From 5d0bf8bc8f4daa3b86e478c9870297f101a9788b Mon Sep 17 00:00:00 2001 From: Xin Pan Date: Tue, 12 Jun 2018 21:26:07 +0800 Subject: [PATCH 1/9] Add API docs. --- paddle/fluid/operators/get_places_op.cc | 2 +- python/paddle/fluid/layers/control_flow.py | 26 ++++++++++++++++++++++ python/paddle/fluid/layers/io.py | 19 ++++++++++++++++ 3 files changed, 46 insertions(+), 1 deletion(-) diff --git a/paddle/fluid/operators/get_places_op.cc b/paddle/fluid/operators/get_places_op.cc index eafc364a15..db6ff78256 100644 --- a/paddle/fluid/operators/get_places_op.cc +++ b/paddle/fluid/operators/get_places_op.cc @@ -85,7 +85,7 @@ class GetPlacesOpProtoMaker : public framework::OpProtoAndCheckerMaker { .InEnum({"CUDA", "CPU", "AUTO"}) .SetDefault("AUTO"); AddComment(R"DOC( -Returns a list of places based on flags. The list will be used for parallel +Returns a list of places based on arguments. The list will be used for parallel execution. )DOC"); } diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 80e8ff484a..7e541efcfc 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -1209,6 +1209,32 @@ class IfElseBlockGuard(object): class IfElse(object): + """ + if-else control flow. + + Args: + cond (Variable): condition used to compare. + name (str, default None): The name of this layer. + + Examples: + .. code-block:: python + limit = layers.fill_constant_batch_size_like( + input=label, dtype='int64', shape=[1], value=5.0) + cond = layers.less_than(x=label, y=limit) + ie = layers.IfElse(cond) + with ie.true_block(): + true_image = ie.input(image) + hidden = layers.fc(input=true_image, size=100, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + ie.output(prob) + + with ie.false_block(): + false_image = ie.input(image) + hidden = layers.fc(input=false_image, size=200, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + ie.output(prob) + prob = ie() + """ OUT_IF_ELSE_BLOCKS = 0 IN_IF_ELSE_TRUE_BLOCKS = 1 IN_IF_ELSE_FALSE_BLOCKS = 2 diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index 9de88e2c32..df264e4f26 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -587,6 +587,25 @@ def read_file(file_obj): class Preprocessor(object): + """ + A block for data pre-processing in reader. + + Args: + reader (Variable): A reader variable. + name (str, default None): The name of the reader. + + Examples: + .. code-block:: python + preprocessor = fluid.layers.io.Preprocessor(reader=reader) + with preprocessor.block(): + img, lbl = preprocessor.inputs() + img_out = img / 2 + lbl_out = lbl + 1 + preprocessor.outputs(img_out, lbl_out) + + data_file = fluid.layers.io.double_buffer(preprocessor()) + + """ BEFORE_SUB_BLOCK = 0 IN_SUB_BLOCK = 1 AFTER_SUB_BLOCK = 2 From 9185579c45281641618e95996b3451a5a81ea215 Mon Sep 17 00:00:00 2001 From: Xin Pan Date: Tue, 12 Jun 2018 21:58:28 +0800 Subject: [PATCH 2/9] follow comments --- python/paddle/fluid/layers/control_flow.py | 1 + python/paddle/fluid/layers/io.py | 1 + 2 files changed, 2 insertions(+) diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 7e541efcfc..2279197717 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -1218,6 +1218,7 @@ class IfElse(object): Examples: .. code-block:: python + limit = layers.fill_constant_batch_size_like( input=label, dtype='int64', shape=[1], value=5.0) cond = layers.less_than(x=label, y=limit) diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index df264e4f26..f3aeb6cd75 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -596,6 +596,7 @@ class Preprocessor(object): Examples: .. code-block:: python + preprocessor = fluid.layers.io.Preprocessor(reader=reader) with preprocessor.block(): img, lbl = preprocessor.inputs() From 3ab32532d54af6185a9604883abd022d7a3bd6fc Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Wed, 13 Jun 2018 17:02:38 +0800 Subject: [PATCH 3/9] Add conv3d Python API --- python/paddle/fluid/layers/nn.py | 168 ++++++++++++++++++++++++++++++- 1 file changed, 166 insertions(+), 2 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index c8cbb5ef00..f6b4348d25 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1305,8 +1305,6 @@ def conv2d(input, conv2d = fluid.layers.conv2d( input=data, num_filters=2, filter_size=3, act="relu") """ - if stride is None: - stride = [1, 1] num_channels = input.shape[1] @@ -1369,6 +1367,172 @@ def conv2d(input, return helper.append_activation(pre_act) +def conv3d(input, + num_filters, + filter_size, + stride=1, + padding=0, + dilation=1, + groups=None, + param_attr=None, + bias_attr=None, + use_cudnn=True, + use_mkldnn=False, + act=None, + name=None): + """ + **Convlution3D Layer** + + The convolution3D layer calculates the output based on the input, filter + and strides, paddings, dilations, groups parameters. Input(Input) and + Output(Output) are in NCHW format. Where N is batch size, C is the number of + channels, H is the height of the feature, and W is the width of the feature. + The details of convolution layer, please refer UFLDL's `convolution, + `_ . + If bias attribution and activation type are provided, bias is added to the + output of the convolution, and the corresponding activation function is + applied to the final result. + + For each input :math:`X`, the equation is: + + .. math:: + + Out = \sigma (W \\ast X + b) + + In the above equation: + + * :math:`X`: Input value, a tensor with NCHW format. + * :math:`W`: Filter value, a tensor with MCHW format. + * :math:`\\ast`: Convolution operation. + * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. + * :math:`\\sigma`: Activation function. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be + different. + + Example: + + - Input: + + Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` + + Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)` + + - Output: + Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` + + Where + + .. math:: + + D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\ + H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\ + W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1 + + Args: + input (Variable): The input image with [N, C, D, H, W] format. + num_filters(int): The number of filter. It is as same as the output + image channel. + filter_size (int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_D, filter_size_H, filter_size_W). + Otherwise, the filter will be a square. + stride (int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_D, stride_H, stride_W). Otherwise, the + stride_D = stride_H = stride_W = stride. Default: stride = 1. + padding (int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_D, padding_H, padding_W). Otherwise, the + padding_D = padding_H = padding_W = padding. Default: padding = 0. + dilation (int|tuple): The dilation size. If dilation is a tuple, it must + contain two integers, (dilation_D, dilation_H, dilation_W). Otherwise, the + dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1. + groups (int): The groups number of the Conv3d Layer. According to grouped + convolution in Alex Krizhevsky's Deep CNN paper: when group=2, + the first half of the filters is only connected to the first half + of the input channels, while the second half of the filters is only + connected to the second half of the input channels. Default: groups=1 + param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None + bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None + use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + use_mkldnn (bool): Use mkldnn kernels or not. + act (str): Activation type. Default: None + name (str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The tensor variable storing the convolution and \ + non-linearity activation result. + + Raises: + ValueError: If the shapes of input, filter_size, stride, padding and + groups mismatch. + + Examples: + .. code-block:: python + + data = fluid.layers.data( + name='data', shape=[3, 12, 32, 32], dtype='float32') + conv2d = fluid.layers.conv3d( + input=data, num_filters=2, filter_size=3, act="relu") + """ + + l_type = 'conv3d' + + helper = LayerHelper(l_type, **locals()) + dtype = helper.input_dtype() + + num_channels = input.shape[1] + + if groups is None: + num_filter_channels = num_channels + else: + if num_channels % groups != 0: + raise ValueError("num_channels must be divisible by groups.") + num_filter_channels = num_channels / groups + + filter_size = utils.convert_to_list(filter_size, 3, 'filter_size') + stride = utils.convert_to_list(stride, 3, 'stride') + padding = utils.convert_to_list(padding, 3, 'padding') + dilation = utils.convert_to_list(dilation, 3, 'dilation') + + if not isinstance(use_cudnn, bool): + raise ValueError("use_cudnn should be True or False") + + input_shape = input.shape + filter_shape = [num_filters, num_filter_channels] + filter_size + + def _get_default_param_initializer(): + std = (2.0 / (filter_size[0]**3 * num_channels))**0.5 + return Normal(0.0, std, 0) + + filter_param = helper.create_parameter( + attr=helper.param_attr, + shape=filter_shape, + dtype=dtype, + default_initializer=_get_default_param_initializer()) + + pre_bias = helper.create_tmp_variable(dtype) + + helper.append_op( + type=l_type, + inputs={ + 'Input': input, + 'Filter': filter_param, + }, + outputs={"Output": pre_bias}, + attrs={ + 'strides': stride, + 'paddings': padding, + 'dilations': dilation, + 'groups': groups, + 'use_cudnn': use_cudnn, + 'use_mkldnn': use_mkldnn + }) + + pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=3) + + return helper.append_activation(pre_act) + + def sequence_pool(input, pool_type): """ This function add the operator for sequence pooling. From 2183d01799dcaa452c63ca04d5ac194f91f01b25 Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Wed, 13 Jun 2018 17:14:00 +0800 Subject: [PATCH 4/9] Add pool3d and conv3d_trans Python API --- python/paddle/fluid/layers/nn.py | 273 +++++++++++++++++++++++++++++-- 1 file changed, 257 insertions(+), 16 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index f6b4348d25..3a4f93929f 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -39,13 +39,16 @@ __all__ = [ 'chunk_eval', 'sequence_conv', 'conv2d', + 'conv3d', 'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', + 'pool3d', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', + 'conv3d_transpose', 'sequence_expand', 'lstm_unit', 'reduce_sum', @@ -1385,13 +1388,12 @@ def conv3d(input, The convolution3D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input(Input) and - Output(Output) are in NCHW format. Where N is batch size, C is the number of - channels, H is the height of the feature, and W is the width of the feature. - The details of convolution layer, please refer UFLDL's `convolution, - `_ . - If bias attribution and activation type are provided, bias is added to the - output of the convolution, and the corresponding activation function is - applied to the final result. + Output(Output) are in NCDHW format. Where N is batch size C is the number of + channels, D is the depth of the feature, H is the height of the feature, + and W is the width of the feature. Convlution3D is similar with Convlution2D + but adds one dimension(depth). If bias attribution and activation type are + provided, bias is added to the output of the convolution, and the + corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: @@ -1401,8 +1403,8 @@ def conv3d(input, In the above equation: - * :math:`X`: Input value, a tensor with NCHW format. - * :math:`W`: Filter value, a tensor with MCHW format. + * :math:`X`: Input value, a tensor with NCDHW format. + * :math:`W`: Filter value, a tensor with MCDHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. @@ -1433,16 +1435,16 @@ def conv3d(input, num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple|None): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_D, filter_size_H, filter_size_W). + it must contain three integers, (filter_size_D, filter_size_H, filter_size_W). Otherwise, the filter will be a square. stride (int|tuple): The stride size. If stride is a tuple, it must - contain two integers, (stride_D, stride_H, stride_W). Otherwise, the + contain three integers, (stride_D, stride_H, stride_W). Otherwise, the stride_D = stride_H = stride_W = stride. Default: stride = 1. padding (int|tuple): The padding size. If padding is a tuple, it must - contain two integers, (padding_D, padding_H, padding_W). Otherwise, the + contain three integers, (padding_D, padding_H, padding_W). Otherwise, the padding_D = padding_H = padding_W = padding. Default: padding = 0. dilation (int|tuple): The dilation size. If dilation is a tuple, it must - contain two integers, (dilation_D, dilation_H, dilation_W). Otherwise, the + contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1. groups (int): The groups number of the Conv3d Layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, @@ -1528,7 +1530,7 @@ def conv3d(input, 'use_mkldnn': use_mkldnn }) - pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=3) + pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) return helper.append_activation(pre_act) @@ -1720,12 +1722,84 @@ def pool2d(input, if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") - helper = LayerHelper('pool2d', **locals()) + l_type = 'conv2d' + + helper = LayerHelper(l_type, **locals()) + dtype = helper.input_dtype() + pool_out = helper.create_tmp_variable(dtype) + + helper.append_op( + type=l_type, + inputs={"X": input}, + outputs={"Out": pool_out}, + attrs={ + "pooling_type": pool_type, + "ksize": pool_size, + "global_pooling": global_pooling, + "strides": pool_stride, + "paddings": pool_padding, + "use_cudnn": use_cudnn, + "ceil_mode": ceil_mode, + "use_mkldnn": use_mkldnn + }) + + return pool_out + + +def pool3d(input, + pool_size=-1, + pool_type="max", + pool_stride=1, + pool_padding=0, + global_pooling=False, + use_cudnn=True, + ceil_mode=False, + use_mkldnn=False, + name=None): + """ + This function adds the operator for pooling in 3-dimensions, using the + pooling configurations mentioned in input parameters. + + Args: + input (Variable): ${input_comment} + pool_size (int): ${ksize_comment} + pool_type (str): ${pooling_type_comment} + pool_stride (int): stride of the pooling layer. + pool_padding (int): padding size. + global_pooling (bool): ${global_pooling_comment} + use_cudnn (bool): ${use_cudnn_comment} + ceil_mode (bool): ${ceil_mode_comment} + use_mkldnn (bool): ${use_mkldnn_comment} + name (str): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: output of pool3d layer. + """ + if pool_type not in ["max", "avg"]: + raise ValueError( + "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", + str(pool_type)) + + if global_pooling is False and pool_size == -1: + raise ValueError( + "When the global_pooling is False, pool_size must be passed " + "and be a valid value. Received pool_size: " + str(pool_size)) + + pool_size = utils.convert_to_list(pool_size, 3, 'pool_size') + pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding') + pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride') + + if not isinstance(use_cudnn, bool): + raise ValueError("use_cudnn should be True or False") + + l_type = "pool3d" + helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() pool_out = helper.create_tmp_variable(dtype) helper.append_op( - type="pool2d", + type=l_type, inputs={"X": input}, outputs={"Out": pool_out}, attrs={ @@ -2146,6 +2220,173 @@ def conv2d_transpose(input, return out +def conv3d_transpose(input, + num_filters, + output_size=None, + filter_size=None, + padding=0, + stride=1, + dilation=1, + groups=None, + param_attr=None, + bias_attr=None, + use_cudnn=True, + act=None, + name=None): + """ + **Convlution3D transpose layer** + + The convolution3D transpose layer calculates the output based on the input, + filter, and dilations, strides, paddings. Input(Input) and output(Output) + are in NCDHW format. Where N is batch size, C is the number of channels, + D is the depth of the feature, H is the height of the feature, and W + is the width of the feature. Parameters(dilations, strides, paddings) are + two elements. These two elements represent height and width, respectively. + The details of convolution transpose layer, please refer to the following + explanation and references `therein `_. + + For each input :math:`X`, the equation is: + + .. math:: + + Out = W \\ast X + + In the above equation: + + * :math:`X`: Input value, a tensor with NCDHW format. + * :math:`W`: Filter value, a tensor with MCDHW format. + * :math:`\\ast` : Convolution transpose operation. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be + different. + + Example: + + - Input: + + Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$ + + Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$ + + - Output: + + Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$ + + Where + + .. math:: + + D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\ + H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\ + W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 + + Args: + input(Variable): The input image with [N, C, D, H, W] format. + num_filters(int): The number of the filter. It is as same as the output + image channel. + output_size(int|tuple|None): The output image size. If output size is a + tuple, it must contain three integers, (image_D, image_H, image_W). This + parameter only works when filter_size is None. + filter_size(int|tuple|None): The filter size. If filter_size is a tuple, + it must contain three integers, (filter_size_D, filter_size_H, filter_size_W). + Otherwise, the filter will be a square. None if use output size to + calculate filter_size. + padding(int|tuple): The padding size. If padding is a tuple, it must + contain three integers, (padding_D, padding_H, padding_W). Otherwise, the + padding_D = padding_H = padding_W = padding. Default: padding = 0. + stride(int|tuple): The stride size. If stride is a tuple, it must + contain three integers, (stride_D, stride_H, stride_W). Otherwise, the + stride_D = stride_H = stride_W = stride. Default: stride = 1. + dilation(int|tuple): The dilation size. If dilation is a tuple, it must + contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the + dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1. + groups(int): The groups number of the Conv3d transpose layer. Inspired by + grouped convolution in Alex Krizhevsky's Deep CNN paper, in which + when group=2, the first half of the filters is only connected to the + first half of the input channels, while the second half of the + filters is only connected to the second half of the input channels. + Default: groups=1 + param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer. + Default: None + bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None + use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + act(str): Activation type. Default: None + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The tensor variable storing the convolution transpose result. + + Raises: + ValueError: If the shapes of input, filter_size, stride, padding and + groups mismatch. + + Examples: + .. code-block:: python + + data = fluid.layers.data( + name='data', shape=[3, 12, 32, 32], dtype='float32') + conv2d_transpose = fluid.layers.conv3d_transpose( + input=data, num_filters=2, filter_size=3) + """ + l_type = "conv3d_transpose" + helper = LayerHelper(l_type, **locals()) + if not isinstance(input, Variable): + raise TypeError("Input of conv3d_transpose must be Variable") + input_channel = input.shape[1] + + padding = utils.convert_to_list(padding, 3, 'padding') + stride = utils.convert_to_list(stride, 3, 'stride') + dilation = utils.convert_to_list(dilation, 3, 'dilation') + + if not isinstance(use_cudnn, bool): + raise ValueError("use_cudnn should be True or False") + + if filter_size is None: + if output_size is None: + raise ValueError("output_size must be set when filter_size is None") + if isinstance(output_size, int): + output_size = [output_size, output_size] + + d_in = input.shape[2] + h_in = input.shape[3] + w_in = input.shape[4] + + filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 * + padding[0] - 1) / dilation[0] + 1 + filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 * + padding[1] - 1) / dilation[1] + 1 + filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 * + padding[2] - 1) / dilation[2] + 1 + filter_size = [filter_size_d, filter_size_h, filter_size_w] + else: + filter_size = utils.convert_to_list(filter_size, 3, + 'conv3d_transpose.filter_size') + + groups = 1 if groups is None else groups + filter_shape = [input_channel, num_filters / groups] + filter_size + img_filter = helper.create_parameter( + dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) + + pre_bias = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type=l_type, + inputs={'Input': [input], + 'Filter': [img_filter]}, + outputs={'Output': pre_bias}, + attrs={ + 'strides': stride, + 'paddings': padding, + 'dilations': dilation, + 'groups': groups, + 'use_cudnn': use_cudnn + }) + + pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) + out = helper.append_activation(pre_act) + return out + + def sequence_expand(x, y, ref_level=-1, name=None): """Sequence Expand Layer. This layer will expand the input variable **x** according to specified level lod of **y**. Please note that lod level of From c1843fd2ae84fc3f88b7eb40953dbed38a682083 Mon Sep 17 00:00:00 2001 From: Xin Pan Date: Wed, 13 Jun 2018 17:49:44 +0800 Subject: [PATCH 5/9] improve --- python/paddle/fluid/layers/control_flow.py | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 2279197717..4db085e9f5 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -1219,20 +1219,21 @@ class IfElse(object): Examples: .. code-block:: python - limit = layers.fill_constant_batch_size_like( + limit = fluid.layers.fill_constant_batch_size_like( input=label, dtype='int64', shape=[1], value=5.0) - cond = layers.less_than(x=label, y=limit) - ie = layers.IfElse(cond) + cond = fluid.layers.less_than(x=label, y=limit) + ie = fluid.layers.IfElse(cond) with ie.true_block(): true_image = ie.input(image) - hidden = layers.fc(input=true_image, size=100, act='tanh') - prob = layers.fc(input=hidden, size=10, act='softmax') + hidden = fluid.layers.fc(input=true_image, size=100, act='tanh') + prob = fluid.layers.fc(input=hidden, size=10, act='softmax') ie.output(prob) with ie.false_block(): false_image = ie.input(image) - hidden = layers.fc(input=false_image, size=200, act='tanh') - prob = layers.fc(input=hidden, size=10, act='softmax') + hidden = fluid.layers.fc( + input=false_image, size=200, act='tanh') + prob = fluid.layers.fc(input=hidden, size=10, act='softmax') ie.output(prob) prob = ie() """ From 9b13b4c0d295544b6eaed50ad77657b20d3736b6 Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Wed, 13 Jun 2018 17:32:04 +0800 Subject: [PATCH 6/9] Add doc --- doc/fluid/api/layers.rst | 19 +++++++++++++++++++ python/paddle/fluid/layers/nn.py | 2 +- 2 files changed, 20 insertions(+), 1 deletion(-) diff --git a/doc/fluid/api/layers.rst b/doc/fluid/api/layers.rst index f78e6db326..4be56791b1 100644 --- a/doc/fluid/api/layers.rst +++ b/doc/fluid/api/layers.rst @@ -361,6 +361,12 @@ conv2d .. autofunction:: paddle.fluid.layers.conv2d :noindex: +conv3d +------ + +.. autofunction:: paddle.fluid.layers.conv3d + :noindex: + sequence_pool ------------- @@ -385,6 +391,12 @@ pool2d .. autofunction:: paddle.fluid.layers.pool2d :noindex: +pool3d +------ + +.. autofunction:: paddle.fluid.layers.pool3d + :noindex: + batch_norm ---------- @@ -403,6 +415,13 @@ conv2d_transpose .. autofunction:: paddle.fluid.layers.conv2d_transpose :noindex: +conv3d_transpose +---------------- + +.. autofunction:: paddle.fluid.layers.conv2d_transpose + :noindex: + + sequence_expand --------------- diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 3a4f93929f..888245fc9e 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1722,7 +1722,7 @@ def pool2d(input, if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") - l_type = 'conv2d' + l_type = 'pool2d' helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() From ca743de2e09c4e966a7b647d3ce6b304fb61cdb7 Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Thu, 14 Jun 2018 18:06:55 +0800 Subject: [PATCH 7/9] enable more type for splitOp and ConcatOp --- paddle/fluid/operators/concat_op.cc | 10 ++++++++-- paddle/fluid/operators/concat_op.cu.cc | 10 ++++++++-- paddle/fluid/operators/split_op.cc | 5 ++++- paddle/fluid/operators/split_op.cu.cc | 5 ++++- 4 files changed, 24 insertions(+), 6 deletions(-) diff --git a/paddle/fluid/operators/concat_op.cc b/paddle/fluid/operators/concat_op.cc index 38337f9aa5..c724055937 100644 --- a/paddle/fluid/operators/concat_op.cc +++ b/paddle/fluid/operators/concat_op.cc @@ -107,7 +107,13 @@ REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker, false> /* set false to disable empty grad */); REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad); REGISTER_OP_CPU_KERNEL( - concat, ops::ConcatKernel); + concat, ops::ConcatKernel, + ops::ConcatKernel, + ops::ConcatKernel, + ops::ConcatKernel); REGISTER_OP_CPU_KERNEL( concat_grad, - ops::ConcatGradKernel); + ops::ConcatGradKernel, + ops::ConcatGradKernel, + ops::ConcatGradKernel, + ops::ConcatGradKernel); diff --git a/paddle/fluid/operators/concat_op.cu.cc b/paddle/fluid/operators/concat_op.cu.cc index 590eca9d06..8e38e5231f 100644 --- a/paddle/fluid/operators/concat_op.cu.cc +++ b/paddle/fluid/operators/concat_op.cu.cc @@ -15,7 +15,13 @@ limitations under the License. */ #include "paddle/fluid/operators/concat_op.h" namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( - concat, ops::ConcatKernel); + concat, ops::ConcatKernel, + ops::ConcatKernel, + ops::ConcatKernel, + ops::ConcatKernel); REGISTER_OP_CUDA_KERNEL( concat_grad, - ops::ConcatGradKernel); + ops::ConcatGradKernel, + ops::ConcatGradKernel, + ops::ConcatGradKernel, + ops::ConcatGradKernel); diff --git a/paddle/fluid/operators/split_op.cc b/paddle/fluid/operators/split_op.cc index 5e2b2a9945..d661b276bc 100644 --- a/paddle/fluid/operators/split_op.cc +++ b/paddle/fluid/operators/split_op.cc @@ -115,4 +115,7 @@ USE_CPU_ONLY_OP(concat); REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker, ops::SplitGradMaker); REGISTER_OP_CPU_KERNEL(split, - ops::SplitOpKernel); + ops::SplitOpKernel, + ops::SplitOpKernel, + ops::SplitOpKernel, + ops::SplitOpKernel); diff --git a/paddle/fluid/operators/split_op.cu.cc b/paddle/fluid/operators/split_op.cu.cc index efa378af85..18e0904681 100644 --- a/paddle/fluid/operators/split_op.cu.cc +++ b/paddle/fluid/operators/split_op.cu.cc @@ -15,4 +15,7 @@ limitations under the License. */ #include "paddle/fluid/operators/split_op.h" namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( - split, ops::SplitOpKernel); + split, ops::SplitOpKernel, + ops::SplitOpKernel, + ops::SplitOpKernel, + ops::SplitOpKernel); From 14efb55dcff62f84599eaf08ec2490f5019f77d3 Mon Sep 17 00:00:00 2001 From: Kexin Zhao Date: Thu, 14 Jun 2018 18:25:30 -0700 Subject: [PATCH 8/9] add author (#11499) --- AUTHORS.md | 1 + 1 file changed, 1 insertion(+) diff --git a/AUTHORS.md b/AUTHORS.md index 11f227be71..8c4a113fc2 100644 --- a/AUTHORS.md +++ b/AUTHORS.md @@ -22,6 +22,7 @@ | jczaja | Jacek Czaja | | JiayiFeng | Jia-Yi Feng | | kbinias | Krzysztof Binias | +| kexinzhao | Ke-Xin Zhao | | kuke | Yi-Bing Liu | | lcy-seso | Ying Cao | | lipeng-unisound | Peng Li | From e42e6ea142d8f40cc0fa0a82079be20918733c8a Mon Sep 17 00:00:00 2001 From: Yan Chunwei Date: Fri, 15 Jun 2018 10:30:03 +0800 Subject: [PATCH 9/9] add inference lib to release (#11482) --- cmake/inference_lib.cmake | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) diff --git a/cmake/inference_lib.cmake b/cmake/inference_lib.cmake index 236a55d332..cd44fe2542 100644 --- a/cmake/inference_lib.cmake +++ b/cmake/inference_lib.cmake @@ -39,7 +39,7 @@ function(copy TARGET) message(FATAL_ERROR "${TARGET} source numbers are not equal to destination numbers") endif() math(EXPR len "${copy_lib_SRCS_len} - 1") - + add_custom_target(${TARGET} DEPENDS ${copy_lib_DEPS}) foreach(index RANGE ${len}) list(GET copy_lib_SRCS ${index} src) @@ -155,6 +155,15 @@ copy(inference_lib DEPS paddle_fluid_shared paddle_fluid DSTS ${dst_dir}/${module} ${dst_dir}/${module} ) +if(WITH_CONTRIB) + set(contrib_dst_dir "${FLUID_INSTALL_DIR}/contrib/inference") + copy(contrib_inference_lib DEPS paddle_inference_api + SRCS ${PADDLE_SOURCE_DIR}/paddle/contrib/inference/paddle_inference_api.h + ${PADDLE_BINARY_DIR}/paddle/contrib/inference/libpaddle_inference_api.* + DSTS ${contrib_dst_dir} ${contrib_dst_dir} + ) +endif() + set(module "platform") copy(platform_lib DEPS profiler_py_proto SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/dynload/*.h ${src_dir}/${module}/details/*.h