diff --git a/paddle/fluid/inference/tests/api/CMakeLists.txt b/paddle/fluid/inference/tests/api/CMakeLists.txt index 07b9e0e051..b0f7dcc0df 100644 --- a/paddle/fluid/inference/tests/api/CMakeLists.txt +++ b/paddle/fluid/inference/tests/api/CMakeLists.txt @@ -128,6 +128,11 @@ inference_analysis_api_test_with_fake_data(test_analyzer_resnet50 inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv "${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz" SERIAL) +# bert +set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert") +download_model_and_data(${BERT_INSTALL_DIR} "bert_model.tar.gz" "bert_data.txt.tar.gz") +inference_analysis_api_test(test_analyzer_bert ${BERT_INSTALL_DIR} analyzer_bert_tester.cc) + # anakin if (WITH_ANAKIN AND WITH_MKL) # only needed in CI # anakin rnn1 diff --git a/paddle/fluid/inference/tests/api/analyzer_bert_tester.cc b/paddle/fluid/inference/tests/api/analyzer_bert_tester.cc new file mode 100644 index 0000000000..24cbd39ea0 --- /dev/null +++ b/paddle/fluid/inference/tests/api/analyzer_bert_tester.cc @@ -0,0 +1,229 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/inference/tests/api/tester_helper.h" + +namespace paddle { +namespace inference { + +using paddle::PaddleTensor; +using paddle::contrib::AnalysisConfig; + +template +void GetValueFromStream(std::stringstream *ss, T *t) { + (*ss) >> (*t); +} + +template <> +void GetValueFromStream(std::stringstream *ss, std::string *t) { + *t = ss->str(); +} + +// Split string to vector +template +void Split(const std::string &line, char sep, std::vector *v) { + std::stringstream ss; + T t; + for (auto c : line) { + if (c != sep) { + ss << c; + } else { + GetValueFromStream(&ss, &t); + v->push_back(std::move(t)); + ss.str({}); + ss.clear(); + } + } + + if (!ss.str().empty()) { + GetValueFromStream(&ss, &t); + v->push_back(std::move(t)); + ss.str({}); + ss.clear(); + } +} + +template +constexpr paddle::PaddleDType GetPaddleDType(); + +template <> +constexpr paddle::PaddleDType GetPaddleDType() { + return paddle::PaddleDType::INT64; +} + +template <> +constexpr paddle::PaddleDType GetPaddleDType() { + return paddle::PaddleDType::FLOAT32; +} + +// Parse tensor from string +template +bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) { + std::vector data; + Split(field, ':', &data); + if (data.size() < 2) return false; + + std::string shape_str = data[0]; + + std::vector shape; + Split(shape_str, ' ', &shape); + + std::string mat_str = data[1]; + + std::vector mat; + Split(mat_str, ' ', &mat); + + tensor->shape = shape; + auto size = + std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()) * + sizeof(T); + tensor->data.Resize(size); + std::copy(mat.begin(), mat.end(), static_cast(tensor->data.data())); + tensor->dtype = GetPaddleDType(); + + return true; +} + +// Parse input tensors from string +bool ParseLine(const std::string &line, + std::vector *tensors) { + std::vector fields; + Split(line, ';', &fields); + + if (fields.size() < 5) return false; + + tensors->clear(); + tensors->reserve(5); + + int i = 0; + // src_id + paddle::PaddleTensor src_id; + ParseTensor(fields[i++], &src_id); + tensors->push_back(src_id); + + // pos_id + paddle::PaddleTensor pos_id; + ParseTensor(fields[i++], &pos_id); + tensors->push_back(pos_id); + + // segment_id + paddle::PaddleTensor segment_id; + ParseTensor(fields[i++], &segment_id); + tensors->push_back(segment_id); + + // self_attention_bias + paddle::PaddleTensor self_attention_bias; + ParseTensor(fields[i++], &self_attention_bias); + tensors->push_back(self_attention_bias); + + // next_segment_index + paddle::PaddleTensor next_segment_index; + ParseTensor(fields[i++], &next_segment_index); + tensors->push_back(next_segment_index); + + return true; +} + +bool LoadInputData(std::vector> *inputs) { + if (FLAGS_infer_data.empty()) { + LOG(ERROR) << "please set input data path"; + return false; + } + + std::ifstream fin(FLAGS_infer_data); + std::string line; + int sample = 0; + + // The unit-test dataset only have 10 samples, each sample have 5 feeds. + while (std::getline(fin, line)) { + std::vector feed_data; + ParseLine(line, &feed_data); + inputs->push_back(std::move(feed_data)); + sample++; + if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break; + } + LOG(INFO) << "number of samples: " << sample; + + return true; +} + +void SetConfig(contrib::AnalysisConfig *config) { + config->SetModel(FLAGS_infer_model); +} + +void profile(bool use_mkldnn = false) { + contrib::AnalysisConfig config; + SetConfig(&config); + + if (use_mkldnn) { + config.EnableMKLDNN(); + } + + std::vector outputs; + std::vector> inputs; + LoadInputData(&inputs); + TestPrediction(reinterpret_cast(&config), + inputs, &outputs, FLAGS_num_threads); +} + +TEST(Analyzer_bert, profile) { profile(); } +#ifdef PADDLE_WITH_MKLDNN +TEST(Analyzer_bert, profile_mkldnn) { profile(true); } +#endif + +// Check the fuse status +TEST(Analyzer_bert, fuse_statis) { + AnalysisConfig cfg; + SetConfig(&cfg); + int num_ops; + auto predictor = CreatePaddlePredictor(cfg); + auto fuse_statis = GetFuseStatis( + static_cast(predictor.get()), &num_ops); + LOG(INFO) << "num_ops: " << num_ops; +} + +// Compare result of NativeConfig and AnalysisConfig +void compare(bool use_mkldnn = false) { + AnalysisConfig cfg; + SetConfig(&cfg); + if (use_mkldnn) { + cfg.EnableMKLDNN(); + } + + std::vector> inputs; + LoadInputData(&inputs); + CompareNativeAndAnalysis( + reinterpret_cast(&cfg), inputs); +} + +TEST(Analyzer_bert, compare) { compare(); } +#ifdef PADDLE_WITH_MKLDNN +TEST(Analyzer_bert, compare_mkldnn) { compare(true /* use_mkldnn */); } +#endif + +// Compare Deterministic result +// TODO(luotao): Since each unit-test on CI only have 10 minutes, cancel this to +// decrease the CI time. +// TEST(Analyzer_bert, compare_determine) { +// AnalysisConfig cfg; +// SetConfig(&cfg); +// +// std::vector> inputs; +// LoadInputData(&inputs); +// CompareDeterministic(reinterpret_cast(&cfg), +// inputs); +// } +} // namespace inference +} // namespace paddle