid/images/fluid-compiler.graffle b/doc/fluid/images/fluid-compiler.graffle
new file mode 100644
index 0000000000..c933df2cb8
Binary files /dev/null and b/doc/fluid/images/fluid-compiler.graffle differ
diff --git a/doc/fluid/images/fluid-compiler.png b/doc/fluid/images/fluid-compiler.png
new file mode 100644
index 0000000000..1b0ffed203
Binary files /dev/null and b/doc/fluid/images/fluid-compiler.png differ
diff --git a/doc/fluid/images/graph_construction_example.bash b/doc/fluid/images/graph_construction_example.bash
new file mode 100755
index 0000000000..35e6997abd
--- /dev/null
+++ b/doc/fluid/images/graph_construction_example.bash
@@ -0,0 +1,11 @@
+cat ./graph_construction_example.dot | \
+ sed 's/color=red/color=red, style=invis/g' | \
+ sed 's/color=green/color=green, style=invis/g' | \
+ dot -Tpng > graph_construction_example_forward_only.png
+
+cat ./graph_construction_example.dot | \
+ sed 's/color=green/color=green, style=invis/g' | \
+ dot -Tpng > graph_construction_example_forward_backward.png
+
+cat ./graph_construction_example.dot | \
+ dot -Tpng > graph_construction_example_all.png
diff --git a/doc/fluid/images/graph_construction_example.dot b/doc/fluid/images/graph_construction_example.dot
new file mode 100644
index 0000000000..e115f9844b
--- /dev/null
+++ b/doc/fluid/images/graph_construction_example.dot
@@ -0,0 +1,68 @@
+digraph ImageClassificationGraph {
+ ///////// The forward part /////////
+ FeedX [label="Feed", color=blue, shape=box];
+ FeedY [label="Feed", color=blue, shape=box];
+ InitW [label="Init", color=blue, shape=diamond];
+ Initb [label="Init", color=blue, shape=diamond];
+ FC [label="FC", color=blue, shape=box];
+ MSE [label="MSE", color=blue, shape=box];
+
+ x [label="x", color=blue, shape=oval];
+ l [label="l", color=blue, shape=oval];
+ y [label="y", color=blue, shape=oval];
+ W [label="W", color=blue, shape=doublecircle];
+ b [label="b", color=blue, shape=doublecircle];
+ cost [label="cost", color=blue, shape=oval];
+
+ FeedX -> x -> FC -> y -> MSE -> cost [color=blue];
+ FeedY -> l [color=blue];
+ InitW -> W [color=blue];
+ Initb -> b [color=blue];
+ W -> FC [color=blue];
+ b -> FC [color=blue];
+ l -> MSE [color=blue];
+
+ ////////// The backward part /////////
+ MSE_Grad [label="MSE_grad", color=red, shape=box];
+ FC_Grad [label="FC_grad", color=red, shape=box];
+
+ d_cost [label="d cost", color=red, shape=oval];
+ d_y [label="d y", color=red, shape=oval];
+ d_b [label="d b", color=red, shape=oval];
+ d_W [label="d W", color=red, shape=oval];
+
+ cost -> MSE_Grad [color=red];
+ d_cost -> MSE_Grad [color=red];
+ l -> MSE_Grad [color=red];
+ y -> MSE_Grad -> d_y [color=red];
+
+ x -> FC_Grad [color=red];
+ y -> FC_Grad [color=red];
+ d_y -> FC_Grad [color=red];
+ W -> FC_Grad -> d_W [color=red];
+ b -> FC_Grad -> d_b [color=red];
+
+ ////////// The optimizaiton part //////////
+
+ OPT_W [label="SGD", color=green, shape=box];
+ OPT_b [label="SGD", color=green, shape=box];
+
+ W -> OPT_W [color=green];
+ b -> OPT_b [color=green];
+ d_W -> OPT_W -> W [color=green];
+ d_b -> OPT_b -> b [color=green];
+
+ ////////// Groupings //////////
+
+ subgraph clusterMSE {
+ style=invis;
+ MSE;
+ MSE_Grad;
+ }
+
+ subgraph clusterFC {
+ style=invis;
+ FC;
+ FC_Grad;
+ }
+}
diff --git a/doc/fluid/images/graph_construction_example_all.png b/doc/fluid/images/graph_construction_example_all.png
new file mode 100644
index 0000000000..261611a572
Binary files /dev/null and b/doc/fluid/images/graph_construction_example_all.png differ
diff --git a/doc/fluid/images/graph_construction_example_forward_backward.png b/doc/fluid/images/graph_construction_example_forward_backward.png
new file mode 100644
index 0000000000..4c69687f4a
Binary files /dev/null and b/doc/fluid/images/graph_construction_example_forward_backward.png differ
diff --git a/doc/fluid/images/graph_construction_example_forward_only.png b/doc/fluid/images/graph_construction_example_forward_only.png
new file mode 100644
index 0000000000..e668c16e0c
Binary files /dev/null and b/doc/fluid/images/graph_construction_example_forward_only.png differ
diff --git a/doc/fluid/images/l1_regularization.png b/doc/fluid/images/l1_regularization.png
new file mode 100644
index 0000000000..e1b9c7a44f
Binary files /dev/null and b/doc/fluid/images/l1_regularization.png differ
diff --git a/doc/fluid/images/l2_regularization.png b/doc/fluid/images/l2_regularization.png
new file mode 100644
index 0000000000..d5c2fcbc2c
Binary files /dev/null and b/doc/fluid/images/l2_regularization.png differ
diff --git a/doc/fluid/images/local-graph.graffle b/doc/fluid/images/local-graph.graffle
new file mode 100644
index 0000000000..19e509bd9a
Binary files /dev/null and b/doc/fluid/images/local-graph.graffle differ
diff --git a/doc/fluid/images/local-graph.png b/doc/fluid/images/local-graph.png
new file mode 100644
index 0000000000..ada51200f7
Binary files /dev/null and b/doc/fluid/images/local-graph.png differ
diff --git a/doc/fluid/images/local_architecture.graffle b/doc/fluid/images/local_architecture.graffle
new file mode 100644
index 0000000000..49fcc663eb
Binary files /dev/null and b/doc/fluid/images/local_architecture.graffle differ
diff --git a/doc/fluid/images/local_architecture.png b/doc/fluid/images/local_architecture.png
new file mode 100644
index 0000000000..14adc9fd72
Binary files /dev/null and b/doc/fluid/images/local_architecture.png differ
diff --git a/doc/fluid/images/lookup_table.png b/doc/fluid/images/lookup_table.png
new file mode 100644
index 0000000000..72dfe3547f
Binary files /dev/null and b/doc/fluid/images/lookup_table.png differ
diff --git a/doc/fluid/images/lookup_table_training.png b/doc/fluid/images/lookup_table_training.png
new file mode 100644
index 0000000000..cc7cc4aeb3
Binary files /dev/null and b/doc/fluid/images/lookup_table_training.png differ
diff --git a/doc/fluid/images/loss_equation.png b/doc/fluid/images/loss_equation.png
new file mode 100644
index 0000000000..14212ec8d3
Binary files /dev/null and b/doc/fluid/images/loss_equation.png differ
diff --git a/doc/fluid/images/multi-threads.graffle b/doc/fluid/images/multi-threads.graffle
new file mode 100644
index 0000000000..e71173715f
Binary files /dev/null and b/doc/fluid/images/multi-threads.graffle differ
diff --git a/doc/fluid/images/multi-threads@3x.png b/doc/fluid/images/multi-threads@3x.png
new file mode 100644
index 0000000000..e40a869987
Binary files /dev/null and b/doc/fluid/images/multi-threads@3x.png differ
diff --git a/doc/fluid/images/multigpu_allreduce.graffle b/doc/fluid/images/multigpu_allreduce.graffle
new file mode 100644
index 0000000000..cb5bc420ce
Binary files /dev/null and b/doc/fluid/images/multigpu_allreduce.graffle differ
diff --git a/doc/fluid/images/multigpu_allreduce.png b/doc/fluid/images/multigpu_allreduce.png
new file mode 100644
index 0000000000..87a1b3e8f6
Binary files /dev/null and b/doc/fluid/images/multigpu_allreduce.png differ
diff --git a/doc/fluid/images/multigpu_before_convert.graffle b/doc/fluid/images/multigpu_before_convert.graffle
new file mode 100644
index 0000000000..6c35ab1b21
Binary files /dev/null and b/doc/fluid/images/multigpu_before_convert.graffle differ
diff --git a/doc/fluid/images/multigpu_before_convert.png b/doc/fluid/images/multigpu_before_convert.png
new file mode 100644
index 0000000000..9c8f771116
Binary files /dev/null and b/doc/fluid/images/multigpu_before_convert.png differ
diff --git a/doc/fluid/images/multiple_reader.png b/doc/fluid/images/multiple_reader.png
new file mode 100644
index 0000000000..b22126b31d
Binary files /dev/null and b/doc/fluid/images/multiple_reader.png differ
diff --git a/doc/fluid/images/paddle-compile.graffle b/doc/fluid/images/paddle-compile.graffle
new file mode 100644
index 0000000000..a6348cc3db
Binary files /dev/null and b/doc/fluid/images/paddle-compile.graffle differ
diff --git a/doc/fluid/images/paddle-compile.png b/doc/fluid/images/paddle-compile.png
new file mode 100644
index 0000000000..e0f13d551a
Binary files /dev/null and b/doc/fluid/images/paddle-compile.png differ
diff --git a/doc/fluid/images/pprof_1.png b/doc/fluid/images/pprof_1.png
new file mode 100644
index 0000000000..8e9edbf377
Binary files /dev/null and b/doc/fluid/images/pprof_1.png differ
diff --git a/doc/fluid/images/pprof_2.png b/doc/fluid/images/pprof_2.png
new file mode 100644
index 0000000000..172ba20399
Binary files /dev/null and b/doc/fluid/images/pprof_2.png differ
diff --git a/doc/fluid/images/profiler.png b/doc/fluid/images/profiler.png
new file mode 100644
index 0000000000..d57b71ca88
Binary files /dev/null and b/doc/fluid/images/profiler.png differ
diff --git a/doc/fluid/images/readers.png b/doc/fluid/images/readers.png
new file mode 100644
index 0000000000..fd59168ce1
Binary files /dev/null and b/doc/fluid/images/readers.png differ
diff --git a/doc/fluid/images/remote_executor.graffle b/doc/fluid/images/remote_executor.graffle
new file mode 100644
index 0000000000..41b2067311
Binary files /dev/null and b/doc/fluid/images/remote_executor.graffle differ
diff --git a/doc/fluid/images/remote_executor.png b/doc/fluid/images/remote_executor.png
new file mode 100644
index 0000000000..744e2fb2e0
Binary files /dev/null and b/doc/fluid/images/remote_executor.png differ
diff --git a/doc/fluid/images/rnn.dot b/doc/fluid/images/rnn.dot
new file mode 100644
index 0000000000..c1141cd9c9
--- /dev/null
+++ b/doc/fluid/images/rnn.dot
@@ -0,0 +1,87 @@
+digraph G {
+ label = "simple RNN implementation"
+
+ ranksep=2;
+
+ //graph [nodesep=1, ranksep=1];
+
+ node[nodesep=1]
+
+ subgraph cluster0 {
+ label = "global scope"
+ rankdir = TB
+ W
+ boot_memory
+ input
+ output
+ }
+
+ subgraph cluster1 {
+ label = "step-scope 0"
+ rankdir = TB
+ memory0[label="memory"]
+ prememory0[label="pre-memory"]
+ step_input0[label="step input"]
+ step_output0[label="step output"]
+ }
+
+ subgraph cluster2 {
+ label = "step-scope 1"
+ rankdir = TB
+ memory1[label="memory"]
+ prememory1[label="pre-memory"]
+ step_input1[label="step input"]
+ step_output1[label="step output"]
+ }
+
+ subgraph cluster3 {
+ label = "step-scope 2"
+ rankdir = TB
+ memory2[label="memory"]
+ prememory2[label="pre-memory"]
+ step_input2[label="step input"]
+ step_output2[label="step output"]
+ }
+
+ stepnet [shape=box]
+ stepnet0 [shape=box, style=dashed]
+ stepnet1 [shape=box, style=dashed]
+ stepnet2 [shape=box, style=dashed]
+
+
+ edge[color=blue]
+ boot_memory -> prememory0 [label="init" color="blue"]
+ memory0 -> prememory1 [label="copy/reference" color="blue"]
+ memory1 -> prememory2 [label="copy/reference" color="blue"]
+
+ edge[color=black]
+ W -> stepnet0[constraint=false, style=dashed]
+ W -> stepnet1[constraint=false, style=dashed]
+ W -> stepnet2[constraint=false, style=dashed]
+
+ memory0 -> stepnet0[style=dashed]
+ prememory0 -> stepnet0 -> step_output0[style=dashed]
+
+ memory1 -> stepnet1[style=dashed]
+ prememory1 -> stepnet1 -> step_output1[style=dashed]
+
+ memory2 -> stepnet2[style=dashed]
+ prememory2 -> stepnet2 -> step_output2[style=dashed]
+
+ input -> step_input0
+ input -> step_input1
+ input -> step_input2
+
+ step_input0 -> stepnet0 [style=dashed]
+ step_input1 -> stepnet1[style=dashed]
+ step_input2 -> stepnet2[style=dashed]
+
+ step_output0 -> output
+ step_output1 -> output
+ step_output2 -> output
+
+ stepnet0 -> stepnet[style=dashed]
+ stepnet1 -> stepnet[style=dashed]
+ stepnet2 -> stepnet[style=dashed]
+
+}
diff --git a/doc/fluid/images/rnn.jpg b/doc/fluid/images/rnn.jpg
new file mode 100644
index 0000000000..9867e404cf
Binary files /dev/null and b/doc/fluid/images/rnn.jpg differ
diff --git a/doc/fluid/images/rnn.png b/doc/fluid/images/rnn.png
new file mode 100644
index 0000000000..e139e373fe
Binary files /dev/null and b/doc/fluid/images/rnn.png differ
diff --git a/doc/fluid/images/rnn_2level_data.dot b/doc/fluid/images/rnn_2level_data.dot
new file mode 100644
index 0000000000..1d85ae2617
--- /dev/null
+++ b/doc/fluid/images/rnn_2level_data.dot
@@ -0,0 +1,75 @@
+digraph G {
+ chapter [label="chapter"]
+
+ subgraph cluster0 {
+ label = "paragraph 0"
+
+ top_rnn0[label="top rnn step 0" shape=box]
+
+ p0 [label="paragraph 0"]
+ p1 [label="paragraph 1"]
+ }
+
+ subgraph cluster1{
+ label = "paragraph 1"
+
+ top_rnn1[label="top rnn step 1" shape=box]
+
+ p2 [label="paragraph 0"]
+ p3 [label="paragraph 1"]
+ }
+
+ subgraph cluster_p0 {
+ label = "sentence 0"
+
+ low_rnn0 [label="low rnn step 0" shape=box]
+ s00 [label="sentence 0"]
+ s01 [label="sentence 1"]
+
+ low_rnn0 -> s00
+ low_rnn0 -> s01
+ }
+
+ subgraph cluster_p1 {
+ label = "sentence 1"
+ low_rnn1 [label="low rnn step 1" shape=box]
+ s10 [label="sentence 0"]
+ s11 [label="sentence 1"]
+ low_rnn1 -> s10
+ low_rnn1 -> s11
+ }
+
+ subgraph cluster_p2 {
+ label = "sentence 1"
+ low_rnn2 [label="low rnn step 0" shape=box]
+ s20 [label="sentence 0"]
+ s21 [label="sentence 1"]
+ low_rnn2 -> s20
+ low_rnn2 -> s21
+ }
+
+ subgraph cluster_p3 {
+ label = "sentence 1"
+ low_rnn3 [label="low rnn step 1" shape=box]
+ s30 [label="sentence 0"]
+ s31 [label="sentence 1"]
+ low_rnn3 -> s30
+ low_rnn3 -> s31
+ }
+
+
+ chapter -> top_rnn0
+ chapter -> top_rnn1
+
+ top_rnn0 -> p0
+ top_rnn0 -> p1
+ top_rnn1 -> p2
+ top_rnn1 -> p3
+
+
+ p0 -> low_rnn0
+ p1 -> low_rnn1
+ p2 -> low_rnn2
+ p3 -> low_rnn3
+
+}
diff --git a/doc/fluid/images/rnn_2level_data.png b/doc/fluid/images/rnn_2level_data.png
new file mode 100644
index 0000000000..4be81b2430
Binary files /dev/null and b/doc/fluid/images/rnn_2level_data.png differ
diff --git a/doc/fluid/images/single-thread@3x.png b/doc/fluid/images/single-thread@3x.png
new file mode 100644
index 0000000000..4083aebfdd
Binary files /dev/null and b/doc/fluid/images/single-thread@3x.png differ
diff --git a/doc/fluid/images/sparse_update.graffle b/doc/fluid/images/sparse_update.graffle
new file mode 100644
index 0000000000..08d689a58f
Binary files /dev/null and b/doc/fluid/images/sparse_update.graffle differ
diff --git a/doc/fluid/images/sparse_update.png b/doc/fluid/images/sparse_update.png
new file mode 100644
index 0000000000..8c872e6ac4
Binary files /dev/null and b/doc/fluid/images/sparse_update.png differ
diff --git a/doc/fluid/images/test.dot b/doc/fluid/images/test.dot
new file mode 100644
index 0000000000..62c69b8fc8
--- /dev/null
+++ b/doc/fluid/images/test.dot
@@ -0,0 +1,35 @@
+
+digraph Test {
+ z -> generator -> G_img;
+ G_img -> discriminator -> D_f -> d_loss_f;
+ label0 -> d_loss_f -> d_loss;
+
+ img -> discriminator -> D_t -> d_loss_t;
+ label1 -> d_loss_t -> d_loss;
+
+ d_loss -> d_loss_t[color=red, style=dashed];
+ d_loss -> d_loss_f[color=red, style=dashed];
+ d_loss_t -> D_t[color=red, style=dashed];
+ d_loss_f -> D_f[color=red, style=dashed];
+ D_t -> discriminator[color=red, style=dashed];
+ D_f -> discriminator[color=red, style=dashed];
+
+ D_f -> g_loss;
+ label2 -> g_loss;
+
+ g_loss -> D_f[color=green, style=dashed];
+ D_f -> discriminator[color=green, style=dashed];
+ discriminator -> G_img[color=green, style=dashed];
+ G_img -> generator[color=green, style=dashed];
+
+ discriminator [color=red, shape=box];
+ generator [color=green, shape=box];
+ z [shape=diamond];
+ img [shape=diamond];
+ label0 [shape=diamond];
+ label1 [shape=diamond];
+ label2 [shape=diamond];
+
+ d_loss [color=red];
+ g_loss [color=green];
+}
diff --git a/doc/fluid/images/test.dot.png b/doc/fluid/images/test.dot.png
new file mode 100644
index 0000000000..4e121a40b9
Binary files /dev/null and b/doc/fluid/images/test.dot.png differ
diff --git a/doc/fluid/images/theta_star.gif b/doc/fluid/images/theta_star.gif
new file mode 100644
index 0000000000..dd24d33e12
Binary files /dev/null and b/doc/fluid/images/theta_star.gif differ
diff --git a/doc/fluid/images/timeline.jpeg b/doc/fluid/images/timeline.jpeg
new file mode 100644
index 0000000000..38ec3f80c9
Binary files /dev/null and b/doc/fluid/images/timeline.jpeg differ
diff --git a/doc/fluid/images/tracing.jpeg b/doc/fluid/images/tracing.jpeg
new file mode 100644
index 0000000000..3a49fc4f8a
Binary files /dev/null and b/doc/fluid/images/tracing.jpeg differ
diff --git a/doc/templates/conf.py.cn.in b/doc/templates/conf.py.cn.in
index 260b6c9fd1..76b82fd97f 100644
--- a/doc/templates/conf.py.cn.in
+++ b/doc/templates/conf.py.cn.in
@@ -13,7 +13,7 @@
# serve to show the default.
import sys
import os, subprocess
-sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
+sys.path.insert(0, os.path.abspath('@PADDLE_BINARY_DIR@/python'))
import shlex
from recommonmark import parser, transform
import paddle
diff --git a/doc/templates/conf.py.en.in b/doc/templates/conf.py.en.in
index e5757b86b4..5aa5c1381f 100644
--- a/doc/templates/conf.py.en.in
+++ b/doc/templates/conf.py.en.in
@@ -13,7 +13,7 @@
# serve to show the default.
import sys
import os, subprocess
-sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
+sys.path.insert(0, os.path.abspath('@PADDLE_BINARY_DIR@/python'))
import shlex
from recommonmark import parser, transform
import paddle
diff --git a/doc/v2/CMakeLists.txt b/doc/v2/CMakeLists.txt
index 82de7a3a3e..be957d37b1 100644
--- a/doc/v2/CMakeLists.txt
+++ b/doc/v2/CMakeLists.txt
@@ -27,7 +27,7 @@ sphinx_add_target(paddle_v2_docs
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
-add_dependencies(paddle_v2_docs gen_proto_py)
+add_dependencies(paddle_v2_docs gen_proto_py paddle_python)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
@@ -50,6 +50,6 @@ sphinx_add_target(paddle_v2_docs_cn
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
-add_dependencies(paddle_v2_docs_cn gen_proto_py)
+add_dependencies(paddle_v2_docs_cn gen_proto_py paddle_python)
add_subdirectory(api)
diff --git a/doc/v2/api/CMakeLists.txt b/doc/v2/api/CMakeLists.txt
index da1eafc02e..2670a21a22 100644
--- a/doc/v2/api/CMakeLists.txt
+++ b/doc/v2/api/CMakeLists.txt
@@ -19,4 +19,4 @@ sphinx_add_target(paddle_v2_apis
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
-add_dependencies(paddle_v2_apis gen_proto_py framework_py_proto copy_paddle_pybind)
+add_dependencies(paddle_v2_apis gen_proto_py framework_py_proto copy_paddle_pybind paddle_python)
diff --git a/doc/v2/howto/rnn/recurrent_group_en.md b/doc/v2/howto/rnn/recurrent_group_en.md
index d264b0a9f8..de6b60f29e 100644
--- a/doc/v2/howto/rnn/recurrent_group_en.md
+++ b/doc/v2/howto/rnn/recurrent_group_en.md
@@ -1,3 +1,96 @@
# Recurrent Group Tutorial
-TBD
+## Overview
+
+Sequential data is common in natural language processing.
+
+A sentence is a sequence of words and many sentences form a paragraph further. Therefore, a paragraph can be viewed as a nested sequence with two level, where each element of the sequence is another sequence. That is to say, sequential data could be recursive. An example of two-level recursive sequential data is that an article is composed of a sequence of sentences, and each sentence a sequence of words.
+
+PaddlePaddle and PaddlePaddle v2 support two-level recursive sequential data. The two-level sequence is a very flexible data, which helps us to better describe more complex language data such as discribing paragraphs and several rounds of dialogues. Based on two-level sequence input, we can design and build a flexible, hierarchical RNN model that encodes input data from the word and sentence level. For the support of arbitrary levels, please refer to PaddlePaddle Fluid.
+
+In PaddlePaddle, `recurrent_group` is an arbitrarily complex RNN unit. The user only needs to define the calculation that the RNN will complete in one time step. PaddlePaddle is responsible for the propagation of information and error in time series.
+
+Furthermore, `recurrent_group` can also be extended to handle two-level sequence. By defining two nested `recurrent_group` operations at the clause level and the word level respectively, a hierarchical and complex RNN is finally achieved.
+
+Currently, in the PaddlePaddle, there are `recurrent_group` and some Layers that can process bidirectional sequences. For details, refer to the document: Layers for supporting double-layer sequences as input.
+
+## Related Concepts
+
+### Basic Principle
+`recurrent_group` is an arbitrarily complex RNN unit supported by PaddlePaddle. The user only needs to focus on the calculations that the RNN is designed to complete within a single time step. The PaddlePaddle is responsible for completing the propagation of information and gradients over time.
+
+In PaddlePaddle, a simple call to `recurrent_group` is as follows:
+
+``` python
+recurrent_group(step, input, reverse)
+```
+- step: A callable function that defines the calculations completed by the RNN unit within a time step
+- input: The input must be a single-layer sequence or a double-layer sequence
+- reverse: Whether to process the input sequence in reverse order
+
+The core of using `recurrent_group` is to design the logic of the step function. The step function can be freely combined with various layers supported by PaddlePaddle to complete arbitrary arithmetic logic. The input of `recurrent_group` (input) becomes the input of the step function. Since the step function only focuses on the calculation within one time step of RNN, here `recurrent_group` completes the splitting of the original input data for us.
+
+### Input
+The input sequence processed by `recurrent_group` is mainly divided into the following three types:
+
+- **Input Data**: When putting a two-level sequence into `recurrent_group`, it will be disassembled into a single-level sequence. When putting a single-level sequence into `recurrent_group`, it will be disassembled into a non-sequence and then passed to the step function. This process is completely transparent to the user. There are two possible types: 1) User input via data_layer; 2) Output from other layers.
+
+- **Read-only Memory Input**: `StaticInput` defines a read-only Memory. The input specified by `StaticInput` will not be disassembled by `recurrent_group`, and each time step of the `recurrent_group` loop will always be able to reference all inputs. It may be a non-sequence or a single-layer sequence.
+
+- **Input of Sequence Generation Task**: `GeneratedInput` is only used to specify input data in a sequence generation task.
+
+### Input Example
+
+Sequence generation tasks mostly follow the encoder-decoer architecture. The encoder and decoder can be arbitrary neural network units capable of processing sequences and RNN is the most popular choice.
+
+Given the encoder output and the current word, the decoder predicts the next most likely word each time. In this structure, the decoder accepts two inputs:
+
+- Target sequence to be generated: a input of the decoder and the basis of the decoder loop. `recurrent_group` will disassemble this input type.
+
+- Encoder output, an non-sequencce or single-sequence: a unbounded memory. Each time step in the decoder loop will reference the entire result and should not be disassembled. This type of input must be specified via `StaticInput`. For more discussion on Unbounded Memory, please refer to the paper [Neural Turning Machine](https://arxiv.org/abs/1410.5401).
+
+In a sequence generation task, the decoder RNN always refers to the word vector of the word predicted at the previous moment as the current time input. `GeneratedInput` will automate this process.
+
+### Output
+The `step` function must return the output of one or more Layers. The output of this Layer will be the final output of the entire `recurrent_group`. In the output process, `recurrent_group` will concatenate the output of each time step, which is also transparent to the user.
+
+### Memory
+Memory can only be defined and used in `recurrent_group`. Memory cannot exist independently and must point to a layer defined by PaddlePaddle. Memory is referenced to get a momentary output from this layer, so memory can be interpreted as a delay operation.
+
+The user can explicitly specify the output of a layer to initialize the memory. When not specified, memory is initialized to 0 by default.
+
+## Sequence-level RNN Introduction
+
+`recurrent_group` helps us to split the input sequence, merge the output, and loop through the sequence of computational logic.
+
+Using this feature, the two nested `recurrent_group` can handle the nested two-level sequences, implementing sequence-level RNN structures at both the word and sentence levels.
+
+- Word-level RNN: each state corresponds to a word.
+- Sequence-level RNN: a sequence-layer RNN consists of multiple word-layer RNNs. Each word-layer RNN (ie, each state of a sequence-layer RNN) has a subsequence.
+
+For convenience of description, the following takes the NLP task as an example. A paragraph containing a subsequence is defined as a two-level sequence, and a sentence containing a word is defined as a single-layer sequence. Then, the zero-level sequence is a word.
+
+## Usage of Sequence-level RNN
+
+### Usage of Training Process
+Using `recurrent_group` requires the following conventions:
+
+- **Single-input Single-output**: Both input and output are single layer sequences.
+ - If there are multiple inputs, the number of words in different input sequences must be exactly equal.
+ - A single-layer sequence is output, and the number of words in the output sequence is the same as the input sequence.
+ - memory: define memory to point to a layer in the step function, get a moment output from this layer by referencing memory to form a recurrent connection. The is_seq parameter of memory must be false. If memory is not defined, the operations within each time step are independent.
+ - boot_layer: the initial state of memory, set 0 by default. is_seq in memory must be false.
+
+- **Double-input Double-output**: Both input and output are two-level sequence.
+ - If there are multiple input sequences, the number of subsequence contained in different inputs must be strictly equal, but the number of words in the subsequence may not be equal.
+ - output a two-level sequence. The number of subsequence and the number of words are the same as the specified input sequence and the first input is default.
+ - memory: defining memory in the step function, pointing to a layer, by referring to the memory to get the output of this layer at a time, forming a recurrent connection. The memory defined in the outer `recurrent_group` step function can record the state of the previous subsequence, either as a single-level sequence (only as read-only memory) or as a word. If memory is not defined, the operations between subsequence are independent.
+ - boot_layer: the initial state of memory. It is either a single-level sequence (only as read-only memory) or a vector. The default is not set, that is, the initial state is 0.
+
+- **Double-input Single-output**: not support for now, and output the error with "In hierachical RNN, all out links should be from sequences now".
+
+### Usage of Generation Process
+Using `beam_search` need follow those conventions:
+
+- Word-level RNN: generate the next word from a word.
+- Sequence-level RNN: the single-layer RNN generated subsequence is concatenated into a new double-layer sequence. Semantically, there is no case where a subsequence generates the next subseq directly.
diff --git a/paddle/api/CMakeLists.txt b/paddle/api/CMakeLists.txt
index cf84568ecd..06e1f5d5f0 100644
--- a/paddle/api/CMakeLists.txt
+++ b/paddle/api/CMakeLists.txt
@@ -89,16 +89,17 @@ SWIG_LINK_LIBRARIES(swig_paddle
${START_END}
)
-add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so
- COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_SOURCE_DIR}/paddle/py_paddle
- COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_SOURCE_DIR}/paddle/py_paddle
- COMMAND ${CMAKE_COMMAND} -E touch .timestamp
+add_custom_command(OUTPUT ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so
+ COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/py_paddle
+ COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_BINARY_DIR}/python/py_paddle
+ COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_BINARY_DIR}/python/py_paddle
+ COMMAND ${CMAKE_COMMAND} -E touch ${PADDLE_BINARY_DIR}/.timestamp
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
DEPENDS _swig_paddle
)
# TODO(yuyang18) : make wheel name calculated by cmake
-add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so)
+add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so)
if(WITH_TESTING)
IF(NOT PY_PIP_FOUND)
diff --git a/paddle/api/test/CMakeLists.txt b/paddle/api/test/CMakeLists.txt
index 761aeb5b17..13cb79129c 100644
--- a/paddle/api/test/CMakeLists.txt
+++ b/paddle/api/test/CMakeLists.txt
@@ -1,3 +1,8 @@
+add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/testTrain.py
+ COMMAND cp -r ${CMAKE_CURRENT_SOURCE_DIR}/*.py ${CMAKE_CURRENT_BINARY_DIR}
+)
+add_custom_target(copy_api_test ALL DEPENDS testTrain.py)
+
py_test(testTrain SRCS testTrain.py)
py_test(testMatrix SRCS testMatrix.py)
py_test(testVector SRCS testVector.py)
diff --git a/paddle/cuda/include/hl_cnn.h b/paddle/cuda/include/hl_cnn.h
index 63ec515647..b790fa39fe 100644
--- a/paddle/cuda/include/hl_cnn.h
+++ b/paddle/cuda/include/hl_cnn.h
@@ -370,4 +370,48 @@ extern void hl_maxout_backward(real* inGrad,
size_t featLen,
size_t groups);
+/**
+ * @brief Upsample forward.
+ * @param[in] inputData input data.
+ * @param[out] maskData the mask data from MaxPoolWithMaskLayer.
+ * @param[out] batchSize the batch size of the input.
+ * @param[in] imgSizeH image height.
+ * @param[in] imgSizeW image width.
+ * @param[in] channels the input channels.
+ * @param[in] outputH the output height.
+ * @param[in] outputW the output widht.
+ * @param[out] outputData output data.
+ */
+extern void hl_upsample_forward(real* inputData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* outputData);
+
+/**
+ * @brief Upsample backward.
+ * @param[in] outputGradData the output grad data.
+ * @param[out] maskData the mask data from MaxPoolWithMaskLayer.
+ * @param[out] batchSize the batch size of the input.
+ * @param[in] imgSizeH image height.
+ * @param[in] imgSizeW image width.
+ * @param[in] channels the input channels.
+ * @param[in] outputH the output height.
+ * @param[in] outputW the output widht.
+ * @param[out] inputGradData the input grad data.
+ */
+extern void hl_upsample_backward(real* outputGradData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* inputGradData);
+
#endif // HL_CNN_H_
diff --git a/paddle/cuda/include/stub/hl_cnn_stub.h b/paddle/cuda/include/stub/hl_cnn_stub.h
index c39bd3228d..997eed62e0 100644
--- a/paddle/cuda/include/stub/hl_cnn_stub.h
+++ b/paddle/cuda/include/stub/hl_cnn_stub.h
@@ -224,4 +224,24 @@ inline void hl_maxout_backward(real* inGrad,
size_t featLen,
size_t group) {}
+inline void hl_upsample_forward(real* inputData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* outputData) {}
+
+inline void hl_upsample_backward(real* outputGradData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* inputGradData) {}
+
#endif // HL_CNN_STUB_H_
diff --git a/paddle/cuda/src/hl_cuda_cnn.cu b/paddle/cuda/src/hl_cuda_cnn.cu
index a4459243e8..bac743a293 100644
--- a/paddle/cuda/src/hl_cuda_cnn.cu
+++ b/paddle/cuda/src/hl_cuda_cnn.cu
@@ -1028,3 +1028,79 @@ void hl_maxout_backward(real* inGrad,
num_kernels, inGrad, outGrad, idData, size, featLen, groups);
CHECK_SYNC("hl_maxout_backward failed");
}
+
+__global__ void upsampleForwardCompute(real* input_data,
+ real* mask_data,
+ size_t nthreads,
+ size_t in_h,
+ size_t in_w,
+ size_t out_h,
+ size_t out_w,
+ real* output_data) {
+ int index = blockIdx.x * blockDim.x + threadIdx.x;
+ if (index < nthreads) {
+ int offset = index / (in_w * in_h) * out_h * out_w;
+ int upsample_idx = static_cast(mask_data[index]);
+ output_data[offset + upsample_idx] = input_data[index];
+ }
+}
+
+__global__ void upsampleBackwardCompute(real* out_grad,
+ real* mask_data,
+ size_t nthreads,
+ size_t in_h,
+ size_t in_w,
+ size_t out_h,
+ size_t out_w,
+ real* input_grad) {
+ int index = blockIdx.x * blockDim.x + threadIdx.x;
+ if (index < nthreads) {
+ int offset = index / (in_w * in_h) * out_h * out_w;
+ int upsample_idx = static_cast(mask_data[index]);
+ input_grad[index] = out_grad[offset + upsample_idx];
+ }
+}
+
+void hl_upsample_forward(real* inputData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* outputData) {
+ int num_kernels = batchSize * imgSizeH * imgSizeW * channels;
+ int blocks = (num_kernels + 1024 - 1) / 1024;
+ upsampleForwardCompute<<>>(inputData,
+ maskData,
+ num_kernels,
+ imgSizeH,
+ imgSizeW,
+ outputH,
+ outputW,
+ outputData);
+ CHECK_SYNC("hl_upsample_forward failed");
+}
+
+void hl_upsample_backward(real* outputGradData,
+ real* maskData,
+ size_t batchSize,
+ size_t imgSizeH,
+ size_t imgSizeW,
+ size_t channels,
+ size_t outputH,
+ size_t outputW,
+ real* inputGradData) {
+ int num_kernels = batchSize * imgSizeH * imgSizeW * channels;
+ int blocks = (num_kernels + 1024 - 1) / 1024;
+ upsampleBackwardCompute<<>>(outputGradData,
+ maskData,
+ num_kernels,
+ imgSizeH,
+ imgSizeW,
+ outputH,
+ outputW,
+ inputGradData);
+ CHECK_SYNC("hl_upsample_backward failed");
+}
diff --git a/paddle/fluid/framework/.clang-format b/paddle/fluid/.clang-format
similarity index 100%
rename from paddle/fluid/framework/.clang-format
rename to paddle/fluid/.clang-format
diff --git a/paddle/fluid/framework/CMakeLists.txt b/paddle/fluid/framework/CMakeLists.txt
index c425c71160..a473ed7400 100644
--- a/paddle/fluid/framework/CMakeLists.txt
+++ b/paddle/fluid/framework/CMakeLists.txt
@@ -74,8 +74,8 @@ py_proto_compile(framework_py_proto SRCS framework.proto)
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD
- COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/fluid/proto
- COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/fluid/proto/
+ COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto
+ COMMAND cp *.py ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/
COMMENT "Copy generated python proto into directory paddle/fluid/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
diff --git a/paddle/fluid/framework/block_desc.h b/paddle/fluid/framework/block_desc.h
index 468423e0e8..873969b2a8 100644
--- a/paddle/fluid/framework/block_desc.h
+++ b/paddle/fluid/framework/block_desc.h
@@ -17,6 +17,7 @@ limitations under the License. */
#include
#include
#include
+#include
#include
#include
@@ -96,6 +97,8 @@ class BlockDesc {
*/
void RemoveOp(size_t s, size_t e);
+ void RemoveVar(const std::string &name) { vars_.erase(name); }
+
std::vector AllOps() const;
size_t OpSize() const { return ops_.size(); }
diff --git a/paddle/fluid/framework/channel.h b/paddle/fluid/framework/channel.h
index 019bea600f..722bf8e8ec 100644
--- a/paddle/fluid/framework/channel.h
+++ b/paddle/fluid/framework/channel.h
@@ -14,8 +14,8 @@ limitations under the License. */
#pragma once
-#include // for size_t
-#include
+#include // for size_t
+#include // NOLINT
#include
#include "paddle/fluid/platform/enforce.h"
@@ -216,7 +216,8 @@ class ChannelHolder {
template
struct PlaceholderImpl : public Placeholder {
- PlaceholderImpl(size_t buffer_size) : type_(std::type_index(typeid(T))) {
+ explicit PlaceholderImpl(size_t buffer_size)
+ : type_(std::type_index(typeid(T))) {
channel_.reset(MakeChannel(buffer_size));
}
diff --git a/paddle/fluid/framework/channel_impl.h b/paddle/fluid/framework/channel_impl.h
index e056779ea0..26d454534e 100644
--- a/paddle/fluid/framework/channel_impl.h
+++ b/paddle/fluid/framework/channel_impl.h
@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once
#include // for size_t
#include
-#include
+#include // NOLINT
#include
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/platform/enforce.h"
@@ -38,7 +38,7 @@ class ChannelImpl : public paddle::framework::Channel {
virtual void Unlock();
virtual bool IsClosed();
virtual void Close();
- ChannelImpl(size_t);
+ explicit ChannelImpl(size_t);
virtual ~ChannelImpl();
virtual void AddToSendQ(const void *referrer, T *data,
@@ -60,7 +60,7 @@ class ChannelImpl : public paddle::framework::Channel {
const void *referrer; // TODO(thuan): figure out better way to do this
std::function callback;
- QueueMessage(T *item)
+ explicit QueueMessage(T *item)
: data(item), cond(std::make_shared()) {}
QueueMessage(T *item, std::shared_ptr cond)
@@ -88,15 +88,15 @@ class ChannelImpl : public paddle::framework::Channel {
}
std::shared_ptr get_first_message(
- std::deque> &queue, ChannelAction action) {
- while (!queue.empty()) {
+ std::deque> *queue, ChannelAction action) {
+ while (!queue->empty()) {
// Check whether this message was added by Select
// If this was added by Select then execute the callback
// to check if you can execute this message. The callback
// can return false if some other case was executed in Select.
// In that case just discard this QueueMessage and process next.
- std::shared_ptr m = queue.front();
- queue.pop_front();
+ std::shared_ptr m = queue->front();
+ queue->pop_front();
if (m->callback == nullptr || m->callback(action)) return m;
}
return nullptr;
@@ -147,7 +147,7 @@ void ChannelImpl::Send(T *item) {
// to send to the receiver, bypassing the channel buffer if any
if (!recvq.empty()) {
std::shared_ptr m =
- get_first_message(recvq, ChannelAction::SEND);
+ get_first_message(&recvq, ChannelAction::SEND);
if (m != nullptr) {
*(m->data) = std::move(*item);
@@ -198,7 +198,7 @@ bool ChannelImpl::Receive(T *item) {
// buffer and move front of send queue to the buffer
if (!sendq.empty()) {
std::shared_ptr m =
- get_first_message(sendq, ChannelAction::RECEIVE);
+ get_first_message(&sendq, ChannelAction::RECEIVE);
if (buf_.size() > 0) {
// Case 1 : Channel is Buffered
// Do Data transfer from front of buffer
@@ -219,8 +219,9 @@ bool ChannelImpl::Receive(T *item) {
if (m != nullptr) {
*item = std::move(*(m->data));
m->Notify();
- } else
+ } else {
return recv_return(Receive(item));
+ }
}
return recv_return(true);
}
diff --git a/paddle/fluid/framework/channel_test.cc b/paddle/fluid/framework/channel_test.cc
index 1184bfdae1..542d791f6b 100644
--- a/paddle/fluid/framework/channel_test.cc
+++ b/paddle/fluid/framework/channel_test.cc
@@ -14,8 +14,8 @@ limitations under the License. */
#include "paddle/fluid/framework/channel.h"
-#include
-#include
+#include // NOLINT
+#include // NOLINT
#include "gtest/gtest.h"
using paddle::framework::Channel;
@@ -166,9 +166,9 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) {
std::thread t([&]() {
// Try to write more than buffer size.
for (size_t i = 0; i < 2 * buffer_size; ++i) {
- if (i < buffer_size)
+ if (i < buffer_size) {
ch->Send(&i); // should block after 10 iterations
- else {
+ } else {
bool is_exception = false;
try {
ch->Send(&i);
@@ -212,12 +212,12 @@ TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel3) {
}
void ChannelCloseUnblocksReceiversTest(Channel *ch) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -230,7 +230,7 @@ void ChannelCloseUnblocksReceiversTest(Channel *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all the threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
@@ -241,21 +241,21 @@ void ChannelCloseUnblocksReceiversTest(Channel *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
void ChannelCloseUnblocksSendersTest(Channel *ch, bool isBuffered) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
- bool send_success[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
+ bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
@@ -277,13 +277,13 @@ void ChannelCloseUnblocksSendersTest(Channel *ch, bool isBuffered) {
if (isBuffered) {
// If ch is Buffered, atleast 4 threads must be blocked.
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (!thread_ended[i]) ct++;
}
EXPECT_GE(ct, 4);
} else {
// If ch is UnBuffered, all the threads should be blocked.
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
@@ -294,21 +294,21 @@ void ChannelCloseUnblocksSendersTest(Channel *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
if (isBuffered) {
// Verify that only 1 send was successful
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that closing a buffered channel also unblocks
@@ -409,13 +409,13 @@ TEST(Channel, UnbufferedMoreReceiveLessSendTest) {
// This tests that destroying a channel unblocks
// any senders waiting for channel to have write space
void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
- bool send_success[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
+ bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
@@ -438,14 +438,14 @@ void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
if (isBuffered) {
// If channel is buffered, verify that atleast 4 threads are blocked
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (thread_ended[i] == false) ct++;
}
// Atleast 4 threads must be blocked
EXPECT_GE(ct, 4);
} else {
// Verify that all the threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
@@ -454,13 +454,13 @@ void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
// Count number of successful sends
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
@@ -473,18 +473,18 @@ void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
}
// Join all threads
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that destroying a channel also unblocks
// any receivers waiting on the channel
void ChannelDestroyUnblockReceivers(Channel *ch) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -498,18 +498,18 @@ void ChannelDestroyUnblockReceivers(Channel *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait
// Verify that all threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// delete the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(Channel, BufferedChannelDestroyUnblocksReceiversTest) {
@@ -679,12 +679,12 @@ TEST(ChannelHolder, TypeMismatchReceiveTest) {
}
void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -697,7 +697,7 @@ void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all the threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
@@ -708,21 +708,21 @@ void ChannelHolderCloseUnblocksReceiversTest(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
- bool send_success[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
+ bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
@@ -744,13 +744,13 @@ void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
if (isBuffered) {
// If ch is Buffered, atleast 4 threads must be blocked.
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (!thread_ended[i]) ct++;
}
EXPECT_GE(ct, 4);
} else {
// If ch is UnBuffered, all the threads should be blocked.
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
@@ -761,21 +761,21 @@ void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
if (isBuffered) {
// Verify that only 1 send was successful
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
// Only 1 send must be successful
EXPECT_EQ(ct, 1);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that closing a channelholder unblocks
@@ -813,13 +813,13 @@ TEST(Channel, ChannelHolderCloseUnblocksSendersTest) {
// This tests that destroying a channelholder unblocks
// any senders waiting for channel
void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
- bool send_success[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
+ bool send_success[kNumThreads];
// Launches threads that try to write and are blocked because of no readers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
send_success[i] = false;
t[i] = std::thread(
@@ -841,14 +841,14 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
if (isBuffered) {
// If channel is buffered, verify that atleast 4 threads are blocked
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (thread_ended[i] == false) ct++;
}
// Atleast 4 threads must be blocked
EXPECT_GE(ct, 4);
} else {
// Verify that all the threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
}
@@ -857,13 +857,13 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
// Count number of successfuld sends
int ct = 0;
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
if (send_success[i]) ct++;
}
@@ -876,18 +876,18 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
}
// Join all threads
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
// This tests that destroying a channelholder also unblocks
// any receivers waiting on the channel
void ChannelHolderDestroyUnblockReceivers(ChannelHolder *ch) {
- size_t num_threads = 5;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const size_t kNumThreads = 5;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to read and are blocked because of no writers
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -901,18 +901,18 @@ void ChannelHolderDestroyUnblockReceivers(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads are blocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], false);
}
// delete the channel
delete ch;
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait
// Verify that all threads got unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(ChannelHolder, ChannelHolderDestroyUnblocksReceiversTest) {
@@ -945,12 +945,12 @@ TEST(ChannelHolder, ChannelHolderDestroyUnblocksSendersTest) {
// This tests that closing a channelholder many times.
void ChannelHolderManyTimesClose(ChannelHolder *ch) {
- const int num_threads = 15;
- std::thread t[num_threads];
- bool thread_ended[num_threads];
+ const int kNumThreads = 15;
+ std::thread t[kNumThreads];
+ bool thread_ended[kNumThreads];
// Launches threads that try to send data to channel.
- for (size_t i = 0; i < num_threads / 3; i++) {
+ for (size_t i = 0; i < kNumThreads / 3; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *ended) {
@@ -962,7 +962,7 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
}
// Launches threads that try to receive data to channel.
- for (size_t i = num_threads / 3; i < 2 * num_threads / 3; i++) {
+ for (size_t i = kNumThreads / 3; i < 2 * kNumThreads / 3; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -976,7 +976,7 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
}
// Launches threads that try to close the channel.
- for (size_t i = 2 * num_threads / 3; i < num_threads; i++) {
+ for (size_t i = 2 * kNumThreads / 3; i < kNumThreads; i++) {
thread_ended[i] = false;
t[i] = std::thread(
[&](bool *p) {
@@ -991,13 +991,13 @@ void ChannelHolderManyTimesClose(ChannelHolder *ch) {
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait
// Verify that all threads are unblocked
- for (size_t i = 0; i < num_threads; i++) {
+ for (size_t i = 0; i < kNumThreads; i++) {
EXPECT_EQ(thread_ended[i], true);
}
EXPECT_TRUE(ch->IsClosed());
// delete the channel
delete ch;
- for (size_t i = 0; i < num_threads; i++) t[i].join();
+ for (size_t i = 0; i < kNumThreads; i++) t[i].join();
}
TEST(ChannelHolder, ChannelHolderManyTimesCloseTest) {
diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt
index bf1a705ef5..89b5c6847f 100644
--- a/paddle/fluid/framework/details/CMakeLists.txt
+++ b/paddle/fluid/framework/details/CMakeLists.txt
@@ -16,6 +16,6 @@ else()
endif()
cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle ${multi_devices_graph_builder_deps})
-cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph)
+cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto)
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context)
diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc
index a1b913a863..128a5344fb 100644
--- a/paddle/fluid/framework/details/multi_devices_graph_builder.cc
+++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc
@@ -21,6 +21,9 @@
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
+#include
+#include
+
namespace paddle {
namespace framework {
namespace details {
@@ -55,6 +58,7 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
const ProgramDesc &program) const {
auto graph = new SSAGraph();
SSAGraph &result = *graph;
+ std::unordered_set og_has_been_broadcast;
result.vars_.resize(places_.size());
bool is_forwarding = true;
@@ -122,9 +126,15 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
if (!is_forwarding) {
auto var_names = op->OutputArgumentNames();
+ // Currently, we assume that once gradient is generated, it can be
+ // broadcast, and each gradient is only broadcast once. But there are no
+ // other cases, for example, we need to adjust the gradient according to
+ // the input when we get the gradient, which is not considered at present.
for (auto &og : var_names) {
- if (grad_names_.count(og) != 0) { // is param grad
- // Insert NCCL AllReduce Op
+ if (grad_names_.count(og) != 0 &&
+ og_has_been_broadcast.count(og) == 0) { // is param grad
+ // Insert NCCL AllReduce Op
+ og_has_been_broadcast.insert(og);
#ifdef PADDLE_WITH_CUDA
result.ops_.emplace_back(
new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
@@ -161,6 +171,11 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
*/
PolishGraphToSupportDataHazards(&result);
+ /*
+ * Only variables should be the leaves of graph.
+ */
+ AddOutputToLeafOps(&result);
+
if (VLOG_IS_ON(10)) {
std::ostringstream sout;
PrintGraphviz(*graph, sout);
diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
index 5ddf331cfc..55b5f11358 100644
--- a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
+++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
@@ -76,7 +76,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
}
}
-std::string NCCLAllReduceOpHandle::Name() const { return "NCCL AllReduce"; }
+std::string NCCLAllReduceOpHandle::Name() const { return "nccl_all_reduce"; }
} // namespace details
} // namespace framework
} // namespace paddle
diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
index 045070bb6a..ad14a3c5cb 100644
--- a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
+++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
@@ -14,6 +14,9 @@
#pragma once
+#include
+#include
+
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
@@ -34,6 +37,10 @@ struct NCCLAllReduceOpHandle : public OpHandleBase {
std::string Name() const override;
+ // Delay and buffer nccl_all_reduce together can significantly increase
+ // performance. Disable this feature by returning false.
+ bool IsMultiDeviceTransfer() override { return true; };
+
protected:
void RunImpl() override;
};
diff --git a/paddle/fluid/framework/details/op_handle_base.h b/paddle/fluid/framework/details/op_handle_base.h
index 71672fd24c..d7a541ac4b 100644
--- a/paddle/fluid/framework/details/op_handle_base.h
+++ b/paddle/fluid/framework/details/op_handle_base.h
@@ -13,6 +13,8 @@
// limitations under the License.
#pragma once
+#include
+#include
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/platform/device_context.h"
@@ -53,6 +55,10 @@ class OpHandleBase {
void AddOutput(VarHandleBase *out);
+ // If the Op involves data transfer of multiple devices that
+ // will likely block other computations.
+ virtual bool IsMultiDeviceTransfer() { return false; }
+
protected:
virtual void RunImpl() = 0;
};
diff --git a/paddle/fluid/framework/details/ssa_graph_builder.cc b/paddle/fluid/framework/details/ssa_graph_builder.cc
index 361ba6d397..0a4febd22f 100644
--- a/paddle/fluid/framework/details/ssa_graph_builder.cc
+++ b/paddle/fluid/framework/details/ssa_graph_builder.cc
@@ -136,6 +136,17 @@ void SSAGraphBuilder::PrintGraphviz(const SSAGraph &graph, std::ostream &sout) {
sout << "}\n";
}
+
+void SSAGraphBuilder::AddOutputToLeafOps(SSAGraph *graph) {
+ for (auto &op : graph->ops_) {
+ if (!op->outputs_.empty()) {
+ continue;
+ }
+ auto *dummy_leaf = new DummyVarHandle();
+ graph->dep_vars_.emplace(dummy_leaf);
+ op->AddOutput(dummy_leaf);
+ }
+}
} // namespace details
} // namespace framework
} // namespace paddle
diff --git a/paddle/fluid/framework/details/ssa_graph_builder.h b/paddle/fluid/framework/details/ssa_graph_builder.h
index bf20e7164a..be1f0460e4 100644
--- a/paddle/fluid/framework/details/ssa_graph_builder.h
+++ b/paddle/fluid/framework/details/ssa_graph_builder.h
@@ -14,13 +14,13 @@
#pragma once
+#include
+#include
+
#include "paddle/fluid/framework/details/ssa_graph.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/platform/place.h"
-#include
-#include
-
namespace paddle {
namespace framework {
namespace details {
@@ -52,6 +52,8 @@ class SSAGraphBuilder {
const std::string &each_var_name,
const platform::Place &place, size_t place_offset);
+ static void AddOutputToLeafOps(SSAGraph *graph);
+
static void PrintGraphviz(const SSAGraph &graph, std::ostream &sout);
};
} // namespace details
diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
index 3f8655147b..596e573186 100644
--- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
+++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
@@ -23,22 +23,36 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
size_t num_threads, bool use_event,
const std::vector &local_scopes,
const std::vector &places,
- std::unique_ptr &&graph)
+ std::unique_ptr &&graph, bool allow_op_delay)
: SSAGraphExecutor(std::move(graph)),
pool_(num_threads >= 2 ? new ::ThreadPool(num_threads) : nullptr),
local_scopes_(local_scopes),
places_(places),
fetch_ctxs_(places),
- use_event_(use_event) {}
+ use_event_(use_event),
+ running_ops_(0),
+ allow_op_delay_(allow_op_delay) {}
+
+void ThreadedSSAGraphExecutor::RunDelayedOps(
+ const std::unordered_set &delayed_ops) {
+ for (auto op : delayed_ops) {
+ op->Run(use_event_);
+ }
+}
FeedFetchList ThreadedSSAGraphExecutor::Run(
const std::vector &fetch_tensors) {
std::unordered_map pending_ops;
std::unordered_set pending_vars;
-
BlockingQueue ready_vars;
-
std::unordered_set ready_ops;
+ // For ops (e.g. nccl_all_reduce) that need to coordinate multiple
+ // streams from multiple GPUs, it's faster to buffer them and schedule
+ // together since we currently cannot overlap computation and memcpy streams.
+ // Should revisit it if overlapping is available.
+ std::unordered_set delayed_ops;
+ std::unordered_set blocked_by_delayed_ops;
+ std::unordered_set delayed_vars;
auto InsertPendingVar = [&pending_vars, &ready_vars](VarHandleBase &var) {
pending_vars.insert(&var);
@@ -73,7 +87,6 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
// Step 2. Insert FetchOps
std::vector> fetch_ops;
- std::vector dummy_vars;
FeedFetchList fetch_data(fetch_tensors.size());
std::unordered_map> fetched_vars;
@@ -87,13 +100,13 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
}
}
+ std::unordered_set> fetch_dependencies;
for (size_t i = 0; i < fetch_tensors.size(); ++i) {
auto &var_name = fetch_tensors[i];
auto &vars = fetched_vars.at(var_name);
auto *op = new FetchOpHandle(&fetch_data, i, &local_scopes_);
fetch_ops.emplace_back(op);
- // FIXME: Use new device context
for (auto &p : places_) {
op->dev_ctxes_[p] = fetch_ctxs_.Get(p);
}
@@ -101,12 +114,24 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
for (auto *var : vars) {
op->AddInput(var);
}
+
+ auto *fetch_dummy = new DummyVarHandle();
+ op->AddOutput(fetch_dummy);
+ fetch_dependencies.emplace(fetch_dummy);
+ InsertPendingVar(*fetch_dummy);
InsertPendingOp(*op);
}
auto run_all_ready_ops = [&] {
for (auto *op : ready_ops) {
- RunOp(ready_vars, op);
+ if (op->IsMultiDeviceTransfer() && allow_op_delay_) {
+ delayed_ops.insert(op);
+ delayed_vars.insert(op->outputs_.begin(), op->outputs_.end());
+ ready_vars.Extend(op->outputs_);
+ continue;
+ }
+ running_ops_++;
+ RunOp(&ready_vars, op);
}
ready_ops.clear();
};
@@ -118,13 +143,13 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
}
// Step 3. Execution
- while (!pending_vars.empty()) {
+ while (!pending_vars.empty() || !ready_ops.empty() || !delayed_ops.empty()) {
// 1. Run All Ready ops
run_all_ready_ops();
// 2. Find ready variable
bool timeout;
- auto cur_ready_vars = ready_vars.PopAll(1000, &timeout);
+ auto cur_ready_vars = ready_vars.PopAll(1, &timeout);
if (timeout) {
if (exception_) {
@@ -141,13 +166,29 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto &deps = pending_ops[op];
--deps;
if (deps == 0) {
- ready_ops.insert(op);
+ if (delayed_vars.find(ready_var) != delayed_vars.end()) {
+ blocked_by_delayed_ops.insert(op);
+ } else {
+ ready_ops.insert(op);
+ }
}
}
}
+ // When there are no other ops to schedule, schedule buffered delayed
+ // ops and unblock other ops.
+ if (ready_ops.empty() && !delayed_ops.empty() && running_ops_ == 0) {
+ RunDelayedOps(delayed_ops);
+ delayed_ops.clear();
+ for (auto *op : blocked_by_delayed_ops) {
+ ready_ops.insert(op);
+ }
+ blocked_by_delayed_ops.clear();
+ }
// Keep loop until all vars are ready.
}
-
+ PADDLE_ENFORCE(ready_ops.empty());
+ PADDLE_ENFORCE(delayed_ops.empty());
+ PADDLE_ENFORCE(blocked_by_delayed_ops.empty());
++computation_count_;
auto sync_computation = [&] {
@@ -182,12 +223,13 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
}
void ThreadedSSAGraphExecutor::RunOp(
- BlockingQueue &ready_var_q, details::OpHandleBase *op) {
- auto op_run = [&ready_var_q, op, this] {
+ BlockingQueue *ready_var_q, details::OpHandleBase *op) {
+ auto op_run = [ready_var_q, op, this] {
try {
VLOG(10) << op->Name() << " : " << op->DebugString();
op->Run(use_event_);
- ready_var_q.Extend(op->outputs_);
+ running_ops_--;
+ ready_var_q->Extend(op->outputs_);
} catch (platform::EnforceNotMet ex) {
exception_.reset(new platform::EnforceNotMet(ex));
} catch (...) {
diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h
index 2ea57ac8f9..79cfc26b46 100644
--- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h
@@ -14,7 +14,12 @@
#pragma once
-#include
+#include
+#include
+#include
+#include
+#include
+
#include
#include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
@@ -70,7 +75,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
ThreadedSSAGraphExecutor(size_t num_threads, bool use_event,
const std::vector &local_scopes,
const std::vector &places,
- std::unique_ptr &&graph);
+ std::unique_ptr &&graph,
+ bool allow_op_delay);
// Run a SSAGraph by a thread pool
// Use topological sort algorithm
@@ -79,9 +85,11 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
~ThreadedSSAGraphExecutor() {}
private:
- void RunOp(BlockingQueue &ready_var_q,
+ void RunOp(BlockingQueue *ready_var_q,
details::OpHandleBase *op);
+ void RunDelayedOps(const std::unordered_set &delayed_ops);
+
private:
std::unique_ptr<::ThreadPool> pool_;
std::vector local_scopes_;
@@ -89,6 +97,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
platform::DeviceContextPool fetch_ctxs_;
const bool use_event_;
std::unique_ptr exception_;
+ std::atomic running_ops_;
+ bool allow_op_delay_;
size_t computation_count_{0};
size_t max_async_computation{100};
diff --git a/paddle/fluid/framework/executor.cc b/paddle/fluid/framework/executor.cc
index 64c06687b6..16a118090b 100644
--- a/paddle/fluid/framework/executor.cc
+++ b/paddle/fluid/framework/executor.cc
@@ -279,6 +279,21 @@ std::unique_ptr Executor::Prepare(
return std::unique_ptr(ctx);
}
+std::vector> Executor::Prepare(
+ const ProgramDesc& program, const std::vector& block_ids) {
+ std::vector> result;
+ for (auto& bid : block_ids) {
+ auto* ctx = new ExecutorPrepareContext(program, bid);
+ PADDLE_ENFORCE_LT(static_cast(bid), program.Size());
+ auto& block = program.Block(bid);
+ for (auto& op_desc : block.AllOps()) {
+ ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
+ }
+ result.push_back(std::shared_ptr(ctx));
+ }
+ return result;
+}
+
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope, bool create_vars) {
auto& block = ctx->prog_.Block(ctx->block_id_);
diff --git a/paddle/fluid/framework/executor.h b/paddle/fluid/framework/executor.h
index 7173c51c95..d7c99165f0 100644
--- a/paddle/fluid/framework/executor.h
+++ b/paddle/fluid/framework/executor.h
@@ -61,6 +61,9 @@ class Executor {
static std::unique_ptr Prepare(
const ProgramDesc& program, int block_id);
+ static std::vector> Prepare(
+ const ProgramDesc& program, const std::vector& block_ids);
+
void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope = true,
bool create_vars = true);
diff --git a/paddle/fluid/framework/lod_tensor.h b/paddle/fluid/framework/lod_tensor.h
index dee505fee0..4f130d2659 100644
--- a/paddle/fluid/framework/lod_tensor.h
+++ b/paddle/fluid/framework/lod_tensor.h
@@ -142,6 +142,7 @@ class LoDTensor : public Tensor {
return (lod_)[level].size() - 1;
}
+ // Split LoDTensor and copy to each place specified in places.
std::vector SplitLoDTensor(
const std::vector places) const;
diff --git a/paddle/fluid/framework/operator.cc b/paddle/fluid/framework/operator.cc
index f6a43804ef..a3b4a8c082 100644
--- a/paddle/fluid/framework/operator.cc
+++ b/paddle/fluid/framework/operator.cc
@@ -35,6 +35,17 @@ std::vector> kKernelPriority = {
std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
+proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
+ if (var->IsType()) {
+ return framework::ToDataType(var->Get().type());
+ } else if (var->IsType()) {
+ return framework::ToDataType(
+ var->Get().value().type());
+ } else {
+ PADDLE_THROW("Var should be LoDTensor or SelectedRows");
+ }
+}
+
static DDim GetDims(const Scope& scope, const std::string& name) {
Variable* var = scope.FindVar(name);
if (var == nullptr) {
diff --git a/paddle/fluid/framework/operator.h b/paddle/fluid/framework/operator.h
index 41214b41cb..b7a7c69b4c 100644
--- a/paddle/fluid/framework/operator.h
+++ b/paddle/fluid/framework/operator.h
@@ -61,6 +61,8 @@ inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix;
}
+proto::VarType::Type GetDataTypeOfVar(const Variable* var);
+
class OperatorBase;
class ExecutionContext;
diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc
index 577eea92d2..7be93fa600 100644
--- a/paddle/fluid/framework/parallel_executor.cc
+++ b/paddle/fluid/framework/parallel_executor.cc
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
+#include "paddle/fluid/platform/profiler.h"
#include
#include
@@ -47,7 +48,7 @@ ParallelExecutor::ParallelExecutor(
const std::vector &places,
const std::unordered_set ¶ms,
const ProgramDesc &startup_program, const ProgramDesc &main_program,
- const std::string &loss_var_name, Scope *scope)
+ const std::string &loss_var_name, Scope *scope, bool allow_op_delay)
: member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope;
@@ -82,8 +83,8 @@ ParallelExecutor::ParallelExecutor(
auto graph = builder.Build(main_program);
member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
- num_threads, use_event, member_->local_scopes_, places,
- std::move(graph)));
+ num_threads, use_event, member_->local_scopes_, places, std::move(graph),
+ allow_op_delay));
// Step 3. Create vars in each scope;
for (auto *scope : member_->local_scopes_) {
@@ -149,12 +150,30 @@ void ParallelExecutor::BCastParamsToGPUs(
#endif
}
-void ParallelExecutor::Run(const std::vector &fetch_tensors,
- const std::string &fetched_var_name) {
+void ParallelExecutor::Run(
+ const std::vector &fetch_tensors,
+ const std::string &fetched_var_name,
+ const std::unordered_map &feed_tensors) {
+ platform::RecordBlock b(0);
+ SplitTensorToPlaces(feed_tensors);
auto fetch_data = member_->executor_->Run(fetch_tensors);
*member_->global_scope_->Var(fetched_var_name)->GetMutable() =
fetch_data;
}
+void ParallelExecutor::SplitTensorToPlaces(
+ const std::unordered_map &feed_tensors) {
+ for (auto it : feed_tensors) {
+ auto lod_tensors = it.second.SplitLoDTensor(member_->places_);
+ for (size_t j = 0; j < member_->places_.size(); ++j) {
+ // TODO(panxy0718): Do I need to delete this var?
+ member_->local_scopes_[j]
+ ->Var(it.first)
+ ->GetMutable()
+ ->ShareDataWith(lod_tensors[j]);
+ }
+ }
+}
+
} // namespace framework
} // namespace paddle
diff --git a/paddle/fluid/framework/parallel_executor.h b/paddle/fluid/framework/parallel_executor.h
index 503efa2e44..c7c58b2b80 100644
--- a/paddle/fluid/framework/parallel_executor.h
+++ b/paddle/fluid/framework/parallel_executor.h
@@ -14,8 +14,9 @@ limitations under the License. */
#pragma once
-#include
+#include
#include
+#include
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
@@ -37,12 +38,17 @@ class ParallelExecutor {
const std::unordered_set& params,
const ProgramDesc& startup_program,
const ProgramDesc& main_program,
- const std::string& loss_var_name, Scope* scope);
+ const std::string& loss_var_name, Scope* scope,
+ bool allow_op_delay);
void Run(const std::vector& fetch_tensors,
- const std::string& fetched_var_name = "fetched_var");
+ const std::string& fetched_var_name,
+ const std::unordered_map& feed_tensors);
private:
+ void SplitTensorToPlaces(
+ const std::unordered_map& feed_tensors);
+
ParallelExecutorPrivate* member_;
void BCastParamsToGPUs(const ProgramDesc& startup_program) const;
diff --git a/paddle/fluid/framework/selected_rows.cc b/paddle/fluid/framework/selected_rows.cc
index 504344e937..d9d6b7dd67 100644
--- a/paddle/fluid/framework/selected_rows.cc
+++ b/paddle/fluid/framework/selected_rows.cc
@@ -1,8 +1,11 @@
-/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
+/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
+
http://www.apache.org/licenses/LICENSE-2.0
+
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@@ -13,6 +16,7 @@ limitations under the License. */
namespace paddle {
namespace framework {
+
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
const platform::DeviceContext& dev_ctx) {
{ // the 1st field, uint32_t version
diff --git a/paddle/fluid/framework/selected_rows.h b/paddle/fluid/framework/selected_rows.h
index 9458d56a01..8e2d9470d3 100644
--- a/paddle/fluid/framework/selected_rows.h
+++ b/paddle/fluid/framework/selected_rows.h
@@ -1,8 +1,11 @@
-/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
+/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
+
http://www.apache.org/licenses/LICENSE-2.0
+
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@@ -47,6 +50,15 @@ class SelectedRows {
void set_rows(const Vector& rows) { rows_ = rows; }
+ /**
+ * get the index of id in rows
+ */
+ int64_t index(int64_t id) const {
+ auto it = std::find(rows_.begin(), rows_.end(), id);
+ PADDLE_ENFORCE(it != rows_.end(), "id should be in rows");
+ return static_cast(std::distance(rows_.begin(), it));
+ }
+
DDim GetCompleteDims() const {
std::vector dims = vectorize(value_->dims());
dims[0] = height_;
diff --git a/paddle/fluid/framework/tensor.h b/paddle/fluid/framework/tensor.h
index f7a6b5ba84..6f878541e6 100644
--- a/paddle/fluid/framework/tensor.h
+++ b/paddle/fluid/framework/tensor.h
@@ -45,11 +45,10 @@ class Tensor {
friend struct EigenVector;
public:
- Tensor() : offset_(0), is_pinned_(false) {}
+ Tensor() : offset_(0) {}
/*! Constructor with place should only be used in pybind. */
- explicit Tensor(const platform::Place& place)
- : offset_(0), is_pinned_(false) {
+ explicit Tensor(const platform::Place& place) : offset_(0) {
holder_->set_place(place);
}
@@ -70,12 +69,11 @@ class Tensor {
* @note If not exist, then allocation.
*/
template
- inline T* mutable_data(platform::Place place, bool is_pinned = false);
+ inline T* mutable_data(platform::Place place);
- inline void* mutable_data(platform::Place place, std::type_index type,
- bool is_pinned = false);
+ inline void* mutable_data(platform::Place place, std::type_index type);
- inline void* mutable_data(platform::Place place, bool is_pinned = false);
+ inline void* mutable_data(platform::Place place);
/**
* @brief Return a pointer to mutable memory block.
@@ -86,8 +84,7 @@ class Tensor {
* @note If not exist, then allocation.
*/
template
- inline T* mutable_data(DDim dims, platform::Place place,
- bool is_pinned = false);
+ inline T* mutable_data(DDim dims, platform::Place place);
/*! Return the dimensions of the memory block. */
inline const DDim& dims() const;
@@ -95,9 +92,6 @@ class Tensor {
/*! Return the numel of the memory block. */
inline int64_t numel() const;
- /*! Return the numel of the memory block. */
- inline bool isPinned() const;
-
/*! Resize the dimensions of the memory block. */
inline Tensor& Resize(const DDim& dims);
@@ -152,14 +146,12 @@ class Tensor {
template
struct PlaceholderImpl : public Placeholder {
- PlaceholderImpl(Place place, size_t size, std::type_index type,
- bool is_pinned = false)
- : ptr_(static_cast(memory::Alloc(place, size, is_pinned)),
- memory::PODDeleter(place, is_pinned)),
+ PlaceholderImpl(Place place, size_t size, std::type_index type)
+ : ptr_(static_cast(memory::Alloc(place, size)),
+ memory::PODDeleter(place)),
place_(place),
size_(size),
- type_(type),
- is_pinned_(is_pinned) {
+ type_(type) {
PADDLE_ENFORCE_NOT_NULL(ptr_, "Insufficient %s memory to allocation.",
(is_cpu_place(place_) ? "CPU" : "GPU"));
}
@@ -182,9 +174,6 @@ class Tensor {
/* the current type of memory */
std::type_index type_;
-
- /*! use pinned memory or not. */
- bool is_pinned_;
};
/*! holds the memory block if allocated. */
@@ -219,7 +208,6 @@ class Tensor {
* PlaceHolder::ptr_ and where the tensor data really begins.
*/
size_t offset_;
- bool is_pinned_;
};
inline void Tensor::switch_place(platform::Place new_place) {
diff --git a/paddle/fluid/framework/tensor_impl.h b/paddle/fluid/framework/tensor_impl.h
index 113814971e..f49d1a47a3 100644
--- a/paddle/fluid/framework/tensor_impl.h
+++ b/paddle/fluid/framework/tensor_impl.h
@@ -101,21 +101,19 @@ inline T* Tensor::data() {
}
template
-inline T* Tensor::mutable_data(DDim dims, platform::Place place,
- bool is_pinned) {
+inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
static_assert(std::is_pod::value, "T must be POD");
Resize(dims);
- return mutable_data(place, is_pinned);
+ return mutable_data(place);
}
template
-inline T* Tensor::mutable_data(platform::Place place, bool is_pinned) {
+inline T* Tensor::mutable_data(platform::Place place) {
static_assert(std::is_pod::value, "T must be POD");
- return reinterpret_cast(mutable_data(place, typeid(T), is_pinned));
+ return reinterpret_cast(mutable_data(place, typeid(T)));
}
-inline void* Tensor::mutable_data(platform::Place place, std::type_index type,
- bool is_pinned) {
+inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
@@ -129,27 +127,33 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type,
holder_->size() < size + offset_) {
if (platform::is_cpu_place(place)) {
holder_.reset(new PlaceholderImpl(
- boost::get(place), size, type, is_pinned));
- } else if (platform::is_gpu_place(place)) {
+ boost::get(place), size, type));
+ } else if (platform::is_gpu_place(place) ||
+ platform::is_cuda_pinned_place(place)) {
#ifndef PADDLE_WITH_CUDA
- PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
+ PADDLE_THROW(
+ "CUDAPlace or CUDAPinnedPlace is not supported in CPU-only mode.");
}
#else
- holder_.reset(new PlaceholderImpl(
- boost::get(place), size, type, is_pinned));
+ if (platform::is_gpu_place(place)) {
+ holder_.reset(new PlaceholderImpl(
+ boost::get(place), size, type));
+ } else if (platform::is_cuda_pinned_place(place)) {
+ holder_.reset(new PlaceholderImpl(
+ boost::get(place), size, type));
+ }
}
#endif
offset_ = 0;
- is_pinned_ = is_pinned;
}
return reinterpret_cast(reinterpret_cast(holder_->ptr()) +
offset_);
}
-inline void* Tensor::mutable_data(platform::Place place, bool is_pinned) {
+inline void* Tensor::mutable_data(platform::Place place) {
PADDLE_ENFORCE(this->holder_ != nullptr,
- "Cannot invoke mutable data if current hold nothing");
- return mutable_data(place, holder_->type(), is_pinned);
+ "Cannot invoke mutable data if current hold nothing.");
+ return mutable_data(place, holder_->type());
}
inline Tensor& Tensor::ShareDataWith(const Tensor& src) {
@@ -191,8 +195,6 @@ inline const DDim& Tensor::dims() const { return dims_; }
inline int64_t Tensor::numel() const { return product(dims_); }
-inline bool Tensor::isPinned() const { return is_pinned_; }
-
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
Tensor res;
res.ShareDataWith(src);
diff --git a/paddle/fluid/framework/tensor_util.cc b/paddle/fluid/framework/tensor_util.cc
index 8b7533ce71..1d864af011 100644
--- a/paddle/fluid/framework/tensor_util.cc
+++ b/paddle/fluid/framework/tensor_util.cc
@@ -148,6 +148,11 @@ struct AnyVisitor : public boost::static_visitor {
const platform::CPUPlace& cpu) const {
return *out.data();
}
+
+ bool GetResult(const framework::Tensor& out,
+ const platform::CUDAPinnedPlace& cpu) const {
+ return *out.data();
+ }
};
template
diff --git a/paddle/fluid/framework/tuple.h b/paddle/fluid/framework/tuple.h
index 78996908b1..f6c6a1fec1 100644
--- a/paddle/fluid/framework/tuple.h
+++ b/paddle/fluid/framework/tuple.h
@@ -35,24 +35,25 @@ class Tuple {
public:
using ElementVars = std::vector;
- Tuple(std::vector& var, std::vector& var_desc)
+ Tuple(const std::vector& var,
+ const std::vector& var_desc)
: var_(var), var_desc_(var_desc) {}
- Tuple(std::vector& var) : var_(var) {}
+ explicit Tuple(std::vector& var) : var_(var) {}
- ElementVar get(int idx) const { return var_[idx]; };
+ ElementVar get(int idx) const { return var_[idx]; }
- ElementVar& get(int idx) { return var_[idx]; };
+ ElementVar& get(int idx) { return var_[idx]; }
- bool isSameType(Tuple& t) const;
+ bool isSameType(const Tuple& t) const;
- size_t getSize() const { return var_.size(); };
+ size_t getSize() const { return var_.size(); }
private:
ElementVars var_;
std::vector var_desc_;
};
-bool Tuple::isSameType(Tuple& t) const {
+bool Tuple::isSameType(const Tuple& t) const {
size_t tuple_size = getSize();
if (tuple_size != t.getSize()) {
return false;
diff --git a/paddle/fluid/inference/io.cc b/paddle/fluid/inference/io.cc
index 52e9c0baa6..a5b62ef322 100644
--- a/paddle/fluid/inference/io.cc
+++ b/paddle/fluid/inference/io.cc
@@ -41,8 +41,7 @@ bool IsPersistable(const framework::VarDesc* var) {
return false;
}
-void LoadPersistables(framework::Executor& executor,
- framework::Scope& scope,
+void LoadPersistables(framework::Executor& executor, framework::Scope& scope,
const framework::ProgramDesc& main_program,
const std::string& dirname,
const std::string& param_filename) {
@@ -108,10 +107,8 @@ std::unique_ptr Load(framework::Executor& executor,
}
std::unique_ptr Load(
- framework::Executor& executor,
- framework::Scope& scope,
- const std::string& prog_filename,
- const std::string& param_filename) {
+ framework::Executor& executor, framework::Scope& scope,
+ const std::string& prog_filename, const std::string& param_filename) {
std::string model_filename = prog_filename;
std::string program_desc_str;
ReadBinaryFile(model_filename, program_desc_str);
diff --git a/paddle/fluid/inference/io.h b/paddle/fluid/inference/io.h
index 6817a6fca0..d07d315b93 100644
--- a/paddle/fluid/inference/io.h
+++ b/paddle/fluid/inference/io.h
@@ -24,8 +24,7 @@ limitations under the License. */
namespace paddle {
namespace inference {
-void LoadPersistables(framework::Executor& executor,
- framework::Scope& scope,
+void LoadPersistables(framework::Executor& executor, framework::Scope& scope,
const framework::ProgramDesc& main_program,
const std::string& dirname,
const std::string& param_filename);
diff --git a/paddle/fluid/inference/tests/book/CMakeLists.txt b/paddle/fluid/inference/tests/book/CMakeLists.txt
index e7ffb00ec8..6ed77adb9d 100644
--- a/paddle/fluid/inference/tests/book/CMakeLists.txt
+++ b/paddle/fluid/inference/tests/book/CMakeLists.txt
@@ -4,7 +4,7 @@ function(inference_test TARGET_NAME)
set(multiValueArgs ARGS)
cmake_parse_arguments(inference_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
- set(PYTHON_TESTS_DIR ${PADDLE_SOURCE_DIR}/python/paddle/fluid/tests)
+ set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
set(arg_list "")
if(inference_test_ARGS)
foreach(arg ${inference_test_ARGS})
diff --git a/paddle/fluid/inference/tests/book/test_inference_fit_a_line.cc b/paddle/fluid/inference/tests/book/test_inference_fit_a_line.cc
index 9ab808efec..3e77dc166c 100644
--- a/paddle/fluid/inference/tests/book/test_inference_fit_a_line.cc
+++ b/paddle/fluid/inference/tests/book/test_inference_fit_a_line.cc
@@ -9,8 +9,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
-#include
#include "gflags/gflags.h"
+#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
@@ -30,8 +30,8 @@ TEST(inference, fit_a_line) {
// The second dim of the input tensor should be 13
// The input data should be >= 0
int64_t batch_size = 10;
- SetupTensor(
- input, {batch_size, 13}, static_cast(0), static_cast(10));
+ SetupTensor(&input, {batch_size, 13}, static_cast(0),
+ static_cast(10));
std::vector cpu_feeds;
cpu_feeds.push_back(&input);
diff --git a/paddle/fluid/inference/tests/book/test_inference_image_classification.cc b/paddle/fluid/inference/tests/book/test_inference_image_classification.cc
index e9a27171f1..a6b6c3f828 100644
--- a/paddle/fluid/inference/tests/book/test_inference_image_classification.cc
+++ b/paddle/fluid/inference/tests/book/test_inference_image_classification.cc
@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
-#include
#include "gflags/gflags.h"
+#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
@@ -35,10 +35,8 @@ TEST(inference, image_classification) {
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [0.0, 1.0].
- SetupTensor(input,
- {FLAGS_batch_size, 3, 32, 32},
- static_cast(0),
- static_cast(1));
+ SetupTensor(&input, {FLAGS_batch_size, 3, 32, 32},
+ static_cast(0), static_cast(1));
std::vector cpu_feeds;
cpu_feeds.push_back(&input);
@@ -48,8 +46,8 @@ TEST(inference, image_classification) {
// Run inference on CPU
LOG(INFO) << "--- CPU Runs: ---";
- TestInference(
- dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat);
+ TestInference(dirname, cpu_feeds, cpu_fetchs1,
+ FLAGS_repeat);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
@@ -59,8 +57,8 @@ TEST(inference, image_classification) {
// Run inference on CUDA GPU
LOG(INFO) << "--- GPU Runs: ---";
- TestInference(
- dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat);
+ TestInference(dirname, cpu_feeds, cpu_fetchs2,
+ FLAGS_repeat);
LOG(INFO) << output2.dims();
CheckError(output1, output2);
diff --git a/paddle/fluid/inference/tests/book/test_inference_label_semantic_roles.cc b/paddle/fluid/inference/tests/book/test_inference_label_semantic_roles.cc
index 1849240166..84bb855fea 100644
--- a/paddle/fluid/inference/tests/book/test_inference_label_semantic_roles.cc
+++ b/paddle/fluid/inference/tests/book/test_inference_label_semantic_roles.cc
@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
-#include
#include "gflags/gflags.h"
+#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
@@ -36,37 +36,21 @@ TEST(inference, label_semantic_roles) {
int64_t predicate_dict_len = 3162;
int64_t mark_dict_len = 2;
- SetupLoDTensor(word,
- lod,
- static_cast(0),
+ SetupLoDTensor(&word, lod, static_cast(0),
static_cast(word_dict_len - 1));
- SetupLoDTensor(predicate,
- lod,
- static_cast(0),
+ SetupLoDTensor(&predicate, lod, static_cast(0),
static_cast(predicate_dict_len - 1));
- SetupLoDTensor(ctx_n2,
- lod,
- static_cast(0),
+ SetupLoDTensor(&ctx_n2, lod, static_cast(0),
static_cast(word_dict_len - 1));
- SetupLoDTensor(ctx_n1,
- lod,
- static_cast(0),
+ SetupLoDTensor(&ctx_n1, lod, static_cast(0),
static_cast(word_dict_len - 1));
- SetupLoDTensor(ctx_0,
- lod,
- static_cast(0),
+ SetupLoDTensor(&ctx_0, lod, static_cast(0),
static_cast(word_dict_len - 1));
- SetupLoDTensor(ctx_p1,
- lod,
- static_cast(0),
+ SetupLoDTensor(&ctx_p1, lod, static_cast(0),
static_cast(word_dict_len - 1));
- SetupLoDTensor(ctx_p2,
- lod,
- static_cast(0),
+ SetupLoDTensor(&ctx_p2, lod, static_cast(0),
static_cast(word_dict_len - 1));
- SetupLoDTensor(mark,
- lod,
- static_cast(0),
+ SetupLoDTensor(&mark, lod, static_cast(0),
static_cast(mark_dict_len - 1));
std::vector cpu_feeds;
diff --git a/paddle/fluid/inference/tests/book/test_inference_recognize_digits.cc b/paddle/fluid/inference/tests/book/test_inference_recognize_digits.cc
index 1fb0f9e777..f12828a268 100644
--- a/paddle/fluid/inference/tests/book/test_inference_recognize_digits.cc
+++ b/paddle/fluid/inference/tests/book/test_inference_recognize_digits.cc
@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
-#include
#include "gflags/gflags.h"
+#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
@@ -35,10 +35,8 @@ TEST(inference, recognize_digits) {
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [-1.0, 1.0].
- SetupTensor(input,
- {FLAGS_batch_size, 1, 28, 28},
- static_cast(-1),
- static_cast(1));
+ SetupTensor(&input, {FLAGS_batch_size, 1, 28, 28},
+ static_cast(-1), static_cast(1));
std::vector cpu_feeds;
cpu_feeds.push_back(&input);
@@ -49,8 +47,8 @@ TEST(inference, recognize_digits) {
// Run inference on CPU
LOG(INFO) << "--- CPU Runs: is_combined=" << is_combined << " ---";
- TestInference(
- dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, is_combined);
+ TestInference(dirname, cpu_feeds, cpu_fetchs1,
+ FLAGS_repeat, is_combined);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
@@ -60,8 +58,8 @@ TEST(inference, recognize_digits) {
// Run inference on CUDA GPU
LOG(INFO) << "--- GPU Runs: is_combined=" << is_combined << " ---";
- TestInference(
- dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat, is_combined);
+ TestInference(dirname, cpu_feeds, cpu_fetchs2,
+ FLAGS_repeat, is_combined);
LOG(INFO) << output2.dims();
CheckError(output1, output2);
diff --git a/paddle/fluid/inference/tests/book/test_inference_recommender_system.cc b/paddle/fluid/inference/tests/book/test_inference_recommender_system.cc
index b42a33c9a9..70aa6b194d 100644
--- a/paddle/fluid/inference/tests/book/test_inference_recommender_system.cc
+++ b/paddle/fluid/inference/tests/book/test_inference_recommender_system.cc
@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
-#include
#include "gflags/gflags.h"
+#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
@@ -36,25 +36,25 @@ TEST(inference, recommender_system) {
// Use the first data from paddle.dataset.movielens.test() as input
std::vector user_id_data = {1};
- SetupTensor(user_id, {batch_size, 1}, user_id_data);
+ SetupTensor(&user_id, {batch_size, 1}, user_id_data);
std::vector gender_id_data = {1};
- SetupTensor(gender_id, {batch_size, 1}, gender_id_data);
+ SetupTensor