diff --git a/.copyright.hook b/.copyright.hook new file mode 100644 index 0000000000..6bfe58cebc --- /dev/null +++ b/.copyright.hook @@ -0,0 +1,116 @@ +from __future__ import absolute_import +from __future__ import print_function +from __future__ import unicode_literals + +import argparse +import io, re +import sys, os +import subprocess +import platform + +COPYRIGHT = ''' + Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +''' + +LANG_COMMENT_MARK = None + +NEW_LINE_MARK = None + +COPYRIGHT_HEADER = None + +if platform.system() == "Windows": + NEW_LINE_MARK = "\r\n" +else: + NEW_LINE_MARK = '\n' + COPYRIGHT_HEADER = COPYRIGHT.split(NEW_LINE_MARK)[1] + p = re.search('(\d{4})', COPYRIGHT_HEADER).group(0) + process = subprocess.Popen(["date", "+%Y"], stdout=subprocess.PIPE) + date, err = process.communicate() + date = date.decode("utf-8").rstrip("\n") + COPYRIGHT_HEADER = COPYRIGHT_HEADER.replace(p, date) + + +def generate_copyright(template, lang='C'): + if lang == 'Python': + LANG_COMMENT_MARK = '#' + else: + LANG_COMMENT_MARK = "//" + + lines = template.split(NEW_LINE_MARK) + ans = LANG_COMMENT_MARK + " " + COPYRIGHT_HEADER + NEW_LINE_MARK + for lino, line in enumerate(lines): + if lino == 0 or lino == 1 or lino == len(lines) - 1: continue + ans += LANG_COMMENT_MARK + " " + line + NEW_LINE_MARK + + return ans + "\n" + + +def lang_type(filename): + if filename.endswith(".py"): + return "Python" + elif filename.endswith(".h"): + return "C" + elif filename.endswith(".hpp"): + return "C" + elif filename.endswith(".cc"): + return "C" + elif filename.endswith(".cpp"): + return "C" + elif filename.endswith(".cu"): + return "C" + elif filename.endswith(".cuh"): + return "C" + elif filename.endswith(".go"): + return "C" + elif filename.endswith(".proto"): + return "C" + else: + print("Unsupported filetype %s", filename) + exit(0) + + +PYTHON_ENCODE = re.compile("^[ \t\v]*#.*?coding[:=][ \t]*([-_.a-zA-Z0-9]+)") + + +def main(argv=None): + parser = argparse.ArgumentParser( + description='Checker for copyright declaration.') + parser.add_argument('filenames', nargs='*', help='Filenames to check') + args = parser.parse_args(argv) + + retv = 0 + for filename in args.filenames: + fd = io.open(filename) + first_line = fd.readline() + if "COPYRIGHT" in first_line.upper(): continue + if filename.endswith(".py"): + second_line = fd.readline() + if first_line.startswith("#!") or PYTHON_ENCODE.match( + second_line) != None or PYTHON_ENCODE.match( + first_line) != None: + continue + original_contents = io.open(filename).read() + new_contents = generate_copyright( + COPYRIGHT, lang_type(filename)) + original_contents + print('Auto Insert Copyright Header {}'.format(filename)) + retv = 1 + with io.open(filename, 'w') as output_file: + output_file.write(new_contents) + + return retv + + +if __name__ == '__main__': + exit(main()) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 59661c9c1d..89c620bb2f 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -31,3 +31,11 @@ - id: go-fmt types: - go +- repo: local + hooks: + - id: copyright_checker + name: copyright_checker + entry: python ./.copyright.hook + language: system + files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$ + exclude: (?!.*third_party)^.*$ | (?!.*book)^.*$ diff --git a/CMakeLists.txt b/CMakeLists.txt index c6c82b61e8..00996cb7ed 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -16,12 +16,14 @@ cmake_minimum_required(VERSION 3.0) set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake") set(PADDLE_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}) set(PADDLE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}) -SET(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG") -SET(CMAKE_C_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG") include(system) project(paddle CXX C Go) +message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: " + "${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION}") +message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: " + "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}") find_package(Sphinx) if(NOT CMAKE_CROSSCOMPILING) @@ -199,6 +201,10 @@ if(WITH_GOLANG) endif(WITH_GOLANG) set(PADDLE_PYTHON_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/python/build") + +SET(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG") +SET(CMAKE_C_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG") + add_subdirectory(paddle) if(WITH_PYTHON) add_subdirectory(python) diff --git a/CODE_OF_CONDUCT.md b/CODE_OF_CONDUCT.md new file mode 100644 index 0000000000..54131b48ec --- /dev/null +++ b/CODE_OF_CONDUCT.md @@ -0,0 +1,46 @@ +# Contributor Covenant Code of Conduct + +## Our Pledge + +In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation. + +## Our Standards + +Examples of behavior that contributes to creating a positive environment include: + +* Using welcoming and inclusive language +* Being respectful of differing viewpoints and experiences +* Gracefully accepting constructive criticism +* Focusing on what is best for the community +* Showing empathy towards other community members + +Examples of unacceptable behavior by participants include: + +* The use of sexualized language or imagery and unwelcome sexual attention or advances +* Trolling, insulting/derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or electronic address, without explicit permission +* Other conduct which could reasonably be considered inappropriate in a professional setting + +## Our Responsibilities + +Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. + +Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. + +## Scope + +This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at paddle-dev@baidu.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. + +Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at [http://contributor-covenant.org/version/1/4][version] + +[homepage]: http://contributor-covenant.org +[version]: http://contributor-covenant.org/version/1/4/ diff --git a/CODE_OF_CONDUCT_cn.md b/CODE_OF_CONDUCT_cn.md new file mode 100644 index 0000000000..2be794f1f3 --- /dev/null +++ b/CODE_OF_CONDUCT_cn.md @@ -0,0 +1,50 @@ +# 参与者公约 + +## 我们的保证 + +为了促进一个开放透明且友好的环境,我们作为贡献者和维护者保证:无论年龄、种族、民族、性别认同和表达(方式)、体型、身体健全与否、经验水平、国籍、个人表现、宗教或性别取向,参与者在我们项目和社区中都免于骚扰。 + +## 我们的标准 + +有助于创造正面环境的行为包括但不限于: +* 使用友好和包容性语言 +* 尊重不同的观点和经历 +* 耐心地接受建设性批评 +* 关注对社区最有利的事情 +* 友善对待其他社区成员 + +身为参与者不能接受的行为包括但不限于: +* 使用与性有关的言语或是图像,以及不受欢迎的性骚扰 +* 捣乱/煽动/造谣的行为或进行侮辱/贬损的评论,人身攻击及政治攻击 +* 公开或私下的骚扰 +* 未经许可地发布他人的个人资料,例如住址或是电子地址 +* 其他可以被合理地认定为不恰当或者违反职业操守的行为 + +## 我们的责任 + +项目维护者有责任为「可接受的行为」标准做出诠释,以及对已发生的不被接受的行为采取恰当且公平的纠正措施。 + +项目维护者有权利及责任去删除、编辑、拒绝与本行为标准有所违背的评论(comments)、提交(commits)、代码、wiki 编辑、问题(issues)和其他贡献,以及项目维护者可暂时或永久性的禁止任何他们认为有不适当、威胁、冒犯、有害行为的贡献者。 + +## 使用范围 + +当一个人代表该项目或是其社区时,本行为标准适用于其项目平台和公共平台。 + +代表项目或是社区的情况,举例来说包括使用官方项目的电子邮件地址、通过官方的社区媒体账号发布或线上或线下事件中担任指定代表。 + +该项目的呈现方式可由其项目维护者进行进一步的定义及解释。 + +## 强制执行 + +可以通过paddle-dev@baidu.com,来联系项目团队来举报滥用、骚扰或其他不被接受的行为。 + +任何维护团队认为有必要且适合的所有投诉都将进行审查及调查,并做出相对应的回应。项目小组有对事件回报者有保密的义务。具体执行的方针近一步细节可能会单独公布。 + +没有切实地遵守或是执行本行为标准的项目维护人员,可能会因项目领导人或是其他成员的决定,暂时或是永久地取消其参与资格。 + +## 来源 + +本行为标准改编自[贡献者公约][主页],版本 1.4 +可在此观看https://www.contributor-covenant.org/zh-cn/version/1/4/code-of-conduct.html + +[主页]: https://www.contributor-covenant.org diff --git a/README.md b/README.md index db0fbd88b2..d06375a444 100644 --- a/README.md +++ b/README.md @@ -2,8 +2,8 @@ [![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle) -[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://doc.paddlepaddle.org/develop/doc/) -[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://doc.paddlepaddle.org/develop/doc_cn/) +[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html) +[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html) [![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop) [![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases) [![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE) @@ -36,7 +36,8 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl examples: - Optimized math operations through SSE/AVX intrinsics, BLAS libraries - (e.g. MKL, ATLAS, cuBLAS) or customized CPU/GPU kernels. + (e.g. MKL, OpenBLAS, cuBLAS) or customized CPU/GPU kernels. + - Optimized CNN networks through MKL-DNN library. - Highly optimized recurrent networks which can handle **variable-length** sequence without padding. - Optimized local and distributed training for models with high dimensional @@ -61,32 +62,32 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl ## Installation It is recommended to check out the -[Docker installation guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/docker_install_en.html) +[Docker installation guide](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/docker_install_en.html) before looking into the -[build from source guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html). +[build from source guide](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/build_from_source_en.html). ## Documentation -We provide [English](http://doc.paddlepaddle.org/develop/doc/) and -[Chinese](http://doc.paddlepaddle.org/doc_cn/) documentation. +We provide [English](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html) and +[Chinese](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html) documentation. -- [Deep Learning 101](http://book.paddlepaddle.org/index.html) +- [Deep Learning 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html) You might want to start from this online interactive book that can run in a Jupyter Notebook. -- [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html) +- [Distributed Training](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/usage/cluster/cluster_train_en.html) You can run distributed training jobs on MPI clusters. -- [Distributed Training on Kubernetes](http://doc.paddlepaddle.org/develop/doc/howto/usage/k8s/k8s_en.html) +- [Distributed Training on Kubernetes](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/usage/cluster/k8s_en.html) You can also run distributed training jobs on Kubernetes clusters. -- [Python API](http://doc.paddlepaddle.org/develop/doc/api/index_en.html) +- [Python API](http://www.paddlepaddle.org/docs/develop/documentation/en/api/index_en.html) Our new API enables much shorter programs. -- [How to Contribute](http://doc.paddlepaddle.org/develop/doc/howto/dev/contribute_to_paddle_en.html) +- [How to Contribute](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/dev/contribute_to_paddle_en.html) We appreciate your contributions! diff --git a/RELEASE.cn.md b/RELEASE.cn.md index 5deaf230a8..494c59730d 100644 --- a/RELEASE.cn.md +++ b/RELEASE.cn.md @@ -1,3 +1,62 @@ +# v0.11.0版本 + +## PaddlePaddle Fluid + +- PaddlePaddle发布版本v0.11.0包含一个新的特性*PaddlePaddle Fluid*. Fluid 是设计用来让用户像Pytorch和Tensorflow Eager Execution一样执行程序。在这些系统中,不再有*模型*这个概念,应用也不再包含一个用于描述Operator图或者一系列层的符号描述,而是像通用程序那样描述训练或者预测的过程。而Fluid与PyTorch或Eager Execution的区别在于Fluid不依赖Python提供的控制流,例如 if-else-then或者for,而是提供了基于C++实现的控制流并暴露了对应的用with语法实现的Python接口。例如: + + https://github.com/PaddlePaddle/Paddle/blob/3df78ed2a98d37f7ae6725894cc7514effd5664b/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44 + +- 在v0.11.0版本中,我们提供了一个C++类`Executor`用于运行一个Fluid程序。Executor类似一个解释器。在未来的版本中,我们将提升和优化Executor成为一个调试器,就像GDB。并可能提供一些编译器,这个编译器会读取一个上文所描述的应用然后编译成一个等价的 +源代码,这个源代码可以被nvcc编译成可以使用CUDA的二进制,或者被icc编译成可以充分利用Intel CPU的二进制。 + + +## 新特点 + +* 发布 `PaddlePaddle Fluid`。 +* 增加了用于模型预测的C-API。 +* 用Fluid API实现了一个简单的GAN的例子。 +* 增加了关于性能调优的文档。 +* 为`paddle.v2.dataset`下载数据集提供了重试机制. +* C++中使用protobuf-lite替换protobuf减少了二进制的大小。 +* 发布了新特性 [Elastic Deep Learning (EDL)](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment). +* 基于Bazel API利用cmake实现了一个的新的构建系统函数库。 +* 当使用编译选项`WITH_MKL=ON`时自动下载和编译Intel® [MKLML](https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz) 函数库. +* [Intel® MKL-DNN on PaddlePaddle](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn): + - 完成了 11个 MKL-DNN 层: Convolution, Fully connectivity, Pooling, ReLU, Tanh, ELU, Softmax, BatchNorm, AddTo, Concat, LRN。 + - 完成了 3个 MKL-DNN 网络: VGG-19, ResNet-50, GoogleNet + - 基于Intel Skylake 6148 CPU的[性能测试](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) : 相对于MKLML有2~3倍的训练加速。 +* 增加 [softsign activation](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/activation.html#softsign) +* 增加 [dot product layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#dot-prod) +* 增加 [L2 distance layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#l2-distance) +* 增加 [sub-nested sequence layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#sub-nested-seq) +* 增加 [kmax sequence score layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#kmax-sequence-score) +* 增加 [sequence slice layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#seq-slice) +* 增加 [row convolution layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#row-conv) +* 增加移动端友好的网页 + +## 改进 + +* 使用一个Python`whl`包即可安装. +* [V2 API可以实现用户定制化评估](https://github.com/PaddlePaddle/models/tree/develop/ltr#训练过程中输出自定义评估指标)。 +* 将 `PADDLE_ONLY_CPU` 改为 `PADDLE_WITH_GPU`, 因为我们会支持多种设备。 +* 删除了有一些bug的BarrierStat。 +* 清理和删除了paddle::Parameter中未使用的函数。 +* 删除了ProtoDataProvider。 +* Huber loss同时支持回归和分类。 +* 为sequence pooling 层增加`stride`参数。 +* v2 API自动使用cudnn batch normalization。 +* 可以使用一个固定的参数名共享BN层的参数。 +* 2D convolution operation支持variable-dimension input特性。 +* 重构cmake中关于CUDA的部分并实现自动检测GPU架构的功能。 +* 优化网页导航。 + +## 错误修复 + +* 修复ROI pooling的Bug. cc9a761 +* 修复当label是dense vector是AUC变成0的问题. #5274 +* 修复WarpCTC 层的Bug. + + # v0.10.0版本 我们非常高兴发布了PaddlePaddle V0.10.0版,并开发了新的[Python API](http://research.baidu.com/paddlepaddles-new-api-simplifies-deep-learning-programs/)。 diff --git a/RELEASE.md b/RELEASE.md index 146f7afa7d..5a62c95513 100644 --- a/RELEASE.md +++ b/RELEASE.md @@ -1,3 +1,75 @@ +# Release v0.11.0 + +## PaddlePaddle Fluid + +- Release 0.11.0 includes a new feature *PaddlePaddle Fluid*. Fluid is + designed to allow users to program like PyTorch and TensorFlow Eager Execution. + In these systems, there is no longer the concept *model* and applications + do not include a symbolic description of a graph of operators nor a sequence + of layers. Instead, applications look exactly like a usual program that + describes a process of training or inference. The difference between + Fluid and PyTorch or Eager Execution is that Fluid doesn't rely on Python's + control-flow, `if-then-else` nor `for`. Instead, Fluid provides its + C++ implementations and their Python binding using the `with` statement. For an example + + https://github.com/PaddlePaddle/Paddle/blob/3df78ed2a98d37f7ae6725894cc7514effd5664b/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44 + +- In 0.11.0, we provides a C++ class `Executor` to run a Fluid program. +Executor works like an interpreter. In future version, we will improve +`Executor` into a debugger like GDB, and we might provide some compilers, +which, for example, takes an application like the above one, and outputs +an equivalent C++ source program, which can be compiled using +[`nvcc`](http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html) +to generate binaries that use CUDA, or using +[`icc`](https://software.intel.com/en-us/c-compilers) to generate binaries +that make full use of Intel CPUs. + +## New Features + +* Release `PaddlePaddle Fluid`. +* Add C-API for model inference +* Use fluid API to create a simple GAN demo. +* Add develop guide about performance tunning. +* Add retry when download `paddle.v2.dataset`. +* Linking protobuf-lite not protobuf in C++. Reduce the binary size. +* Feature [Elastic Deep Learning (EDL)](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment) released. +* A new style cmake functions for Paddle. It is based on Bazel API. +* Automatically download and compile with Intel® [MKLML](https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz) library as CBLAS when build `WITH_MKL=ON`. +* [Intel® MKL-DNN on PaddlePaddle](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn): + - Complete 11 MKL-DNN layers: Convolution, Fully connectivity, Pooling, ReLU, Tanh, ELU, Softmax, BatchNorm, AddTo, Concat, LRN. + - Complete 3 MKL-DNN networks: VGG-19, ResNet-50, GoogleNet + - [Benchmark](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) on Intel Skylake 6148 CPU: 2~3x training speedup compared with MKLML. +* Add the [`softsign` activation](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/activation.html#softsign). +* Add the [dot product layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#dot-prod). +* Add the [L2 distance layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#l2-distance). +* Add the [sub-nested sequence layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#sub-nested-seq). +* Add the [kmax sequence score layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#kmax-sequence-score). +* Add the [sequence slice layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#seq-slice). +* Add the [row convolution layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#row-conv) +* Add mobile friendly webpages. + +## Improvements + +* Build and install using a single `whl` package. +* [Custom evaluating in V2 API](https://github.com/PaddlePaddle/models/tree/develop/ltr#训练过程中输出自定义评估指标). +* Change `PADDLE_ONLY_CPU` to `PADDLE_WITH_GPU`, since we will support many kinds of devices. +* Remove buggy BarrierStat. +* Clean and remove unused functions in paddle::Parameter. +* Remove ProtoDataProvider. +* Huber loss supports both regression and classification. +* Add the `stride` parameter for sequence pooling layers. +* Enable v2 API use cudnn batch normalization automatically. +* The BN layer's parameter can be shared by a fixed the parameter name. +* Support variable-dimension input feature for 2D convolution operation. +* Refine cmake about CUDA to automatically detect GPU architecture. +* Improved website navigation. + +## Bug Fixes + +* Fix bug in ROI pooling. cc9a761 +* Fix AUC is zero when label is dense vector. #5274 +* Fix bug in WarpCTC layer. + # Release v0.10.0 We are glad to release version 0.10.0. In this version, we are happy to release the new diff --git a/benchmark/IntelOptimizedPaddle.md b/benchmark/IntelOptimizedPaddle.md index 16c2390fd3..8b7dc5b7db 100644 --- a/benchmark/IntelOptimizedPaddle.md +++ b/benchmark/IntelOptimizedPaddle.md @@ -2,28 +2,27 @@ Machine: -- Server - - Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket -- Laptop - - DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD - - i5 MacBook Pro (Retina, 13-inch, Early 2015) -- Desktop - - i7-6700k +- Server: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket +- Laptop: TBD System: CentOS release 6.3 (Final), Docker 1.12.1. -PaddlePaddle: paddlepaddle/paddle:latest (for MKLML and MKL-DNN), paddlepaddle/paddle:latest-openblas (for OpenBLAS) -- MKL-DNN tag v0.11 -- MKLML 2018.0.1.20171007 -- OpenBLAS v0.2.20 -(TODO: will rerun after 0.11.0) +PaddlePaddle: +- paddlepaddle/paddle:0.11.0 (for MKLML and MKL-DNN) + - MKL-DNN tag v0.11 + - MKLML 2018.0.1.20171007 +- paddlepaddle/paddle:0.11.0-openblas (for OpenBLAS) + - OpenBLAS v0.2.20 On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. ## Benchmark Model ### Server + +#### Training Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz +Pay attetion that the speed below includes forward, backward and parameter update time. So we can not directly compare the data with the benchmark of caffe `time` [command](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/caffe/image/run.sh#L9), which only contain forward and backward. The updating time of parameter would become very heavy when the weight size are large, especially on alexnet. Input image size - 3 * 224 * 224, Time: images/second @@ -35,9 +34,7 @@ Input image size - 3 * 224 * 224, Time: images/second | MKLML | 12.12 | 13.70 | 16.18 | | MKL-DNN | 28.46 | 29.83 | 30.44 | - -chart on batch size 128 -TBD + - ResNet-50 @@ -47,9 +44,7 @@ TBD | MKLML | 32.52 | 31.89 | 33.12 | | MKL-DNN | 81.69 | 82.35 | 84.08 | - -chart on batch size 128 -TBD + - GoogLeNet @@ -59,10 +54,59 @@ TBD | MKLML | 128.46| 137.89| 158.63 | | MKL-DNN     | 250.46| 264.83| 269.50 | -chart on batch size 128 -TBD + + +- AlexNet + +| BatchSize | 64 | 128 | 256 | +|--------------|--------| ------ | -------| +| OpenBLAS | 45.62 | 72.79 | 107.22 | +| MKLML | 66.37 | 105.60 | 144.04 | +| MKL-DNN | 399.00 | 498.94 | 626.53 | + + + +#### Inference +Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz +- VGG-19 + +| BatchSize | 1 | 2 | 4 | 8 | 16 | +|-----------|-------|-------|-------|-------|-------| +| OpenBLAS | 1.10 | 1.96 | 3.62 | 3.63 | 2.25 | +| MKLML | 5.58 | 9.80 | 15.15 | 21.21 | 28.67 | +| MKL-DNN | 75.07 | 88.64 | 82.58 | 92.29 | 96.75 | + + + +- ResNet-50 + +| BatchSize | 1 | 2 | 4 | 8 | 16 | +|-----------|-------|--------|--------|--------|--------| +| OpenBLAS | 3.31 | 6.72 | 11.59 | 13.17 | 9.27 | +| MKLML | 6.33 | 12.02 | 22.88 | 40.53 | 63.09 | +| MKL-DNN | 107.83| 148.84 | 177.78 | 189.35 | 217.69 | + + + +- GoogLeNet + +| BatchSize | 1 | 2 | 4 | 8 | 16 | +|-----------|--------|--------|--------|--------|--------| +| OpenBLAS | 12.06 | 23.56 | 34.48 | 36.45 | 23.12 | +| MKLML | 22.74 | 41.56 | 81.22 | 133.47 | 210.53 | +| MKL-DNN | 175.10 | 272.92 | 450.70 | 512.00 | 600.94 | + + + +- AlexNet + +| BatchSize | 1 | 2 | 4 | 8 | 16 | +|-----------|--------|--------|--------|--------|--------| +| OpenBLAS | 3.53 | 6.23 | 15.04 | 26.06 | 31.62 | +| MKLML | 21.32 | 36.55 | 73.06 | 131.15 | 192.77 | +| MKL-DNN | 442.91 | 656.41 | 719.10 | 847.68 | 850.51 | + + ### Laptop TBD -### Desktop -TBD diff --git a/benchmark/cluster/README.md b/benchmark/cluster/README.md new file mode 100644 index 0000000000..b619613ea7 --- /dev/null +++ b/benchmark/cluster/README.md @@ -0,0 +1,78 @@ +# Cluster Training Benchmark + +## Setup + +- Platform + - Kubernetes: v1.6.2 + - Linux Kernel: v3.10.0 + +- Resource + - CPU: 10 Cores per Pod + - Memory: 5GB per Pod + +- Docker Image + + We use different base Docker Image to run the benchmark on Kubernetes: + - PaddlePaddle v2: paddlepaddle/paddle:0.11.0 + - PaddlePaddle Fluid: paddlepaddle/paddle:[commit-id] + - TensorFlow: tensorflow/tensorflow:1.5.0-rc0 + +- Model + vgg16 is used in this benchmark. + +## Cases + +- Variable + - Batch Size of training data. + - PServer count of the training job. + - The number of trainers. + +- Invariant + - The resource of trainer/pserver Pod. + +### Measure the Performance for Different Batch Size + +- PServer Count: 40 +- Trainer Count: 100 +- Metrics: mini-batch / sec + +| Batch Size | 32 | 64 | 128 | 256 | +| -- | -- | -- | -- | -- | +| PaddlePaddle Fluid | - | - | - | - | +| PaddlePaddle v2 | - | - | - | - | +| TensorFlow | - | - | - | - | + +### Measure the Performance for Different PServer Count + +- Trainer Count: 100 +- Batch Size: 64 +- Metrics: mini-batch / sec + +| PServer Count | 10 | 20 | 40 | 60 | +| -- | -- | -- | -- | -- | +| PaddlePaddle Fluid | - | - | - | - | +| PaddlePaddle v2 | - | - | - | - | +| TensorFlow | - | - | - | - | + +### Measure Parallel Efficiency By Increasing Trainer Count + +- PServer Count: 20 +- Batch Size: 64 +- Metrics: + +$S = \div(T1, TN)$ + +which S is the ratio of T1 over TN, training time of 1 and N trainers. +The parallel efficiency is: + +$E = \div(S, N)$ + +| Trainer Counter | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | +| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | +| PaddlePaddle Fluid | - | - | - | - | - | - | - | - | - | - | - | +| PaddlePaddle v2 | - | - | - | - | - | - | - | - | - | - | - | - | +| TensorFlow | - | - | - | - | - | - | - | - | - | - | - | - | - | + +## Reproduce the benchmark + +TODO diff --git a/benchmark/figs/alexnet-cpu-infer.png b/benchmark/figs/alexnet-cpu-infer.png new file mode 100644 index 0000000000..6215ae4e42 Binary files /dev/null and b/benchmark/figs/alexnet-cpu-infer.png differ diff --git a/benchmark/figs/alexnet-cpu-train.png b/benchmark/figs/alexnet-cpu-train.png new file mode 100644 index 0000000000..b3200bbc04 Binary files /dev/null and b/benchmark/figs/alexnet-cpu-train.png differ diff --git a/benchmark/figs/googlenet-cpu-infer.png b/benchmark/figs/googlenet-cpu-infer.png new file mode 100644 index 0000000000..19478d433b Binary files /dev/null and b/benchmark/figs/googlenet-cpu-infer.png differ diff --git a/benchmark/figs/googlenet-cpu-train.png b/benchmark/figs/googlenet-cpu-train.png new file mode 100644 index 0000000000..4e86e058d0 Binary files /dev/null and b/benchmark/figs/googlenet-cpu-train.png differ diff --git a/benchmark/figs/resnet-cpu-infer.png b/benchmark/figs/resnet-cpu-infer.png new file mode 100644 index 0000000000..bc43d4b8d2 Binary files /dev/null and b/benchmark/figs/resnet-cpu-infer.png differ diff --git a/benchmark/figs/resnet-cpu-train.png b/benchmark/figs/resnet-cpu-train.png new file mode 100644 index 0000000000..96746b1759 Binary files /dev/null and b/benchmark/figs/resnet-cpu-train.png differ diff --git a/benchmark/figs/vgg-cpu-infer.png b/benchmark/figs/vgg-cpu-infer.png new file mode 100644 index 0000000000..3a51ec6c47 Binary files /dev/null and b/benchmark/figs/vgg-cpu-infer.png differ diff --git a/benchmark/figs/vgg-cpu-train.png b/benchmark/figs/vgg-cpu-train.png new file mode 100644 index 0000000000..6d548cfd59 Binary files /dev/null and b/benchmark/figs/vgg-cpu-train.png differ diff --git a/benchmark/paddle/image/alexnet.py b/benchmark/paddle/image/alexnet.py index 3358d43a4b..07f478d8fa 100644 --- a/benchmark/paddle/image/alexnet.py +++ b/benchmark/paddle/image/alexnet.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python from paddle.trainer_config_helpers import * @@ -6,10 +19,24 @@ height = 227 width = 227 num_class = 1000 batch_size = get_config_arg('batch_size', int, 128) +gp = get_config_arg('layer_num', int, 1) +is_infer = get_config_arg("is_infer", bool, False) +num_samples = get_config_arg('num_samples', int, 2560) -args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} +args = { + 'height': height, + 'width': width, + 'color': True, + 'num_class': num_class, + 'is_infer': is_infer, + 'num_samples': num_samples +} define_py_data_sources2( - "train.list", None, module="provider", obj="process", args=args) + "train.list" if not is_infer else None, + "test.list" if is_infer else None, + module="provider", + obj="process", + args=args) settings( batch_size=batch_size, @@ -31,7 +58,7 @@ net = img_pool_layer(input=net, pool_size=3, stride=2) # conv2 net = img_conv_layer( - input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=1) + input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=gp) net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75) net = img_pool_layer(input=net, pool_size=3, stride=2) @@ -40,11 +67,11 @@ net = img_conv_layer( input=net, filter_size=3, num_filters=384, stride=1, padding=1) # conv4 net = img_conv_layer( - input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=1) + input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=gp) # conv5 net = img_conv_layer( - input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=1) + input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=gp) net = img_pool_layer(input=net, pool_size=3, stride=2) net = fc_layer( @@ -59,6 +86,9 @@ net = fc_layer( layer_attr=ExtraAttr(drop_rate=0.5)) net = fc_layer(input=net, size=1000, act=SoftmaxActivation()) -lab = data_layer('label', num_class) -loss = cross_entropy(input=net, label=lab) -outputs(loss) +if is_infer: + outputs(net) +else: + lab = data_layer('label', num_class) + loss = cross_entropy(input=net, label=lab) + outputs(loss) diff --git a/benchmark/paddle/image/googlenet.py b/benchmark/paddle/image/googlenet.py index 7059c13bd2..3241be9c5f 100644 --- a/benchmark/paddle/image/googlenet.py +++ b/benchmark/paddle/image/googlenet.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python from paddle.trainer_config_helpers import * @@ -7,13 +20,15 @@ num_class = 1000 batch_size = get_config_arg('batch_size', int, 128) use_gpu = get_config_arg('use_gpu', bool, True) is_infer = get_config_arg("is_infer", bool, False) +num_samples = get_config_arg('num_samples', int, 2560) args = { 'height': height, 'width': width, 'color': True, 'num_class': num_class, - 'is_infer': is_infer + 'is_infer': is_infer, + 'num_samples': num_samples } define_py_data_sources2( "train.list" if not is_infer else None, diff --git a/benchmark/paddle/image/plotlog.py b/benchmark/paddle/image/plotlog.py new file mode 100644 index 0000000000..8679d4f272 --- /dev/null +++ b/benchmark/paddle/image/plotlog.py @@ -0,0 +1,114 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +import argparse +import matplotlib.pyplot as plt + + +def parse_args(): + parser = argparse.ArgumentParser('Parse Log') + parser.add_argument( + '--file_path', '-f', type=str, help='the path of the log file') + parser.add_argument( + '--sample_rate', + '-s', + type=float, + default=1.0, + help='the rate to take samples from log') + parser.add_argument( + '--log_period', '-p', type=int, default=1, help='the period of log') + + args = parser.parse_args() + return args + + +def parse_file(file_name): + loss = [] + error = [] + with open(file_name) as f: + for i, line in enumerate(f): + line = line.strip() + if not line.startswith('pass'): + continue + line_split = line.split(' ') + if len(line_split) != 5: + continue + + loss_str = line_split[2][:-1] + cur_loss = float(loss_str.split('=')[-1]) + loss.append(cur_loss) + + err_str = line_split[3][:-1] + cur_err = float(err_str.split('=')[-1]) + error.append(cur_err) + + accuracy = [1.0 - err for err in error] + + return loss, accuracy + + +def sample(metric, sample_rate): + interval = int(1.0 / sample_rate) + if interval > len(metric): + return metric[:1] + + num = len(metric) / interval + idx = [interval * i for i in range(num)] + metric_sample = [metric[id] for id in idx] + return metric_sample + + +def plot_metric(metric, + batch_id, + graph_title, + line_style='b-', + line_label='y', + line_num=1): + plt.figure() + plt.title(graph_title) + if line_num == 1: + plt.plot(batch_id, metric, line_style, label=line_label) + else: + for i in range(line_num): + plt.plot(batch_id, metric[i], line_style[i], label=line_label[i]) + plt.xlabel('batch') + plt.ylabel(graph_title) + plt.legend() + plt.savefig(graph_title + '.jpg') + plt.close() + + +def main(): + args = parse_args() + assert args.sample_rate > 0. and args.sample_rate <= 1.0, "The sample rate should in the range (0, 1]." + + loss, accuracy = parse_file(args.file_path) + batch = [args.log_period * i for i in range(len(loss))] + + batch_sample = sample(batch, args.sample_rate) + loss_sample = sample(loss, args.sample_rate) + accuracy_sample = sample(accuracy, args.sample_rate) + + plot_metric(loss_sample, batch_sample, 'loss', line_label='loss') + plot_metric( + accuracy_sample, + batch_sample, + 'accuracy', + line_style='g-', + line_label='accuracy') + + +if __name__ == '__main__': + main() diff --git a/benchmark/paddle/image/provider.py b/benchmark/paddle/image/provider.py index 927b175994..220c4bee35 100644 --- a/benchmark/paddle/image/provider.py +++ b/benchmark/paddle/image/provider.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import io, os import random import numpy as np @@ -14,6 +27,7 @@ def initHook(settings, height, width, color, num_class, **kwargs): else: settings.data_size = settings.height * settings.width settings.is_infer = kwargs.get('is_infer', False) + settings.num_samples = kwargs.get('num_samples', 2560) if settings.is_infer: settings.slots = [dense_vector(settings.data_size)] else: @@ -23,7 +37,7 @@ def initHook(settings, height, width, color, num_class, **kwargs): @provider( init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM) def process(settings, file_list): - for i in xrange(2560 if settings.is_infer else 1024): + for i in xrange(settings.num_samples): img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten() if settings.is_infer: yield img.astype('float32') diff --git a/benchmark/paddle/image/resnet.py b/benchmark/paddle/image/resnet.py index 4a14363ff1..acc6d31d4b 100644 --- a/benchmark/paddle/image/resnet.py +++ b/benchmark/paddle/image/resnet.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python from paddle.trainer_config_helpers import * @@ -7,13 +20,15 @@ num_class = 1000 batch_size = get_config_arg('batch_size', int, 64) layer_num = get_config_arg("layer_num", int, 50) is_infer = get_config_arg("is_infer", bool, False) +num_samples = get_config_arg('num_samples', int, 2560) args = { 'height': height, 'width': width, 'color': True, 'num_class': num_class, - 'is_infer': is_infer + 'is_infer': is_infer, + 'num_samples': num_samples } define_py_data_sources2( "train.list" if not is_infer else None, diff --git a/benchmark/paddle/image/run_mkldnn_infer.sh b/benchmark/paddle/image/run_mkl_infer.sh similarity index 95% rename from benchmark/paddle/image/run_mkldnn_infer.sh rename to benchmark/paddle/image/run_mkl_infer.sh index d795bcab1b..62c9bf6efd 100755 --- a/benchmark/paddle/image/run_mkldnn_infer.sh +++ b/benchmark/paddle/image/run_mkl_infer.sh @@ -37,7 +37,7 @@ function infer() { --trainer_count=1 \ --num_passes=1 \ --save_dir="models/${topology}-${layer_num}" \ - --config_args="batch_size=128,layer_num=${layer_num}" \ + --config_args="batch_size=128,layer_num=${layer_num},num_samples=256" \ > /dev/null 2>&1 echo "Done" fi @@ -79,8 +79,9 @@ fi # inference benchmark for use_mkldnn in True False; do for batchsize in 1 2 4 8 16; do - infer googlenet v1 $batchsize $use_mkldnn - infer resnet 50 $batchsize $use_mkldnn infer vgg 19 $batchsize $use_mkldnn + infer resnet 50 $batchsize $use_mkldnn + infer googlenet v1 $batchsize $use_mkldnn + infer alexnet 2 $batchsize $use_mkldnn done done diff --git a/benchmark/paddle/image/run_mkldnn_train.sh b/benchmark/paddle/image/run_mkl_train.sh similarity index 83% rename from benchmark/paddle/image/run_mkldnn_train.sh rename to benchmark/paddle/image/run_mkl_train.sh index 320206239a..03d2d378fb 100755 --- a/benchmark/paddle/image/run_mkldnn_train.sh +++ b/benchmark/paddle/image/run_mkl_train.sh @@ -28,6 +28,10 @@ function train() { --test_period=100 \ --config_args=$args \ 2>&1 | tee ${log} + + avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'` + fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'` + echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} } if [ ! -f "train.list" ]; then @@ -43,5 +47,6 @@ for use_mkldnn in True False; do train vgg 19 $batchsize $use_mkldnn train resnet 50 $batchsize $use_mkldnn train googlenet v1 $batchsize $use_mkldnn + train alexnet 2 $batchsize $use_mkldnn done done diff --git a/benchmark/paddle/image/run_openblas_infer.sh b/benchmark/paddle/image/run_openblas_infer.sh new file mode 100755 index 0000000000..a9a7b8a667 --- /dev/null +++ b/benchmark/paddle/image/run_openblas_infer.sh @@ -0,0 +1,69 @@ +set -e + +function clock_to_seconds() { + hours=`echo $1 | awk -F ':' '{print $1}'` + mins=`echo $1 | awk -F ':' '{print $2}'` + secs=`echo $1 | awk -F ':' '{print $3}'` + echo `awk 'BEGIN{printf "%.2f",('$secs' + '$mins' * 60 + '$hours' * 3600)}'` +} + +function infer() { + export OPENBLAS_MAIN_FREE=1 + topology=$1 + layer_num=$2 + bs=$3 + trainers=`nproc` + if [ $trainers -gt $bs ]; then + trainers=$bs + fi + log="logs/infer-${topology}-${layer_num}-${trainers}openblas-${bs}.log" + threads=$((`nproc` / trainers)) + if [ $threads -eq 0 ]; then + threads=1 + fi + export OPENBLAS_NUM_THREADS=$threads + + models_in="models/${topology}-${layer_num}/pass-00000/" + if [ ! -d $models_in ]; then + echo "./run_mkl_infer.sh to save the model first" + exit 0 + fi + log_period=$((32 / bs)) + paddle train --job=test \ + --config="${topology}.py" \ + --use_mkldnn=False \ + --use_gpu=False \ + --trainer_count=$trainers \ + --log_period=$log_period \ + --config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True,num_samples=256" \ + --init_model_path=$models_in \ + 2>&1 | tee ${log} + + # calculate the last 5 logs period time of 160(=32*5) samples, + # the time before are burning time. + start=`tail ${log} -n 7 | head -n 1 | awk -F ' ' '{print $2}' | xargs` + end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs` + start_sec=`clock_to_seconds $start` + end_sec=`clock_to_seconds $end` + fps=`awk 'BEGIN{printf "%.2f",(160 / ('$end_sec' - '$start_sec'))}'` + echo "Last 160 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log} + echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} +} + +if [ ! -f "train.list" ]; then + echo " " > train.list +fi +if [ ! -f "test.list" ]; then + echo " " > test.list +fi +if [ ! -d "logs" ]; then + mkdir logs +fi + +# inference benchmark +for batchsize in 1 2 4 8 16; do + infer vgg 19 $batchsize + infer resnet 50 $batchsize + infer googlenet v1 $batchsize + infer alexnet 2 $batchsize +done diff --git a/benchmark/paddle/image/run_openblas_train.sh b/benchmark/paddle/image/run_openblas_train.sh new file mode 100755 index 0000000000..935cff6f2c --- /dev/null +++ b/benchmark/paddle/image/run_openblas_train.sh @@ -0,0 +1,41 @@ +set -e + +function train() { + export OPENBLAS_NUM_THREADS=1 + topology=$1 + layer_num=$2 + bs=$3 + thread=`nproc` + # each trainer_count use only 1 core to avoid conflict + log="logs/train-${topology}-${layer_num}-${thread}openblas-${bs}.log" + args="batch_size=${bs},layer_num=${layer_num}" + config="${topology}.py" + paddle train --job=time \ + --config=$config \ + --use_mkldnn=False \ + --use_gpu=False \ + --trainer_count=$thread \ + --log_period=3 \ + --test_period=30 \ + --config_args=$args \ + 2>&1 | tee ${log} + + avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'` + fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'` + echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} +} + +if [ ! -f "train.list" ]; then + echo " " > train.list +fi +if [ ! -d "logs" ]; then + mkdir logs +fi + +# training benchmark +for batchsize in 64 128 256; do + train vgg 19 $batchsize + train resnet 50 $batchsize + train googlenet v1 $batchsize + train alexnet 2 $batchsize +done diff --git a/benchmark/paddle/image/smallnet_mnist_cifar.py b/benchmark/paddle/image/smallnet_mnist_cifar.py index 58879c454f..64a5da3220 100644 --- a/benchmark/paddle/image/smallnet_mnist_cifar.py +++ b/benchmark/paddle/image/smallnet_mnist_cifar.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python from paddle.trainer_config_helpers import * diff --git a/benchmark/paddle/image/vgg.py b/benchmark/paddle/image/vgg.py index 8d0a1e97a4..a357207a62 100644 --- a/benchmark/paddle/image/vgg.py +++ b/benchmark/paddle/image/vgg.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python from paddle.trainer_config_helpers import * @@ -7,13 +20,15 @@ num_class = 1000 batch_size = get_config_arg('batch_size', int, 64) layer_num = get_config_arg('layer_num', int, 19) is_infer = get_config_arg("is_infer", bool, False) +num_samples = get_config_arg('num_samples', int, 2560) args = { 'height': height, 'width': width, 'color': True, 'num_class': num_class, - 'is_infer': is_infer + 'is_infer': is_infer, + 'num_samples': num_samples } define_py_data_sources2( "train.list" if not is_infer else None, diff --git a/benchmark/paddle/rnn/provider.py b/benchmark/paddle/rnn/provider.py index 928ca75daf..c03df3a002 100644 --- a/benchmark/paddle/rnn/provider.py +++ b/benchmark/paddle/rnn/provider.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import io, os import random import numpy as np diff --git a/benchmark/paddle/rnn/rnn.py b/benchmark/paddle/rnn/rnn.py index 83eb3e5654..97005f2c35 100755 --- a/benchmark/paddle/rnn/rnn.py +++ b/benchmark/paddle/rnn/rnn.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python from paddle.trainer_config_helpers import * diff --git a/benchmark/tensorflow/image/alexnet.py b/benchmark/tensorflow/image/alexnet.py index f6a39ef778..edf462e6a1 100644 --- a/benchmark/tensorflow/image/alexnet.py +++ b/benchmark/tensorflow/image/alexnet.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from six.moves import xrange # pylint: disable=redefined-builtin from datetime import datetime import math diff --git a/benchmark/tensorflow/image/alexnet_multi_gpu.py b/benchmark/tensorflow/image/alexnet_multi_gpu.py index 7b5ee78f4d..90b8f16bca 100644 --- a/benchmark/tensorflow/image/alexnet_multi_gpu.py +++ b/benchmark/tensorflow/image/alexnet_multi_gpu.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from six.moves import xrange # pylint: disable=redefined-builtin from datetime import datetime import math diff --git a/benchmark/tensorflow/image/googlenet.py b/benchmark/tensorflow/image/googlenet.py index decf855b54..55431eceb3 100644 --- a/benchmark/tensorflow/image/googlenet.py +++ b/benchmark/tensorflow/image/googlenet.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from six.moves import xrange from datetime import datetime import math diff --git a/benchmark/tensorflow/image/googlenet_multi_gpu.py b/benchmark/tensorflow/image/googlenet_multi_gpu.py index 31466faa37..44de3800a8 100644 --- a/benchmark/tensorflow/image/googlenet_multi_gpu.py +++ b/benchmark/tensorflow/image/googlenet_multi_gpu.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from six.moves import xrange # pylint: disable=redefined-builtin from datetime import datetime import math diff --git a/benchmark/tensorflow/image/smallnet_mnist_cifar.py b/benchmark/tensorflow/image/smallnet_mnist_cifar.py index 1a625134a6..0858b5f9c9 100644 --- a/benchmark/tensorflow/image/smallnet_mnist_cifar.py +++ b/benchmark/tensorflow/image/smallnet_mnist_cifar.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from six.moves import xrange # pylint: disable=redefined-builtin from datetime import datetime import math diff --git a/benchmark/tensorflow/rnn/reader.py b/benchmark/tensorflow/rnn/reader.py index f538329a15..710940c9ae 100755 --- a/benchmark/tensorflow/rnn/reader.py +++ b/benchmark/tensorflow/rnn/reader.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import os.path import io import numpy as np diff --git a/benchmark/tensorflow/rnn/rnn.py b/benchmark/tensorflow/rnn/rnn.py index f288083e13..507481b9cc 100755 --- a/benchmark/tensorflow/rnn/rnn.py +++ b/benchmark/tensorflow/rnn/rnn.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python from six.moves import xrange # pylint: disable=redefined-builtin import math diff --git a/benchmark/tensorflow/rnn/rnn_multi_gpu.py b/benchmark/tensorflow/rnn/rnn_multi_gpu.py index eabee4fa8f..f24cbaef62 100755 --- a/benchmark/tensorflow/rnn/rnn_multi_gpu.py +++ b/benchmark/tensorflow/rnn/rnn_multi_gpu.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python from six.moves import xrange # pylint: disable=redefined-builtin import re diff --git a/cmake/cblas.cmake b/cmake/cblas.cmake index b21fc43904..6320b17520 100644 --- a/cmake/cblas.cmake +++ b/cmake/cblas.cmake @@ -3,7 +3,7 @@ # It will search MKLML, atlas, OpenBlas, reference-cblas in order. # # If any cblas implementation found, the following variable will be set. -# CBLAS_PROVIDER # one of MKLML, ATLAS, OPENBLAS, REFERENCE +# CBLAS_PROVIDER # one of MKLML, OPENBLAS, REFERENCE # CBLAS_INC_DIR # the include directory for cblas. # CBLAS_LIBS # a list of libraries should be linked by paddle. # # Each library should be full path to object file. @@ -17,7 +17,7 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB) set(CBLAS_INC_DIR ${MKLML_INC_DIR}) set(CBLAS_LIBRARIES ${MKLML_LIB}) - add_definitions(-DPADDLE_USE_MKLML) + add_definitions(-DPADDLE_WITH_MKLML) add_definitions(-DLAPACK_FOUND) message(STATUS "Found cblas and lapack in MKLML " @@ -25,42 +25,6 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB) return() endif() -## Then find atlas. -set(ATLAS_ROOT $ENV{ATLAS_ROOT} CACHE PATH "Folder contains Atlas") -set(ATLAS_INCLUDE_SEARCH_PATHS - ${ATLAS_ROOT}/include - /usr/include - /usr/include/atlas) -set(ATLAS_LIB_SEARCH_PATHS - ${ATLAS_ROOT}/lib - /usr/lib - /usr/lib/blas/atlas - /usr/lib/atlas - /usr/lib/atlas-base # special for ubuntu 14.04. - ) -find_path(ATLAS_INC_DIR NAMES cblas.h - PATHS ${ATLAS_INCLUDE_SEARCH_PATHS}) -find_path(ATLAS_CLAPACK_INC_DIR NAMES clapack.h - PATHS ${ATLAS_INCLUDE_SEARCH_PATHS}) -find_library(ATLAS_CBLAS_LIB NAMES cblas libcblas.so.3 - PATHS ${ATLAS_LIB_SEARCH_PATHS}) -find_library(ATLAS_CLAPACK_LIB NAMES lapack_atlas liblapack_atlas.so.3 - PATHS ${ATLAS_LIB_SEARCH_PATHS}) - -if(ATLAS_CLAPACK_INC_DIR AND ATLAS_INC_DIR AND ATLAS_CBLAS_LIB AND ATLAS_CLAPACK_LIB) - set(CBLAS_FOUND ON) - set(CBLAS_PROVIDER ATLAS) - set(CBLAS_INC_DIR ${ATLAS_INC_DIR} ${ATLAS_CLAPACK_INC_DIR}) - set(CBLAS_LIBRARIES ${ATLAS_CLAPACK_LIB} ${ATLAS_CBLAS_LIB}) - - add_definitions(-DPADDLE_USE_ATLAS) - add_definitions(-DLAPACK_FOUND) - - message(STATUS "Found ATLAS (include: ${ATLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})") - message(STATUS "Found lapack in ATLAS (include: ${ATLAS_CLAPACK_INC_DIR})") - return() -endif() - ## Then find openblas. set(OPENBLAS_ROOT $ENV{OPENBLAS_ROOT} CACHE PATH "Folder contains Openblas") set(OPENBLAS_INCLUDE_SEARCH_PATHS diff --git a/cmake/external/eigen.cmake b/cmake/external/eigen.cmake index 96fc886a34..c4712f19eb 100644 --- a/cmake/external/eigen.cmake +++ b/cmake/external/eigen.cmake @@ -19,7 +19,7 @@ ExternalProject_Add( if (${CMAKE_VERSION} VERSION_LESS "3.3.0") set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/eigen3_dummy.c) - file(WRITE ${dummyfile} "const char * dummy_eigen3 = \"${dummyfile}\";") + file(WRITE ${dummyfile} "const char *dummy_eigen3 = \"${dummyfile}\";") add_library(eigen3 STATIC ${dummyfile}) else() add_library(eigen3 INTERFACE) diff --git a/cmake/external/grpc.cmake b/cmake/external/grpc.cmake index abee6698e3..79b2449fe6 100644 --- a/cmake/external/grpc.cmake +++ b/cmake/external/grpc.cmake @@ -33,7 +33,7 @@ ExternalProject_Add( extern_grpc DEPENDS protobuf zlib GIT_REPOSITORY "https://github.com/grpc/grpc.git" - GIT_TAG "v1.7.x" + GIT_TAG "v1.8.x" PREFIX ${GRPC_SOURCES_DIR} UPDATE_COMMAND "" CONFIGURE_COMMAND "" diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake index fc52d339d7..89fc34796a 100644 --- a/cmake/external/mkldnn.cmake +++ b/cmake/external/mkldnn.cmake @@ -63,9 +63,30 @@ ExternalProject_Add( -DMKLROOT:PATH=${MKLML_ROOT} ) -ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) -SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) -ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) +ADD_LIBRARY(shared_mkldnn SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET shared_mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) +ADD_DEPENDENCIES(shared_mkldnn ${MKLDNN_PROJECT}) MESSAGE(STATUS "MKLDNN library: ${MKLDNN_LIB}") -add_definitions(-DPADDLE_USE_MKLDNN) -LIST(APPEND external_project_dependencies mkldnn) +add_definitions(-DPADDLE_WITH_MKLDNN) +LIST(APPEND external_project_dependencies shared_mkldnn) + +# generate a static dummy target to track mkldnn dependencies +# for cc_library(xxx SRCS xxx.c DEPS mkldnn) +SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/mkldnn_dummy.c) +FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") +ADD_LIBRARY(mkldnn STATIC ${dummyfile}) +TARGET_LINK_LIBRARIES(mkldnn ${MKLDNN_LIB} ${MKLML_LIB} ${MKLML_IOMP_LIB}) +ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) + +# copy the real so.0 lib to install dir +# it can be directly contained in wheel or capi +SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0) +ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB} + COMMAND cp ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB} + DEPENDS mkldnn) +ADD_CUSTOM_TARGET(mkldnn_shared_lib ALL DEPENDS ${MKLDNN_SHARED_LIB}) + +IF(WITH_C_API) + INSTALL(FILES ${MKLDNN_SHARED_LIB} DESTINATION lib) +ENDIF() + diff --git a/cmake/external/mklml.cmake b/cmake/external/mklml.cmake index 20dbc32a73..15a07ea3da 100644 --- a/cmake/external/mklml.cmake +++ b/cmake/external/mklml.cmake @@ -66,3 +66,7 @@ ADD_LIBRARY(mklml SHARED IMPORTED GLOBAL) SET_PROPERTY(TARGET mklml PROPERTY IMPORTED_LOCATION ${MKLML_LIB}) ADD_DEPENDENCIES(mklml ${MKLML_PROJECT}) LIST(APPEND external_project_dependencies mklml) + +IF(WITH_C_API) + INSTALL(FILES ${MKLML_LIB} ${MKLML_IOMP_LIB} DESTINATION lib) +ENDIF() diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake index 97857a686b..0e79c0cc79 100644 --- a/cmake/external/openblas.cmake +++ b/cmake/external/openblas.cmake @@ -30,23 +30,21 @@ IF(NOT ${CBLAS_FOUND}) CACHE FILEPATH "openblas library." FORCE) SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -Wno-unused-but-set-variable -Wno-unused-variable") + SET(OPENBLAS_COMMIT "v0.2.20") IF(CMAKE_CROSSCOMPILING) SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER}) GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY) SET(CROSS_SUFFIX ${CROSS_SUFFIX}/) IF(ANDROID) - # arm_soft_fp_abi branch of OpenBLAS to support softfp - # https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi - SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") + # use softfp SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0) ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0) ENDIF() ELSEIF(IOS) IF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64") - SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}") SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX}) @@ -56,14 +54,12 @@ IF(NOT ${CBLAS_FOUND}) ENDIF() ELSEIF(RPI) # use hardfp - SET(OPENBLAS_COMMIT "v0.2.20") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0) ENDIF() ELSE() IF(APPLE) SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}") ENDIF() - SET(OPENBLAS_COMMIT "v0.2.20") SET(OPTIONAL_ARGS "") IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$") SET(OPTIONAL_ARGS DYNAMIC_ARCH=1 NUM_THREADS=64) @@ -113,7 +109,7 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR}) # FIXME(gangliao): generate cblas target to track all high performance # linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas) SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c) -FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") +FILE(WRITE ${dummyfile} "const char *dummy_cblas = \"${dummyfile}\";") ADD_LIBRARY(cblas STATIC ${dummyfile}) TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES}) diff --git a/cmake/external/protobuf.cmake b/cmake/external/protobuf.cmake index fab2af362b..ff5855052d 100644 --- a/cmake/external/protobuf.cmake +++ b/cmake/external/protobuf.cmake @@ -253,9 +253,9 @@ IF(NOT PROTOBUF_FOUND) IF(WITH_C_API) INSTALL(DIRECTORY ${PROTOBUF_INCLUDE_DIR} DESTINATION third_party/protobuf) IF(ANDROID) - INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI}) + INSTALL(FILES ${PROTOBUF_LITE_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI}) ELSE() - INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib) + INSTALL(FILES ${PROTOBUF_LITE_LIBRARY} DESTINATION third_party/protobuf/lib) ENDIF() ENDIF() diff --git a/cmake/external/warpctc.cmake b/cmake/external/warpctc.cmake index a8e1aca49c..7cb4efa7bf 100644 --- a/cmake/external/warpctc.cmake +++ b/cmake/external/warpctc.cmake @@ -63,7 +63,7 @@ ExternalProject_Add( MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}") INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) -ADD_LIBRARY(warpctc STATIC IMPORTED GLOBAL) +ADD_LIBRARY(warpctc SHARED IMPORTED GLOBAL) SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES}) ADD_DEPENDENCIES(warpctc extern_warpctc) diff --git a/cmake/generic.cmake b/cmake/generic.cmake index 66c8e3ad7e..585db019d5 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -120,7 +120,7 @@ function(merge_static_libs TARGET_NAME) DEPENDS ${libs}) # Generate dummy staic lib - file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";") + file(WRITE ${target_SRCS} "const char *dummy_${TARGET_NAME} = \"${target_SRCS}\";") add_library(${TARGET_NAME} STATIC ${target_SRCS}) target_link_libraries(${TARGET_NAME} ${libs_deps}) @@ -160,7 +160,7 @@ function(merge_static_libs TARGET_NAME) DEPENDS ${libs} ${target_OBJS}) # Generate dummy staic lib - file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";") + file(WRITE ${target_SRCS} "const char *dummy_${TARGET_NAME} = \"${target_SRCS}\";") add_library(${TARGET_NAME} STATIC ${target_SRCS}) target_link_libraries(${TARGET_NAME} ${libs_deps}) @@ -324,7 +324,7 @@ function(go_library TARGET_NAME) ) # Add dummy code to support `make target_name` under Terminal Command - file(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") + file(WRITE ${dummyfile} "const char *dummy_${TARGET_NAME} = \"${dummyfile}\";") if (go_library_SHARED OR go_library_shared) add_library(${TARGET_NAME} SHARED ${dummyfile}) else() diff --git a/cmake/make_resource.py b/cmake/make_resource.py index a9241b0e3e..d71e82eca2 100644 --- a/cmake/make_resource.py +++ b/cmake/make_resource.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import os import re import sys diff --git a/doc/api/index_cn.rst b/doc/api/index_cn.rst index 9be0b370ee..84f9097a6c 100644 --- a/doc/api/index_cn.rst +++ b/doc/api/index_cn.rst @@ -7,3 +7,4 @@ API 模型配置 数据访问 训练与应用 + v2/fluid.rst diff --git a/doc/api/v1/data_provider/src/mnist_config.py b/doc/api/v1/data_provider/src/mnist_config.py index 429338c57f..427e0465a6 100644 --- a/doc/api/v1/data_provider/src/mnist_config.py +++ b/doc/api/v1/data_provider/src/mnist_config.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * define_py_data_sources2( diff --git a/doc/api/v1/data_provider/src/mnist_provider.dict.py b/doc/api/v1/data_provider/src/mnist_provider.dict.py index 2ba0b126a0..3fbb783e2f 100644 --- a/doc/api/v1/data_provider/src/mnist_provider.dict.py +++ b/doc/api/v1/data_provider/src/mnist_provider.dict.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer.PyDataProvider2 import * diff --git a/doc/api/v1/data_provider/src/sentimental_config.py b/doc/api/v1/data_provider/src/sentimental_config.py index 7ce71608a2..edbf3cf140 100644 --- a/doc/api/v1/data_provider/src/sentimental_config.py +++ b/doc/api/v1/data_provider/src/sentimental_config.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * dictionary = dict() diff --git a/doc/api/v1/data_provider/src/sentimental_provider.py b/doc/api/v1/data_provider/src/sentimental_provider.py index 14bd0e05a9..03ad1fe7d8 100644 --- a/doc/api/v1/data_provider/src/sentimental_provider.py +++ b/doc/api/v1/data_provider/src/sentimental_provider.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer.PyDataProvider2 import * diff --git a/doc/api/v2/config/activation.rst b/doc/api/v2/config/activation.rst index eca3ce03bc..5317e66b64 100644 --- a/doc/api/v2/config/activation.rst +++ b/doc/api/v2/config/activation.rst @@ -99,3 +99,10 @@ STanh .. automodule:: paddle.v2.activation :members: STanh :noindex: + +SoftSign +======== + +.. automodule:: paddle.v2.activation + :members: SoftSign + :noindex: diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index c3f9c18d06..ddf0b055a9 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -252,6 +252,11 @@ first_seq .. autoclass:: paddle.v2.layer.first_seq :noindex: +sub_seq +--------- +.. autoclass:: paddle.v2.layer.sub_seq + :noindex: + concat ------ .. autoclass:: paddle.v2.layer.concat @@ -467,7 +472,7 @@ lambda_cost :noindex: square_error_cost --------- +----------------- .. autoclass:: paddle.v2.layer.square_error_cost :noindex: @@ -533,7 +538,7 @@ Miscs ===== dropout --------------- +-------- .. autoclass:: paddle.v2.layer.dropout :noindex: diff --git a/doc/api/v2/fluid.rst b/doc/api/v2/fluid.rst index 43fc19dc49..5f15cad2b5 100644 --- a/doc/api/v2/fluid.rst +++ b/doc/api/v2/fluid.rst @@ -15,4 +15,4 @@ Fluid fluid/param_attr.rst fluid/profiler.rst fluid/regularizer.rst - + fluid/io.rst diff --git a/doc/api/v2/fluid/io.rst b/doc/api/v2/fluid/io.rst new file mode 100644 index 0000000000..67f68c4e9e --- /dev/null +++ b/doc/api/v2/fluid/io.rst @@ -0,0 +1,10 @@ +=========== +IO +=========== + + + +is_parameter +----------- +.. autofunction:: paddle.v2.fluid.io.is_parameter + :noindex: diff --git a/doc/api/v2/fluid/layers.rst b/doc/api/v2/fluid/layers.rst index 89e5fec13b..0eb531cf02 100644 --- a/doc/api/v2/fluid/layers.rst +++ b/doc/api/v2/fluid/layers.rst @@ -19,17 +19,17 @@ dynamic_lstm :noindex: data ---------- +---- .. autofunction:: paddle.v2.fluid.layers.data :noindex: mean ---------- +---- .. autofunction:: paddle.v2.fluid.layers.mean :noindex: mul ---------- +--- .. autofunction:: paddle.v2.fluid.layers.mul :noindex: @@ -38,6 +38,16 @@ elementwise_add .. autofunction:: paddle.v2.fluid.layers.elementwise_add :noindex: +elementwise_sub +--------------- +.. autofunction:: paddle.v2.fluid.layers.elementwise_sub + :noindex: + +elementwise_mul +--------------- +.. autofunction:: paddle.v2.fluid.layers.elementwise_mul + :noindex: + elementwise_div --------------- .. autofunction:: paddle.v2.fluid.layers.elementwise_div @@ -45,13 +55,13 @@ elementwise_div dropout ---------- +------- .. autofunction:: paddle.v2.fluid.layers.dropout :noindex: reshape ---------- +-------- .. autofunction:: paddle.v2.fluid.layers.reshape :noindex: @@ -68,12 +78,6 @@ scale :noindex: -reshape ---------- -.. autofunction:: paddle.v2.fluid.layers.reshape - :noindex: - - transpose --------- .. autofunction:: paddle.v2.fluid.layers.transpose @@ -81,67 +85,67 @@ transpose sigmoid_cross_entropy_with_logits ---------- +--------------------------------- .. autofunction:: paddle.v2.fluid.layers.esigmoid_cross_entropy_with_logits :noindex: cast ---------- +---- .. autofunction:: paddle.v2.fluid.layers.cast :noindex: concat ---------- +------- .. autofunction:: paddle.v2.fluid.layers.concat :noindex: sums ---------- +---- .. autofunction:: paddle.v2.fluid.layers.sums :noindex: linear_chain_crf ---------- +---------------- .. autofunction:: paddle.v2.fluid.layers.linear_chain_crf :noindex: assign ---------- +------- .. autofunction:: paddle.v2.fluid.layers.embedding :noindex: split_lod_tensor ---------- +---------------- .. autofunction:: paddle.v2.fluid.layers.split_lod_tensor :noindex: merge_lod_tensor ---------- +---------------- .. autofunction:: paddle.v2.fluid.layers.merge_lod_tensor :noindex: cos_sim ---------- +-------- .. autofunction:: paddle.v2.fluid.layers.cos_sim :noindex: cross_entropy ---------- +------------- .. autofunction:: paddle.v2.fluid.layers.cross_entropy :noindex: square_error_cost ---------- +----------------- .. autofunction:: paddle.v2.fluid.layers.square_error_cost :noindex: @@ -153,74 +157,80 @@ accuracy sequence_conv ---------- +------------- .. autofunction:: paddle.v2.fluid.layers.sequence_conv :noindex: conv2d ---------- +------ .. autofunction:: paddle.v2.fluid.layers.conv2d :noindex: sequence_pool ---------- +------------- .. autofunction:: paddle.v2.fluid.layers.sequence_pool :noindex: +sequence_first_step +------------------- +.. autofunction:: paddle.v2.fluid.layers.sequence_first_step + :noindex: + + +sequence_last_step +------------------ +.. autofunction:: paddle.v2.fluid.layers.sequence_last_step + :noindex: + + pool2d ---------- +------ .. autofunction:: paddle.v2.fluid.layers.pool2d :noindex: batch_norm ---------- +---------- .. autofunction:: paddle.v2.fluid.layers.batch_norm :noindex: beam_search_decode ---------- +------------------ .. autofunction:: paddle.v2.fluid.layers.beam_search_decode :noindex: -lstm ---------- -.. autofunction:: paddle.v2.fluid.layers.lstm - :noindex: - - lod_rank_table ---------- +-------------- .. autofunction:: paddle.v2.fluid.layers.lod_rank_table :noindex: max_sequence_len ---------- +---------------- .. autofunction:: paddle.v2.fluid.layers.max_sequence_len :noindex: topk ---------- +----- .. autofunction:: paddle.v2.fluid.layers.topk :noindex: lod_tensor_to_array ---------- +------------------- .. autofunction:: paddle.v2.fluid.layers.lod_tensor_to_array :noindex: array_to_lod_tensor ---------- +------------------- .. autofunction:: paddle.v2.fluid.layers.array_to_lod_tensor :noindex: @@ -228,26 +238,26 @@ array_to_lod_tensor fill_constant ---------- +------------- .. autofunction:: paddle.v2.fluid.layers.fill_constant :noindex: fill_constant_batch_size_like ---------- +----------------------------- .. autofunction:: paddle.v2.fluid.layers.fill_constant_batch_size_like :noindex: ones ---------- +---- .. autofunction:: paddle.v2.fluid.layers.ones :noindex: zeros ---------- +----- .. autofunction:: paddle.v2.fluid.layers.zeros :noindex: @@ -259,14 +269,14 @@ increment array_write ---------- +----------- .. autofunction:: paddle.v2.fluid.layers.array_write :noindex: create_array ---------- +------------ .. autofunction:: paddle.v2.fluid.layers.create_array :noindex: @@ -278,25 +288,219 @@ less_than array_read ---------- +---------- .. autofunction:: paddle.v2.fluid.layers.array_read :noindex: shrink_memory ---------- +-------------- .. autofunction:: paddle.v2.fluid.layers.shrink_memory :noindex: array_length ---------- +------------- .. autofunction:: paddle.v2.fluid.layers.array_length :noindex: conv2d_transpose ---------- +---------------- .. autofunction:: paddle.v2.fluid.layers.conv2d_transpose :noindex: + +sequence_expand +--------------- +.. autofunction:: paddle.v2.fluid.layers.sequence_expand + :noindex: + + +gru_unit +-------- +.. autofunction:: paddle.v2.fluid.layers.gru_unit + :noindex: + + +lstm_unit +--------- +.. autofunction:: paddle.v2.fluid.layers.lstm_unit + :noindex: + + +sequence_softmax +---------------- +.. autofunction:: paddle.v2.fluid.layers.sequence_softmax + :noindex: + + +reduce_sum +---------- +.. autofunction:: paddle.v2.fluid.layers.reduce_sum + :noindex: + + +reduce_mean +----------- +.. autofunction:: paddle.v2.fluid.layers.reduce_mean + :noindex: + + +reduce_max +---------- +.. autofunction:: paddle.v2.fluid.layers.reduce_max + :noindex: + + +reduce_min +---------- +.. autofunction:: paddle.v2.fluid.layers.reduce_min + :noindex: + + +split +----- +.. autofunction:: paddle.v2.fluid.layers.split + :noindex: + + +matmul +------ +.. autofunction:: paddle.v2.fluid.layers.matmul + :noindex: + +logsigmoid +---------- +.. autofunction:: paddle.v2.fluid.layers.logsigmoid + :noindex: + +exp +--- +.. autofunction:: paddle.v2.fluid.layers.exp + :noindex: + +relu +---- +.. autofunction:: paddle.v2.fluid.layers.relu + :noindex: + +tanh +---- +.. autofunction:: paddle.v2.fluid.layers.tanh + :noindex: + +tanh_shrink +----------- +.. autofunction:: paddle.v2.fluid.layers.tanh_shrink + :noindex: + +softshrink +---------- +.. autofunction:: paddle.v2.fluid.layers.softshrink + :noindex: + +sqrt +---- +.. autofunction:: paddle.v2.fluid.layers.sqrt + :noindex: + +abs +---- +.. autofunction:: paddle.v2.fluid.layers.abs + :noindex: + +ceil +---- +.. autofunction:: paddle.v2.fluid.layers.ceil + :noindex: + +floor +----- +.. autofunction:: paddle.v2.fluid.layers.floor + :noindex: + +round +----- +.. autofunction:: paddle.v2.fluid.layers.round + :noindex: + +reciprocal +---------- +.. autofunction:: paddle.v2.fluid.layers.reciprocal + :noindex: + +log +--- +.. autofunction:: paddle.v2.fluid.layers.log + :noindex: + +square +------ +.. autofunction:: paddle.v2.fluid.layers.square + :noindex: + +softplus +-------- +.. autofunction:: paddle.v2.fluid.layers.softplus + :noindex: + +softsign +--------- +.. autofunction:: paddle.v2.fluid.layers.softsign + :noindex: + +brelu +----- +.. autofunction:: paddle.v2.fluid.layers.brelu + :noindex: + +leaky_relu +---------- +.. autofunction:: paddle.v2.fluid.layers.leaky_relu + :noindex: + +soft_relu +--------- +.. autofunction:: paddle.v2.fluid.layers.soft_relu + :noindex: + +elu +---- +.. autofunction:: paddle.v2.fluid.layers.elu + :noindex: + +relu6 +----- +.. autofunction:: paddle.v2.fluid.layers.relu6 + :noindex: + +pow +---- +.. autofunction:: paddle.v2.fluid.layers.pow + :noindex: + +hard_shrink +----------- +.. autofunction:: paddle.v2.fluid.layers.hard_shrink + :noindex: + +thresholded_relu +---------------- +.. autofunction:: paddle.v2.fluid.layers.thresholded_relu + :noindex: + +hard_sigmoid +------------- +.. autofunction:: paddle.v2.fluid.layers.hard_sigmoid + :noindex: + +swish +------ +.. autofunction:: paddle.v2.fluid.layers.swish + :noindex: + +l2_normalize +------------ +.. autofunction:: paddle.v2.fluid.layers.l2_normalize + :noindex: diff --git a/doc/api/v2/fluid/nets.rst b/doc/api/v2/fluid/nets.rst index 2c3d075422..f6b1cb4ba1 100644 --- a/doc/api/v2/fluid/nets.rst +++ b/doc/api/v2/fluid/nets.rst @@ -3,20 +3,31 @@ Nets =========== simple_img_conv_pool ------------ +-------------------- .. autofunction:: paddle.v2.fluid.nets.simple_img_conv_pool :noindex: img_conv_group ------------ +--------------- .. autofunction:: paddle.v2.fluid.nets.img_conv_group :noindex: sequence_conv_pool ------------ +------------------ .. autofunction:: paddle.v2.fluid.nets.sequence_conv_pool :noindex: +glu +--- +.. autofunction:: paddle.v2.fluid.nets.glu + :noindex: + + +dot_product_attention +--------------------- +.. autofunction:: paddle.v2.fluid.nets.dot_product_attention + :noindex: + diff --git a/doc/api/v2/fluid/optimizer.rst b/doc/api/v2/fluid/optimizer.rst index 233762fcdf..19b4940f08 100644 --- a/doc/api/v2/fluid/optimizer.rst +++ b/doc/api/v2/fluid/optimizer.rst @@ -18,7 +18,7 @@ SGDOptimizer MomentumOptimizer ------------ +----------------- .. automodule:: paddle.v2.fluid.optimizer :members: MomentumOptimizer :noindex: @@ -26,14 +26,14 @@ MomentumOptimizer AdagradOptimizer ------------ +---------------- .. automodule:: paddle.v2.fluid.optimizer :members: AdagradOptimizer :noindex: AdamOptimizer ------------ +------------- .. automodule:: paddle.v2.fluid.optimizer :members: AdamOptimizer :noindex: @@ -47,7 +47,7 @@ AdamaxOptimizer DecayedAdagradOptimizer ------------ +----------------------- .. automodule:: paddle.v2.fluid.optimizer :members: DecayedAdagradOptimizer :noindex: diff --git a/doc/api/v2/fluid/regularizer.rst b/doc/api/v2/fluid/regularizer.rst index 3af2b07d2a..868e225ed3 100644 --- a/doc/api/v2/fluid/regularizer.rst +++ b/doc/api/v2/fluid/regularizer.rst @@ -3,14 +3,14 @@ Regularizer =========== WeightDecayRegularizer ------------ +---------------------- .. automodule:: paddle.v2.fluid.regularizer :members: WeightDecayRegularizer :noindex: L2DecayRegularizer ------------ +------------------ .. automodule:: paddle.v2.fluid.regularizer :members: L2DecayRegularizer :noindex: @@ -18,7 +18,7 @@ L2DecayRegularizer L1DecayRegularizer ------------ +------------------- .. automodule:: paddle.v2.fluid.regularizer :members: L1DecayRegularizer diff --git a/doc/design/backward.md b/doc/design/backward.md new file mode 100644 index 0000000000..20fda7a98f --- /dev/null +++ b/doc/design/backward.md @@ -0,0 +1,158 @@ +# Backward Building + +## Motivation + +In Neural Network, most models are solved by the backpropagation algorithm(known as **BP**) at present. Technically, BP calculates the gradient of the loss function, then propagates it back through the networks following the chain rule. However, when configuring the model structure, users do not need to define the backward part. So a mechanism is required by the framework which can complete the model's backward part automatically according to the given forward part. + +When implementing a specific `op`, the developer is also asked to implement its backward version, called `grad_op`. A `grad_op` takes gradients of its corresponding `op`'s outputs, and calculate gradients of the `op`'s inputs. During the building of a model's backward part, the framework creates each forward `op`'s `grad_op`, and then string them together in reverse order of forwarding part. In this way, gradients spread from the end to the beginning of the model, in another word, from the loss to parameters. + +## Challenges + +The motivation of backward building is apparent. However, implementation it correctly is not so easy. In the **Fluid** design, a deep learning model is described by `Program`, `Block`, `Op` and `Variable`. The `Block` itself can be nested. It means that the `op`s and `variable`s are scattered across different blocks rather than all be gathered in a single graph. Our backward building algorithm shall visit blocks in recursive order and be able to insert `grad_op`s and new created `variable`s into the right place. + +## Usage + +Although the whole algorithm is comprised of many functions, only one is exposed as API: + +```python +def append_backward(loss, parameter_list=None, no_grad_set=None): + """ + Append backward part to main_program + + Args: + loss(Variable): The variable generated by the cost function. + parameter_list(list): Parameters that need to be updated by optimizers. + If None, it means all parameters need to be updated. + + no_grad_set(set): Variables that have no gradients in Block 0. + If None, the set will be generated inside the function and + contains all variables with `step_gradient=True` from all blocks. + + Return: + (list[Variable]): list of (parameters, gradients) pair. + """ +``` + +By invoking this API, the framework appends backward part of the program where the `loss` is. It takes three arguments. `loss` means the final loss value. It must be a scalar and is usually the output of the loss layer. It is also where the gradient generated and backpropagation starts. `parameter_list` marks all parameters needs updating. If it's `None`, all parameter will be updated by optimizers. `no_grad_set` marks variables without gradient. if all outputs of some `grad_op` are in `no_grad_set`, the `grad_op` will not be run. + +This API will be invoked automatically before optimizer building. +As a result, in most cases, users do not need to invoke the API by themselves to append backward part. + +## Implementation + +The implementation of backward building algorithm is in `backward.py` file. The whole algorithm can be divided into two independent parts: creating `grad_op`s and creating new variables. + +### Creating `grad_op`s + +The creating of `grad_op`s is implemented by: + +```python +def _append_backward_ops_(target, + block, + target_block, + no_grad_dict, + grad_to_var): + """ + Create all grad ops, and insert them into given block + + Args: + target(Variable): the target variable of forward pass + block(Block): the block where forward ops are + target_block(Block): the block which is going to hold new generated grad ops + no_grad_dict(dict): + key(int) block index + val(set) a set of varibale names. These varibales have no gradient + grad_to_var(dict)(output argument): + key(str): grad variable name + val(str): corresponding forward variable name + """ +``` + +Given a `block`, the function will traverses all `op`s in this block in reverse order, gets corresponding `grad_op` from the C++ core via `core.get_grad_op_desc()`, then append it to `target_block`. + +However, some specific `op`(e.g. `while_op`, `if_else_op`) can hold its own sub-block. For these sub-blocks contains `op`s as well, the `grad_op` creating should be recursive. + +During the reverse traversal, we check each `op` whether it has an attribute named `sub_block`. If so, it means there is a sub-block and we need to deal with it first. After creating a new block whose father is the one in `op`'s attribute, we invoke `_append_backward_ops_()` recursively, assigning the new block to parameter `target_block` and the one in `op`'s attribute to `block`. The *pseudo-code* shows this process: + +``` +******* pseudo-code ******** +for op in reversed(block.ops): + if op has an attribute named 'sub_block': + Get the sub-block(`s_block`) from op's attribute. + Create a new block(`grad_s_block`), whose father is `s_block`. + Invoke _append_backward_ops_(), with `block=s_block` and `target_block=grad_s_block` + + Invoke `core.get_grad_op_desc()` to get op's grad_op. + Insert name correspondings between variables and their gradients of the grad_op to grad_to_var + Assign grad_s_block to grad_op as it's 'sub_block' attribute. + Append grad_op to current target_block. +``` + +The first invoking of `_append_backward_ops_()` is initiated by `append_backward()`, in which parameters `block` and `target_block` are all assigned with root block(the block with index 0). + +### Corner Cases of `grad_op` Creating + +In the previous section, we show the regular process of `grad_op` creating. However, in some corner cases, the conventional algorithm is not enough to get the correct result and appending handling is required. These additional processes run after the algorithm mentioned above and do some special adjusts on its output `grad_op`s. + +#### Shared Variables + +If a variable is read by more than one `op` in the forward pass, its gradient is likely to be written by more than one `grad_op`s in the next backward pass. To make the gradient result being the sum of all `grad_op`s' outputs instead of the last running one, we assign each output with a temporary variable and then add a `sum_op` to add them up. + +For the debug convenience, if the final gradient name is `w@GRAD`, it's corresponding temporary variables will be named as `w@GRAD@RENAME@0`, `w@GRAD@RENAME@1`... + +See function `_addup_repetitive_outputs_` in `backward.py` for implementation details. + +#### No Gradient Variables + +In our framework, variables can be marked as *no_gradient*, it means that the gradient of this variable is unnecessary and can be considered as zero in model training. Apparently, when all the outputs of some `grad_op` are marked as *no_gradient*, the `grad_op` itself can be skipped in backward pass. + +Another situation is all the gradient inputs of some `grad_op` are marked as *no_gradient*, which means all of them can be considered as zeros. For `grad_op`s are in essence the propagation of gradients, all the outputs are definitely zeros when all gradient inputs are zeros. Therefore the `grad_op` can also be skipped. + +It should be noted that all these zero gradients still need to be creating and initialized by something, otherwise following `grad_op`s who take these gradients as inputs take the risk of using uninitialized memory. In our code, we employ `fill_zeros_like_op` to initialize them as all zeros. + +This features are implemented in function `_remove_no_grad_branch_`. It checks new created `grad_op`s one-by-one, removes who can be skipped and inserts `fill_zeros_like_op` when its necessary. We can get the `no_grad_set` from the `_append_backward_ops_` argument `no_grad_dict` or generate it on the fly by scanning all variables' `no_gradient` attribute(True or False). + +### Creating Backward Variables + +Up to now, we have completed all creating and adjusting jobs of `grad_op`s. However, backward variables have not been created. Now they are only represented by `grad_op`'s input and output arguments. The backward variable creating job will be done by: + +```python +def _append_backward_vars_(block, + start_op_idx, + grad_to_var, + grad_info_map): + """ + Create new variables required by backward pass. + + Args: + block(Block): the block where new variables will be created + start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created + grad_to_var(dict): + key(str): grad variable name + val(str): corresponding forward variable name + In most cases, this dict is generated by _append_backward_ops_() + grad_info_map(dict)(output argument): + key(str): forward variable name + val(tuple): a tuple of (str, int), str is the corresponding grad name, int is the block index + """ +``` + +Given a `block`, this function traverses all the `grad_op`s in it(The argument `start_op_idx` indicates where the grad_op sequence starts.) and creates all the uncreated outputs. The *pseudo-code* shows this process: + +``` +for op in block.ops[start_op_idx : ]: + + if op has an attribute named 'sub_block': + Get the sub-block(`s_block`) from op's attribute. + Invoke _append_backward_vars_(), with `block=s_block` + + for var_name in op.all_output_names(): + if block.has_var_recursive(var_name) or var_name is the name of empty variable: + continue + create a new variable named 'var_name' in block + if grad_to_var.has_key(var_name): + set grad_info_map[grad_to_var[var_name]] as a tuple of (var_name. block) + + do op's var type inference + do op's shape inference +``` diff --git a/doc/design/block.md b/doc/design/block.md index 4066122c0e..907a2def55 100644 --- a/doc/design/block.md +++ b/doc/design/block.md @@ -202,8 +202,8 @@ This `OpDesc` value is in the `ops` field of the `BlockDesc` value representing During the generation of the Protobuf message, the Block should store VarDesc (the Protobuf message which describes Variable) and OpDesc (the Protobuf message which describes Operator). -VarDesc in a block should have its name scope to avoid local variables affect parent block's name scope. -Child block's name scopes should inherit the parent's so that OpDesc in child block can reference a VarDesc that stored in parent block. For example: +VarDesc in a block should have its name scope to avoid local variables affecting parent block's name scope. +Child block's name scopes should inherit the parent's so that OpDesc in child block can reference a VarDesc that is stored in the parent block. For example: ```python a = pd.Variable(shape=[20, 20]) @@ -291,10 +291,10 @@ public: } void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override { + const platform::Place& place) const override { PADDLE_ENFORCE(symbols_ready_, "operators and variables should be created first."); for (auto& op : runtime_table_.ops()) { - op->Run(scope, dev_ctx); + op->Run(scope, place); } } diff --git a/doc/design/ci_build_whl.png b/doc/design/ci_build_whl.png new file mode 100644 index 0000000000..232762b82a Binary files /dev/null and b/doc/design/ci_build_whl.png differ diff --git a/doc/design/concurrent_programming.md b/doc/design/concurrent_programming.md new file mode 100644 index 0000000000..afc65e831d --- /dev/null +++ b/doc/design/concurrent_programming.md @@ -0,0 +1,163 @@ +# Design Doc: Concurrent Programming with Fluid + +With PaddlePaddle Fluid, users describe a program other than a model. The program is a [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto) protobuf message. TensorFlow/MxNet/Caffe2 applications generate protobuf messages too, but their protobuf messages represent the model, a graph of operators, but not the program that trains/uses the model. + +Many know that when we program TensorFlow, we can specify the device on which each operator runs. This allows us to create a concurrent/parallel AI application. An interesting questions is **how does a `ProgramDesc` represents a concurrent program?** + +The answer relies on the fact that a `ProgramDesc` is similar to an abstract syntax tree (AST) that describes a program. So users just program a concurrent program that they do with any concurrent programming language, e.g., [Go](https://golang.org). + +## An Analogy + +The following table compares concepts in Fluid and Go + +| Go | Fluid | +|----|-------| +|user-defined functions | [layers](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/v2/fluid) | +| control-flow and built-in functions | [intrinsics/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators) | +| goroutines, channels | [class ThreadPool](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h) | +| runtime | [class Executor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) | + +## An Example Concurrent Program + +To review all above concepts in an example, let us take a simple program and writes its distributed version. + +Suppose that we want to parallelize a naive Fluid program (written in Go and calling Fluid's Go binding) that multiplies two tensors. + +```go +import "fluid" + +func paddlepaddle() { + X = fluid.read(...) + W = fluid.Tensor(...) + Y = fluid.mult(X, W) +} +``` + +Please be aware that the Fluid's Go binding provides the default `main` function, which calls the `paddlepaddle` function, which, in this case, is defined in above program and creates the following `ProgramDesc` message. + +```protobuf +message ProgramDesc { + block[0] = Block { + vars = [X, W, Y], + ops = [ + read(output = X) + assign(input = ..., output = W) + mult(input = {X, W}, output = Y) + ], + } +} +``` + +Then, the default `main` function calls `fluid.run()`, which creates an instance of the [`class Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) and calls `Executor.Run(block[0])`, where `block[0]` is the first and only block defined in above `ProgramDesc` message. + +The default `main` function is defined as follows: + +```go +func main() { + paddlepaddle() + fluid.run() +} +``` + +## The Concurrent Version + +By parallelizing the above program, we could support very big tensor X by splitting into small pieces {x_1, x_2, ...} and sent each piece to worker process/node for parallel multiplication. + +In this case, we can write a transpiler that takes a `ProgramDesc` message that represents the above example program and outputs two `ProgramDesc` messages, one for running on the master process/node, and the other one for worker processes/nodes. + +### The Master Program + +The master program could look like the following: + +```protobuf +message ProgramDesc { + block[0] = Block { + vars = [X, L, Y], + ops = [ + read(output = X) + kube_get_workers_addrs(output = L) + Y = tensor_array(len(L)) + parallel_for(input = X, output = Y, + attrs = {L, block_id(1)}) # referring to block 1 + ] + } + + block[1] = Block { + parent = 0, + vars = [x, y, index], + ops = [ + slice(input = [X, index], output = x) # index is initialized by parallel_for + send(input = x, attrs = L[index]) + recv(outputs = y, attrs = L[index]) + assign(input = y, output = Y[index]) + ] + } +} +``` + +The equivalent Fluid program (calling the Go binding) is: + +```go +func main() { //// block 0 + X = fluid.read(...) + L = fluid.k8s.get_worker_addrs() + Y = fluid.tensor_array(len(L)) + fluid.parallel_for(X, L, + func(index int) { //// block 1 + x = X[index] + fluid.send(L[index], x) + y = fluid.recv(L[index]) + Y[index] = y + }) +} +``` + +An explanation of the above program: + +- `fluid.k8s` is a package that provides access to Kubernetes API. +- `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod). +- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed, + + 1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and + 2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread + 1. creates an Executor instance, and + 2. calls `Executor.Run(block)`, where `block` is block 1 as explained above. +1. Please be aware that block 1 is a sub-block of block 0, so ops in block 1 could refer to variables defined in block 0. + +### The Worker Program + +The worker program looks like + +```go +func main() { + W = Tensor(...) + x = fluid.listen_and_do( + fluid.k8s.self_addr(), + func(input Tensor) { + output = fluid.mult(input, W) + }) +} +``` + +where + +- `fluid.listen_and_do` creates a `ListenAndDo` intrinsic, which, when executed, + 1. listens on the current pod's IP address, as returned by `fliud.k8s.self_addr()`, + 2. once a connection is established, + 1. creates a scope of two parameters, "input" and "output", + 2. reads a [Fluid variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h) and saves it into "input", + 3. creates an Executor instance and calls `Executor.Run(block)`, where the block is generated by running the lambda specified as the second parameter of `fluid.listen_and_do`. + +## Summarization + +From the above example, we see that: + +1. Fluid enables the imperative programming paradigm by: + 1. letting users describe a program, but not a model (a sequence of layers, or a graph of operators), and + 2. call the `fluid.run` function that runs the program implicitly. +1. The program is described as a `ProgramDesc` protobuf message. +2. Function `Executor.Run` takes a block, instead of a `ProgramDesc`, as its parameter. +3. `fluid.run` calls `Executor.Run` to run the first block in the `ProgramDesc` message. +4. `Executor.Run`'s implementation is extremely simple -- it doesn't plan the execution nor create threads; instead, it runs on the current thread and execute intrinsics/operators' `Run` method sequentially as they appear in the `Block.ops` array. +5. Intrinsics/operators' `Run` method might create threads. For example, the `ListenAndDo` operator creates a thread to handle each incoming request. +6. Threads are not necessarily OS thread; instead, they could be [green threads](https://en.wikipedia.org/wiki/Green_threads) managed by ThreadPool. Multiple green threads might run on the same OS thread. An example green threads is Go's [goroutines](https://tour.golang.org/concurrency/1). diff --git a/doc/design/refactor/distributed_architecture.md b/doc/design/dist_refactor/distributed_architecture.md similarity index 52% rename from doc/design/refactor/distributed_architecture.md rename to doc/design/dist_refactor/distributed_architecture.md index d9fe7d6bbb..3a741f9586 100644 --- a/doc/design/refactor/distributed_architecture.md +++ b/doc/design/dist_refactor/distributed_architecture.md @@ -52,8 +52,9 @@ The IR for PaddlePaddle after refactoring is called a `Block`, it specifies the The user can not directly specify the parameter update rule for the parameter server in the Python module, since the parameter server does not use the same computation definition as the trainer. Instead, the update rule is baked inside the parameter server. The user can not specify the update rule explicitly. -This could be fixed by making the parameter server run the same computation definition as the trainer (the user's Python module). For a detailed explanation, refer to this document - -[Design Doc: Operation Graph Based Parameter Server](./parameter_server.md) +This could be fixed by making the parameter server also run an IR, which can be different to the trainer side +For a detailed explanation, refer to this document - +[Design Doc: Parameter Server](./parameter_server.md) ## Distributed Training Architecture @@ -61,68 +62,111 @@ The revamped distributed training architecture can address the above discussed l -The major components in the architecture are: *PaddlePaddle Python*, *PaddlePaddle converter* and *PaddlePaddle runtime*. +The major components are: *Python API*, *Distribute Transpiler* and *Remote Executor*. -### PaddlePaddle Python +### Python API -PaddlePaddle Python is the Python library that user's Python code invokes, to read the data. build the neural network topology, start training, etc. +Python API is the Python library that user's Python code invokes, to read the data, build the neural network topology, and start training, etc. ```Python -paddle.init() -input = paddle.op.recordIO("/home/data/mnist.recordio") # file stored on the cluster -img, label = input[0], input[1] -hidden = paddle.layer.fc(input=img, size=200, act=paddle.activation.Tanh()) -prediction = paddle.layer.fc(input=img, size=10, act=paddle.activation.Softmax()) -cost = paddle.layer.classification_cost(input=prediction, label=label) -optimizer = paddle.optimizer.SGD(cost, learning_rate=0.01) -session = paddle.session.NewRemote(num_trainer=3, num_ps=2, GPU_per_trainer=1) -for i in range(1000): - _, cost_val = session.eval(targets=[cost, optimizer]) - print cost_val +images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype='float32') +label = fluid.layers.data(name='label', shape=[1], dtype='int64') +... +predict = fluid.layers.fc(input=conv_pool_2, size=10, act="softmax") +cost = fluid.layers.cross_entropy(input=predict, label=label) +avg_cost = fluid.layers.mean(x=cost) +optimizer = fluid.optimizer.Adam(learning_rate=0.01) +optimizer.minimize(avg_cost) + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) + +for pass_id in range(10): + for data in train_reader(): + loss, acc = exe.run(trainer_prog, + feed=feeder.feed(data), + fetch_list=[avg_cost]) ``` -The above code is what a typical Python trainer code is, the neural network topology is built using the helper functions such as `paddle.layer.fc`. Training is done by calling `session.eval` iteratively. - -#### session.eval - -As shown in the graph, `session.eval` sends the IR and the evaluation inputs or targets to the PaddlePaddle cluster for evaluation. -The targets can be any variable in the computation graph. When the target is say, the `optimizer` variable, the neural network will be optimized once. When the target is the `cost` variable, `session.eval` returns the cost value. Based on what the target is, an appropriate action is taken. - -The Python `session` is a wrapper of the C++ `Session` class. For more information about `Session`, refer to this document - [Design Doc: Session](./session.md). - -### PaddlePaddle Converter - -The PaddlePaddle converter automatically converts the IR in the request (IR and evaluation inputs/targets) from PaddlePaddle Python to partitioned IRs and dispatches the new IRs and evaluation inputs/targets to different PaddlePaddle runtimes. Below are the steps that are followed : - -1. Add a `feed` OP that feeds the eval inputs, and a `fetch` OP that fetches the eval targets to the IR. - -2. Extract a new computation (sub)graph with the `feed` and `fetch` OPs as the boundary. The runtime does not need to run the OP that is not dependent on the `fetch` OP. - -3. Optimize the computation graph. - -4. Place the OPs in the graph onto different devices on different PaddlePaddle runtime according to a placement algorithm and the device constraints specified by the user. - -5. Partition the graph according to runtime boundaries and add `send` / `recv` OP pair on the runtime boundaries. +The code above is a typical local training program, the "Training Program" is built using helper functions such as +`fluid.layer.fc`. The training is done by calling `Executor.run` +iteratively. + +For more details, the implementation of IR is [Program](../program.md), and `ProgramDesc` is the protobuf type. + +[Executor](../executor.md) simply runs the `ProgramDesc`. For local training you generally use +`Executor` to run the program locally. For any kind of distributed training, you can use +`RemoteExecutor` to specify desired distributed training method with some optional arguments. + +### Distributed Transpiler + +The Distributed Transpiler automatically converts the IR (in protobuf format) to partitioned IRs. Then +the Remote Executor dispatches the new IRs to Remote Executors across the cluster. +Below are the steps that are followed : + +1. User only need to change `Executor` to `RemoteExecutor` to change local program to distributed program. +1. `RemoteExecutor` calls `Distributed Transpiler` to "transpile" user's program to several IRs representing a + distributed training program: + 1. Parse configurations from `RemoteExecutor`. + 1. Determine the type of distributed program, can be DataParallelism, ModelParallelism or Streaming. + 1. Partition the `ProgramDesc` according to type and add `send` / `recv` OP pair on the boundaries. Take + DataParallelism type for example, it removes the optimization operators and add a `send` OP to the + "trainer" role, then add the optimization operators to the parameter server role within the `recv` OP. +1. Dispatch the partitioned graph to different `RemoteExecutor` in the cluster. +1. `RemoteExecutor` on each node run the received `ProgramDesc` utill the end. + + +### RemoteExecutor + +As shown in the graph, `RemoteExecutor.run` sends the IR to the cluster for Execution. +You can also use parameter `fetch_list` to interactively fetch variable back to local for +log printing. + +The Python `RemoteExecutor` is derived from `Executor` class. + +```python +exe = RemoteExecutor( + feed=feeder.feed(data), + fetch_list=[avg_cost], + job_desc=JobDesc( + jobname, + num_trainer, + num_pserver, + cpu_per_trainer, + gpu_per_trainer, + mem_per_trainer, + cpu_per_pserver, + mem_per_pserver + )) +for data in train_reader(): + loss, acc = exe.run(trainer_prog, + feed=feeder.feed(data), + fetch_list=[avg_cost]) +``` -6. Dispatch the partitioned graph to different PaddlePaddle runtimes. +`JobDesc` object describe the distributed job resource specification to run on +Cluster environment. -7. PaddlePaddle runtimes with the `fetch` OP reports evaluation results back to the converter, the converter reports the evaluation results back to the PaddlePaddle Python. + -The output IRs will be cached to optimize the conversion latency. +`RemoteExecutor.run` sends the `ProgramDesc` and +[TrainingJob](https://github.com/PaddlePaddle/cloud/blob/develop/doc/autoscale/README.md#training-job-resource) +to a server in the cluster which executes `RemoteExecutor.listen`. This server is responsible +to start the final Kubernetes Jobs to run the different role of `ProgramDesc`. -#### Placement Algorithm +### Placement Algorithm Our first implementation will only support "trainer-parameter server" placement: the parameters, initializers, and optimizers are all placed on the PaddlePaddle runtimes with the parameter server role. Everything else will be placed on the PaddlePaddle runtimes with the trainer role. This has the same functionality as the "trainer-parameter server" architecture of PaddlePaddle v0.10.0, but is more generic and flexible. In the future, a more general placement algorithm should be implemented, which makes placements according to the input IR, and a model of device computation time and device communication time. Model parallelism requires the generic placement algorithm. -### PaddlePaddle Runtime - -The PaddlePaddle runtime owns multiple devices (e.g., CPUs, GPUs) and runs the IR. The runtime does not need to do OP placement since it is already done by the converter. - - ### Local Training Architecture The local training architecture will be the same as the distributed training architecture, the difference is that everything runs locally, and there is just one PaddlePaddle runtime: @@ -132,9 +176,18 @@ The local training architecture will be the same as the distributed training arc ### Training Data -In PaddlePaddle v0.10.0, training data is typically read with a [data reader](../reader/README.md) from Python. This approach is no longer efficient when training in a distributed fashion since the Python process no longer runs on the same node with the trainer processes. The Python reader will need to read from the distributed filesystem (assuming it has the required access) and send to the trainers, doubling the network traffic. - -When doing distributed training, the user can still use Python data reader: the training data are sent with `session.eval`. However this should be used for debugging purpose only. The users are encouraged to use the read data OPs. +In PaddlePaddle v0.10.0, training data is typically read +with [data reader](../reader/README.md) from Python. This approach is +no longer efficient when training distributedly since the Python +process no longer runs on the same node with the trainer processes, +the Python reader will need to read from the distributed filesystem +(assuming it has the access) and send to the trainers, doubling the +network traffic. + +When doing distributed training, the user can still use Python data +reader: the training data are sent with `Executor.run`. However, should +be used for debugging purpose only. The users are encouraged to use +the read data OPs. ## References: diff --git a/doc/design/dist_refactor/multi_cpu.md b/doc/design/dist_refactor/multi_cpu.md new file mode 100644 index 0000000000..a8d8ee0422 --- /dev/null +++ b/doc/design/dist_refactor/multi_cpu.md @@ -0,0 +1,43 @@ +# Design Doc: Execute the Program with Multi CPU + +## Abstract + +This Design Doc propose an approach to make the user-defined Op graph +running with multi-CPU, we will use an auto transpiler to convert the user-defined +Op graph to a multi-CPU Op graph, and run `ParallelDo` Op to run the graph. + +## Transpiler + + + +After converted: + + + +## Implement + +- `Multi-CPU Transpiler` will convert the graph to a multi-CPU graph + which would be executed with multi-threads. +- `BlockingCounter` will `Init/Decrement` an atomic counter, and Blocking `Wait` + for the atomic counter become `0`: + ```cpp + BlockingCounter bc(thread_count); + for (int i = 0; i < thread_count; ++i) { + thread_pool->Start([&bc] {bc.DecrementCount(); }) + } + bc.Wait(); + ``` +- `ParallelDo` Operator + - Initialize a thread pool which is a Singleton. + - Use a block id as the input, and create run the specify Block on independent scope + with multi-threads. + - Initialize a `BlockingCounter` instance and wait until all threads are done. +- `Split` Operator will split the Input Tensor into a TensorArray. +- `Merge` merge all the gradients which calculated in different threads + with `mean/sum/max/min...` method, and then run the Optimizer Op to optimize `W`. + +## TODO + +- Improve the optimizer stage with multi-threads, since we could + assign the parameters to the different threads and execute + optimizer with multi-threads. diff --git a/doc/design/refactor/parameter_server.md b/doc/design/dist_refactor/parameter_server.md similarity index 76% rename from doc/design/refactor/parameter_server.md rename to doc/design/dist_refactor/parameter_server.md index fa3c5d7990..1094f06d46 100644 --- a/doc/design/refactor/parameter_server.md +++ b/doc/design/dist_refactor/parameter_server.md @@ -1,4 +1,4 @@ -# Design Doc: Operation Graph Based Parameter Server +# Design Doc: Parameter Server ## Abstract @@ -10,7 +10,7 @@ different purposes. ## Background The previous implementations of the parameter server does not run a -subgraph. parameter initialization, optimizer computation, network +fluid sub-program. Parameter initialization, optimizer computation, network communication and checkpointing are implemented twice on both the trainer and the parameter server. @@ -23,10 +23,10 @@ server becomes a natural extension. ## Design -### Graph Converter +### Distributed Transpiler -The *graph converter* converts the user-defined operation (OP) graph -into subgraphs to be scheduled on different nodes with the following +The *Distributed Transpiler* converts the user-defined fluid program +into sub-programs to be scheduled on different nodes with the following steps: 1. OP placement: the OPs will be placed on different nodes according @@ -34,7 +34,6 @@ steps: time. Currently we will use a simple heuristic that puts parameter varable on parameter server workers and everything else on trainer workers. - 1. Add communication OPs to enable the communication between nodes. We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*. @@ -48,8 +47,8 @@ After converting: -1. The parameter variable W and it's optimizer subgraph are placed on the parameter server. -1. Operators are added to the subgraphs. +1. The parameter variable W and it's optimizer program are placed on the parameter server. +1. Operators are added to the program. - *Send* sends data to the connected *Recv* operator. The scheduler on the receive node will only schedule *Recv* operator to run when the *Send* operator has ran (the *Send* OP will mark @@ -64,39 +63,30 @@ After converting: ### Benefits - Model parallelism become easier to implement: it's an extension to - the trainer - parameter server approach. we already have the - communication OPs, but need to extend the graph converter's - placement functionality. - + the trainer - parameter server approach. We can have several "Transpilers" + to achieve different goals. - User-defined optimizer is easier to add - user can now express it as - a subgraph. - + a sub-program. - No more duplication logic inside the trainer and the parameter server mentioned in the background section. ### Challenges -- It might be hard for the graph converter to cut a general graph - (without any hint for which subgraph is the optimizer). We may need - to label which subgraph inside the OP graph is the optimizer. - - It's important to balance the parameter shards of on multiple parameter server. If a single parameter is very big (some word-embedding, fully connected, softmax layer), we need to automatically partition the single parameter onto different parameter servers when possible (only element-wise optimizer depends on the parameter variable). +- In the "Aync SGD" figure, the "W" variable on the parameter server + could be read and wrote concurrently. See + [here](https://github.com/PaddlePaddle/Paddle/pull/6394) for more + details about concurrent program in fluid. ### Discussion -- In the "Aync SGD" figure, the "W" variable on the parameter server - could be read and wrote concurrently, what is our locking strategy? - E.g., each variable have a lock cpp method to be invoked by every - OP, or, have a lock OP. - - Can the Enqueue OP be implemented under our current tensor design (puts the input tensor into the queue tensor)? - - *Dequeue* OP will have variable numbers of output (depends on the `min_count` attribute), does our current design support it? (similar question for the *Add* OP) diff --git a/doc/design/refactor/src/compiler.graffle b/doc/design/dist_refactor/src/compiler.graffle similarity index 100% rename from doc/design/refactor/src/compiler.graffle rename to doc/design/dist_refactor/src/compiler.graffle diff --git a/doc/design/refactor/src/compiler.png b/doc/design/dist_refactor/src/compiler.png similarity index 100% rename from doc/design/refactor/src/compiler.png rename to doc/design/dist_refactor/src/compiler.png diff --git a/doc/design/refactor/src/dist-graph.graffle b/doc/design/dist_refactor/src/dist-graph.graffle similarity index 100% rename from doc/design/refactor/src/dist-graph.graffle rename to doc/design/dist_refactor/src/dist-graph.graffle diff --git a/doc/design/refactor/src/dist-graph.png b/doc/design/dist_refactor/src/dist-graph.png similarity index 100% rename from doc/design/refactor/src/dist-graph.png rename to doc/design/dist_refactor/src/dist-graph.png diff --git a/doc/design/dist_refactor/src/distributed_architecture.graffle b/doc/design/dist_refactor/src/distributed_architecture.graffle new file mode 100644 index 0000000000..d1b6014134 Binary files /dev/null and b/doc/design/dist_refactor/src/distributed_architecture.graffle differ diff --git a/doc/design/dist_refactor/src/distributed_architecture.png b/doc/design/dist_refactor/src/distributed_architecture.png new file mode 100644 index 0000000000..29c7b0c078 Binary files /dev/null and b/doc/design/dist_refactor/src/distributed_architecture.png differ diff --git a/doc/design/refactor/src/local-graph.graffle b/doc/design/dist_refactor/src/local-graph.graffle similarity index 100% rename from doc/design/refactor/src/local-graph.graffle rename to doc/design/dist_refactor/src/local-graph.graffle diff --git a/doc/design/refactor/src/local-graph.png b/doc/design/dist_refactor/src/local-graph.png similarity index 100% rename from doc/design/refactor/src/local-graph.png rename to doc/design/dist_refactor/src/local-graph.png diff --git a/doc/design/dist_refactor/src/local_architecture.graffle b/doc/design/dist_refactor/src/local_architecture.graffle new file mode 100644 index 0000000000..49fcc663eb Binary files /dev/null and b/doc/design/dist_refactor/src/local_architecture.graffle differ diff --git a/doc/design/dist_refactor/src/local_architecture.png b/doc/design/dist_refactor/src/local_architecture.png new file mode 100644 index 0000000000..14adc9fd72 Binary files /dev/null and b/doc/design/dist_refactor/src/local_architecture.png differ diff --git a/doc/design/dist_refactor/src/multi-threads.graffle b/doc/design/dist_refactor/src/multi-threads.graffle new file mode 100644 index 0000000000..e71173715f Binary files /dev/null and b/doc/design/dist_refactor/src/multi-threads.graffle differ diff --git a/doc/design/dist_refactor/src/multi-threads/multi-threads@3x.png b/doc/design/dist_refactor/src/multi-threads/multi-threads@3x.png new file mode 100644 index 0000000000..e40a869987 Binary files /dev/null and b/doc/design/dist_refactor/src/multi-threads/multi-threads@3x.png differ diff --git a/doc/design/dist_refactor/src/multi-threads/single-thread@3x.png b/doc/design/dist_refactor/src/multi-threads/single-thread@3x.png new file mode 100644 index 0000000000..4083aebfdd Binary files /dev/null and b/doc/design/dist_refactor/src/multi-threads/single-thread@3x.png differ diff --git a/doc/design/refactor/src/paddle-compile.graffle b/doc/design/dist_refactor/src/paddle-compile.graffle similarity index 100% rename from doc/design/refactor/src/paddle-compile.graffle rename to doc/design/dist_refactor/src/paddle-compile.graffle diff --git a/doc/design/refactor/src/paddle-compile.png b/doc/design/dist_refactor/src/paddle-compile.png similarity index 100% rename from doc/design/refactor/src/paddle-compile.png rename to doc/design/dist_refactor/src/paddle-compile.png diff --git a/doc/design/dist_refactor/src/remote_executor.graffle b/doc/design/dist_refactor/src/remote_executor.graffle new file mode 100644 index 0000000000..ce2c18fee5 Binary files /dev/null and b/doc/design/dist_refactor/src/remote_executor.graffle differ diff --git a/doc/design/dist_refactor/src/remote_executor.png b/doc/design/dist_refactor/src/remote_executor.png new file mode 100644 index 0000000000..6be4b1841b Binary files /dev/null and b/doc/design/dist_refactor/src/remote_executor.png differ diff --git a/doc/design/error_clip.md b/doc/design/error_clip.md new file mode 100644 index 0000000000..58aa73b8cd --- /dev/null +++ b/doc/design/error_clip.md @@ -0,0 +1,92 @@ +# Error Clip + +## Overview + +Error clip is widely used in model training to prevent gradient exploding. It takes some specific rules to adjust variables' gradients and prevent them from being too large. With it, values of a gradient will be checked before they are taken by the next `grad_op` and be shrunk if necessary. +## Usage + +Users are allowed to assign different error clip methods or attributes to different `Variable`s. Users can specify it as a parameter of `Variable`'s constructor: + +```python +var = framework.Variable(..., error_clip=myErrorClip, ...) +``` + +The default value of `error_clip` is `None`, which means no error clip is employed. When it's not `None`, it should take an object of `BaseErrorClipAttr`'s derived class. So far, `BaseErrorClipAttr` has only one derived class: `ErrorClipByValue`, whose constructor is: + +```python +ErrorClipByValue(max, min=None) +``` + +`max` and `min` represent the maximal and minimal clip threshold respectively. In backward pass, all values of `var`'s gradient greater than `max` or less than `min` will be clipped to `max` and `min` respectively. When the `min` is None, the minimal threshold will be assigned with `-max` automatically. + +So we can enable the error clip with threshold `[-5.0, 5.0]` for variable `var` by: + +```python +var = framework.Variable(..., error_clip=ErrorClipByValue(max=5.0), ...) +``` + +## Implementation + +The `BaseErrorClipAttr` and its derived class `ErrorClipByValue` are defined in *clip.py*. + +```python +class BaseErrorClipAttr(object): + def append_clip_op(self, block, grad_name): + raise NotImplementedError() + + +class ErrorClipByValue(BaseErrorClipAttr): + def __init__(self, max, min=None): + max = float(max) + if min is None: + min = -max + else: + min = float(min) + self.max = max + self.min = min + + def append_clip_op(self, block, grad_name): + clip_op_desc = block.desc.append_op() + clip_op_desc.set_type("clip") + clip_op_desc.set_input("X", [grad_name]) + clip_op_desc.set_output("Out", [grad_name]) + clip_op_desc.set_attr("min", self.min) + clip_op_desc.set_attr("max", self.max) +``` + +The `BaseErrorClipAttr` have one main member functions: `append_clip_op(self, block, grad_name)`. + +This function is used to create a `clip_op` and append it to the end of given `block`. For different error clip algorithm require different `clip_op`, the function is defined as virtual in the base class. All derived classes must implement their own versions of this function. + +These `clip_op`s should be inserted after `grad_op`s whose output gradients need to be clipped. It is equivalent to appending some `clip_op`s to the end of the target block every time a new `grad_op` is added. + +```python +for op_desc in grad_op_descs: + new_op_desc = target_block.desc.append_op() + new_op_desc.copy_from(op_desc) + callback(block=target_block, context=grad_to_var) +``` + +Here we employ a callback function to complete this kind of jobs. In `_append_backward_ops_` function, each time after a `grad_op` is added to the `target_block`, a callback function is invoked. The logic of `clip_op` appending can be implemented inside the callback function. + +The callback function for `clip_op` appending is defined in *clip.py*: + +```python +def error_clip_callback(block, context): + # the context is a grad_to_var map + grad_to_var = context + op_desc = block.desc.op(block.desc.op_size() - 1) + for grad_n in filter(lambda n: grad_to_var.has_key(n), + op_desc.output_arg_names()): + fwd_var = block.var_recursive(grad_to_var[grad_n]) + error_clip = getattr(fwd_var, "error_clip", None) + if not (error_clip is None or isinstance(error_clip, + BaseErrorClipAttr)): + raise TypeError( + "Variable's error_clip should be an instance of BaseErrorClipAttr or None." + ) + if error_clip is not None: + error_clip.append_clip_op(block, grad_n) +``` + +This function takes a `block` and a `context`(which is actually a grad\_to\_var map) as inputs. It checks each output of the last `OpDesc` in the `block`. Notice that the last `OpDesc` of the `block` must be a `grad_op` and its outputs must be some forward variables' gradients. If an output gradient's corresponding forward variable has an attribute of `error_clip`, `error_clip_callback` will call the `error_clip`'s `append_clip_op` function to append the required `clip_op` into the `block`. diff --git a/doc/design/executor.md b/doc/design/executor.md index b5fb6c5c3c..2d4b371cc5 100644 --- a/doc/design/executor.md +++ b/doc/design/executor.md @@ -1,23 +1,29 @@ # Executor Design Doc ## Motivation +In [fluid](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/fluid.md), we encourage the user to use deep learning programming paradigms to describe the training process. When the user-written Python program is executed, it will first create a protobuf message +[`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145) that describes the process and is conceptually like an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree). -We use executor to do the runtime evaluation of a `ProgramDesc`. +The executor runs the `ProgramDesc` like an interpreter. `ProgramDesc` contains the intrinsics (operators in this case) and variables which will be used, executor explicitly executes the stored precompiled code. ## Overview -An executor takes a `ProgramDesc`, a `block_id` and a `Scope`. The `ProgramDesc` is a list of blocks and each block contains the protobuf definition of all the parameters and operators. The `block_id` specifies the entrance block. And the `Scope` is the container of all the variable instance, which is persistent throughout different runs. +An executor takes a `ProgramDesc`, a `block_id` and a `Scope`. The `ProgramDesc` is a list of blocks and each block contains the protobuf definition of all the parameters and operators in the block. The `block_id` specifies the entrance block. And the `Scope` is the container of all the variable instances, which is persistent throughout different runs. -### What does executor do? +## Executor -It evaluates all the operators in the `block_id`th block of a `ProgramDesc`. +The `Executor` explicitly executes all the intrinsics (operators here) in the `block_id`th block of a `ProgramDesc`. Essentially, it instantiates Variables and Operators, then runs all the operators in sequence one-by-one. +It is very similar to how a push stack frame works when entering a block, following which it cleans up all the temporary variables when a mini-batch is finished. It does not however, have the stack frame pop process. -### What does executor NOT do? +### The interface +```c++ + Executor(places); +``` +A executor does not own any computing resources, a user can only construct an executor using the specified places. -It does not do runtime optimization, meaning intelligently parse the dependency of each op a choose which one to be run and in which order they should be run. +### Running an Executor -It does not do graph partitioning, meaning dividing the `ProgramDesc` into several small pieces and executing them on different devices. - -## Implementation - -`Executor` evaluates a `ProgramDesc`. Essentially, it instantiates Variables and Operators, then run all the operators in sequence. [[code]](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.cc) +``` + void Run(ProgramDesc, Scope, block_id, create_local_scope); +``` +An `Executor` only provides a unified way to execute `ProgramDesc`. `ProgramDesc` is the target that will be executed, the `Scope` specifies the variable container, the `block_id` indicates the entrance block and `create_local_scope` is a boolean that states whether it will destroy the temporary variables after the execution is finished. diff --git a/doc/design/fluid-compiler.graffle b/doc/design/fluid-compiler.graffle new file mode 100644 index 0000000000..c933df2cb8 Binary files /dev/null and b/doc/design/fluid-compiler.graffle differ diff --git a/doc/design/fluid-compiler.png b/doc/design/fluid-compiler.png new file mode 100644 index 0000000000..1b0ffed203 Binary files /dev/null and b/doc/design/fluid-compiler.png differ diff --git a/doc/design/fluid.md b/doc/design/fluid.md new file mode 100644 index 0000000000..585dc8ef39 --- /dev/null +++ b/doc/design/fluid.md @@ -0,0 +1,122 @@ +# Design Doc: PaddlePaddle Fluid + +## Why Fluid + +When Baidu developed PaddlePaddle in 2013, the only well-known open source deep learning system at the time was Caffe. However, when PaddlePaddle was open-sourced in 2016, many other choices were available. There was a challenge -- what is the need for open sourcing yet another deep learning framework? + +Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution, which describes the "process" of training or inference using the concept of a model. In fact in PyTorch, TensorFlow Eager Execution and Fluid, there is no concept of a model at all. The details are covered in the sections below. Fluid is currently more extreme in the above mentioned idea than PyTorch and Eager Execution, and we are trying to push Fluid towards the directions of a compiler and a new programming language for deep learning. + +## The Evolution of Deep Learning Systems + +Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented. + +| Existed since | model as sequence of layers | model as graph of operators | No model | +|--|--|--|--| +| 2013 | Caffe, Theano, Torch, PaddlePaddle | | | +| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | | +| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid | + +From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these. + +## Deep Learning Programming Paradigms + +With the systems listed as the first or second generation, e.g., Caffe or TensorFlow, an AI application training program looks like the following: + +```python +x = layer.data("image") +l = layer.data("label") +f = layer.fc(x, W) +s = layer.softmax(f) +c = layer.mse(l, s) + +for i in xrange(1000): # train for 1000 iterations + m = read_minibatch() + forward({input=x, data=m}, minimize=c) + backward(...) + +print W # print the trained model parameters. +``` + +The above program includes two parts: + +1. The first part describes the model, and +2. The second part describes the training process (or inference process) for the model. + +This paradigm has a well-known problem that limits the productivity of programmers. If the programmer made a mistake in configuring the model, the error messages wouldn't show up until the second part is executed and `forward` and `backward` propagations are performed. This makes it difficult for the programmer to debug and locate a mistake that is located blocks away from the actual error prompt. + +This problem of being hard to debug and re-iterate fast on a program is the primary reason that programmers, in general, prefer PyTorch over the older systems. Using PyTorch, we would write the above program as following: + +```python +W = tensor(...) + +for i in xrange(1000): # train for 1000 iterations + m = read_minibatch() + x = m["image"] + l = m["label"] + f = layer.fc(x, W) + s = layer.softmax(f) + c = layer.mse(l, s) + backward() + +print W # print the trained model parameters. +``` + +We can see that the main difference is the moving the model configuration part (the first step) into the training loop. This change would allow the mistakes in model configuration to be reported where they actually appear in the programming block. This change also represents the model better, or its forward pass, by keeping the configuration process in the training loop. + +## Describe Arbitrary Models for the Future + +Describing the process instead of the model also brings Fluid, the flexibility to define different non-standard models that haven't been invented yet. + +As we write out the program for the process, we can write an RNN as a loop, instead of an RNN as a layer or as an operator. A PyTorch example would look like the following: + +```python +for i in xrange(1000): + m = read_minibatch() + x = m["sentence"] + for t in xrange x.len(): + h[t] = the_step(x[t]) +``` + +With Fluid, the training loop and the RNN in the above program are not really Python loops, but just a "loop structure" provided by Fluid and implemented in C++ as the following: + +```python +train_loop = layers.While(cond) +with train_loop.block(): + m = read_minibatch() + x = m["sentence"] + rnn = layers.While(...) + with rnn.block(): + h[t] = the_step(input[t]) +``` + +An actual Fluid example is described [here](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44). + +From the example, the Fluid programs look very similar to their PyTorch equivalent programs, except that Fluid's loop structure, wrapped with Python's `with` statement, could run much faster than just a Python loop. + +We have more examples of the [`if-then-else`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/if_else_op.md) structure of Fluid. + +## Turing Completeness + +In computability theory, a system of data-manipulation rules, such as a programming language, is said to be Turing complete if it can be used to simulate any Turing machine. For a programming language, if it provides if-then-else and loop, it is Turing complete. From the above examples, Fluid seems to be Turing complete; however, it is noteworthy to notice that there is a slight difference between the `if-then-else` of Fluid and that of a programming language. The difference being that the former runs both of its branches and splits the input mini-batch into two -- one for the True condition and another for the False condition. This hasn't been researched in depth if this is equivalent to the `if-then-else` in programming languages that makes them Turing-complete. Based on a conversation with [Yuang Yu](https://research.google.com/pubs/104812.html), it seems to be the case but this needs to be looked into in-depth. + +## The Execution of a Fluid Program + +There are two ways to execute a Fluid program. When a program is executed, it creates a protobuf message [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145) that describes the process and is conceptually like an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree). + +There is a C++ class [`Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h), which runs a `ProgramDesc`, similar to how an interpreter runs a Python program. + +Fluid is moving towards the direction of a compiler, which is explain in more detail later in this article. + +## Backward Compatibility of Fluid + +Given all the advantages from the removal of the concept of a *model*, hardware manufacturers might still prefer the existence of the concept of a model, so it would be easier for them to support multiple frameworks all at once and could run a trained model during inference. For example, Nervana, a startup company acquired by Intel, has been working on an XPU that reads the models in the format known as [n-graph](https://github.com/NervanaSystems/ngraph). Similarly, [Movidius](https://www.movidius.com/) is producing a mobile deep learning chip that reads and runs graphs of operators. The well-known [ONNX](https://github.com/onnx/onnx) is also a file format of graphs of operators. + +For Fluid, we can write a converter that extracts the parts in the `ProgramDesc` protobuf message, converts them into a graph of operators, and exports the graph into the ONNX or n-graph format. + +## Towards a Deep Learning Language and the Compiler + +We can change the `if-then-else` and loop structure a little bit in the above Fluid example programs, to make it into a new programming language, different than Python. + +Even if we do not invent a new language, as long as we get the `ProgramDesc` message filled in, we can write a transpiler, which translates each invocation to an operator, into a C++ call to a kernel function of that operator. For example, a transpiler that weaves the CUDA kernels outputs an NVIDIA-friendly C++ program, which can be built using `nvcc`. Another transpiler could generate MKL-friendly code that should be built using `icc` from Intel. More interestingly, we can translate a Fluid program into its distributed version of two `ProgramDesc` messages, one for running on the trainer process, and the other one for the parameter server. For more details of the last example, the [concurrent programming design](concurrent_programming.md) document would be a good pointer. The following figure explains the proposed two-stage process: + +![](fluid-compiler.png) diff --git a/doc/design/images/control_flow_graph.png b/doc/design/images/control_flow_graph.png new file mode 100644 index 0000000000..3579998e58 Binary files /dev/null and b/doc/design/images/control_flow_graph.png differ diff --git a/doc/design/images/dataflow_equations.png b/doc/design/images/dataflow_equations.png new file mode 100644 index 0000000000..c10f7f69f4 Binary files /dev/null and b/doc/design/images/dataflow_equations.png differ diff --git a/doc/design/images/deep_learning.png b/doc/design/images/deep_learning.png new file mode 100644 index 0000000000..026becc4d9 Binary files /dev/null and b/doc/design/images/deep_learning.png differ diff --git a/paddle/framework/images/duplicate_op.graffle b/doc/design/images/duplicate_op.graffle similarity index 100% rename from paddle/framework/images/duplicate_op.graffle rename to doc/design/images/duplicate_op.graffle diff --git a/paddle/framework/images/duplicate_op.png b/doc/design/images/duplicate_op.png similarity index 100% rename from paddle/framework/images/duplicate_op.png rename to doc/design/images/duplicate_op.png diff --git a/paddle/framework/images/duplicate_op2.graffle b/doc/design/images/duplicate_op2.graffle similarity index 100% rename from paddle/framework/images/duplicate_op2.graffle rename to doc/design/images/duplicate_op2.graffle diff --git a/paddle/framework/images/duplicate_op2.png b/doc/design/images/duplicate_op2.png similarity index 100% rename from paddle/framework/images/duplicate_op2.png rename to doc/design/images/duplicate_op2.png diff --git a/doc/design/images/multigpu_allreduce.graffle b/doc/design/images/multigpu_allreduce.graffle new file mode 100644 index 0000000000..cb5bc420ce Binary files /dev/null and b/doc/design/images/multigpu_allreduce.graffle differ diff --git a/doc/design/images/multigpu_allreduce.png b/doc/design/images/multigpu_allreduce.png new file mode 100644 index 0000000000..87a1b3e8f6 Binary files /dev/null and b/doc/design/images/multigpu_allreduce.png differ diff --git a/doc/design/images/multigpu_before_convert.graffle b/doc/design/images/multigpu_before_convert.graffle new file mode 100644 index 0000000000..6c35ab1b21 Binary files /dev/null and b/doc/design/images/multigpu_before_convert.graffle differ diff --git a/doc/design/images/multigpu_before_convert.png b/doc/design/images/multigpu_before_convert.png new file mode 100644 index 0000000000..9c8f771116 Binary files /dev/null and b/doc/design/images/multigpu_before_convert.png differ diff --git a/doc/design/images/profiler.png b/doc/design/images/profiler.png new file mode 100644 index 0000000000..d57b71ca88 Binary files /dev/null and b/doc/design/images/profiler.png differ diff --git a/doc/design/kernel_hint_design.md b/doc/design/kernel_hint_design.md new file mode 100644 index 0000000000..a54b7da045 --- /dev/null +++ b/doc/design/kernel_hint_design.md @@ -0,0 +1,57 @@ +## Problem +In PaddlePaddle's [Design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md), one Operator may have multiple kernels. Users may have some personal preference to choose a certain type of kernel for an operator, such as `force_cpu` to choose a CPU kernel, `use_cudnn` to choose a CUDNN kernel, we need to provide a way for users to do this. + +In the current design, we use KernelType to describe one kernel. + +```cpp +struct KernelType { + Place place_; + DataType data_type_; + LayoutType layout_; +}; +``` + `place_` `data_type_` and `layout_` can be got from the input tensors of the operator, `GetActualKernelType(inputs)` use inputs to infer the proper kernel key that fit the incoming data, but users can not directly configure it. + +The [design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md) also provides a virtual method `GetExpectedKernelType` that user can overload and use to choose the KernelType they want to use. + +So we should send the information user defined in proto to `GetExpectedKernelType` for choosing a kernel. + +The problem is, how should we define and send the information for `GetExpectedKernelType` to use? + +## Solution + +### Potential choice +1. Do nothing, let the user add the information they want to operator‘s attribute and get them inside `GetExpectedKernelType`, this can work properly. But there is a little problem that users may define many kinds of hints for the same purpose, such as `force_cpu`, `use_cpu`, `cpu_kernel` to choose CPU kernel, and `use_cudnn`, `force_cudnn`, `cudnn_kernel` to choose CUDNN kernel. + +2. Pre-define all the needed option and use a single attr key such as `kernel_hint` for the user, this is not so flexible if the user wants to define some more kind of hint. + +### Final choice +To provide enough flexibility while avoiding confusion definition, we can define some global constants for these attribute names, such as `force_cpu`, `use_cudnn`, `use_mkldnn` for a user to choose. + +In C++ + +```cpp +const std::string kForceCPU = "force_cpu"; +const std::string kUseCUDNN = "use_cudnn"; +const std::string kUseMKLDNN = "use_mkldnn"; + +KernelType GetExpectedKernelType() { + if (Attr(kForceCPU)) { + return KernelType(CPUPlace, ...) + } else { + ... + } +} +``` + +In Python code + +```python +FORCE_CPU = core.kForceCPU() + +def xx_layer(..., force_cpu=false): + layer_helper = LayerHelper(...) + layer_helper.append_op( + type="xx", + attr={FORCE_CPU: force_cpu}) +``` diff --git a/doc/design/memory_optimization.md b/doc/design/memory_optimization.md new file mode 100644 index 0000000000..1f68cef4cc --- /dev/null +++ b/doc/design/memory_optimization.md @@ -0,0 +1,217 @@ +# Memory Optimization + + +## Problem + +In a lecture from Andrew Ng, he attributes the recent sucess of AI due to a combination of these: + +- Availability of Big Data +- Supercomputing power to process this Big Data over very large neural networks +- Modern algorithms + +Following graph shows the details: + +![](images/deep_learning.png) + +Larger model usually bring better performance. However, GPU memory is limited. For example, the memory size of a GTX TITAN X is only 12GB. To train complex and large models, we have to take care of memory usage. Besides, memory optimization is also necessary in both online/mobile inference. + +## Solution + +### Basic Strategy + +There are some basic strategies to improve memory usage, including in-place operations and memory sharing. + +#### In-place Operation +In a relu activation operator: + +$y = \max(x, 0)$ + +If the variable x is not used in any other operator, we can make an in-place operation. In other words, the memory block of variable y and variable x will be the same. In-place operations will save 50% memory occupancy immediately. + +#### Memory Sharing + +Not all operators support in-place operations. Memory sharing is a more general strategy. + +Following is an example: + +``` +a = op1(b, c); +d = op2(a) +e = op3(d, f) +``` + +In this case, variable a is no longer used, and op2 does not support in-place operation. After op2 finishes, we can put the memory of variable a to a memory pool. Then, variable e can share the memory of variable a from the pool. + + +### Live Variable Analysis + +It's not enough to only have some basic strategies. The pre-requisite of memory optimization is to know if a variable is still "live" after an operation. + +In our design, the neural network topology is defined as a program. Luckily, [live variable analysis](https://en.wikipedia.org/wiki/Live_variable_analysis) is a classic problem in compilers which can be used in many stages, such as register allocation. + +In compilers, the front end of the compiler translates programs into an intermediate language with an unbounded number of temporary variables. This program must run on a machine with a bounded number of registers. Two temporary variables a and b can fit into the same register, if a and b are never "in use" at the same time. Thus, many temporary variables can fit in few registers; if they don't all fit, the excess tempory variables can be kept in memory. + +Therefore, the compiler needs to analyze the intermediate-representation program to determine which temporary variables are in use at the same time. We say a variable is "live" if it holds a value that may be needed in the future, so this analysis is called liveness analysis. + +We can leran these techniques from compilers. There are mainly two stages to make live variable analysis: + +- construct a control flow graph +- solve the dataflow equations + + +#### Control Flow Graph +To perform analysis on a program, it is often useful to make a control flow graph. A [control flow graph](https://en.wikipedia.org/wiki/Control_flow_graph) (CFG) in computer science is a representation, using graph notation, of all paths that might be traversed through a program during its execution. Each statement in the program is a node in the flow graph; if statemment x can be followed by statement y, there is an egde from x to y. + +Following is the flow graph for a simple loop. + +![](images/control_flow_graph.png) + +#### Dataflow Analysis + +Liveness of variable "flows" around the edges of the control flow graph; determining the live range of each variable is an example of a dataflow problem. [Dataflow analysis](https://en.wikipedia.org/wiki/Data-flow_analysis) is a technique for gathering information about the possible set of values calculated at various points in a computer program. + +A simple way to perform data-flow analysis of programs is to set up dataflow equations for each node of the control flow graph and solve them by repeatedly calculating the output from the input locally at each node until the whole system stabilizes. + +- Flow Graph Terminology + +A flow graph node has out-edges that lead to sucessor nodes, and in-edges that come from predecessor nodes. The set *pred[n]* is all the predecessors of node n, and *succ[n]* is the set of sucessors. +In former control flow graph, the out-edges of node 5 are 5 --> 6 and 5 --> 2, and *succ[5]* = {2, 6}. The in-edges of 2 are 5 --> 2 and 1 --> 2, and *pred[2]* = {1, 5}. + +- Uses and Defs + +An assignmemt to a variable or temporary defines that variable. An occurence of a variable on the right-hand side of an assginment(or in other expressions) uses the variable. We can define the *def* of a variable as the set of graph nodes that define it; or the *def* of a graph node as the set of variables that it defines; and the similarly for the *use* of a variable or graph node. In former control flow graph, *def(3)* = {c}, *use(3)* = {b, c}. + +- Liveness + +A variable is *live* on an edge if there is a directed path from that edge to a *use* of the variable that does not go through any *def*. A variable is *live-in* at a node if it is live on any of the in-edges of that node; it is *live-out* at a node if it is live on any of the out-edges of the node. + + +The calcution of liveness can be solved by iteration until a fixed pointer is reached. Following is the recursive formula: + +![](images/dataflow_equations.png) + +### Memory optimization transpiler + +At last, we take basic strategy and liveness analysis techniques learning from compilers to implement our memory optimization transpiler. + +#### add in-place attribute + +In-place is a built-in attribute of an operator. Since we treat in-place and other operators differently, we have to add an in-place attribute for every operator. + + +#### contruct control flow graph + +Following is the ProgramDesc protobuf of [machine translation](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book/test_machine_translation.py) example. + +- Block0: + +``` +lookup_table +mul +... +while(sub-block idx 1) +... +array_to_lod_tensor +cross_entropy +... +while_grad(sub-block idx 2) +read_from_array +array_to_lod_tensor +... +``` + +- Block1 + +``` +read_from_array +read_from_array +... +write_to_array +increment +write_to_array +less_than +``` + +- Block2 + +``` +read_from_array +increment +... +write_to_array +write_to_array +``` + +We can transfer all the operators and variables in ProgramDesc to build a control flow graph. + +```python +class ControlFlowGraph(object): + def __init__(self, Program): + self._sucessors = defaultdict(set) + self._presucessors = defaultdict(set) + self._uses = defaultdict(set) + self._defs = defaultdict(set) + self._live_in = defaultdict(set) + self._live_out = defaultdict(set) + self._program = Program + + def build(self): + pass + + def dataflow_analysis(self): + pass + + def memory_optimization(self): + pass + + def get_program(self): + return self._program +``` + +#### Make dataflow analysis + +We follow the guide from compilers and try to solve the dataflow equation to get liveness of every variable. If the live-in of an operator node is different from the live-out, then we can make memory sharing. + +For example: + +``` +a = op1(b, c); +d = op2(a) +e = op3(d, f) +``` + +The dataflow analysis result is: + +``` +live_in(op1) = {b, c, f} +live_out(op1) = {a, f} + +live_in(op2) = {a, f} +live_out(op2) = {d, f} + +live_in(op3) = {d, f} +live_out(op3) = {} +``` + +After op1, we can process variable b and variable c; After op2, we can process variable a. After op3, we can process variable d and variable f. + +#### memory sharing policy + +A memory pool will be mantained in the stage of memory optimization. Each operator node will be scanned to determine memory optimization is done or not. If an operator satifies the requirement, following policy will be taken to handle input/output variables. + +``` +if op.support_inplace(): + i --> pool + pool --> o +else: + pool --> o + i --> pool +``` + + + +## Reference + +- [Lecture Notes From Artificial Intelligence Is The New Electricity By Andrew Ng](https://manavsehgal.com/lecture-notes-from-artificial-intelligence-is-the-new-electricity-by-andrew-ng-4712dcbf26e5) +- Modern compiler implementation in ML, by Andrew W. Appel +- [Optimizing Memory Consumption in Deep learning](https://mxnet.incubator.apache.org/architecture/note_memory.html) diff --git a/doc/design/mkldnn/image/engine.png b/doc/design/mkl/image/engine.png similarity index 100% rename from doc/design/mkldnn/image/engine.png rename to doc/design/mkl/image/engine.png diff --git a/doc/design/mkldnn/image/gradients.png b/doc/design/mkl/image/gradients.png similarity index 100% rename from doc/design/mkldnn/image/gradients.png rename to doc/design/mkl/image/gradients.png diff --git a/doc/design/mkldnn/image/layers.png b/doc/design/mkl/image/layers.png similarity index 100% rename from doc/design/mkldnn/image/layers.png rename to doc/design/mkl/image/layers.png diff --git a/doc/design/mkldnn/image/matrix.png b/doc/design/mkl/image/matrix.png similarity index 100% rename from doc/design/mkldnn/image/matrix.png rename to doc/design/mkl/image/matrix.png diff --git a/doc/design/mkldnn/image/overview.png b/doc/design/mkl/image/overview.png similarity index 100% rename from doc/design/mkldnn/image/overview.png rename to doc/design/mkl/image/overview.png diff --git a/doc/design/mkl/mkl_packed.md b/doc/design/mkl/mkl_packed.md new file mode 100644 index 0000000000..0123315ad4 --- /dev/null +++ b/doc/design/mkl/mkl_packed.md @@ -0,0 +1,108 @@ +# Intel® MKL Packed on PaddlePaddle: Design Doc + + +## Contents + +- [Overview](#overview) +- [Key Points](#key-points) + - [Background](#background) + - [Solution](#solution) +- [Actions](#actions) + - [CMake](#cmake) + - [Layers](#layers) + - [Unit Tests](#unit-tests) + - [Python API](#python-api) + - [Benchmarking](#benchmarking) + + +## Overview +我们计划将 Intel® MKL 中引入的 GEMM Packed APIs\[[1](#references)\] 集成到 PaddlePaddle 中,充分发挥英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。 +现阶段的优化主要针对 Recurrent Neural Network(以下简称RNN)相关层(包括`RecurrentLayer`, `GatedRecurrentLayer`和`LstmLayer`), 以及 PaddlePaddle V1 API。 + +## Key Points + +### Background +目前PaddlePaddle采用了 Intel® MKL库的[cblas_?gemm](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm)函数,这个函数本身会在计算前将原数据转换为更适合英特尔平台的内部格式。 + +1. 转换耗时 \ +这一数据格式的转换操作(Packing),在问题本身的计算量比较小的时候,显得相对来说较为耗时。例如在DeepSpeech2 \[[2](#references)\] 的Vanilla RNN部分中,矩阵大小是`batch_size * 2048`。 +2. 转换冗余 \ +由于在现有的某些情况下(例如RNN),多次调用 cblas_?gemm 会使用相同的原数据,因此,每次调用时对原数据的重复Packing便成为了冗余。 + +为了最大程度减少多次调用 cblas_?gemm 在Packing上的耗时,Intel® MKL 引入了以下四个API: + * [cblas_?gemm_alloc](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm-alloc) + * [cblas_?gemm_pack](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm-pack) + * [cblas_?gemm_compute](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm-compute) + * [cblas_?gemm_free](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm-free) + +通过使用这些API,我们可以先完成对原数据的Packing操作,再把已转换为Packed格式的数据传递给那些复用同一数据的gemm_compute函数,从而避免了Packing冗余。 + +### Solution +在RNN的情况下,同一次前向、后向(forward/backward)过程中所有时间步(time step)共享同一个权重(weight)。当只做推断(inference)时,各次前向之间也都使用了相同的权重,没有必要在每次前向中每个时间步的计算时对权重进行重复的Packing操作。 + +我们通过使用新引入的GEMM Packed APIs,在层初始化的时候,先完成对权重的Packing操作,然后在前向,后向时复用已经转换过的权重,并在每次权重更新后,对新的权重进行转换用于下次迭代。 + +* 优化前,对于序列长度(sequence length)为`T`的网络模型(model), `N`次迭代执行的转换次数为: + - `inference`: `N * T` + - `training`: `2 * N * T` +* 优化后,对于同样设置的网络模型,其转换次数减少至: + - `inference`: `1` + - `training`: `2 * N` + +## Actions + +添加的相关文件和目录结构如下: + +```txt +PaddlePaddle/Paddle +├── ... +└── paddle/ + ├── ... + └── gserver/ + ├── ... + ├── layers/ + │ ├── ... + │ ├── MKLPackedRecurrentLayer.* + | ├── MKLPackedGatedRecurrentLayer.* + | ├── MKLPackedLstmLayer.* + | └── MKLPackedGemm.h + └── tests/ + ├── ... + └── test_MKLPacked.cpp +``` + +### CMake +在对应的`CMakeLists.txt`中根据`WITH_MKL`是否打开,来决定是否开启MKL Packed相关功能。 + +### Layers +所有的`MKLPacked*Layer`都继承于PaddlePaddle的基类`Layer`, 并添加头文件 `MKLPackedGemm.h`,该文件对相关GEMM Packed APIs做了封装。 + +### Unit Tests +我们会添加`test_MKLPacked.cpp`用于MKL Packed优化后layer的测试。 +对于每一个新加的RNN layer,我们会对比如下2个方面: +1. 对比优化后layer自身,sequence mode(`rnn_use_batch=false`)与batch mode(`rnn_use_batch=true`)的结果。 +2. 对比优化后layer与相对应的PaddlePaddle原有layer, 在batch mode下的结果。 + +### Python API +计划在`paddle/utils.Flags`中添加`use_mkl_packed`的flag,用于选择是否使用相关功能,并且当编译时`WITH_MKL=ON`的情况下,默认设置为`true`。 + +同时,在`python/paddle/trainer/config_parser.py`中对应的layer处,添加`use_mkl_packed`这个选择,方便用户在Python端选择是否启用这个功能。 + +具体实现方式比如: + +```python +use_mkl_packed = bool(int(g_command_config_args.get("use_mkl_packed", 0))) +if use_mkl_packed: + self.layer_type = mkl_packed_* +``` + +所有相关的`layer_type`会以*mkl_packed_*开头,这些会在`MKLPacked*Layer`注册layer的时候保证,以示区分。 + + +### Benchmarking +会添加相应的脚本用于测试和对比在使用MKL Packed recurrent layers 前后的网络性能。 + +## References +1. [Introducing the new Packed APIs for GEMM](https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm) +2. [DeepSpeech2 on PaddlePaddle](https://github.com/PaddlePaddle/DeepSpeech#deepspeech2-on-paddlepaddle) + diff --git a/doc/design/mkldnn/README.MD b/doc/design/mkl/mkldnn.md similarity index 99% rename from doc/design/mkldnn/README.MD rename to doc/design/mkl/mkldnn.md index 61d453de24..e2fe1e6b26 100644 --- a/doc/design/mkldnn/README.MD +++ b/doc/design/mkl/mkldnn.md @@ -208,4 +208,3 @@ if use_mkldnn 但是在PaddlePaddle中,无论是重构前的layer还是重构后的op,都不会想要知道next layer/op的信息。 4. MKL-DNN的高性能格式与PaddlePaddle原有的`NCHW`不同(PaddlePaddle中的cuDNN部分使用的也是`NCHW`,所以不存在这个问题)。 所以需要引入一个转换方法,并且只需要在必要的时候转换这种格式,才能更好的发挥MKL-DNN的性能。 - diff --git a/doc/design/mkl/mkldnn_fluid.md b/doc/design/mkl/mkldnn_fluid.md new file mode 100644 index 0000000000..bef126f3f0 --- /dev/null +++ b/doc/design/mkl/mkldnn_fluid.md @@ -0,0 +1,149 @@ +# Design Doc: Add MKLDNN Kernel in Fluid Operator + +## Principles + +First of all, we should follow some basical principles like: +1. [How to write a new operator](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md). We are trying to add a new kind of kernel into operators, so basically we should follow this doc. +2. [Supporting new Device/Library](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/support_new_device.md). Since MKLDNN is a new library to fluid, we should add `MKLDNNDeviceContext` and maybe `mkldnn_helper.h`, just like [cudnn_helper.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/cudnn_helper.h). +3. [Switch Kernel](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md). Another important point is that we should ensure the data synchronization between different kernel types, which is this [topic](https://github.com/PaddlePaddle/Paddle/issues/6549). So basically we should override `GetExpectedKernelType` and `trans` functions to support switching kernels. +4. [The Keys of Operator Kernel Type](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md). Kernel Type is a pivotal conception which can record the `Place`, `Library`, `DataType` and `Layout`. + +## Sulution + +In general, there are four parts we should follow to run a MKL-DNN primitive. +- Create a primitive descriptor that describe this operator +- Create a primitive itself by primitive descriptor and the engine +- Create all memory buffers that primitive needed +- Launch a stream to execute the primitive created +More details can refer to [here](http://01org.github.io/mkl-dnn). + +It's better to avoid reinitialization of primitives and memory handles in the first three stages in every iteration. \ +So we plan to create a map to record all the `primitive` and `memory`, which should not take too much memories as discussed [here](https://github.com/PaddlePaddle/Paddle/issues/6822). + +It's assumed that following three conditions should be satisfied. +1. there is a unique key for each operator instance. May be the actual name of `Output Tensor`. +2. the `Input Tensor` inside `Compute` function is the one after converted. +3. we can get the phase(eg. `is_test`) inside `Compute` function, otherwise we need to expose this attribue to user. + +### Compute +The algorithm of `Compute` would be described as follow, let's take conv like an example. + +```c++ + + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); + PADDLE_ENFORCE(platform::is_mkldnn_library(ctx.GetLibrary()), "It must use MKLDNN Library."); + + auto& dev_ctx = ctx.template device_context(); + + // find primitive by unique key from mkldnn context + // the op_key should be a unique name of this op instance + auto& p = dev_ctx.findPrimitive(op_key + "_fwd"); + + // assuming the input tensor inside this compute function is the one after converted + // this point should be guarantee by another mechanism + auto& i = dev_ctx.findMemory(op_key + "_input"); + + if (p == nullptr || i == nullptr || inputSizeChanged(p, i)) { + auto fwd_primitive_desc = createPrimitiveDesc(ctx); + auto* input = ctx.Input("Input"); + auto* filter = ctx.Input("Filter"); + auto* output = ctx.Output("Output"); + shared_ptr in(new mkldnn::memory(fwd_primitive_desc->src_primitive_desc(), input->data())); + shared_ptr wgt(new mkldnn::memory(fwd_primitive_desc->weights_primitive_desc(), filter->data())); + shared_ptr out(new mkldnn::memory(fwd_primitive_desc->dst_primitive_desc(), output->mutable_data(ctx.GetPlace()))); + shared_ptr fwd_primitive(new mkldnn::conv_fwd(*fwd_primitive_desc, *in, *wgt, *out)); + + dev_ctx.addMemory(op_key+"_input", in); + dev_ctx.addMemory(op_key+"_output", out); + dev_ctx.addMemory(op_key+"_filer", wgt); + dev_ctx.addPrimitive(op_key+"_fwd", fwd_primitive); + dev_ctx.addPrimitiveDesc(op_key+"_fwd_PD", fwd_primitive_desc); + } + + p = dev_ctx.findPrimitive(op_key + "_fwd"); + + PADDLE_ENFORCE(p, "Should have forward Primitive"); + PADDLE_ENFORCE(dev_ctx.findMemory(op_unique_key+"_input"), "Should have input memory"); + PADDLE_ENFORCE(dev_ctx.findMemory(op_unique_key+"_output"), "Should have output memory"); + PADDLE_ENFORCE(dev_ctx.findMemory(op_unique_key+"_filter"), "Should have filter memory"); + PADDLE_ENFORCE(dev_ctx.findPrimitiveDesc(op_unique_key+"_fwd_PD"), "Should have forward PrimitiveDesc"); + dev_ctx.submit(p); + dev_ctx.execute(); // the convert primitive should have already contained. + +``` + +The `createPrimitiveDesc` returns the primitive descripotor of this operator, would be like this: +```c++ + auto* input = ctx.Input("Input"); + auto* filter = ctx.Input("Filter"); + auto* output = ctx.Output("Output"); + std::vector strides = ctx.Attr>("strides"); + std::vector paddings = ctx.Attr>("paddings"); + std::vector dilations = ctx.Attr>("dilations"); + int groups = ctx.Attr("groups"); + algorithm algo = static_cast(ctx.Attr("convolution_algorithm_option")); + prop_kind pk = ctx.Attr("is_test") ? prop_kind::forward_inference : prop_kind::forward_training; + + auto fwd_desc = mkldnn::conv_fwd::desc(/* all the setting above*/); + shared_ptr fwd_primitive_desc(new mkldnn::conv_fwd::primitive_desc(fwd_desc, ctx.getEngine())); + + return fwd_primitive_desc; + } +``` + +### MKLDNNDeviceContext +`MKLDNNDeviceContext`, which is very straightforward, should contain some base information like: `stream`, `engine` and the map needed. + + +### mkldnn_helper +Some functions would be put in `paddle/platform/mkldnn_helper.h`. +- create MKLDNN memories +- create MKLDNN primitives +- error check function +- etc + + +### Kernel Switch +We should `reorder` the different Layout from other device or to other device. `GetExpectedKernelType` and `trans` functions can help us to implement it. + +`GetExpectedKernelType` should get the context, and this operator can return the best `KernelType`. +`trans` would be like this: + +```c++ +void trans(inputs, ctx) override { + if (NoNeedTrans()) { + return; + } + // find reorder primitive by op_key from context + auto& dev_ctx = ctx.template device_context(); + auto& p = dev_ctx.findPrimitive(op_key + "_reorder_input"); + auto& i = dev_ctx.findMemory(op_key + "_src_input"); + + if (p == nullptr || i == nullptr || changeSized(i, input)) { + auto prim = createPrimitiveDesc(ctx); + auto src = createMemory(memoryDesc(input->dims(), actual_layout), input->data); + auto newbuffer = paddle::memory::Alloc(ctx.GetPlace(), input->size_in_bytes()); + auto dst = createMemory(p->expected_desc(), newbuffer->data); + auto reorder_primitive(new mkldnn::reorder(src, dst)); + + dev_ctx.addMemory(op_key+"_src_input", src); + dev_ctx.addMemory(op_key+"_input", dst); + dev_ctx.addPrimitive(op_key+"_reorder_input", reorder_primitive); + } + + p = dev_ctx.findPrimitive(op_key + "_reorder_input"); + PADDLE_ENFORCE(p, "Should have Reorder Primitive"); + dev_ctx.submit(p); + if (! this->isMKLDNNKernel()) { + // execute immediately only if this is not mkldnn kernel function. + // otherwise, it can be executed with the operator primitive in Compute + dev_ctx.stream(); + } + // after submit, the input tensor in ExecutionContext should be changed as the converted one + // there should be another mechanism to ensure this +} +``` + +### Unit Test +All the functions should be tested corresponding. +TBD diff --git a/doc/design/operator_kernel_type.md b/doc/design/operator_kernel_type.md new file mode 100644 index 0000000000..f86e6b7a56 --- /dev/null +++ b/doc/design/operator_kernel_type.md @@ -0,0 +1,91 @@ +# Design Doc: The Keys of Operator Kernel Type +## Problem +An operator can have different kernel implementations, and each operator will have a map to store the related kernels. Fluid uses `OpKernelType` as a key to identify a unique kernel. Before an operator runs, a certain type of kernel must be chosen via a key of `OpKernelType`. Currently, `OpKernelType` is defined as follows: + +```cpp +struct OpKernelType { + platform::Place place_; + proto::DataType data_type_; +}; +``` +For more details, please refer to [codes](https://github.com/PaddlePaddle/Paddle/blob/2d5ec16bc8a09fb8e0f62c89b116b0cd1d333907/paddle/framework/operator.h#L348-L374) in github. + +It contains two keys, `Place` and `DataType`. And these two keys will be hashed to a unique key to represent a certain type of kernel. However, these two keys do not provide enough information. We need a more complete representation of `OpKernelType`. + +We often implement a kernel of an operator with some computing library on certain device(place). Please note that computing library and device do not have a one-to-one correspondence. A device can have a lot of computing libraries and a computing library can also support different devices. + +For example, Eigen library supports Nvidia GPU/AMD GPU/CPU and MKLDNN library supports Intel CPU/Intel FPGA. Both `Place` and `Library` should be a key of `OpKernelType`. + +Different DataTypes, such as fp64/fp32/int8, will obviously have different kernels. But different data layout of a Tensor will also lead to different implementations. Please refer to the batch norm operator [kernels](https://github.com/PaddlePaddle/Paddle/blob/a948fac4d0ad7e0412d373b8aabeb711c2899563/paddle/operators/batch_norm_op.cc#L180-L209) as an example. Data layout should also be taken into consideration. + +## Solution + +There are four keys to determine a kernel type of an operator: `Place`/`Library`/`DataType`/`Layout`. + +```cpp +struct OpKernelType { + platform::Place place_; + platform::Library library_; + proto::DataType data_type_; + framework::Layout layout_; +}; +``` + +The details are as follows: + +### Place + +`Place` is defined as: + +```cpp +typedef boost::variant Place; +``` + +`Place` represents the device memory where data is located. + + +### Library + +One operator kernel is usually implemented based on one library. `Library` is defined as a enum variable: + +```cpp +enum Library { Plain, MKLDNN, CUDNN }; +``` + +We use `Plain` enumerator to represent default library. Since most operators in Fluid are implemented based on the `Eigen` library, we take `Eigen` library as the `Plain` enumerator. +A library usually has a corresponding `DeviceContext` which contains some handles needed for computation. Fluid now has two default DeviceContexts for CPU and CUDA, namely, `CPUDeviceContext` and `CUDADeviceContext`. `CPUDeviceContext` contains an Eigen library handle and `CDUADeviceContext` contains an Eigen library handle and a cuBLAS handle. + +If we want to support new library, a new enumerator need to be added to `Library` and a corresponding new `LibraryDeviceContext` need to be created. + + +### DataType + + +`DataType` is defined in [framework.proto](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto). Currently, int32/int64/fp32/fp64 are supported. + +### Layout + +Actually, a Tensor is a view of a block of memory. Besides a pointer to the memory, we also have to get some other descriptions of this block of memory, such as shape(ddim), stride, and layout. + +Different layout leads to different implementation of the operator kernel. There are mainly 4 principles we have to follow to support layout in our Fluid framework. + +- We take layout as a data member of Tensor. Layout is actually a enum variable. If Fluid is built with MKLDNN, then the memory format in MKLDNN will also be added into this enum variable. + +- Users have to set layout for input data. And some operators like fill_constant/random, also have to set layout for generating data. Of course, we can have some default layout, like NCHW. + +- The inference of Layout is at run-time, not at compile-time. + +- Every operator has to implement different kernels for different layouts. Let's take MKLDNN as an example. If we want to implement an MKLDNN convolution operator, we have to implement all the kernels for different layouts, which are listed [here](http://01org.github.io/mkl-dnn/structmkldnn_1_1memory.html). And we will have a special macro to register kernels for MKLDNN operators. + +`Layout` is also defined as a enum variable: + +```cpp +enum Layout { + kNCHW, + kNHWC, +#ifdef PADDLE_WITH_MKLDNN + knChw8c + ... +#endif +}; +``` diff --git a/doc/design/optimizer.md b/doc/design/optimizer.md index 202b4b6510..691081c268 100644 --- a/doc/design/optimizer.md +++ b/doc/design/optimizer.md @@ -79,7 +79,7 @@ class Optimizer(object): def minimize(self, loss, parameter_list): """Add operations to minimize `loss` by updating `parameter_list`. - This method combines interface `append_backward_ops()` and + This method combines interface `append_backward()` and `create_optimization_pass()` into one. """ params_grads = self.create_backward_pass(loss, parameter_list) diff --git a/doc/design/paddle_nccl.md b/doc/design/paddle_nccl.md new file mode 100644 index 0000000000..c7dac70998 --- /dev/null +++ b/doc/design/paddle_nccl.md @@ -0,0 +1,65 @@ +# Design Doc: NCCL support in Paddle Fluid + +## Abstract + +This Design Doc refers to the NCCL feature in paddle. We propose an approach to support NCCL library both on a single machine and multiple machines. We wrapper the NCCL primitives `Broadcast`, `Allreduce`, `Reduce` as operators to utilize Multi-GPU powers in one script. + + +## Motivation + +[NCCL](https://developer.nvidia.com/nccl) is a NVIDIA library support Multi-GPU communicating and optimized for NVIDIA GPUs, it provides routines such as all-gather, all-reduce, broadcast, reduce, reduce-scatter, that can achieve high bandwidth over PCIe and NVLink high-speed interconnect. With NCCL library, we can easily accelerate the training in parallel. + +- Pros +1. easily plug-in with [NCCL2](https://developer.nvidia.com/nccl) library. +1. high performance in NVIDIA GPUs. +1. MPI like primitives, which have low learning cost for users. + +- Cons +1. Only design for NVIDIA GPUs, not a general multi-device solution. +1. Although NCCL1 is opensourced under BSD license, but NCCL2 is not opensourced anymore. + +At the beginning of training, the framework needs to distribute the same parameters to every GPU, and merge the gradients at any time user interests. + +As a result, during training, we need the operations of peer to peer copy between different GPUs, aggregating gradients/parameters from GPUs, and broadcasting parameters to GPUs. Every GPU only need to run the operator with correct place information. + +Besides, it needs interfaces to synchronize model update with each different GPU Cards. + +## Implementation + +As mentioned above, we wrap the NCCL routines as several kinds of operators. Need to note that NCCL need to create Communicator between gpu at the beginning, so there is a NCCLInit operator created. + +### Transpiler + +To be compatible with [parameter server design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/ops/dist_train.md), the transpiler compiles the user defined operation graph into sub-graphs to be executed on different devices. + +1. The user-defined model will be a single device program + +2. Broadcast/Reduce operators between GPUs will be inserted into the program, even for the multi-node, may insert the `Send`, `Recv` operator. + + *Broadcast, AllReduce in a single machine. And Broadcast, AllReduce, [Send, Recv](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/ops/dist_train.md#graph-converter) in multiple machines* + + + +After compiling, the graph as shows + + + +Operators are added to the sub-graphs. Every GPU assigned a role of `rank0`, `rank1` etc. + +- **Broadcast**. Broadcast operator distribute initialized parameter to all the GPUs from the GPU who owns it. e.g. from`rank0` GPU. +- **AllReduce**. AllReduce operator synchronizes parameters/gradients between GPUs. AllReduce implemented in the Ring-Based communicating method, avoid of the bottle neck in a single GPU. + +Need to notice that AllReduce operator force GPUs synchronized at that point. The whole training process in asynchronous or synchronous mode depends on the AllReduce point in the graph. + +As it shown in the picture, when each GPU compute the gradient of `W`, followed with a `AllReduce` operator, accumulate the `dW` to full batch of data, then run the optimize process individually and apply the gradient to its `W`. + +- **AllReduce** + Need to note that our AllReduce operator is a ring-base AllReduce implementation. If we use the NCCL2 AllReduce primitive, every GPU optimized full batch of data, wasted (n-1) GPU compute resources. In addition, NCCL2 built-in AllReduce will only utilize the communicating resource during synchronization, then update the gradient will be a subsequent phase. In fact, we can amortize the update gradient time cost into the communicating phase. The process is +1. Every parameter has its root card. That card will responsible for aggregating the gradients from GPUs. +2. The whole model's parameter will be hashed to different root card, ensure the load balance between GPUs. +3. Logically neighberhood card will start send parameter to the next one. After one round, the parameter main card will aggregate the full gradients. +4. Then the root card will optimize the parameter. +5. This parameter card will send its optimized result to its neighberhood, then the neighberhood will send parameter to its next one. +6. Finish the sychronization round. + +The total time cost will be 2 * (n-1) * per-parameter-send-time, we reach the goal of amortize the upgrade time into communicating phase. diff --git a/doc/design/profiler.md b/doc/design/profiler.md new file mode 100644 index 0000000000..b20b5efdc1 --- /dev/null +++ b/doc/design/profiler.md @@ -0,0 +1,97 @@ +## Introduction + +There are many performance analysis tools for [different programming languages and different software frameworks](https://en.wikipedia.org/wiki/List_of_performance_analysis_tools). For most popular deep learning frameworks, they use several programming languages and adapt to heterogeneous platforms. Similar to most of the deep learning frameworks, PaddlePaddle also uses C++, CUDA and Python as the basic programming languages to adapt to run on CPU and GPU devices. The [`nvprof` tools](http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview) is usually used to analyse the CUDA program. We have [a document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/optimization/cpu_profiling.md) to profile CPU and Python program by [yep](https://pypi.python.org/pypi/yep) and [Google's perftools](https://github.com/google/pprof) to profile only the CPU and Python program. But for [PaddlePaddle fluid](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/fluid.md), the operator is the basic computing unit. The developers usually want to collect the time of each operator and locate bottlenecks. The `nvprof` usually collect the timeline of CUDA-related activities on both CPU and GPU, including kernel execution, memory transfers, memory set and CUDA API calls and events or metrics for CUDA kernels. And the `yep` and `Google's perftools` can't collect the timeline for CUDA program. All these tools can't collect time in the operator level. So we design this profiling tool. + +## Architecture + +The work flow for most task is as follows. Each operator will run many times in the all iterations. So the profiler must collect the total time of each operator during the iteration. For more, sometimes, the developers may want to collect more detailed time span inside the operator or record time span for elsewhere, this requires that the profiler must support to record the nested time span. And in order to speedup training, all the deep learning frameworks support parallel computing, including multiple threads on CPU and multiple GPUs. So the profiler must be able to collect the timeline for each thread. In addition, the profiler also occupies certain resources. It must can be easily to be enabled or disabled by the developers. At last, the profiler should present a human-readable report. + +```python +for i in xrange(M): # M is the iteration number + for op in operator_lists: # The `operator_lists` contains all the operators in the network. + op.run(); +``` + +In summary, the proflier should have following features: + +- records time span in loop. +- supports nested time span. +- supports multiple threads/multiple GPUs. +- supports to be enabled and disabled by users. + +But how to record the time for the mixed C++ and CUDA program? There many C++ APIs to get the current calendar time in host program. But for GPU, the CUDA kernels may be executed concurrently if they are in different [streams](http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams) and the CUDA kernels is asynchronous with the host program if there is no the synchronous aftern the CUDA kernels. CUDA provides [event](http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#events) to monitor the device and perform accurate timing. Inspired by PyTorch and CUDA event, we also design and apply the events to record the timeline. Then summarize and present statistics based on these events. + +The overall flow is shown as the following figure. + +
+ +### Event + +In above work flow, a pair of events are needed before and after the piece of code to collect time. So the event has a flag to mark whether it is a starting event or an ending event. Except this two kinds of event, sometime, a only marker with a text message is needed, for example, a marker to specify the profiling start or end. There are three kinds of event: + +```c++ +enum EventKind { + kMark, + kPushRange, + kPopRange}; +``` +- kMark: only a marker without time range. +- kPushRange: mark the starting event for time range. +- kPopRange: mark the ending event for time range. + +For the CPU code, the events only need to record the current time. For the CUDA code, the [event management functions of CUDA](http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT) are used. For many pieces of code, an event lists are used to record each piece. + +```c++ +class Event { + public: + // The DeviceContext is used to get current CUDA stream. + Event(EventKind kind, std::string name, uint32_t thread_id, + const platform::DeviceContext* dev_ctx = nullptr); + double CpuElapsedUs(const Event& e) const; + double CudaElapsedUs(const Event& e) const; + + private: + EventKind kind_; + std::string name_; + uint32_t thread_id_; + int64_t cpu_ns_; +#ifdef PADDLE_WITH_CUDA + cudaEvent_t event_ = nullptr; + int device_ = -1; +#endif +}; + +struct EventList { + std::forward_list> event_blocks; +}; +``` + +As mentioned above, there is no need to record the timeline when disabling the profiler. So there is a global state to enable or disable the profiler. + +```c++ +enum ProfilerState { + kDisabled, + kCPU, + kCUDA +}; +ProfilerState g_state; +``` +- kDisabled: the disabled state. +- kCPU: CPU profiling state. +- kCUDA: GPU profiling state. + +A pair of starting and ending events are pushed to event lists in constructor and destructor of `RecordEvent`. So the timeline is recorded for the code in the lifecycle of an object of `RecordEvent`. + +```c++ +struct RecordEvent { + explicit RecordEvent(const std::string name, + platform::DeviceContext* dev_ctx = nullptr) { + if (kState == ProfilerState::kDisabled) return; + // push the starting event to the event lists. + } + ~RecordEvent() { + if (kState == ProfilerState::kDisabled) return; + // push the ending event to the event lists. + } +}; +``` diff --git a/doc/design/python_api.md b/doc/design/python_api.md index cb5fdc765b..73f6d7b90c 100644 --- a/doc/design/python_api.md +++ b/doc/design/python_api.md @@ -279,6 +279,26 @@ class LayerHelper(object): return tmp ``` +### Return value of layer functions + +The layer will return a Variable, which is also the output of an operator. However, outputs of a layer function have more attributes than an operator. There are parameter variables, and their gradient variables need to return. To return them is useful. For example, + +1. Users can debug the network by printing parameter gradients. +2. Users can append attributes to a parameter, such as, `param.stop_gradient=True` will make a parameter stop generate the gradient. We can fix the parameter value during training by using this attribute. + +However, it is good to return a Variable for layers, since all layers and operators use Variables as their parameters. We can just append a `param` field and a `grad` field for layer function since the Python is dynamic typing. + +The sample usage is + +```python +data = fluid.layers.data(...) +hidden = fluid.layers.fc(data, ...) +... + +executor.run(fetch_list=[hidden.param, hidden.param.grad], ...) +``` + + ## Optimizer [Optimizer Design Doc](./optimizer.md) diff --git a/doc/design/refactor/session.md b/doc/design/refactor/session.md deleted file mode 100644 index 1d9a26683c..0000000000 --- a/doc/design/refactor/session.md +++ /dev/null @@ -1,180 +0,0 @@ -# Design Doc: Session - -## Abstract - -The *session* object encapsulates the environment in which the -computation graph is executed. - -We will have the *local* session and *remote* session, they offer the -same [interface](#interface). The local session encapsulates the local -runtime environment and the remote session encapsulates the cluster -runtime environment. - -The local runtime environment contains: - -1. computation devices (i.e., CPU, GPU) handles, and -1. the [scope](../scope.md) which holds all variables. - -The remote runtime environment contains: - -1. computation devices (i.e., CPU and GPU on node 0, 1) in a cluster, - and -1. the distributed [scope](../scope.md) in a cluster which holds all - variables. - -The user can create a remote session on Paddle Cloud and evaluate the -computation graph with it. In this way, the user can control the -remote computation resource in a cluster from his local computer. - - -## Background - -The current design has an implicit global session in which -`paddle.eval()` is executed. The pain point is: - -Since the user is not able to explicitly switch between runtime -environments, the user cannot run a topology in two independent -environments. - -For example, in reinforcement learning, the user may want to have a -stale model for inference and a fresh model for training, and only -replace the stale model with the fresh model periodically. - -Furthermore, we have no concept that encapsulates a remote environment -that executes a computation graph. - -We need the session object to address above issues. - - -## Session - -A session is an object that owns the runtime environment. All -computations are executed through `session.eval()`. - - -### Interface - -```python -eval( - targets, - feed_dict=None, -) -``` - -Evaluates the target Operations or Variables in `targets`. - -- *targets*: the evaluation targets. Can be a single Operation or - Variable, or a list with the Operations or Variables as - elements. The value returned by `eval()` has the same shape as the - `target` argument. - - The PaddlePaddle program is represented by - the [ProgramDesc](../design/program.md), `eval()` will infer the - ProgramDesc from the given targets and run the PaddlePaddle - program. Please - see - [this graph](./distributed_architecture.md#local-training-architecture) for - the detailed illustration for the local session - and - [this graph](./distributed_architecture.md#distributed-training-architecture) for - the detailed illustration for the remote session. - -- *feed_dict*: a dictionary that contains the tensors which override - the edges of the computation graph. - - feed_dict not only can provide the input data, it can override any - OP's input as well: - - ```python - a = pd.constant(2.0, name="a") - b = pd.variable(name="b") - c = pd.mul(a,b) - sess.eval(targets=c, feed_dict={"b":3.0}) # returns 6.0 - ``` - -```python -close() -``` - -Closes the session and releases the scope that the session owns. - - -### Create a Local Session - -```python -session( - devices=None -) -``` - -Creates a new session. One session owns one global scope, so creating -multiple sessions will create different scopes. - -- *devices*: a single `string` or a list of `string` of device names, - the corresponding devices will be the computation devices for - `eval()`. If not specified, all available devices (e.g., all GPUs) - will be used. The user doesn't need to specify the CPU device since - it will be always used. Multiple sessions can use the same device. - - -#### Example - -```Python -a = paddle.constant(1.0) -b = paddle.constant(2.0) -c = a + b -sess = paddle.session(devices=["gpu:0", "gpu:1", "fpga:0"]) -sess.eval(c) -sess.close() -``` - -### Create a Remote Session - -```python -create_cloud_job( - name, - num_trainer, - mem_per_trainer, - gpu_per_trainer, - cpu_per_trainer, - num_ps, - mem_per_ps, - cpu_per_ps, -) -``` - -Creates a Paddle Cloud job. Fails if the job name exists. - -```python -get_cloud_job( - name -) -``` - -Gets a Paddle Cloud job. - -```python -remote_session( - job -) -``` - -- *job*: the Paddle Cloud job. - -#### Example - -```Python -reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud -image = reader.column(0) -label = reader.column(1) -fc1 = paddle.op.fc(image, size=256, act="sigmoid") -fc2 = paddle.op.fc(fc1, size=10, act="softmax") -cost = paddle.op.cross_entropy(fc2, label) -opt = paddle.optimizer.sgd(cost) - -job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1) -sess = paddle.remote_ession(job) -for i in range(1000): - sess.eval(opt) -sess.close() -``` diff --git a/doc/design/refactor/src/distributed_architecture.graffle b/doc/design/refactor/src/distributed_architecture.graffle deleted file mode 100644 index f8496e5732..0000000000 Binary files a/doc/design/refactor/src/distributed_architecture.graffle and /dev/null differ diff --git a/doc/design/refactor/src/distributed_architecture.png b/doc/design/refactor/src/distributed_architecture.png deleted file mode 100644 index 410c4510c6..0000000000 Binary files a/doc/design/refactor/src/distributed_architecture.png and /dev/null differ diff --git a/doc/design/refactor/src/local_architecture.graffle b/doc/design/refactor/src/local_architecture.graffle deleted file mode 100644 index cc7783c453..0000000000 Binary files a/doc/design/refactor/src/local_architecture.graffle and /dev/null differ diff --git a/doc/design/refactor/src/local_architecture.png b/doc/design/refactor/src/local_architecture.png deleted file mode 100644 index 4b999538b7..0000000000 Binary files a/doc/design/refactor/src/local_architecture.png and /dev/null differ diff --git a/doc/design/releasing_process.md b/doc/design/releasing_process.md index 14c081ea84..b978726109 100644 --- a/doc/design/releasing_process.md +++ b/doc/design/releasing_process.md @@ -7,11 +7,9 @@ PaddlePaddle每次发新的版本,遵循以下流程: 1. 从`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0` 1. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。 1. 对这个版本的提交,做如下几个操作: + * 使用Regression Test List作为检查列表,测试本次release的正确性。 + * 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,到第二步 * 修改`python/setup.py.in`中的版本信息,并将`istaged`字段设为`True`。 - * 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步 - * 编译这个版本的Ubuntu Deb包。如果失败,修复Ubuntu Deb包编译问题,Patch号加一,返回第二步。 - * 使用Regression Test List作为检查列表,测试Docker镜像/ubuntu安装包的功能正确性 - * 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,返回第二步 * 编译这个版本的python wheel包,并发布到pypi。 * 由于pypi.python.org目前遵循[严格的命名规范PEP 513](https://www.python.org/dev/peps/pep-0513),在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将`linux_x86_64`修改成`manylinux1_x86_64`。 * pypi上的package名称为paddlepaddle和paddlepaddle_gpu,如果要上传GPU版本的包,需要修改build/python/setup.py中,name: "paddlepaddle_gpu"并重新打包wheel包:`python setup.py bdist_wheel`。 @@ -21,8 +19,8 @@ PaddlePaddle每次发新的版本,遵循以下流程: pip install twine twine upload dist/[package to upload] ``` + * 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步 1. 第三步完成后,将`release/版本号`分支合入master分支,并删除`release/版本号`分支。将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。最后删除`release/版本号`分支。 -1. 编译master分支的Docker发行镜像,发布到dockerhub。编译ubuntu的deb包,发布到github release页面 1. 协同完成Release Note的书写 @@ -31,6 +29,30 @@ PaddlePaddle每次发新的版本,遵循以下流程: * `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试PaddlePaddle的行为。 * 在`release/版本号`分支存在的时候,如果有bugfix的行为,需要将bugfix的分支同时merge到`master`, `develop`和`release/版本号`这三个分支。 +## 发布wheel包到pypi + +使用[PaddlePaddle CI](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview) +完成自动化二进制编译,参考下图,选择需要发布的版本(通常包含一个CPU版本和一个GPU版本),点击"run"右侧的"..."按钮,可以 +弹出下面的选择框,在第二个tab (Changes)里选择需要发布的分支,这里选择0.11.0,然后点击"Run Build"按钮。等待编译完成后 +可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m`和`cp27mu`的版本。然后按照上述的方法 +使用`twine`工具上传即可。 + + + +* 注:CI环境使用 https://github.com/PaddlePaddle/buildtools 这里的DockerImage作为编译环境以支持更多的Linux + 发型版,如果需要手动编译,也可以使用这些镜像。这些镜像也可以从 https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/ 下载得到。 +* pypi不支持覆盖上传,所以一个版本号的wheel包发布之后,不可以更改。下一个wheel包需要更新版本号才可以上传。 + +## 发布Docker镜像 + +上述PaddlePaddle CI编译wheel完成后会自动将Docker镜像push到DockerHub,所以,发布Docker镜像只需要对自动push的镜像打上 +版本号对应的tag即可: + +1. 进入 https://hub.docker.com/r/paddlepaddle/paddle/tags/ 查看latest tag的更新时间是否在上述编译wheel包完成后是否最新。 +1. 执行 `docker pull paddlepaddle/paddle:[latest tag]`,latest tag可以是latest或latest-gpu等。 +1. 执行 `docker tag paddlepaddle/paddle:[latest tag] paddlepaddle/paddle:[version]` +1. 执行 `docker push paddlepaddle/paddle:[version]` + ## PaddlePaddle 分支规范 PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 diff --git a/doc/design/support_new_device.md b/doc/design/support_new_device.md new file mode 100644 index 0000000000..4c5f10e2ec --- /dev/null +++ b/doc/design/support_new_device.md @@ -0,0 +1,240 @@ +# Design Doc: Supporting new Device/Library + +## Background + +Deep learning has a high demand for computing resources. New high-performance devices and computing libraries are appearing very frequently. Deep learning frameworks have to integrate these high-performance devices and computing libraries flexibly and efficiently. + +On one hand, hardware and computing libraries usually do not have a one-to-one correspondence. For example,Intel CPUs support Eigen and MKL computing libraries while Nvidia GPUs support Eigen and cuDNN computing libraries. We have to implement operator specific kernels for each computing library. + +On the other hand, users usually do not want to care about the low-level hardware and computing libraries when writing a neural network configuration. In Fluid, `Layer` is exposed in `Python`, and `Operator` is exposed in `C++`. Both `Layer` and `Operator` are hardware independent. + +So, how to support a new Device/Library in Fluid becomes a challenge. + + +## Basic: Integrate A New Device/Library + +For a general overview of fluid, please refer to the [overview doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/read_source.md). + +There are mainly three parts that we have to consider while integrating a new device/library: + +- Place and DeviceContext: indicates the device id and manages hardware resources + +- Memory and Tensor: malloc/free data on certain device + +- Math Functor and OpKernel: implement computing unit on certain devices/libraries + +### Place and DeviceContext + +Please remind that device and computing library are not one-to-one corresponding. A device can have a lot of computing libraries and a computing library can also support several devices. + +#### Place +Fluid uses class [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L55) to represent the device memory where data is located. If we add another device, we have to add corresponding `DevicePlace`. + +``` + | CPUPlace +Place --| CUDAPlace + | FPGAPlace +``` + +And `Place` is defined as follows: + +``` +typedef boost::variant Place; +``` + +#### DeviceContext + +Fluid uses class [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L30) to manage the resources in different libraries, such as CUDA stream in `CDUADeviceContext`. There are also inheritance relationships between different kinds of `DeviceContext`. + + +``` + /-> CPUDeviceContext +DeviceContext ----> CUDADeviceContext + \-> FPGADeviceContext +``` + +An example of Nvidia GPU is as follows: + +- DeviceContext + + +``` +class DeviceContext { + virtual Place GetPlace() const = 0; +}; +``` + + +- CUDADeviceContext + + +``` +class CUDADeviceContext : public DeviceContext { + Place GetPlace() const override { return place_; } +private: + CUDAPlace place_; + cudaStream_t stream_; + cublasHandle_t cublas_handle_; + std::unique_ptr eigen_device_; // binds with stream_ +}; +``` + +### Memory and Tensor + + +#### memory module + +Fluid provides the following [memory interfaces](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/memory/memory.h#L36): + +``` +template +void* Alloc(Place place, size_t size); + +template +void Free(Place place, void* ptr); + +template +size_t Used(Place place); +``` + +To implement these interfaces, we have to implement MemoryAllocator for different Devices. + + +#### Tensor + +[Tensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/tensor.h#L36) holds data with some shape in a specific Place. + +```cpp +class Tensor { + public: + /*! Return a pointer to mutable memory block. */ + template + inline T* data(); + + /** + * @brief Return a pointer to mutable memory block. + * @note If not exist, then allocation. + */ + template + inline T* mutable_data(platform::Place place); + + /** + * @brief Return a pointer to mutable memory block. + * + * @param[in] dims The dimensions of the memory block. + * @param[in] place The place of the memory block. + * + * @note If not exist, then allocation. + */ + template + inline T* mutable_data(DDim dims, platform::Place place); + + /*! Resize the dimensions of the memory block. */ + inline Tensor& Resize(const DDim& dims); + + /*! Return the dimensions of the memory block. */ + inline const DDim& dims() const; + + private: + /*! holds the memory block if allocated. */ + std::shared_ptr holder_; + + /*! points to dimensions of memory block. */ + DDim dim_; +}; +``` + +`Placeholder` is used to delay memory allocation; that is, we can first define a tensor, using `Resize` to configure its shape, and then call `mutuable_data` to allocate the actual memory. + +```cpp +paddle::framework::Tensor t; +paddle::platform::CPUPlace place; +// set size first +t.Resize({2, 3}); +// allocate memory on CPU later +t.mutable_data(place); +``` + + + +### Math Functor and OpKernel + +Fluid implements computing units based on different DeviceContexts. Some computing units are shared between operators. This common part will be put in operators/math directory as basic Functors. + +Let's take [MaxOutFunctor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/math/maxouting.h#L27) as an example: + +The interface is defined in header file. + +``` +template +class MaxOutFunctor { + public: + void operator()(const DeviceContext& context, const framework::Tensor& input, + framework::Tensor* output, int groups); +}; +``` + +CPU implemention is in .cc file + +``` +template +class MaxOutFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + const framework::Tensor& input, framework::Tensor* output, + int groups) { + ... + } +}; +``` + +CUDA implemention is in .cu file + +``` +template +class MaxOutFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + const framework::Tensor& input, framework::Tensor* output, + int groups) { + ... + } +}; +``` + + +We get computing handle from a concrete DeviceContext, and make compution on tensors. + +The implemention of `OpKernel` is similar to math functors, the extra thing we need to do is to register the OpKernel in a global map. + +Fluid provides different register interfaces in op_registry.h + + +Let's take [Crop](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/crop_op.cc#L134) operator as an example: + +In .cc file: + +``` +REGISTER_OP_CPU_KERNEL(crop, ops::CropKernel); +REGISTER_OP_CPU_KERNEL( + crop_grad, ops::CropGradKernel); +``` + +In .cu file: + +``` +REGISTER_OP_CUDA_KERNEL(crop, ops::CropKernel); +REGISTER_OP_CUDA_KERNEL( + crop_grad, ops::CropGradKernel); +``` + + +## Advanced topics: How to switch between different Device/Library + +Generally, we will impelement OpKernel for all Device/Library of an Operator. We can easily train a Convolutional Neural Network in GPU. However, some OpKernel is not sutibale on a specific Device. For example, crf operator can only run on CPU, whereas most other operators can run at GPU. To achieve high performance in such circumstance, we have to switch between different Device/Library. + + +For more details, please refer to following docs: + +- operator kernel type [doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md) +- switch kernel [doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md) diff --git a/doc/design/switch_kernel.md b/doc/design/switch_kernel.md new file mode 100644 index 0000000000..9719e031c7 --- /dev/null +++ b/doc/design/switch_kernel.md @@ -0,0 +1,99 @@ +## Background +Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold. + +The `OpKernelType ` is as follows: + +```cpp +struct OpKernelType { + Place place_; + DataType data_type_; + DataLayout data_layout_; + LibraryType library_type_; +}; +``` + +- The `place_` is a descriptor of the device, e.g., CPUPlace, CUDAPlace. + +- The `data_type_` is the data type that this kernel performs on, e.g., `FP32`, `INT64`. Note that one kernel may have inputs with different data types. However, it will be a major `data_type`. For example, the `cross_entropy` takes `int64` as it label, and `double`/`float` as its input logit and output cost. The major `data_type` of `cross_entropy` is `float` or `double`. + +- The `data_layout_ ` is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as `nChw8c`. Each kind of layout will invoke the different kernel. + +- The `library_type_` describes the computational library, e.g., `MKLDNN`, `CUDNN`. + +## Problem + +We register a kernel for every operator and every kernel type ideally. However, it is impracticable for the following situations. + +1. Some operators, like CRF, are complicated and inefficient to be implemented on GPU. The CRF operator will only have a CPU kernel. +2. Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem. +3. Some layout and place are particular. One example is that MKLDNN uses `nChw8` and there is no other library uses `nChw8c`. + +Take one situation to give a detailed explanation, if we have two Operators: OP1 and OP2, OP1 has one output `op1_to_op2`, and `op1_to_op2` is the input of OP2. + +If OP1 and OP2 run on the same place(for example CPUPlace), then `op1_2_op2` can be used directly by OP2. + +``` +OP1(CPUPlace) + | + op1_2_op2 + | +OP2(CPUPlace) +``` + +If OP1 and OP2 run one different place, then OP2 cannot `use op1_2_op2` directly. + +Problems under these situations are similar. We can formalize this problem as follow. + +We register kernels with types $KT = \{kt_1, kt_2, kt_3, ...\}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$. + +## Solution: data transform + +It is clear that transforming inputs of an operator to adapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods. + +We can infer kernel type for each input of an operator. We let this kernel type as `actual kernel type for var`, which means this kernel type is the kernel type that can process this input variable. + +We can get a kernel type by 1) The configuration of operator description. (Users may want to force use `MKL` for `conv` operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as `expect kernel type`. + +We transform the input data from `actual` to `expect` if the actual kernel type is not as same as expect kernel type. + +The algorithm is described as following + +```cpp +void OperatorWithKernel::Run( + const Scope& scope, + const platform::Place& place) const { + ExecutionContext ctx(...); + auto expected_kernel_key = this->GetExpectedKernelType(ctx); + + Scope& new_scope = scope.NewScope(); + + for (auto& var_name : this->Inputs()) { + auto* tensor_in = GetTensor(var_name); + auto kernel_type_for_var = this->GetKernelTypeForVar(...); + if (kernel_type_for_var.place_ != expected_kernel_key.place_) { + auto* trans_var = new_scope.Var(var_name); + auto* out = DataTransform(expected_kernel_key, + kernel_type_for_var, + *tensor_in); + CopyVariableWithTensor(...); + } + } + + auto kernel = kernels.find(expected_kernel_key); + kernel->Compute(ExecutionContext(...)); +} +``` + +then the actual process for the multi-device above will be: + +``` +OP1(CPUPlace) + | +op1_2_op2(on CPU) + | +[transform](from CPU to GPU) + | +op1_2_op2(on GPU) + | +OP2(CUDAPlace) +``` diff --git a/doc/design/var_desc.md b/doc/design/var_desc.md index 0b2958c1b1..89fa95326c 100644 --- a/doc/design/var_desc.md +++ b/doc/design/var_desc.md @@ -1,12 +1,12 @@ ## Background -PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime. +PaddlePaddle divides the description of neural network computation into two stages: compile time and runtime. At compile time, the neural network computation is described as a `ProgramDesc` whereas at runtime an `Executor` interprets the `ProgramDesc` to compute the operations. -PaddlePaddle use proto message to describe compile time graph because +PaddlePaddle use proto message to describe compile time program because -1. Computation graph should be able to be saved to a file. -1. In distributed training, the graph will be serialized and send to multiple workers. +1. The computation program description must be serializable and saved in a file. +1. During distributed training, the sreialized program will be sent to multiple workers. It should also be possible to break the program into different components, each of which can be executed on different workers. -The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below. +The computation `Program` consists of nested `Blocks`. Each `Block` will consist of data(i.e. `Variable`) and `Operations`. The concept to represent them is in the table below. | |compile time|runtime| |---|---|---| diff --git a/doc/faq/build_and_install/index_cn.rst b/doc/faq/build_and_install/index_cn.rst index f1677e216f..ed8a0c7e87 100644 --- a/doc/faq/build_and_install/index_cn.rst +++ b/doc/faq/build_and_install/index_cn.rst @@ -14,7 +14,7 @@ $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') - $ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu + $ docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu 更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 `_ 。 @@ -109,3 +109,31 @@ PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二 解决办法是: * 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包,使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面,单元测试会引用site-packages里面的python包,而不是源码目录里 :code:`/python` 目录下的python包。同时,即便设置 :code:`PYTHONPATH` 到 :code:`/python` 也没用,因为python的搜索路径是优先已经安装的python包。 + +8. 下载MKLML库失败 +------------------ + +.. code-block:: bash + + make[2]: *** [third_party/mklml/src/extern_mklml-stamp/extern_mklml-download] 错误 4 + make[1]: *** [CMakeFiles/extern_mklml.dir/all] 错误 2 + make[1]: *** 正在等待未完成的任务.... + +原因:网速或SSL链接原因,导致MKLML库下载不成功。 + +解决办法是:手动下载并安装,具体步骤如下。 + +.. code-block:: bash + + // 1. 进入对应的目录 + cd build/third_party/mklml/src/extern_mklml + + // 2. 查看包的大小, 正常情况下是75M,如果小于75M,即下载失败: + du -sh mklml_lnx_2018.0.1.20171007.tgz + + // 3. 手动下载且解压缩,并手动生成download成功标签: + wget --no-check-certificate https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz -c -O mklml_lnx_2018.0.1.20171007.tgz + tar zxf mklml_lnx_2018.0.1.20171007.tgz + touch ../extern_mklml-stamp/extern_mklml-download + + // 4. 接着编译即可 diff --git a/doc/faq/local/src/reduce_min_pool_size.py b/doc/faq/local/src/reduce_min_pool_size.py index 5715397cc1..96073633d2 100644 --- a/doc/faq/local/src/reduce_min_pool_size.py +++ b/doc/faq/local/src/reduce_min_pool_size.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. @provider(min_pool_size=0, ...) def process(settings, filename): os.system('shuf %s > %s.shuf' % (filename, filename)) # shuffle before. diff --git a/doc/faq/local/src/word2vec_config.py b/doc/faq/local/src/word2vec_config.py index 866b40c3d4..03619b2628 100644 --- a/doc/faq/local/src/word2vec_config.py +++ b/doc/faq/local/src/word2vec_config.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. ... # the settings and define data provider is omitted. DICT_DIM = 3000 # dictionary dimension. word_ids = data_layer('word_ids', size=DICT_DIM) diff --git a/doc/faq/local/src/word2vec_dataprovider.py b/doc/faq/local/src/word2vec_dataprovider.py index ec2753a7d0..a439a8f52e 100644 --- a/doc/faq/local/src/word2vec_dataprovider.py +++ b/doc/faq/local/src/word2vec_dataprovider.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. DICT_DIM = 3000 diff --git a/doc/getstarted/build_and_install/build_from_source_cn.rst b/doc/getstarted/build_and_install/build_from_source_cn.rst index c875c807b8..71904dc41e 100644 --- a/doc/getstarted/build_and_install/build_from_source_cn.rst +++ b/doc/getstarted/build_and_install/build_from_source_cn.rst @@ -32,6 +32,16 @@ PaddlePaddle主要使用 `CMake `_ 以及GCC, G++作为编译 pip install build/python/dist/*.whl +如果机器中已经安装过PaddlePaddle,有两种方法: + +.. code-block:: bash + + 1. 先卸载之前的版本,再重新安装 + pip uninstall paddlepaddle + pip install build/python/dist/*.whl + + 2. 直接升级到更新的版本 + pip install build/python/dist/*.whl -U .. _run_test: @@ -70,13 +80,13 @@ PaddlePaddle编译需要使用到下面的依赖(包含但不限于),其 :header: "依赖", "版本", "说明" :widths: 10, 15, 30 - "CMake", ">=3.5", "" + "CMake", ">=3.2", "" "GCC", "4.8.2", "推荐使用CentOS的devtools2" - "Python", "2.7.x", "依赖libpython2.7.so" - "pip", ">=9.0", "" - "numpy", "", "" + "Python", "2.7.x", "依赖libpython2.7.so" + "pip", ">=9.0", "" + "numpy", "", "" "SWIG", ">=2.0", "" - "Go", ">=1.8", "可选" + "Go", ">=1.8", "可选" .. _build_options: diff --git a/doc/getstarted/build_and_install/build_from_source_en.rst b/doc/getstarted/build_and_install/build_from_source_en.rst index f194f84ce7..27f73b2e2c 100644 --- a/doc/getstarted/build_and_install/build_from_source_en.rst +++ b/doc/getstarted/build_and_install/build_from_source_en.rst @@ -36,6 +36,16 @@ machine or copy it to the target machine. pip install build/python/dist/*.whl +If the machine has installed PaddlePaddle before, there are two methods: + +.. code-block:: bash + + 1. uninstall and reinstall + pip uninstall paddlepaddle + pip install build/python/dist/*.whl + + 2. upgrade directly + pip install build/python/dist/*.whl -U .. _run_test: @@ -76,13 +86,13 @@ will be downloaded automatically. :header: "Dependency", "Version", "Description" :widths: 10, 15, 30 - "CMake", ">=3.5", "" + "CMake", ">=3.2", "" "GCC", "4.8.2", "Recommend devtools2 for CentOS" - "Python", "2.7.x", "Need libpython2.7.so" - "pip", ">=9.0", "" - "numpy", "", "" + "Python", "2.7.x", "Need libpython2.7.so" + "pip", ">=9.0", "" + "numpy", "", "" "SWIG", ">=2.0", "" - "Go", ">=1.8", "Optional" + "Go", ">=1.8", "Optional" .. _build_options: diff --git a/doc/getstarted/build_and_install/docker_install_cn.rst b/doc/getstarted/build_and_install/docker_install_cn.rst index f78b1fb0e1..bae42593dd 100644 --- a/doc/getstarted/build_and_install/docker_install_cn.rst +++ b/doc/getstarted/build_and_install/docker_install_cn.rst @@ -15,7 +15,7 @@ 获取PaddlePaddle的Docker镜像 ------------------------------ -执行下面的命令获取最新的PaddlePaddle Docker镜像 +执行下面的命令获取最新的PaddlePaddle Docker镜像,版本为cpu_avx_mkl: .. code-block:: bash @@ -27,7 +27,7 @@ docker pull docker.paddlepaddle.org/paddle -下载GPU版本的Docker镜像: +下载GPU版本(cuda8.0_cudnn5_avx_mkl)的Docker镜像: .. code-block:: bash @@ -54,7 +54,7 @@ .. _docker_run: 在Docker中执行PaddlePaddle训练程序 ------------------------------- +---------------------------------- 假设您已经在当前目录(比如在/home/work)编写了一个PaddlePaddle的程序 :code:`train.py` (可以参考 `PaddlePaddleBook `_ @@ -82,7 +82,7 @@ .. _docker_run_book: 使用Docker启动PaddlePaddle Book教程 ------------------------------- +----------------------------------- 使用Docker可以快速在本地启动一个包含了PaddlePaddle官方Book教程的Jupyter Notebook,可以通过网页浏览。 PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。 @@ -114,7 +114,7 @@ PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Note .. code-block:: bash - nvidia-docker run -it -v $PWD:/work paddledev/paddle:latest-gpu /bin/bash + nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash **注: 如果没有安装nvidia-docker,可以尝试以下的方法,将CUDA库和Linux设备挂载到Docker容器内:** @@ -122,13 +122,13 @@ PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Note export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') - docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:latest-gpu + docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu **关于AVX:** AVX是一种CPU指令集,可以加速PaddlePaddle的计算。最新的PaddlePaddle Docker镜像默认 是开启AVX编译的,所以,如果您的电脑不支持AVX,需要单独 -`编译 <./build_from_source_cn.rst>`_ PaddlePaddle为no-avx版本。 +`编译 <./build_from_source_cn.html>`_ PaddlePaddle为no-avx版本。 以下指令能检查Linux电脑是否支持AVX: diff --git a/doc/getstarted/build_and_install/docker_install_en.rst b/doc/getstarted/build_and_install/docker_install_en.rst index d7acc7aeb7..56a7c68e4d 100644 --- a/doc/getstarted/build_and_install/docker_install_en.rst +++ b/doc/getstarted/build_and_install/docker_install_en.rst @@ -16,7 +16,7 @@ After you've read above tutorials you may proceed the following steps. Pull PaddlePaddle Docker Image ------------------------------ -Run the following command to download the latest Docker images: +Run the following command to download the latest Docker images, the version is cpu_avx_mkl: .. code-block:: bash @@ -28,7 +28,7 @@ For users in China, we provide a faster mirror: docker pull docker.paddlepaddle.org/paddle -Download GPU version images: +Download GPU version (cuda8.0_cudnn5_avx_mkl) images: .. code-block:: bash @@ -58,7 +58,7 @@ and run: .. _docker_run: Launch your training program in Docker ------------------------------- +-------------------------------------- Assume that you have already written a PaddlePaddle program named :code:`train.py` under directory :code:`/home/work` (refer to @@ -122,7 +122,7 @@ GPU driver installed before move on. .. code-block:: bash - nvidia-docker run -it -v $PWD:/work paddledev/paddle:latest-gpu /bin/bash + nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash **NOTE: If you don't have nvidia-docker installed, try the following method to mount CUDA libs and devices into the container.** @@ -130,14 +130,14 @@ GPU driver installed before move on. export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') - docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:latest-gpu + docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu **About AVX:** AVX is a kind of CPU instruction can accelerate PaddlePaddle's calculations. The latest PaddlePaddle Docker image turns AVX on by default, so, if your computer doesn't support AVX, you'll probably need to -`build <./build_from_source_en.rst>`_ with :code:`WITH_AVX=OFF`. +`build <./build_from_source_en.html>`_ with :code:`WITH_AVX=OFF`. The following command will tell you whether your computer supports AVX. diff --git a/doc/getstarted/build_and_install/pip_install_cn.rst b/doc/getstarted/build_and_install/pip_install_cn.rst index b270e2c2f0..0c741e936b 100644 --- a/doc/getstarted/build_and_install/pip_install_cn.rst +++ b/doc/getstarted/build_and_install/pip_install_cn.rst @@ -11,14 +11,14 @@ PaddlePaddle可以使用常用的Python包管理工具 ------------------------------ -执行下面的命令即可在当前机器上安装PaddlePaddle的运行时环境,并自动下载安装依赖软件。 +执行下面的命令即可在当前机器上安装PaddlePaddle的运行时环境,并自动下载安装依赖软件,版本为cpu_avx_openblas。 .. code-block:: bash pip install paddlepaddle -如果需要安装支持GPU的版本,需要执行: +如果需要安装支持GPU的版本(cuda7.5_cudnn5_avx_openblas),需要执行: .. code-block:: bash @@ -37,11 +37,11 @@ PaddlePaddle可以使用常用的Python包管理工具 :header: "版本说明", "cp27-cp27mu", "cp27-cp27m", "C-API" :widths: 1, 3, 3, 3 - "cpu_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cpu_avx_openblas", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "暂无" - "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "暂无" + "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" .. _pip_dependency: diff --git a/doc/getstarted/build_and_install/pip_install_en.rst b/doc/getstarted/build_and_install/pip_install_en.rst index 70f601a11c..285ed09805 100644 --- a/doc/getstarted/build_and_install/pip_install_en.rst +++ b/doc/getstarted/build_and_install/pip_install_en.rst @@ -12,14 +12,14 @@ Install Using pip ------------------------------ Run the following command to install PaddlePaddle on the current -machine, it will also download requirements. +machine, it will also download requirements, the version is cpu_avx_openblas. .. code-block:: bash pip install paddlepaddle -If you wish to install GPU version, just run: +If you wish to install GPU version (cuda7.5_cudnn5_avx_openblas), just run: .. code-block:: bash @@ -40,11 +40,11 @@ If the links below shows up the login form, just click "Log in as guest" to star :header: "version", "cp27-cp27mu", "cp27-cp27m", "C-API" :widths: 1, 3, 3, 3 - "cpu_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cpu_avx_openblas", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "Not Available" - "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "Not Available" + "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" .. _pip_dependency: diff --git a/doc/getstarted/concepts/src/infer.py b/doc/getstarted/concepts/src/infer.py new file mode 100644 index 0000000000..ee71cd7a9a --- /dev/null +++ b/doc/getstarted/concepts/src/infer.py @@ -0,0 +1,31 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import paddle.v2 as paddle +import numpy as np + +paddle.init(use_gpu=False) +x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2)) +y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) + +# loading the model which generated by training +with open('params_pass_90.tar', 'r') as f: + parameters = paddle.parameters.Parameters.from_tar(f) + +# Input multiple sets of data,Output the infer result in a array. +i = [[[1, 2]], [[3, 4]], [[5, 6]]] +print paddle.infer(output_layer=y_predict, parameters=parameters, input=i) +# Will print: +# [[ -3.24491572] +# [ -6.94668722] +# [-10.64845848]] diff --git a/doc/getstarted/concepts/src/train.py b/doc/getstarted/concepts/src/train.py index 8aceb23406..d9c0c66b8a 100644 --- a/doc/getstarted/concepts/src/train.py +++ b/doc/getstarted/concepts/src/train.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2 as paddle import numpy as np @@ -26,6 +39,11 @@ def event_handler(event): if event.batch_id % 1 == 0: print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id, event.cost) + # product model every 10 pass + if isinstance(event, paddle.event.EndPass): + if event.pass_id % 10 == 0: + with open('params_pass_%d.tar' % event.pass_id, 'w') as f: + trainer.save_parameter_to_tar(f) # define training dataset reader diff --git a/doc/getstarted/concepts/use_concepts_cn.rst b/doc/getstarted/concepts/use_concepts_cn.rst index c243083794..e695ff283e 100644 --- a/doc/getstarted/concepts/use_concepts_cn.rst +++ b/doc/getstarted/concepts/use_concepts_cn.rst @@ -147,4 +147,9 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和 .. literalinclude:: src/train.py :linenos: +使用以上训练好的模型进行预测,取其中一个模型params_pass_90.tar,输入需要预测的向量组,然后打印输出: + +.. literalinclude:: src/infer.py + :linenos: + 有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 `_。 diff --git a/doc/getstarted/index_cn.rst b/doc/getstarted/index_cn.rst index a9087be6f3..9f6ee25987 100644 --- a/doc/getstarted/index_cn.rst +++ b/doc/getstarted/index_cn.rst @@ -7,13 +7,13 @@ ++++++++ PaddlePaddle支持使用pip快速安装,目前支持CentOS 6以上, Ubuntu 14.04以及MacOS 10.12,并安装有Python2.7。 -执行下面的命令完成快速安装: +执行下面的命令完成快速安装,版本为cpu_avx_openblas: .. code-block:: bash pip install paddlepaddle -如果需要安装支持GPU的版本,需要执行: +如果需要安装支持GPU的版本(cuda7.5_cudnn5_avx_openblas),需要执行: .. code-block:: bash diff --git a/doc/getstarted/index_en.rst b/doc/getstarted/index_en.rst index d14e3f5c0c..063d9d880c 100644 --- a/doc/getstarted/index_en.rst +++ b/doc/getstarted/index_en.rst @@ -8,13 +8,13 @@ Quick Install You can use pip to install PaddlePaddle with a single command, supports CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed. -Simply run the following command to install: +Simply run the following command to install, the version is cpu_avx_openblas: .. code-block:: bash pip install paddlepaddle -If you need to install GPU version, run: +If you need to install GPU version (cuda7.5_cudnn5_avx_openblas), run: .. code-block:: bash diff --git a/doc/howto/dev/contribute_to_paddle_cn.md b/doc/howto/dev/contribute_to_paddle_cn.md index 6993901452..3e0bf7b397 100644 --- a/doc/howto/dev/contribute_to_paddle_cn.md +++ b/doc/howto/dev/contribute_to_paddle_cn.md @@ -76,18 +76,18 @@ no changes added to commit (use "git add" and/or "git commit -a") ## 构建和测试 -编译 PaddlePaddle 的源码以及生成文档需要多种开发工具。为了方便大家,我们的标准开发流程是把这些工具都装进一个Docker image,称为*开发镜像*,通常名字是 `paddle:dev`。然后所有用 `cmake && make` 的地方(比如IDE配置里)都用 `docker run paddle:dev`来代替。 +编译 PaddlePaddle 的源码以及生成文档需要多种开发工具。为了方便大家,我们的标准开发流程是把这些工具都装进一个Docker image,称为*开发镜像*,通常名字是 `paddle:latest-dev` 或者 `paddle:[version tag]-dev` 如 `paddle:0.11.0-dev`。然后所有用 `cmake && make` 的地方(比如IDE配置里)都用 `docker run paddle:latest-dev`来代替。 如要build这个开发镜像,在源码目录树的根目录中运行: ```bash -➜ docker build -t paddle:dev . +➜ docker build -t paddle:latest-dev . ``` 随后可以用这个开发镜像开始build PaddlePaddle的源码。比如如果要build一个不依赖GPU,但是支持AVX指令集,并且包括unit tests的PaddlePaddle,可以: ```bash -➜ docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TEST=ON" paddle:dev +➜ docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TESTING=ON" paddle:latest-dev ``` 这个过程除了编译PaddlePaddle为 `./build/libpaddle.so`,并且输出一个 `./build/paddle.deb`文件之外,还会输出一个 `build/Dockerfile`。我们只需要运行下面命令把编译好的PaddlePaddle打包成一个*生产镜像*(`paddle:prod`): @@ -99,7 +99,7 @@ no changes added to commit (use "git add" and/or "git commit -a") 如果要运行所有的单元测试,可以用如下命令: ```bash -➜ docker run -it -v $(pwd):/paddle paddle:dev bash -c "cd /paddle/build && ctest" +➜ docker run -it -v $(pwd):/paddle paddle:latest-dev bash -c "cd /paddle/build && ctest" ``` 关于构建和测试的更多信息,请参见[这篇文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。 diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md index 6cfc9536f2..9299658567 100644 --- a/doc/howto/dev/new_op_cn.md +++ b/doc/howto/dev/new_op_cn.md @@ -1,17 +1,18 @@ # 如何写新的Operator - [概念简介](#概念简介) - - [实现C++类](#实现C++类) - - [定义ProtoMaker类](#定义ProtoMaker类) - - [定义Operator类](#定义Operator类) - - [定义OpKernel类](#定义OpKernel类) - - [注册Operator](#注册Operator) + - [实现C++类](#实现c类) + - [定义ProtoMaker类](#定义protomaker类) + - [定义Operator类](#定义operator类) + - [定义OpKernel类](#定义opkernel类) + - [注册Operator](#注册operator) - [编译](#编译) - - [绑定Python](#绑定Python) + - [绑定Python](#绑定python) - [实现单元测试](#实现单元测试) - - [前向Operator单测](#前向Operator单测) - - [反向Operator单测](#反向Operator单测) + - [前向Operator单测](#前向operator单测) + - [反向Operator单测](#反向operator单测) - [编译和执行](#编译和执行) + - [注意事项](#注意事项) ## 概念简介 @@ -23,15 +24,15 @@ - `framework::OperatorWithKernel`:继承自OperatorBase,Op有计算函数,称作有Kernel。 - `class OpProtoAndCheckerMaker`:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成 -依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorBase`,后者继承自`OperatorWithKernel`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下: +依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorWithKernel`,后者继承自`OperatorBase`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下: 内容 | 定义位置 -------------- | :---------------------- OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake Op定义 | `.cc`文件 -Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,GPU 实现在`.cu`文件中。 -注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,GPU实现在`.cu`文件中 +Kernel实现 | CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。 +注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中 实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。** @@ -43,7 +44,7 @@ Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU ## 实现C++类 -### 1. 定义ProtoMaker类 +### 定义ProtoMaker类 矩阵乘法的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。 @@ -52,7 +53,7 @@ Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU ```cpp class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + MulOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor), 2D tensor of size (M x K)"); AddInput("Y", "(Tensor), 2D tensor of size (K x N)"); @@ -81,7 +82,7 @@ The equation is: Out = X * Y template class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ScaleOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of scale operator.").NotInGradient(); AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); @@ -100,7 +101,7 @@ The equation is: Out = scale*X - `AddAttr("scale", "...").SetDefault(1.0);` : 增加`scale`系数,作为参数属性,并且设置默认值为1.0。 -### 2. 定义Operator类 +### 定义Operator类 下面的点实现了MulOp的定义: @@ -149,11 +150,11 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, 通常`OpProtoMaker`和`Op`类的定义写在`.cc`文件中,和下面将要介绍的注册函数一起放在`.cc`中 -### 3. 定义OpKernel类 +### 定义OpKernel类 `MulKernel`继承自`framework::OpKernel`,带有下面两个模板参数: -- `typename Place`: 表示设备类型,不同设备(CPU、GPU)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 +- `typename DeviceContext`: 表示设备类型,不同设备(CPU、CUDA)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 - `typename T` : 表示数据类型,如`float`, `double`等。 @@ -165,7 +166,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, 下面是 `MulKernel` `Compute`的实现: ```cpp - template + template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -173,33 +174,32 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, auto* Y = context.Input("Y"); auto* Z = context.Output("Out"); Z->mutable_data(context.GetPlace()); - auto* device_context = - const_cast(context.device_context_); - math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); + auto& device_context = context.template device_context(); + math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); } }; ``` -需要注意:**不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。** +需要注意:**不同设备(CPU、CUDA)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。** -`MulOp`的CPU、GPU实现共享同一个`Kernel`。`OpKernel`不共享的例子可以参考:[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 +`MulOp`的CPU、CUDA实现共享同一个`Kernel`。`OpKernel`不共享的例子可以参考:[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 -为了使`OpKernel`的计算过程书写更加简单,并且CPU、GPU的代码可以复用,我们通常借助 Eigen unsupported Tensor模块来实现`Compute`接口。关于在PaddlePaddle中如何使用Eigen库,请参考[使用文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md)。 +为了使`OpKernel`的计算过程书写更加简单,并且CPU、CUDA的代码可以复用,我们通常借助 Eigen unsupported Tensor模块来实现`Compute`接口。关于在PaddlePaddle中如何使用Eigen库,请参考[使用文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md)。 到此,前向Op实现完成。接下来,需要在`.cc`文件中注册该op和kernel。 反向Op类的定义,反向OpKernel的定义与前向Op类似,这里不再赘述。**但需注意反向Op没有`ProtoMaker`**。 -### 4. 注册Operator +### 注册Operator - 在`.cc`文件中注册前向、反向Op类,注册CPU Kernel。 ```cpp namespace ops = paddle::operators; REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); - REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); + REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); REGISTER_OP_CPU_KERNEL(mul_grad, - ops::MulGradKernel); + ops::MulGradKernel); ``` 在上面的代码中: @@ -209,20 +209,20 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulGradKernel`类。 -- 在 `.cu`文件中注册GPU Kernel。 - - 请注意,如果GPU Kernel的实现基于Eigen unsupported模块,那么在 `.cu`的开始请加上宏定义 `#define EIGEN_USE_GPU`,代码示例如下: +- 在 `.cu`文件中注册CUDA Kernel。 + - 请注意,如果CUDA Kernel的实现基于Eigen unsupported模块,那么在 `.cu`的开始请加上宏定义 `#define EIGEN_USE_GPU`,代码示例如下: ```cpp // if use Eigen unsupported module before include head files - // #define EIGEN_USE_GPU + #define EIGEN_USE_GPU namespace ops = paddle::operators; - REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); - REGISTER_OP_GPU_KERNEL(mul_grad, - ops::MulGradKernel); + REGISTER_OP_CUDA_KERNEL(mul, ops::MulKernel); + REGISTER_OP_CUDA_KERNEL(mul_grad, + ops::MulGradKernel); ``` -### 5. 编译 +### 编译 运行下面命令可以进行编译: @@ -236,71 +236,57 @@ make mul_op ## 实现单元测试 -单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。 +单测包括对比前向Op不同设备(CPU、CUDA)的实现、对比反向OP不同设备(CPU、CUDA)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。 -### 前向Operator单元测试 +### 前向Operator单测 -前向Op单元测试继承自`unittest.TestCase`,并定义元类`__metaclass__ = OpTestMeta`。各项更加具体的单元测试在`OpTestMeta`里完成。测试前向Operator,需要: +Op单元测试继承自`OpTest`。各项更加具体的单元测试在`TestMulOp`里完成。测试Operator,需要: 1. 在`setUp`函数定义输入、输出,以及相关的属性参数。 2. 生成随机的输入数据。 3. 在Python脚本中实现与前向operator相同的计算逻辑,得到输出值,与operator前向计算的输出进行对比。 +4. 反向计算已经自动集成进测试框架,直接调用相应接口即可。 ```python import unittest import numpy as np - from gradient_checker import GradientChecker, create_op - from op_test_util import OpTestMeta + from op_test import OpTest - class TestMulOp(unittest.TestCase): - __metaclass__ = OpTestMeta + class TestMulOp(OpTest): def setUp(self): - self.type = "mul" + self.op_type = "mul" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((84, 100)).astype("float32") } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} - ``` - -上面的代码首先导入依赖的包,下面是对`setUp`函数中操作的重要变量的详细解释: - -- `self.type = "mul" ` : 定义类型,与operator注册时注册的类型一致。 -- `self.inputs` : 定义输入,类型为`numpy.array`,并初始化。 -- `self.outputs` : 定义输出,并在Python脚本中完成与operator同样的计算逻辑,返回Python端的计算结果。 + def test_check_output(self): + self.check_output() -### 反向Operator单元测试 + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) -反向Op单元测试继承自`GradientChecker`,而`GradientChecker`继承自`unittest.TestCase`,因此,**反向单元测试函数需要以`test_`开头**。 + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) -```python -class TestMulGradOp(GradientChecker): - def setUp(self): - self.op = create_op("mul") - self.inputs = { - 'X': np.random.random((32, 84)).astype("float32"), - 'Y': np.random.random((84, 100)).astype("float32") - } - - def test_check_grad_normal(self): - # mul op will enlarge the relative error - self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) + ``` - def test_check_grad_ingore_x(self): - self.check_grad( - ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) +上面的代码首先导入依赖的包,下面是对`setUp`函数中操作的重要变量的详细解释: - def test_check_grad_ingore_y(self): - self.check_grad( - ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) -``` +- `self.op_type = "mul" ` : 定义类型,与operator注册时注册的类型一致。 +- `self.inputs` : 定义输入,类型为`numpy.array`,并初始化。 +- `self.outputs` : 定义输出,并在Python脚本中完成与operator同样的计算逻辑,返回Python端的计算结果。 -下面解释代码中一些关键的地方: +### 反向operator单测 -- 调用`create_op("mul")`创建反向Op对应的前向Op。 +而反向测试中: - `test_check_grad_normal`中调用`check_grad`使用数值法检测梯度正确性和稳定性。 - 第一个参数`["X", "Y"]` : 指定对输入变量`X`、`Y`做梯度检测。 - 第二个参数`"Out"` : 指定前向网络最终的输出目标变量`Out`。 @@ -308,7 +294,7 @@ class TestMulGradOp(GradientChecker): - `test_check_grad_ingore_x`和`test_check_grad_ingore_y`分支用来测试只需要计算一个输入梯度的情况。 -### 编译和执行单元测试 +### 编译和执行 `python/paddle/v2/framework/tests` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。 @@ -328,5 +314,5 @@ ctest -R test_mul_op - 为每个Op创建单独的`*_op.h`(如有)、`*_op.cc`和`*_op.cu`(如有)。不允许一个文件中包含多个Op,这将会导致编译出错。 - 注册Op时的类型名,需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OP(B, ...)`等,这将会导致单元测试出错。 -- 如果Op没有实现GPU Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。 +- 如果Op没有实现CUDA Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。 - 如果多个Op依赖一些共用的函数,可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。 diff --git a/doc/howto/dev/new_op_en.md b/doc/howto/dev/new_op_en.md index 1e88e1f5b4..da8b1bdd10 100644 --- a/doc/howto/dev/new_op_en.md +++ b/doc/howto/dev/new_op_en.md @@ -1,10 +1,11 @@ # How to write a new operator - [Background](#background) - - [Implementing C++ Types](#implementing-c++-types) - - [Defining ProtoMaker](#defining-protoMaker) + - [Implementing C++ Types](#implementing-c-types) + - [Defining ProtoMaker](#defining-protomaker) - [Defining Operator](#defining-operator) - - [Registering Operator](#registering-operator) + - [Defining OpKernel](#defining-opkernel) + - [Registering Operator and OpKernel](#registering-operator-and-opkernel) - [Compilation](#compilation) - [Python Binding](#python-binding) - [Unit Tests](#unit-tests) @@ -16,23 +17,24 @@ Here are the base types needed. For details, please refer to the design docs. -- `framework::OperatorBase`: Operator (Op)base class. -- `framework::OpKernel`: Base class for Op computation. -- `framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation. - `class OpProtoAndCheckerMaker`: Describes an Operator's input, output, attributes and description, mainly used to interface with Python API. +- `framework::OperatorBase`: Operator (Op)base class. +- `framework::OpKernel`: Base class for Op computation kernel. +- `framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation kernels. -An operator can be differentiated by whether in has kernel methods. An operator with kernel inherits from `OperatorWithKernel` while the ones without inherit from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information: + +Operators can be categorized into two groups: operator with kernel(s) and operator without kernel(s). An operator with kernel(s) inherits from `OperatorWithKernel` while the one without kernel(s) inherits from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information: Information | Where is it defined -------------- | :---------------------- OpProtoMake definition | `.cc`files, Backward Op does not need an OpProtoMake interface. Op definition | `.cc` files -Kernel implementation | The kernel methods shared between CPU and GPU are defined in `.h` files. CPU-specific kernels live in `.cc` files, while GPU-specific kernels are implemented in `.cu`files. -Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the GPU implementation. +Kernel implementation | The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files. +Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation. -New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions. ** +New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.** Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc), as an example to introduce the writing of an Operator with Kernel. @@ -41,7 +43,7 @@ Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePadd ## Implementing C++ Types -### 1. Defining Class ProtoMaker +### Defining ProtoMaker Matrix Multiplication can be written as $Out = X * Y$, meaning that the operation consists of two inputs and pne output. @@ -50,7 +52,7 @@ First, define `ProtoMaker` to describe the Operator's input, output, and additio ```cpp class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + MulOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor), 2D tensor of size (M x K)"); AddInput("Y", "(Tensor), 2D tensor of size (K x N)"); @@ -79,7 +81,7 @@ An additional example [`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/de template class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ScaleOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of scale operator.").NotInGradient(); AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); @@ -98,7 +100,7 @@ There are two changes in this example: - `AddAttr("scale", "...").SetDefault(1.0);` adds `scale`constant as an attribute, and sets the default value to 1.0. -### 2. Defining Operator +### Defining Operator The following code defines the interface for MulOp: @@ -147,23 +149,24 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, which also include the registration methods introduced later. -### 3. Defining OpKernel +### Defining OpKernel `MulKernel` inherits `framework::OpKernel`, which includes the following templates: -- `typename Place` denotes device type. When different devices, namely the CPU and the GPU, share the same kernel, this template needs to be added. If they don't share kernels, this must not be added. An example of a non-sharing kernel is [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). +- `typename DeviceContext` denotes device context type. When different devices, namely the CPUDeviceContext and the CUDADeviceContext, share the same kernel, this template needs to be added. If they don't share kernels, this must not be added. An example of a non-sharing kernel is [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). - `typename T` denotes data type, such as `float` or `double`. `MulKernel` types need to rewrite the interface for `Compute`. -- `Compute` takes one input variable `const framework::ExecutionContext& context`. + +- `Compute` takes one input parameter: `const framework::ExecutionContext& context`. - Compared with `InferShapeContext`, `ExecutionContext` includes device types, and can similarly extract input, output, and attribute variables. - `Compute` implements the computation logics of an `OpKernel`. `MulKernel`'s implementation of `Compute` is as follows: ```cpp - template + template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -171,16 +174,15 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w auto* Y = context.Input("Y"); auto* Z = context.Output("Out"); Z->mutable_data(context.GetPlace()); - auto* device_context = - const_cast(context.device_context_); - math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); + auto& device_context = context.template device_context(); + math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); } }; ``` -Note that **different devices (CPU, GPU)share an Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions that support both devices.** +Note that **different devices (CPU, CUDA)share one Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions can support both devices.** -`MulOp`'s CPU and GPU share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). +`MulOp`'s CPU and CUDA share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). To ease the writing of `OpKernel` compute, and for reusing code cross-device, [`Eigen-unsupported Tensor`](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md?fileviewer=file-view-default) module is used to implement `Compute` interface. To learn about how the Eigen library is used in PaddlePaddle, please see [usage document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md). @@ -189,43 +191,46 @@ This concludes the forward implementation of an operator. Next its operation and The definition of its corresponding backward operator, if applicable, is similar to that of an forward operator. **Note that a backward operator does not include a `ProtoMaker`**. -### 4. Registering Operator +### Registering Operator and OpKernel - In `.cc` files, register forward and backward operator classes and the CPU kernel. ```cpp namespace ops = paddle::operators; REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); - REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); + + REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); REGISTER_OP_CPU_KERNEL(mul_grad, - ops::MulGradKernel); + ops::MulGradKernel); ``` In that code block, - `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`. - `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient. + - `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`. -- Registering GPU Kernel in `.cu` files - - Note that if GPU Kernel is implemented using the `Eigen unsupported` module, then on top of `.cu`, a macro definition `#define EIGEN_USE_GPU` is needed, such as +- Registering CUDA Kernel in `.cu` files + - Note that if CUDA Kernel is implemented using the `Eigen unsupported` module, then on top of `.cu`, a macro definition `#define EIGEN_USE_GPU` is needed, such as ```cpp // if use Eigen unsupported module before include head files #define EIGEN_USE_GPU namespace ops = paddle::operators; - REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); - REGISTER_OP_GPU_KERNEL(mul_grad, - ops::MulGradKernel); + REGISTER_OP_CUDA_KERNEL(mul, ops::MulKernel); + REGISTER_OP_CUDA_KERNEL(mul_grad, + ops::MulGradKernel); ``` -### 5. Compilation +### Compilation Run the following commands to compile. ``` +# maybe you need to rerun cmake make mul_op ``` @@ -253,62 +258,51 @@ A forward operator unit test inherits `unittest.TestCase` and defines metaclass 2. Generating random input data. -3. Implementing the same computation logic in a Python script: +3. Implementing the same computation logic in a Python script. + +4. Call check gradient function to check the backward operator. ```python import unittest import numpy as np - from gradient_checker import GradientChecker, create_op - from op_test_util import OpTestMeta + from op_test import OpTest - class TestMulOp(unittest.TestCase): - __metaclass__ = OpTestMeta + class TestMulOp(OpTest): def setUp(self): - self.type = "mul" + self.op_type = "mul" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((84, 100)).astype("float32") } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) ``` Get its output, and compare it with the forward operator's own output. The code above first loads required packages. In addition, we have -- `self.type = "mul" ` defines the type that is identical to what the operator's registered type. +- `self.op_type = "mul" ` defines the type that is identical to what the operator's registered type. - `self.inputs` defines input, with type `numpy.array` and initializes it. - `self.outputs` defines output and completes the same operator computation in the Python script, and returns its result from the Python script. ### Testing Backward Operators -A backward operator unit test inherits `GradientChecker`, which inherits `unittest.TestCase`. As a result, **a backward operator unit test needs to be have the prefix `test_`**. - -```python -class TestMulGradOp(GradientChecker): - def setUp(self): - self.op = create_op("mul") - self.inputs = { - 'X': np.random.random((32, 84)).astype("float32"), - 'Y': np.random.random((84, 100)).astype("float32") - } - - def test_check_grad_normal(self): - # mul op will enlarge the relative error - self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) - - def test_check_grad_ingore_x(self): - self.check_grad( - ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) - - def test_check_grad_ingore_y(self): - self.check_grad( - ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) -``` - -Some key points in the code above include: +Some key points in checking gradient above include: -- `create_op("mul")` creates the backward operator's corresponding forward operator. - `test_normal` calls `check_grad` to validate scaling tests' correctness and stability through numeric methods. - The first variable `["X", "Y"]` appoints `X` and `Y` to be scale tested. - The second variable `"Out"` points to the network's final output target `Out`. @@ -338,5 +332,5 @@ ctest -R test_mul_op - Every `*_op.h` (if applicable), `*_op.cc`, and `*_op.cu` (if applicable) must be created for a unique Op. Compiling will fail if multiple operators are included per file. - The type with which an operator is registered needs to be identical to the Op's name. Registering `REGISTER_OP(B, ...)` in `A_op.cc` will cause unit testing failures. -- If the operator does not implement a GPU kernel, please refrain from creating an empty `*_op.cu` file, or else unit tests will fail. +- If the operator does not implement a CUDA kernel, please refrain from creating an empty `*_op.cu` file, or else unit tests will fail. - If multiple operators rely on some shared methods, a file NOT named `*_op.*` can be created to store them, such as `gather.h`. diff --git a/doc/howto/dev/new_op_kernel_en.md b/doc/howto/dev/new_op_kernel_en.md new file mode 100644 index 0000000000..123df0a7ee --- /dev/null +++ b/doc/howto/dev/new_op_kernel_en.md @@ -0,0 +1,121 @@ +## Add Kernels for a New Device + +### Background + +PaddlePaddle Fluid have hundreds of operators. Each operator could have one or more kernels. A kernel is an implementation of the operator for a certain device, which could be a hardware device, e.g., the CUDA GPU, or a library that utilizes a device, e.g., Intel MKL that makes full use of the Xeon CPU. + +[This document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md) explains how to add an operator, and its kernels. The kernels of an operator are indexed by a C++ type [`OpKernelType`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md). An operator chooses the right kernel at runtime. This choosing mechanism is described [here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md). + +### Write Kernels for A New Device + +#### Add A New Device + + For some historical reaons, we misuse the word *library* for *device*. For example, we call the deivce type by *library type*. An example is the header file [`library_type.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/library_type.h#L24). We will correct this ASAP. + +To register a new device, we need to add an enum value to `LibraryType`: + +``` +enum class LibraryType { + kPlain = 0, + kMKLDNN = 1, + kCUDNN = 2, +}; +``` + + +#### Add A New [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53) + +If you have a new kind of Device, firstly you need to add a new kind of [`Place`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53). For example `CUDAPlace`: + +```cpp +struct CUDAPlace { + CUDAPlace() : CUDAPlace(0) {} + explicit CUDAPlace(int d) : device(d) {} + + inline int GetDeviceId() const { return device; } + // needed for variant equality comparison + inline bool operator==(const CUDAPlace &o) const { + return device == o.device; + } + inline bool operator!=(const CUDAPlace &o) const { return !(*this == o); } + + int device; +}; + +typedef boost::variant Place; +``` + +#### Add [device context]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37)) +After a new kind of Device is added, you should add a corresponding [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37) for it. + +```cpp +class DeviceContext { + public: + virtual ~DeviceContext() {} + virtual Place GetPlace() const = 0; + + virtual void Wait() const {} +}; +``` + +#### Implement new [OpKernel](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L351) for your Device. + +A detailed documentation can be found in [`new_op_and_kernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md) + +```cpp +class OpKernelBase { + public: + /** + * ExecutionContext is the only parameter of Kernel Run function. + * Run will get input/output variables, state such as momentum and + * device resource such as CUDA stream, cublas handle, etc. from + * ExecutionContext. User should construct it before run the Operator. + */ + + virtual void Compute(const ExecutionContext& context) const = 0; + + virtual ~OpKernelBase() = default; +}; + +template +class OpKernel : public OpKernelBase { + public: + using ELEMENT_TYPE = T; +}; +``` + + +#### Register the OpKernel to framework + +After writing the components described above, we should register the kernel to the framework. + +We use `REGISTER_OP_KERNEL` to do the registration. + +```cpp +REGISTER_OP_KERNEL( + op_type, + library_type, + place_type, + kernel0, kernel1, ...) +``` + +kernel0, kernel1 are kernels that have the same `op_type`, `library_type`, `place_type` but different `data_types`. + +take [`conv2d`]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/conv_cudnn_op.cu.cc#L318)) as an example: + + ```cpp + REGISTER_OP_KERNEL(conv2d, CPU, paddle::platform::CPUPlace, + paddle::operators::GemmConvKernel, + paddle::operators::GemmConvKernel); + + REGISTER_OP_KERNEL(conv2d, CUDNN, ::paddle::platform::CUDAPlace, + paddle::operators::CUDNNConvOpKernel, + paddle::operators::CUDNNConvOpKernel); + ``` + +In the code above: + + - `conv2d` is the type/name of the operator + - `CUDNN/CPU` is `library` + - `paddle::platform::CUDAPlace/CPUPlace` is `place` + - template parameter `float/double` on `CUDNNConvOpKernel` is `data_type`. diff --git a/doc/howto/index_cn.rst b/doc/howto/index_cn.rst index 991b9e2596..e0c69f7a6a 100644 --- a/doc/howto/index_cn.rst +++ b/doc/howto/index_cn.rst @@ -9,9 +9,7 @@ usage/cmd_parameter/index_cn.rst usage/cluster/cluster_train_cn.md - usage/k8s/k8s_basis_cn.md - usage/k8s/k8s_cn.md - usage/k8s/k8s_distributed_cn.md + usage/capi/index_cn.rst 开发标准 -------- diff --git a/doc/howto/index_en.rst b/doc/howto/index_en.rst index 61bf25ccd1..6d1bf7dfc0 100644 --- a/doc/howto/index_en.rst +++ b/doc/howto/index_en.rst @@ -9,8 +9,6 @@ Usage usage/cmd_parameter/index_en.rst usage/cluster/cluster_train_en.md - usage/k8s/k8s_en.md - usage/k8s/k8s_aws_en.md Development ------------ diff --git a/doc/howto/read_source.md b/doc/howto/read_source.md new file mode 100644 index 0000000000..31987920f3 --- /dev/null +++ b/doc/howto/read_source.md @@ -0,0 +1,67 @@ +# PaddlePaddle Fluid Source Code Overview + +Examples: https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/v2/fluid/tests/book + +Core: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework + +Operator: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators + +Memory: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory + +Platform: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/platform + +# Compile Time + +The following **defines** the NN. The definition goes into this [protocol buffer](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto). + +```python +x = fluid.layers.data(name='x', shape=[13], dtype='float32') +y = fluid.layers.data(name='y', shape=[1], dtype='float32') + +y_predict = fluid.layers.fc(input=x, size=1, act=None) +cost = fluid.layers.square_error_cost(input=y_predict, label=y) +avg_cost = fluid.layers.mean(x=cost) + +sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) +sgd_optimizer.minimize(avg_cost) +``` + +- Variables: `x`, `y`, `y_predict`, `cost` and `avg_cost`. [Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/framework.py#) +- Layers: `fluid.layers.data`, `fluid.layers.fc` and `fluid.layers.mean` are layers. [Python](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/v2/fluid/layers) + - Every Layer has one or more operators and variables/parameters + - All the operators are defined at [`paddle/operators/`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators). Other worth-looking files: + - Base class: [`paddle/framework/operator.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h) + - Operator Registration: [`paddle/framework/op_registry.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h) + - Operator Lookup: [`paddle/framework/op_info.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_info.h) +- Optimizer: `fluid.optimizer.SGD`. It does the following + - Add backward operators. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/backward.py)] + - Add optimizer operators. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/optimizer.py)] + +# Run Time + +The following **evaluates** the NN. Instantiates all the variables, operators. + +```python +place = fluid.CPUPlace() +feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) +exe = fluid.Executor(place) + +# Allocate memory. Initialize Parameter. +exe.run(fluid.default_startup_program()) + +# Allocate memory. Do computation. +exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost]) +``` + +- Place: `place`. one of CPU, GPU or FPGA. [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h) + - The device handle are at [paddle/platform/device_context.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h) +- Executor: `fluid.Executor(place)`. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/executor.py), [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.cc)] + - Feeds the data: `feed=feeder.feed(data)` + - Evaluates all the operators + - Fetches the result: `fetch_list=[avg_cost]` +- Other worth looking files: + - Scope: [paddle/framework/scope.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/scope.h). Where all the variables live + - Variable: [paddle/framework/variable.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h). Where all the data (most likely tensors) live + - Tensor: [paddle/framework/tensor.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/tensor.h). Where we allocate memory through [`paddle/memory/`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory) diff --git a/doc/howto/usage/capi/compile_paddle_lib_cn.md b/doc/howto/usage/capi/compile_paddle_lib_cn.md new file mode 100644 index 0000000000..ac5ecffe2e --- /dev/null +++ b/doc/howto/usage/capi/compile_paddle_lib_cn.md @@ -0,0 +1,122 @@ +## 编译 PaddlePaddle 预测库 + +### 概述 + +使用 C-API 进行预测依赖于将 PaddlePaddle 核心代码编译成链接库,只需在编译时需配制下面这些编译选项: + +必须配置选项: +- `WITH_C_API`,必须配置为`ON`。 + +推荐配置选项: +- `WITH_PYTHON`,推荐配置为`OFF` +- `WITH_SWIG_PY`,推荐配置为`OFF` +- `WITH_GOLANG`,推荐设置为`OFF` + +可选配置选项: +- `WITH_GPU`,可配置为`ON/OFF` +- `WITH_MKL`,可配置为`ON/OFF` + +对推荐配置中的选项建议按照设置,以避免链接不必要的库。其它可选编译选项按需进行设定。 + +下面的代码片段从github拉取最新代码,配制编译选项(需要将PADDLE_ROOT替换为PaddlePaddle预测库的安装路径): + +```shell +PADDLE_ROOT=/path/of/capi +git clone https://github.com/PaddlePaddle/Paddle.git +cd Paddle +mkdir build +cd build +cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \ + -DCMAKE_BUILD_TYPE=Release \ + -DWITH_C_API=ON \ + -DWITH_SWIG_PY=OFF \ + -DWITH_GOLANG=OFF \ + -DWITH_PYTHON=OFF \ + -DWITH_MKL=OFF \ + -DWITH_GPU=OFF \ + .. +``` + +执行上述代码生成Makefile文件后,执行:`make && make install`。成功编译后,使用C-API所需的依赖(包括:(1)编译出的PaddlePaddle预测库和头文件;(2)第三方链接库和头文件)均会存放于`PADDLE_ROOT`目录中。 + +编译成功后在 `PADDLE_ROOT` 下会看到如下目录结构(包括了编译出的PaddlePaddle头文件和链接库,以及第三方依赖链接库和头文件(如果需要,由链接方式决定)): + +```text +├── include +│   └── paddle +│   ├── arguments.h +│   ├── capi.h +│   ├── capi_private.h +│   ├── config.h +│   ├── error.h +│   ├── gradient_machine.h +│   ├── main.h +│   ├── matrix.h +│   ├── paddle_capi.map +│   └── vector.h +├── lib +│   ├── libpaddle_capi_engine.a +│   ├── libpaddle_capi_layers.a +│   ├── libpaddle_capi_shared.so +│   └── libpaddle_capi_whole.a +└── third_party + ├── gflags + │   ├── include + │   │   └── gflags + │   │   ├── gflags_completions.h + │   │   ├── gflags_declare.h + │   │   ... + │   └── lib + │   └── libgflags.a + ├── glog + │   ├── include + │   │   └── glog + │   │   ├── config.h + │   │   ... + │   └── lib + │   └── libglog.a + ├── openblas + │   ├── include + │   │   ├── cblas.h + │   │   ... + │   └── lib + │   ... + ├── protobuf + │   ├── include + │   │   └── google + │   │   └── protobuf + │   │   ... + │   └── lib + │   └── libprotobuf-lite.a + └── zlib + ├── include + │   ... + └── lib + ... + +``` + +### 链接说明 + +目前提供三种链接方式: + +1. 链接`libpaddle_capi_shared.so` 动态库 + - 使用 PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_shared.so`时,需注意: + 1. 如果编译时指定编译CPU版本,且使用`OpenBLAS`数学库,在使用C-API开发预测程序时,只需要链接`libpaddle_capi_shared.so`这一个库。 + 1. 如果是用编译时指定CPU版本,且使用`MKL`数学库,由于`MKL`库有自己独立的动态库文件,在使用PaddlePaddle C-API开发预测程序时,需要自己链接MKL链接库。 + 1. 如果编译时指定编译GPU版本,CUDA相关库会在预测程序运行时动态装载,需要将CUDA相关的库设置到`LD_LIBRARY_PATH`环境变量中。 + - 这种方式最为简便,链接相对容易,**在无特殊需求情况下,推荐使用此方式**。 + +2. 链接静态库 `libpaddle_capi_whole.a` + - 使用PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_whole.a`时,需注意: + 1. 需要指定`-Wl,--whole-archive`链接选项。 + 1. 需要显式地链接 `gflags`、`glog`、`libz`、`protobuf` 等第三方库,可在`PADDLE_ROOT/third_party`下找到。 + 1. 如果在编译 C-API 时使用OpenBLAS数学库,需要显示地链接`libopenblas.a`。 + 1. 如果在编译 C-API 是使用MKL数学库,需要显示地链接MKL的动态库。 + +3. 链接静态库 `libpaddle_capi_layers.a`和`libpaddle_capi_engine.a` + - 使用PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_whole.a`时,需注意: + 1. 这种链接方式主要用于移动端预测。 + 1. 为了减少生成链接库的大小把`libpaddle_capi_whole.a`拆成以上两个静态链接库。 + 1. 需指定`-Wl,--whole-archive -lpaddle_capi_layers` 和 `-Wl,--no-whole-archive -lpaddle_capi_engine` 进行链接。 + 1. 第三方依赖库需要按照与方式2同样方法显示地进行链接。 diff --git a/doc/howto/usage/capi/images/csr.png b/doc/howto/usage/capi/images/csr.png new file mode 100644 index 0000000000..3dc10b8de4 Binary files /dev/null and b/doc/howto/usage/capi/images/csr.png differ diff --git a/doc/howto/usage/capi/images/sequence_data.png b/doc/howto/usage/capi/images/sequence_data.png new file mode 100644 index 0000000000..6e47a46b89 Binary files /dev/null and b/doc/howto/usage/capi/images/sequence_data.png differ diff --git a/doc/howto/usage/capi/images/workflow_of_CAPI.png b/doc/howto/usage/capi/images/workflow_of_CAPI.png new file mode 100644 index 0000000000..a4399ade04 Binary files /dev/null and b/doc/howto/usage/capi/images/workflow_of_CAPI.png differ diff --git a/doc/howto/usage/capi/index_cn.rst b/doc/howto/usage/capi/index_cn.rst new file mode 100644 index 0000000000..fd774fbc74 --- /dev/null +++ b/doc/howto/usage/capi/index_cn.rst @@ -0,0 +1,9 @@ +PaddlePaddle C-API +================== + +.. toctree:: + :maxdepth: 1 + + compile_paddle_lib_cn.md + organization_of_the_inputs_cn.md + workflow_of_capi_cn.md diff --git a/doc/howto/usage/capi/organization_of_the_inputs_cn.md b/doc/howto/usage/capi/organization_of_the_inputs_cn.md new file mode 100644 index 0000000000..a889ae4ffa --- /dev/null +++ b/doc/howto/usage/capi/organization_of_the_inputs_cn.md @@ -0,0 +1,285 @@ +## 输入/输出数据组织 + +这篇文档介绍在使用 PaddlePaddle C-API 时如何组织输入数据,以及如何解析神经网络前向计算的输出结果。 + +### 输入/输出数据类型 +在C-API中,按照基本数据类型在PaddlePaddle内部的定义和实现,输入数据可分为: +1. 一维整型数组 +1. 二维浮点型矩阵 + - 稠密矩阵 + - 稀疏矩阵 + +说明: +1. 一维数组**仅支持整型值**; + - 常用于自然语言处理任务,例如:表示词语在词典中的序号; + - 分类任务中类别标签; +1. 逻辑上高于二维的数据(例如含有多个通道的图片,视频等)在程序实现中都会转化为二维矩阵,转化方法在相应的领域都有通用解决方案,需要使用者自己了解并完成转化; +1. 二维矩阵可以表示行向量和列向量,任何时候如果需要浮点型数组(向量),都应使用C-API中的矩阵来表示,而不是C-API中的一维数组。 +1. 不论是一维整型数组还是二维浮点数矩阵,**为它们附加上序列信息将变成序列输入。PaddlePaddle 会通过判数据是否附带有序列信息来判断一个向量/矩阵是否是一个序列**。当非序列输入时,无需关心和处理序列信息。关于什么是“序列信息”,下文会详细进行介绍。 + +### 基本使用概念 + +- 在PaddlePaddle内部,神经网络中一个计算层的输入/输出被组织为一个 `Argument` 结构体,如果神经网络有多个输入或者多个输出,每一个输入/输出都会对应有自己的`Argument`。 +- `Argument` 并不真正“存储”数据,而是将输入/输出信息有机地组织在一起。 +- 在`Argument`内部由`IVector`(对应着上文提到的一维整型数组)和`Matrix`(对应着上文提到的二维浮点型矩阵)来实际存储数据;由 `Sequence Start Positions` (下文详细解释) 来描述输入/输出的序列信息。 + +- **注**: + 1. 这篇文档之后部分将会统一使用`argument`来特指PaddlePaddle中神经网络计算层一个输入/输出数据。 + 1. 使用`paddle_ivector`来特指PaddlePaddle中的一维整型数组。 + 1. 使用`paddle_matrix`来特指PaddlePaddle中的二维浮点型矩阵。 + +### 组织输入数据 +- 一维整型数组 + + 概念上可以将`paddle_ivector`理解为一个一维的整型数组,通常用于表示离散的类别标签,或是在自然语言处理任务中表示词语在字典中的序号。下面的代码片段创建了含有三个元素`1`、`2`、`3`的`paddle_ivector`。 + ```c + int ids[] = {1, 2, 3}; + paddle_ivector ids_array = + paddle_ivector_create(ids, sizeof(ids) / sizeof(int), false, false); + CHECK(paddle_arguments_set_ids(in_args, 0, ids_array)); + ``` + +- **稠密矩阵** + - 一个`m×n`的稠密矩阵是一个由`m`行`n`列元素排列成的矩形阵列,矩阵里的元素是浮点数。对神经网络来说,矩阵的高度`m`是一次预测接受的样本数目,宽度$n$是神经网络定义时,`paddle.layer.data`的`size`。 + - 下面的代码片段创建了一个高度为1,宽度为`layer_size`的稠密矩阵,矩阵中每个元素的值随机生成。 + + ```c + paddle_matrix mat = paddle_matrix_create( + /* height = batch size */ 1, + /* width = dimensionality of the data layer */ layer_size, + /* whether to use GPU */ false); + + paddle_real* array; + // Get the pointer pointing to the start address of the first row of the + // created matrix. + CHECK(paddle_matrix_get_row(mat, 0, &array)); + + // Fill the matrix with a randomly generated test sample. + srand(time(0)); + for (int i = 0; i < layer_size; ++i) { + array[i] = rand() / ((float)RAND_MAX); + } + + // Assign the matrix to the argument. + CHECK(paddle_arguments_set_value(in_args, 0, mat)); + ``` + +- **稀疏矩阵** + + PaddlePaddle C-API 中 稀疏矩阵使用[CSR(Compressed Sparse Row Format)](https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format))格式存储。下图是CSR存储稀疏矩阵的示意图。 +

+
图1. 稀疏矩阵存储示意图 +

+ + CSR存储格式通过:(1)非零元素的值(上图中的`values`);(2)行偏移(上图中的`row offsets`):每一行元素在`values`中的起始偏移,`row offsets`中元素个数总是等于行数 + 1;(3)非零元素的列号(上图中的`column indices`)来确定稀疏矩阵的内容。 + + 在PaddlePaddle C-API中,通过调用以下接口创建稀疏矩阵: + + ```c + PD_API paddle_matrix paddle_matrix_create_sparse( + uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu); + ``` + + 1. 创建稀疏矩阵时需要显示地指定矩阵的(1)高度(`height`,在神经网络中等于一次预测处理的样本数)(2)宽度(`width`,`paddle.layer.data`的`size`)以及(3)非零元个数(`nnz`)。 + 1. 当上述接口第4个参数`isBinary`指定为`true`时,**只需要设置行偏移(`row_offset`)和列号(`colum indices`),不需要提供元素值(`values`)**,这时行偏移和列号指定的元素默认其值为1。 + + 下面的代码片段创建了一个CPU上的二值稀疏矩阵: + + ```c + paddle_matrix mat = paddle_matrix_create_sparse(1, layer_size, nnz, true, false); + int colIndices[] = {9, 93, 109}; // layer_size here is greater than 109. + int rowOffset[] = {0, sizeof(colIndices) / sizeof(int)}; + + CHECK(paddle_matrix_sparse_copy_from(mat, + rowOffset, + sizeof(rowOffset) / sizeof(int), + colIndices, + (colIndices) / sizeof(int), + NULL /*values array is NULL.*/, + 0 /*size of the value arrary is 0.*/)); + CHECK(paddle_arguments_set_value(in_args, 0, mat)); + ``` + 下面的代码片段在创建了一个CPU上的带元素值的稀疏矩阵: + ```c + paddle_matrix mat = paddle_matrix_create_sparse(1, layer_size, nnz, false, false); + int colIndices[] = {9, 93, 109}; // layer_size here is greater than 109. + int rowOffset[] = {0, sizeof(colIndices) / sizeof(int)}; + float values[] = {0.5, 0.5, 0.5}; + + CHECK(paddle_matrix_sparse_copy_from(mat, + rowOffset, + sizeof(rowOffset) / sizeof(int), + colIndices, + sizeof(colIndices) / sizeof(int), + values, + sizeof(values) / sizeof(float))); + ``` + 注意事项: + 1. 移动端预测**不支持**稀疏矩阵及相关的接口。 + +### 组织序列信息 + +多个排成一列的元素(可以是整型、浮点数、浮点数向量等)构成一个序列,元素之间的顺序是序列所携带的重要信息。不同序列可能会含有不同数目个元素。在 PaddlePaddle 中,序列输入/输出数据是在上文介绍的**数据输入(一维整型数组,二维浮点数矩阵)基础上,附加上序列信息**。下面详细解释什么是“序列信息”。 + +我们将神经网络一次计算接受的所有输入样本称之为一个`batch`(可以含有一条或多条样本),每一个序列在整个`batch`中的偏移,就是PaddlePaddle中所指的**序列信息**,称之为“sequence start positions”。PaddlePaddle 支持两种序列类型: + +1. 单层序列 + - 序列中的每一个元素是非序列,是进行计算的基本单位,不可再进行拆分。 + - 例如:自然语言中的句子是一个序列,序列中的元素是词语; +1. 双层序列 + - 序列中的每一个元素又是一个序列。 + - 例如:自然语言中的段落是一个双层序列;段落是由句子构成的序列;句子是由词语构成的序列。 + - 双层序列在处理长序列的任务或是构建层级模型时会发挥作用。 + +这篇文档之后部分会统一使用`sequence_start_positions`来特指:PaddlePaddle中神经网络计算层输入/输出所携带的序列信息。 + +对双层序列来讲,不仅要提供每一个外层序列在整个`batch`中的偏移,每一个外层序列又含有若干个内层序列,需要同时提供每一个内层序列在整个`batch`中的偏移。也就是说:**双层序列需要设置分别为外层序列和内层序列分别设置`sequence_start_positions`信息**。 + +**注:** +1. 不论序列中的元素在内存中占用多少实际存储空间,`sequence_start_positions`表示的偏移是以“序列中的一个元素”作为统计的基本单位,而不是相对`batch`起始存储地址以数据的存储大小为单位的偏移。 +1. 非序列输入不携带`sequence_start_positions`,非序列输入无需构造`sequence_start_positions`。 +1. **不论是单层序列还是双层序列的序列信息,都使用`paddle_ivector`(也就是PaddlePaddle中的一维整型数组)来存储。** + +图2 是PaddlePaddle中单层序列和双层序列存储示意图。 +

+
图2. 序列输入示意图 +

+ +- 单层序列 + + 图2 (a) 展示了一个含有4个序列的`batch`输入: + 1. 4个序列的长度分别为:5、3、2、4; + 1. 这时的`sequence_start_positions`为:`[0, 5, 8, 10, 14]`; + 1. 本地训练. 不论数据域是`paddle_ivector`类型还是`paddle_matrix`类型,都可以通过调用下面的接口为原有的数据输入附加上序列信息,使之变为一个单层序列输入,代码片段如下: + + ```c + int seq_pos_array[] = {0, 5, 8, 10, 14}; + paddle_ivector seq_pos = paddle_ivector_create( + seq_pos_array, sizeof(seq_pos_array) / sizeof(int), false, false); + // Suppose the network only has one input data layer. + CHECK(paddle_arguments_set_sequence_start_pos(in_args, 0, 0, seq_pos)); + ``` + +- 双层序列 + + 图2 (b) 展示了一个含有4个序列的`batch`输入; + 1. 4个序列的长度分别为:5、3、2、4;这四个序列又分别含有3、2、1、2个子序列; + 1. 这时的需要同时提供: + - 外层序列在`batch`中的起始偏移`:[0, 5, 8, 10, 14]`; + - 内层序列在`batch`中的起始偏移:`[0, 2, 3, 5, 7, 8, 10, 13, 14]`; + 1. 不论数据域是`paddle_ivector`类型还是`paddle_matrix`类型,这时需要调用创建序列信息和为`argument`设置序列信息的接口**两次**,分别为数据输入添加外层序列和内层序列的序列信息,使之变为一个双层序列输入,代码片段如下: + ```c + // set the sequence start positions for the outter sequences. + int outter_seq_pos_array[] = {0, 5, 8, 10, 14}; + paddle_ivector seq_pos = + paddle_ivector_create(outter_seq_pos_array, + sizeof(outter_pos_array) / sizeof(int), + false, + false); + // The third parameter of this API indicates the sequence level. + // 0 for the outter sequence. 1 for the inner sequence. + // If the input is a sequence not the nested sequence, the third parameter is + // fixed to be 0. + CHECK(paddle_arguments_set_sequence_start_pos(in_args, 0, 0, seq_pos)); + + // set the sequence start positions for the outter sequences. + int inner_seq_pos_array[] = {0, 2, 3, 5, 7, 8, 10, 13, 14}; + paddle_ivector seq_pos = paddle_ivector_create( + inner_pos_array, sizeof(inner_pos_array) / sizeof(int), false, false); + // The third parameter of this API indicates the sequence level. + // 0 for the outter sequence. 1 for the inner sequence. + CHECK(paddle_arguments_set_sequence_start_pos(in_args, 0, 1, seq_pos)); + ``` + +注意事项: +1. 当一个`batch`中含有多个序列,**不支持序列长度为`0`的序列(也就是空输入)** 作为输入。不同计算层对空输入的处理策略有可能不同,潜在会引起未定义行为,或者引起行时错误,请在输入时进行合法性检查。 + +### Python 端数据类型说明 + +下表列出了Python端训练接口暴露的数据类型(`paddle.layer.data`函数`type`字段的取值)对应于调用C-API需要创建的数据类型: + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Python 端数据类型C-API 输入数据类型
paddle.data_type.integer_value整型数组,无需附加序列信息
paddle.data_type.dense_vector浮点型稠密矩阵,无需附加序列信息
paddle.data_type.sparse_binary_vector浮点型稀疏矩阵,无需提供非零元的值,默认为1,无需附加序列信息
paddle.data_type.sparse_vector浮点型稀疏矩阵,需提供非零元的值,无需附加序列信息
paddle.data_type.integer_value_sequence整型数组,需附加序列信息
paddle.data_type.dense_vector_sequence浮点型稠密矩阵,需附加序列信息
paddle.data_type.sparse_binary_vector_sequence浮点型稀疏矩阵,无需提供非零元的值,默认为1,需附加序列信息
paddle.data_type.sparse_vector_sequence浮点型稀疏矩阵,需提供非零元的值,需附加序列信息
paddle.data_type.integer_value_sub_sequence整型数组,需附加双层序列信息
paddle.data_type.dense_vector_sub_sequence浮点型稠密矩阵,需附加双层序列信息
paddle.data_type.sparse_binary_vector_sub_sequence浮点型稀疏矩阵,无需提供非零元的值,默认为1,需附加双层序列信息
paddle.data_type.sparse_vector_sub_sequence浮点型稀疏矩阵,需提供非零元的值,需附加双层序列信息
+ +
+ + +### 输出数据 + +PaddlePaddle中一个计算层的输出数据组织方式和输入数据组织方式完全相同。一个输出数据同样被组织为一个`argument`,`argument`通过`paddle_matrix`或`paddle_ivector`存数数据,如果输出是一个序列,那么会携带有`sequence_start_positions`信息。调用C-API相关接口,读取需要的结果即可。 + +### 总结 + +- 在PaddlePaddle内部,神经网络中一个计算层的输入/输出被组织为`argument`。 +- `argument`并不真正“存储”数据,而是将输入/输出信息有机地组织在一起。 +- 在`argument`内部由`paddle_ivector`(一维整型数组)和`paddle_matrix`(二维浮点型矩阵)来实际存储数据。 +如果是一个序列输入/输出由 `sequence start positions` 来记录输入/输出的序列信息。 + +于是,在组织神经网络输入时,需要思考完成以下工作: +1. 为每一个输入/输出创建`argument`。 + - C-API 中操作`argument`的接口请查看[argument.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/arguments.h)。 +1. 为每一个`argument`创建`paddle_matrix`或者`paddle_ivector`来存储数据。 + - C-API 中操作`paddle_ivector`的接口请查看 [vector.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/vector.h)。 + - C-API 中操作`paddle_matrix`的接口请查看[matrix.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/matrix.h)。 +1. 如果输入是序列数据,需要创建并填写`sequence_start_positions`信息。 + - 通过调用 [`paddle_arguments_set_sequence_start_pos`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/arguments.h#L137) 来为一个`argument`添加序列信息。 + - 通过调用 [`paddle_arguments_get_sequence_start_pos`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/arguments.h#L150) 来读取一个`argument`添加序列信息。 + - 接口说明请查看 [argument.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/arguments.h) 文件。 diff --git a/doc/howto/usage/capi/workflow_of_capi_cn.md b/doc/howto/usage/capi/workflow_of_capi_cn.md new file mode 100644 index 0000000000..e0a42fff12 --- /dev/null +++ b/doc/howto/usage/capi/workflow_of_capi_cn.md @@ -0,0 +1,119 @@ +## C-API 使用流程 + +这篇文档介绍 PaddlePaddle C-API 整体使用流程。 + +### 使用流程 + +使用 C-API 的工作流程如图1所示,分为(1)准备预测模型和(2)预测程序开发两大部分。 + +

+
图1. C-API使用流程示意图 +

+ +- 准备预测模型 + 1. 只将神经网络结构进行序列化。 + - 只对神经网络结构进行序列化,加载模型需同时指定:网络结构的序列化结果和模型参数存储目录。 + 1. 将网络结构定义和训练结束存储下来的模型参数文件(多个)合并入一个文件。 + - 神经网络模型结构和训练好的模型将被序列化合并入一个文件。 + - 预测时只需加载一个文件便于发布。 + - **注意**:以上两种方式只需选择其一即可。 +- 调用 C-API 开发预测序 + 1. 初始化PaddlePaddle运行环境。 + 1. 加载预测模型。 + 1. 创建神经网络输入,组织输入数据。 + 1. 进行前向计算,获得计算结果。 + 1. 清理和结束。 + +### 准备预测模型 + +准备预测模型部分,我们以手写数字识别任务为例进行介绍。手写数字识别任务定义了一个含有[两个隐层的简单全连接网络](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression),网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看[此目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense) 中的相关脚本。 + +调用C-API开发预测程序需要一个训练好的模型,运行[MNIST手写数字识别目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)下的[mnist_v2.py](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/examples/model_inference/dense/mnist_v2.py)脚本,在终端执行`python mnist_v2.py`,会使用 PaddlePaddle 内置的 [MNIST 数据集](http://yann.lecun.com/exdb/mnist/)进行训练。训练好的模型默认保存在当前运行目录下的`models`目录中。 + +下面,我们将训练结束后存储下来的模型转换成预测模型。 + +1. 序列化神经网络模型配置 + + PaddlePaddle 使用 protobuf 来传输网络配置文件中定义的网络结构和相关参数,使用 C-API 进行预测时,需要将网络结构使用 protobuf 进行序列化,写入文件中。 + + 调用[`paddle.utils.dump_v2_config`](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/utils/dump_v2_config.py)中的`dump_v2_config`函数能够将使用 PaddlePaddle V2 API 定义的神经网络结构 dump 到指定文件中,示例代码如下: + + ```python + from paddle.utils.dump_v2_config import dump_v2_config + from mnist_v2 import network + + predict = network(is_infer=True) + dump_v2_config(predict, "trainer_config.bin", True) + ``` + + 对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)这个示例,[`mnist_v2.py`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense/mnist_v2.py)脚本集成了序列化神经网络结构的过程,可以直接运行 `python mnist_v2.py --task dump_config` 对神经网络结构进行序列化,结果会写入当前运行目录下的`trainer_config.bin`文件中。 + + 使用这种方式,需要**在运行时将神经网络的多个可学习参数放在同一个目录中**,C-API可以通过分别指定序列化后的网络结构文件和参数目录来加载训练好的模型。 + +2. 合并模型文件(可选) + + 一些情况为了便于发布,希望能够将序列化后的神经网络结构和训练好的模型参数打包进一个文件。对于这样的需求,可以使用`paddle.utils.merge_model`中的`merge_v2_model`接口对神经网络结构和训练好的参数进行序列化,将序列化结果写入一个文件内。 + + 代码示例如下: + + ```python + from paddle.utils.merge_model import merge_v2_modelss + from mnist_v2 import network + + net = network(is_infer=True) + param_file = "models/params_pass_4.tar" + output_file = "output.paddle.model" + merge_v2_model(net, param_file, output_file) + ``` + 对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)这个示例,可直接运行 `python` [merge_v2_model.py](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense/merge_v2_model.py)。序列化结果会写入当前运行目录下的`output.paddle.model`文件中。使用这种方式,运行时C-API可以通过指定`output.paddle.model`文件的路径来加载预测模型。 + +#### 注意事项 +1. 为使用C-API,在调用`dump_v2_config`序列化神经网络结构时,参数`binary`必须指定为`True`。 +1. **预测使用的网络结构往往不同于训练**,通常需要去掉网络中的:(1)类别标签层;(2)损失函数层;(3)`evaluator`等,只留下核心计算层,请注意是否需要修改网络结构。 +1. 预测时,可以获取网络中定义的任意多个(大于等于一个)层前向计算的结果,需要哪些层的计算结果作为输出,就将这些层加入一个Python list中,作为调用`dump_v2_config`的第一个参数。 + +### 编写预测代码 + +预测代码更多详细示例代码请参考[C-API使用示例](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference) 目录下的代码示例。这一节对图1中预测代码编写的5个步骤进行介绍和说明。 + +#### step 1. 初始化PaddlePaddle运行环境 +第一步需调用[`paddle_init`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/main.h#L27) 初始化PaddlePaddle运行环境,该接口接受两个参数:参数的个数和参数列表。 + +#### step2. 加载模型 + +这里介绍C-API使用中的一个重要概念:Gradient Machine。 + +概念上,在 PaddlePaddle 内部,一个GradientMachine类的对象管理着一组计算层(PaddlePaddle Layers)来完成前向和反向计算,并处理与之相关的所有细节。在调用C-API预测时,只需进行前向计算而无需调用反向计算。这篇文档之后部分会使用`gradient machine`来特指调用PaddlePaddle C-API创建的GradientMachine类的对象。每一个 `gradient machine` 都会管理维护一份训练好的模型,下面是C-API提供的,两种常用的模型加载方式: + +1. 调用[`paddle_gradient_machine_load_parameter_from_disk`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L61)接口,从磁盘加载预测模型。这时`gradient machine`会独立拥有一份训练好的模型; +1. 调用[`paddle_gradient_machine_create_shared_param`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L88)接口,与其它`gradient machine`的共享已经加载的预测模型。这种情况多出现在使用多线程预测时,通过多个线程共享同一个模型来减少内存开销。可参考[此示例](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/examples/model_inference/multi_thread/main.c)。 + +- 注意事项 + 1. 使用PaddlePaddle V2 API训练,模型中所有可学习参数会被存为一个压缩文件,需要手动进行解压,将它们放在同一目录中,C-API不会直接加载 V2 API 存储的压缩文件。 + 1. 如果使用`merge model`方式将神经网络结构和训练好的参数序列化到一个文件,请参考此[示例](https://github.com/PaddlePaddle/Mobile/blob/develop/Demo/linux/paddle_image_recognizer.cpp#L59)。 + 1. 通过灵活使用以上两个接口,加载模型可其它多种方式,例如也可在程序运行过程中再加载另外一个模型。 + +#### step 3. 创建神经网络输入,组织输入数据 + +基本使用概念: +- 在PaddlePaddle内部,神经网络中一个计算层的输入输出被组织为一个 `Argument` 结构体,如果神经网络有多个输入或者多个输出,每一个输入/输出都会对应有自己的`Argument`。 +- `Argument` 并不真正“存储”数据,而是将输入/输出数据有机地组织在一起。 +- 在`Argument`内部由:1. `Matrix`(二维矩阵,存储浮点类型输入/输出);2. `IVector`(一维数组,**仅用于存储整型值**,多用于自然语言处理任务)来实际存储数据。 + +C-API支持的所有输入数据类型和他们的组织方式,请参考“输入/输出数据组织”一节。 + +这篇文档的之后部分会使用`argument`来特指PaddlePaddle C-API中神经网络的一个输入/输出,使用`paddle_matrix`**特指**`argument`中用于存储数据的`Matrix`类的对象。 + +在组织神经网络输入,获取输出时,需要思考完成以下工作: +1. 为每一个输入/输出创建`argument`; +1. 为每一个`argument`创建`paddle_matrix`来存储数据; + +与输入不同的是,不需在使用C-API时为输出`argument`的`paddle_matrix`对象分配空间。前向计算之后PaddlePaddle内部已经分配/管理了每个计算层输出的存储空间。 + +#### step 4. 前向计算 + +完成上述准备之后,通过调用 [`paddle_gradient_machine_forward`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L73) 接口完成神经网络的前向计算。 + +#### step 5. 清理 + +结束预测之后,对使用的中间变量和资源进行清理和释放。 diff --git a/doc/howto/usage/cluster/cluster_train_cn.md b/doc/howto/usage/cluster/cluster_train_cn.md index 2e98b3de3f..c2fc86687d 100644 --- a/doc/howto/usage/cluster/cluster_train_cn.md +++ b/doc/howto/usage/cluster/cluster_train_cn.md @@ -1,25 +1,8 @@ -# PaddlePaddle分布式训练 - -* [概述](#概述) -* [环境准备](#环境准备) -* [启动参数说明](#启动参数说明) - * [启动参数服务器](#启动参数服务器) - * [启动计算节点](#启动计算节点) - * [准备数据集](#准备数据集) - * [准备训练程序](#准备训练程序) -* [使用分布式计算平台或工具](#使用分布式计算平台或工具) - * [使用Fabric启动集群作业](#使用fabric启动集群作业) - * [准备一个Linux集群](#准备一个linux集群) - * [启动集群作业](#启动集群作业) - * [终止集群作业](#终止集群作业) - * [检查集群训练结果](#检查集群训练结果) - * [检查模型输出](#检查模型输出) - * [在OpenMPI集群中提交训练作业](#在openmpi集群中提交训练作业) - * [准备OpenMPI集群](#准备OpenMPI集群) - * [启动集群作业](#启动集群作业-1) - * [在Kubernetes集群中提交训练作业](#在kubernetes集群中提交训练作业) +# 分布式训练 + ## 概述 + 本文将介绍如何使用PaddlePaddle在不同的集群框架下完成分布式训练。分布式训练架构如下图所示: @@ -32,10 +15,11 @@ 在使用同步SGD训练神经网络时,PaddlePaddle使用同步屏障(barrier),使梯度的提交和参数的更新按照顺序方式执行。在异步SGD中,则并不会等待所有trainer提交梯度才更新参数,这样极大地提高了计算的并行性:参数服务器之间不相互依赖,并行地接收梯度和更新参数,参数服务器也不会等待计算节点全部都提交梯度之后才开始下一步,计算节点之间也不会相互依赖,并行地执行模型的训练。可以看出,虽然异步SGD方式会提高参数更新并行度, 但是并不能保证参数同步更新,在任意时间某一台参数服务器上保存的参数可能比另一台要更新,与同步SGD相比,梯度会有噪声。 + ## 环境准备 1. 准备您的计算集群。计算集群通常由一组(几台到几千台规模)的Linux服务器组成。服务器之间可以通过局域网(LAN)联通,每台服务器具有集群中唯一的IP地址(或者可被DNS解析的主机名)。集群中的每台计算机通常被成为一个“节点”。 -1. 我们需要在集群的所有节点上安装 PaddlePaddle。 如果要启用GPU,还需要在节点上安装对应的GPU驱动以及CUDA。PaddlePaddle的安装可以参考[build_and_install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install)的多种安装方式。我们推荐使用[Docker](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)安装方式来快速安装PaddlePaddle。 +1. 我们需要在集群的所有节点上安装 PaddlePaddle。 如果要启用GPU,还需要在节点上安装对应的GPU驱动以及CUDA。PaddlePaddle的安装可以参考[build_and_install](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/index_cn.html)的多种安装方式。我们推荐使用[Docker](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_cn.html)安装方式来快速安装PaddlePaddle。 安装完成之后,执行下面的命令可以查看已经安装的版本(docker安装方式可以进入docker容器执行:`docker run -it paddlepaddle/paddle:[tag] /bin/bash`): ```bash @@ -63,12 +47,12 @@ $ paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradie $ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log ``` -| 参数 | 是否必选 | 默认值 | 说明 | -| ------------- | ------------- | ------------- | ------------- | -| port | 必选 | 7164 | pserver监听的起始端口,根据ports_num决定
总端口个数,从起始端口监听多个端口用于通信 | -| ports_num | 必选 | 1 | 监听的端口个数 | -| ports_num_for_sparse | 必选 | 1 | 用于稀疏类型参数通信的端口个数 | -| num_gradient_servers | 必选 | 1 | 当前训练任务pserver总数 | +参数说明 + +- port:**必选,默认7164**,pserver监听的起始端口,根据ports_num决定总端口个数,从起始端口监听多个端口用于通信 +- ports_num:**必选,默认1**,监听的端口个数 +- ports_num_for_sparse:**必选,默认0**,用于稀疏类型参数通信的端口个数 +- num_gradient_servers:**必选,默认1**,当前训练任务pserver总数 ### 启动计算节点 执行以下命令启动使用python编写的trainer程序(文件名为任意文件名,如train.py) @@ -76,7 +60,7 @@ $ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num $ python train.py ``` -trainer需要和pserver保持网络联通以完成训练。trainer启动需要传入端口、pserver地址等参数使trainer可以正确连接到pserver。这些参数可以通过环境变量(https://zh.wikipedia.org/wiki/环境变量 )或编写程序时`paddle.init()`中传入参数。如果同时使用`paddle.init()`参数和环境变量,将会优先使用`paddle.init()`中传入的参数。 +trainer需要和pserver保持网络联通以完成训练。trainer启动需要传入端口、pserver地址等参数使trainer可以正确连接到pserver。这些参数可以通过[环境变量](https://zh.wikipedia.org/wiki/环境变量)或编写程序时`paddle.init()`中传入参数。如果同时使用`paddle.init()`参数和环境变量,将会优先使用`paddle.init()`中传入的参数。 使用环境变量: @@ -105,16 +89,16 @@ paddle.init( pservers="127.0.0.1") ``` -| 参数 | 是否必选 | 默认 | 说明 | -| ------------- | ------------- | ------------- | ------------- | -| use_gpu | 可选 | False | 是否启用GPU训练 | -| trainer_count | 必选 | 1 | 当前训练任务trainer总个数 | -| port | 必选 | 7164 | 连接到pserver的端口 | -| ports_num | 必选 | 1 | 连接到pserver的端口个数 | -| ports_num_for_sparse | 必选 | 1 | 和pserver之间用于稀疏类型参数通信的端口个数 | -| num_gradient_servers | 必选 | 1 | 当前训练任务pserver总数 | -| trainer_id | 必选 | 0 | 每个trainer的唯一ID,从0开始的整数 | -| pservers | 必选 | 127.0.0.1 | 当前训练任务启动的pserver的IP列表,多个IP使用“,”隔开 | +参数说明 + +- use_gpu: **可选,默认False**,是否启用GPU训练 +- trainer_count:**必选,默认1**,当前训练任务trainer总个数 +- port:**必选,默认7164**,连接到pserver的端口 +- ports_num:**必选,默认1**,连接到pserver的端口个数 +- ports_num_for_sparse:**必选,默认0**,和pserver之间用于稀疏类型参数通信的端口个数 +- num_gradient_servers:**必选,默认1**,当前训练任务pserver总数 +- trainer_id:**必选,默认0**,每个trainer的唯一ID,从0开始的整数 +- pservers:**必选,默认127.0.0.1**,当前训练任务启动的pserver的IP列表,多个IP使用“,”隔开 ### 准备数据集 @@ -171,7 +155,7 @@ test.txt-00002 - `my_lib.py`:会被`train.py`调用的一些用户定义的库函数,比如PIL库等。 - `word_dict.pickle`:在`train.py`中会使用到的字典数据文件。 -- `train.py`:训练程序,代码参考[api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py)。***注意:*** 对于本样例代码,在使用不同的分布式计算平台时,您可能需要修改`train.py`开头的部分(如下),以便获得训练数据的位置和获取环境变量配置: +- `train.py`:训练程序,代码参考[api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py)。***注意:*** 对于本样例代码,在使用不同的分布式计算平台时,您可能需要修改`train.py`开头的部分(如下),以便获得训练数据的位置和获取环境变量配置: ```python cluster_train_file = "./train_data_dir/train/train.txt" @@ -195,91 +179,10 @@ PaddlePaddle可以使用多种分布式计算平台构建分布式计算任务 在使用分布式计算平台进行训练时,任务被调度在集群中时,分布式计算平台通常会通过API或者环境变量提供任务运行需要的参数,比如节点的ID、IP和任务节点个数等。 -### 使用Fabric启动集群作业 - -#### 准备一个Linux集群 -可以在`paddle/scripts/cluster_train_v2/fabric/docker_cluster`目录下,执行`kubectl -f ssh_servers.yaml`启动一个测试集群,并使用`kubectl get po -o wide`获得这些节点的IP地址。 - -#### 启动集群作业 - -`paddle.py` 提供了自动化脚本来启动不同节点中的所有 PaddlePaddle 集群进程。默认情况下,所有命令行选项可以设置为 `paddle.py` 命令选项并且 `paddle.py` 将透明、自动地将这些选项应用到 PaddlePaddle 底层进程。 - -`paddle.py` 为方便作业启动提供了两个独特的命令选项。 - -- `job_dispatch_package` 设为本地 `workspace` 目录,它将被分发到 `conf.py` 中设置的所有节点。它有助于帮助频繁修改和访问工作区文件的用户减少负担,否则频繁的多节点工作空间部署可能会很麻烦。 -- `job_workspace` 设为已部署的工作空间目录,`paddle.py` 将跳过分发阶段直接启动所有节点的集群作业。它可以帮助减少分发延迟。 - -`cluster_train/run.sh` 提供了命令样例来运行 `doc/howto/usage/cluster/src/word2vec` 集群任务,只需用您定义的目录修改 `job_dispatch_package` 和 `job_workspace`,然后: -``` -sh run.sh -``` - -集群作业将会在几秒后启动。 - -#### 终止集群作业 -`paddle.py`能获取`Ctrl + C` SIGINT 信号来自动终止它启动的所有进程。只需中断 `paddle.py` 任务来终止集群作业。如果程序崩溃你也可以手动终止。 - -#### 检查集群训练结果 -详细信息请检查 $workspace/log 里的日志,每一个节点都有相同的日志结构。 - -`paddle_trainer.INFO` -提供几乎所有训练的内部输出日志,与本地训练相同。这里检验运行时间模型的收敛。 - -`paddle_pserver2.INFO` -提供 pserver 运行日志,有助于诊断分布式错误。 - -`server.log` -提供 parameter server 进程的 stderr 和 stdout。训练失败时可以检查错误日志。 - -`train.log` -提供训练过程的 stderr 和 stdout。训练失败时可以检查错误日志。 - -#### 检查模型输出 -运行完成后,模型文件将被写入节点 0 的 `output` 目录中。 -工作空间中的 `nodefile` 表示当前集群作业的节点 ID。 - -### 在OpenMPI集群中提交训练作业 - -#### 准备OpenMPI集群 - -执行下面的命令以启动3个节点的OpenMPI集群和一个"head"节点: - -```bash -paddle/scripts/cluster_train_v2/openmpi/docker_cluster -kubectl create -f head.yaml -kubectl create -f mpi-nodes.yaml -``` - -然后可以从head节点ssh无密码登录到OpenMPI的每个节点上。 - -#### 启动集群作业 - -您可以按照下面的步骤在OpenMPI集群中提交paddle训练任务: - -```bash -# 获得head和node节点的IP地址 -kubectl get po -o wide -# 将node节点的IP地址保存到machines文件中 -kubectl get po -o wide | grep nodes | awk '{print $6}' > machines -# 拷贝必要的文件到head节点 -scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ -# ssh 登录到head节点 -ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] -# --------------- 以下操作均在head节点中执行 --------------- -# 准备训练数据 -python prepare.py -# 拷贝训练程序和字典文件到每台MPI节点 -cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial -# 创建日志目录 -mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs -# 拷贝训练数据到各自的节点 -scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial -scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial -scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial -# 启动训练任务 -mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh -``` - -### 在Kubernetes集群中提交训练作业 +## 在不同集群中运行 -此部分的使用方法可以参考[here](../k8s/k8s_distributed_cn.md)。 + - [fabric集群](fabric_cn.md) + - [openmpi集群](openmpi_cn.md) + - [kubernetes单机](k8s_cn.md) + - [kubernetes distributed分布式](k8s_distributed_cn.md) + - [AWS上运行kubernetes集群训练](k8s_aws_cn.md) diff --git a/doc/howto/usage/cluster/cluster_train_en.md b/doc/howto/usage/cluster/cluster_train_en.md index baa97c0c02..28cd1fa790 100644 --- a/doc/howto/usage/cluster/cluster_train_en.md +++ b/doc/howto/usage/cluster/cluster_train_en.md @@ -1,23 +1,4 @@ -# PaddlePaddle Distributed Training - -* [Introduction](#introduction) -* [Preparations](#preparations) -* [Command-line arguments](#command-line-arguments) - * [Starting parameter server](#starting-parameter-server) - * [Starting trainer](#starting-trainer) - * [Prepare Training Dataset](#prepare-training-dataset) - * [Prepare Training program](#prepare-training-program) -* [Use cluster platforms or cluster management tools](#use-cluster-platforms-or-cluster-management-tools) - * [Cluster Training Using Fabric](#cluster-training-using-fabric) - * [Prepare a Linux cluster](#prepare-a-linux-cluster) - * [Launching Cluster Job](#launching-cluster-job) - * [Kill Cluster Job](#kill-cluster-job) - * [Check Cluster Training Result](#check-cluster-training-result) - * [Check Model Output](#check-model-output) - * [Cluster Training Using OpenMPI](#cluster-training-using-openmpi) - * [Prepare an OpenMPI cluster](#prepare-an-openmpi-cluster) - * [Launching Cluster Job](#launching-cluster-job-1) - * [Cluster Training Using Kubernetes](#cluster-training-using-kubernetes) +# Distributed Training ## Introduction @@ -35,7 +16,7 @@ When training with synchronize SGD, PaddlePaddle uses an internal "synchronize b ## Preparations 1. Prepare your computer cluster. It's normally a bunch of Linux servers connected by LAN. Each server will be assigned a unique IP address. The computers in the cluster can be called "nodes". -2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install) document. We strongly recommend using [Docker installation](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst). +2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html) document. We strongly recommend using [Docker installation](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/docker_install_en.html). After installation, you can check the version by typing the below command (run a docker container if using docker: `docker run -it paddlepaddle/paddle:[tag] /bin/bash`): @@ -67,12 +48,12 @@ If you wish to run parameter servers in background, and save a log file, you can $ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log ``` -| param | required | default | description | -| ------------- | ------------- | ------------- | ------------- | -| port | required | 7164 | port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput | -| ports_num | required | 1 | total number of ports will listen on | -| ports_num_for_sparse | required | 1 | number of ports which serves sparse parameter update | -| num_gradient_servers | required | 1 | total number of gradient servers | +Parameter Description + +- port: **required, default 7164**, port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput. +- ports_num: **required, default 1**, total number of ports will listen on. +- ports_num_for_sparse: **required, default 0**, number of ports which serves sparse parameter update. +- num_gradient_servers: **required, default 1**, total number of gradient servers. ### Starting trainer Type the command below to start the trainer(name the file whatever you want, like "train.py") @@ -111,16 +92,16 @@ paddle.init( pservers="127.0.0.1") ``` -| param | required | default | description | -| ------------- | ------------- | ------------- | ------------- | -| use_gpu | optional | False | set to "True" to enable GPU training | -| trainer_count | required | 1 | total count of trainers in the training job | -| port | required | 7164 | port to connect to parameter server | -| ports_num | required | 1 | number of ports for communication | -| ports_num_for_sparse | required | 1 | number of ports for sparse type caculation | -| num_gradient_servers | required | 1 | total number of gradient server | -| trainer_id | required | 0 | ID for every trainer, start from 0 | -| pservers | required | 127.0.0.1 | list of IPs of parameter servers, separated by "," | +Parameter Description + +- use_gpu: **optional, default False**, set to "True" to enable GPU training. +- trainer_count: **required, default 1**, total count of trainers in the training job. +- port: **required, default 7164**, port to connect to parameter server. +- ports_num: **required, default 1**, number of ports for communication. +- ports_num_for_sparse: **required, default 0**, number of ports for sparse type caculation. +- num_gradient_servers: **required, default 1**, total number of gradient server. +- trainer_id: **required, default 0**, ID for every trainer, start from 0. +- pservers: **required, default 127.0.0.1**, list of IPs of parameter servers, separated by ",". ### Prepare Training Dataset @@ -178,7 +159,7 @@ Your workspace may looks like: - `my_lib.py`: user defined libraries, like PIL libs. This is optional. - `word_dict.pickle`: dict file for training word embeding. -- `train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables: +- `train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables: ```python cluster_train_file = "./train_data_dir/train/train.txt" @@ -202,92 +183,9 @@ We'll introduce cluster job management on these platforms. The examples can be f These cluster platforms provide API or environment variables for training processes, when the job is dispatched to different nodes. Like node ID, IP or total number of nodes etc. -### Cluster Training Using Fabric - -#### Prepare a Linux cluster - -Run `kubectl -f ssh_servers.yaml` under the directory: `paddle/scripts/cluster_train_v2/fabric/docker_cluster` will launch a demo cluster. Run `kubectl get po -o wide` to get IP addresses of these nodes. - -#### Launching Cluster Job -`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can be set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes. - -`paddle.py`provides two distinguished command option for easy job launching. - -- `job_dispatch_package` set it with local `workspace` directory, it will be dispatched to all nodes which is set in `conf.py`. It could be helpful for frequently manipulating workspace files. otherwise, frequent multi-nodes workspace deployment is very annoying. -- `job_workspace` set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy -dispatch latency. - -`cluster_train/run.sh` provides command line sample to run `demo/recommendation` cluster job, just modify `job_dispatch_package` and `job_workspace` with your defined directory, then: -``` -sh run.sh -``` - -The cluster Job will start in several seconds. - -#### Kill Cluster Job -`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should manually kill the job if the program crashed. - -#### Check Cluster Training Result -Check log in $workspace/log for details, each node owns same log structure. - -`paddle_trainer.INFO` -It provides almost all internal output log for training, same as local training. Check runtime model convergence here. - -`paddle_pserver2.INFO` -It provides parameter server running log, which could help to diagnose distributed error. - -`server.log` -It provides stderr and stdout of parameter server process. Check error log if training crashes. - -`train.log` -It provides stderr and stdout of trainer process. Check error log if training crashes. - -#### Check Model Output -After one pass finished, model files will be written in `output` directory in node 0. -`nodefile` in workspace indicates the node id of current cluster job. - -### Cluster Training Using OpenMPI - -#### Prepare an OpenMPI cluster - -Run the following command to start a 3-node MPI cluster and one "head" node. - -```bash -cd paddle/scripts/cluster_train_v2/openmpi/docker_cluster -kubectl create -f head.yaml -kubectl create -f mpi-nodes.yaml -``` - -Then you can log in to every OpenMPI node using ssh without input any passwords. - -#### Launching Cluster Job - -Follow the steps to launch a PaddlePaddle training job in OpenMPI cluster:\ - -```bash -# find out node IP addresses -kubectl get po -o wide -# generate a "machines" file containing node IP addresses -kubectl get po -o wide | grep nodes | awk '{print $6}' > machines -# copy necessary files onto "head" node -scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ -# login to head node using ssh -ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] -# --------------- in head node --------------- -# prepare training data -python prepare.py -# copy training data and dict file to MPI nodes -cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial -# creat a directory for storing log files -mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs -# copy training data to every node -scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial -scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial -scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial -# start the job -mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh -``` - -### Cluster Training Using Kubernetes +## Use different clusters -The details can be found [here](../k8s/k8s_cn.md) + - [fabric](fabric_en.md) + - [openmpi](openmpi_en.md) + - [kubernetes](k8s_en.md) + - [kubernetes on AWS](k8s_aws_en.md) diff --git a/doc/howto/usage/cluster/fabric_cn.md b/doc/howto/usage/cluster/fabric_cn.md new file mode 100644 index 0000000000..0385e401b3 --- /dev/null +++ b/doc/howto/usage/cluster/fabric_cn.md @@ -0,0 +1,42 @@ +# 使用fabric启动集群训练 + +## 准备一个Linux集群 +可以在`paddle/scripts/cluster_train_v2/fabric/docker_cluster`目录下,执行`kubectl -f ssh_servers.yaml`启动一个测试集群,并使用`kubectl get po -o wide`获得这些节点的IP地址。 + +## 启动集群作业 + +`paddle.py` 提供了自动化脚本来启动不同节点中的所有 PaddlePaddle 集群进程。默认情况下,所有命令行选项可以设置为 `paddle.py` 命令选项并且 `paddle.py` 将透明、自动地将这些选项应用到 PaddlePaddle 底层进程。 + +`paddle.py` 为方便作业启动提供了两个独特的命令选项。 + +- `job_dispatch_package` 设为本地 `workspace` 目录,它将被分发到 `conf.py` 中设置的所有节点。它有助于帮助频繁修改和访问工作区文件的用户减少负担,否则频繁的多节点工作空间部署可能会很麻烦。 +- `job_workspace` 设为已部署的工作空间目录,`paddle.py` 将跳过分发阶段直接启动所有节点的集群作业。它可以帮助减少分发延迟。 + +`cluster_train/run.sh` 提供了命令样例来运行 `doc/howto/usage/cluster/src/word2vec` 集群任务,只需用您定义的目录修改 `job_dispatch_package` 和 `job_workspace`,然后: +``` +sh run.sh +``` + +集群作业将会在几秒后启动。 + +## 终止集群作业 +`paddle.py`能获取`Ctrl + C` SIGINT 信号来自动终止它启动的所有进程。只需中断 `paddle.py` 任务来终止集群作业。如果程序崩溃你也可以手动终止。 + +## 检查集群训练结果 +详细信息请检查 $workspace/log 里的日志,每一个节点都有相同的日志结构。 + +`paddle_trainer.INFO` +提供几乎所有训练的内部输出日志,与本地训练相同。这里检验运行时间模型的收敛。 + +`paddle_pserver2.INFO` +提供 pserver 运行日志,有助于诊断分布式错误。 + +`server.log` +提供 parameter server 进程的 stderr 和 stdout。训练失败时可以检查错误日志。 + +`train.log` +提供训练过程的 stderr 和 stdout。训练失败时可以检查错误日志。 + +## 检查模型输出 +运行完成后,模型文件将被写入节点 0 的 `output` 目录中。 +工作空间中的 `nodefile` 表示当前集群作业的节点 ID。 diff --git a/doc/howto/usage/cluster/fabric_en.md b/doc/howto/usage/cluster/fabric_en.md new file mode 100644 index 0000000000..bf270d89ab --- /dev/null +++ b/doc/howto/usage/cluster/fabric_en.md @@ -0,0 +1,43 @@ +# Cluster Training Using Fabric + +## Prepare a Linux cluster + +Run `kubectl -f ssh_servers.yaml` under the directory: `paddle/scripts/cluster_train_v2/fabric/docker_cluster` will launch a demo cluster. Run `kubectl get po -o wide` to get IP addresses of these nodes. + +## Launching Cluster Job +`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can be set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes. + +`paddle.py`provides two distinguished command option for easy job launching. + +- `job_dispatch_package` set it with local `workspace` directory, it will be dispatched to all nodes which is set in `conf.py`. It could be helpful for frequently manipulating workspace files. otherwise, frequent multi-nodes workspace deployment is very annoying. +- `job_workspace` set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy +dispatch latency. + +`cluster_train/run.sh` provides command line sample to run `demo/recommendation` cluster job, just modify `job_dispatch_package` and `job_workspace` with your defined directory, then: +``` +sh run.sh +``` + +The cluster Job will start in several seconds. + +## Kill Cluster Job +`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should manually kill the job if the program crashed. + +## Check Cluster Training Result +Check log in $workspace/log for details, each node owns same log structure. + +`paddle_trainer.INFO` +It provides almost all internal output log for training, same as local training. Check runtime model convergence here. + +`paddle_pserver2.INFO` +It provides parameter server running log, which could help to diagnose distributed error. + +`server.log` +It provides stderr and stdout of parameter server process. Check error log if training crashes. + +`train.log` +It provides stderr and stdout of trainer process. Check error log if training crashes. + +## Check Model Output +After one pass finished, model files will be written in `output` directory in node 0. +`nodefile` in workspace indicates the node id of current cluster job. diff --git a/doc/howto/usage/cluster/fluid_cluster_train_en.md b/doc/howto/usage/cluster/fluid_cluster_train_en.md new file mode 100644 index 0000000000..a64004a7c4 --- /dev/null +++ b/doc/howto/usage/cluster/fluid_cluster_train_en.md @@ -0,0 +1,140 @@ +# Fluid Distributed Training + +## Introduction + +In this article, we'll explain how to config and run distributed training jobs with PaddlePaddle Fluid in a bare metal cluster. + +## Preparations + +### Get your cluster ready + +Prepare your computer nodes in the cluster. Nodes in this cluster can be of any specification that runs PaddlePaddle, and with a unique IP address assigned to it. Make sure they can communicate with each other. + +### Have PaddlePaddle installed + +PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes, be sure to properly install drivers and CUDA libraries. + +PaddlePaddle build and installation guide can be found from [here](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html). + +### Update training script + +#### Non-cluster training script + +Let's take [Deep Learning 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)'s first chapter: "fit a line" as an example. + +This demo's non-cluster version with fluid API is as follows: + +``` python +import paddle.v2 as paddle +import paddle.v2.fluid as fluid + +x = fluid.layers.data(name='x', shape=[13], dtype='float32') +y_predict = fluid.layers.fc(input=x, size=1, act=None) +y = fluid.layers.data(name='y', shape=[1], dtype='float32') + +cost = fluid.layers.square_error_cost(input=y_predict, label=y) +avg_cost = fluid.layers.mean(x=cost) + +sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) +sgd_optimizer.minimize(avg_cost) + +BATCH_SIZE = 20 + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.uci_housing.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) +exe = fluid.Executor(place) + +exe.run(fluid.default_startup_program()) + +PASS_NUM = 100 +for pass_id in range(PASS_NUM): + fluid.io.save_persistables(exe, "./fit_a_line.model/") + fluid.io.load_persistables(exe, "./fit_a_line.model/") + for data in train_reader(): + avg_loss_value, = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost]) + + if avg_loss_value[0] < 10.0: + exit(0) # if avg cost less than 10.0, we think our code is good. +exit(1) +``` + +We created a simple fully connected neural networks training program and handed it to the fluid executor to run for 100 passes. + +Now let's try to convert it to a distributed version to run in a cluster. + +#### Introducing parameter server + +As you see from the non-cluster version of training script, there is only one role in it: the trainer, who does the computing as well as holding parameters. In cluster training, since multi-trainers are working on the same task, they need one centralized place to hold and distribute parameters. This centralized place is called the Parameter Server in PaddlePaddle. + +![parameter server architect](src/trainer.png) + +Parameter Server in fluid does not only hold parameters but is also assigned with a part of the program. Trainers communicate with parameter servers via send/receive OPs. For more tech detail, please refer to this [document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/dist_refactor/distributed_architecture.md). + +Now we need to create program for both trainers and parameter servers, the question is how? + +#### Slice the program + +Fluid provides a tool called "Distribute Transpiler" to automatically convert the non-cluster program into cluster program. + +The idea behind this tool is to find optimize OPs and gradient parameters, slice the program into 2 pieces and connect them with send/receive OP. + +Optimize OPs and gradient parameters can be found from the return values of optimizer's minimize function. + +To put them together: + +``` python +... #define the program, cost, and create sgd optimizer + +optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters + +t = fluid.DistributeTranspiler() # create transpiler instance +# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers +t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) + +... #create executor + +# in pserver, run this +#current_endpoint here means current pserver IP:PORT you wish to run on +pserver_prog = t.get_pserver_program(current_endpoint) +pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) +exe.run(pserver_startup) +exe.run(pserver_prog) + +# in trainer, run this +... # define data reader +exe.run(fluid.default_startup_program()) +for pass_id in range(100): + for data in train_reader(): + exe.run(t.get_trainer_program()) + + +``` + +### E2E demo + +Please find the complete demo from [here](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py). In parameter server node run this in the command line: + +``` bash +PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=PSERVER python notest_dist_fit_a_line.py +``` + +*please note we assume that your parameter server runs at 192.168.1.2:6174* + +Wait until the prompt `Server listening on 192.168.1.2:6174` + +Then in 2 of your trainer node run this: + +``` bash +PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=TRAINER python notest_dist_fit_a_line.py +``` + +*the reason you need to run this command twice in 2 nodes is: in the script we set the trainer count to be 2. You can change this setting on line 50* + +Now you have 2 trainers and 1 parameter server up and running. diff --git a/doc/howto/usage/cluster/k8s_aws_cn.md b/doc/howto/usage/cluster/k8s_aws_cn.md new file mode 120000 index 0000000000..c44cd9a731 --- /dev/null +++ b/doc/howto/usage/cluster/k8s_aws_cn.md @@ -0,0 +1 @@ +k8s_aws_en.md \ No newline at end of file diff --git a/doc/howto/usage/k8s/k8s_aws_en.md b/doc/howto/usage/cluster/k8s_aws_en.md similarity index 98% rename from doc/howto/usage/k8s/k8s_aws_en.md rename to doc/howto/usage/cluster/k8s_aws_en.md index ce72b08038..0dfa8237a3 100644 --- a/doc/howto/usage/k8s/k8s_aws_en.md +++ b/doc/howto/usage/cluster/k8s_aws_en.md @@ -493,7 +493,7 @@ spec: spec: containers: - name: paddle-data - image: paddledev/paddle-tutorial:k8s_data + image: paddlepaddle/paddle-tutorial:k8s_data imagePullPolicy: Always volumeMounts: - mountPath: "/efs" @@ -522,7 +522,7 @@ NAME DESIRED SUCCESSFUL AGE paddle-data 1 1 6m ``` -Data preparation is done by docker image `paddledev/paddle-tutorial:k8s_data`, see [here](src/k8s_data/README.md) for how to build this docker image and source code. +Data preparation is done by docker image `paddlepaddle/paddle-tutorial:k8s_data`, see [here](src/k8s_data/README.md) for how to build this docker image and source code. #### Start Training @@ -545,7 +545,7 @@ spec: claimName: efsvol containers: - name: trainer - image: paddledev/paddle-tutorial:k8s_train + image: paddlepaddle/paddle-tutorial:k8s_train command: ["bin/bash", "-c", "/root/start.sh"] env: - name: JOB_NAME @@ -617,7 +617,7 @@ kubectl --kubeconfig=kubeconfig log -f POD_NAME Run `kubectl --kubeconfig=kubeconfig describe job paddle-cluster-job` to check training job status. It will complete in around 20 minutes. -The details for start `pserver` and `trainer` are hidden inside docker image `paddledev/paddle-tutorial:k8s_train`, see [here](src/k8s_train/README.md) for how to build the docker image and source code. +The details for start `pserver` and `trainer` are hidden inside docker image `paddlepaddle/paddle-tutorial:k8s_train`, see [here](src/k8s_train/README.md) for how to build the docker image and source code. #### Inspect Training Output diff --git a/doc/howto/usage/k8s/k8s_cn.md b/doc/howto/usage/cluster/k8s_cn.md similarity index 83% rename from doc/howto/usage/k8s/k8s_cn.md rename to doc/howto/usage/cluster/k8s_cn.md index ab07cb9cd5..c1a11f7165 100644 --- a/doc/howto/usage/k8s/k8s_cn.md +++ b/doc/howto/usage/cluster/k8s_cn.md @@ -1,21 +1,22 @@ # Kubernetes单机训练 -在这篇文档里,我们介绍如何在 Kubernetes 集群上启动一个单机使用CPU的Paddle训练作业。在下一篇中,我们将介绍如何启动分布式训练作业。 +在这篇文档里,我们介绍如何在 Kubernetes 集群上启动一个单机使用CPU的PaddlePaddle训练作业。在下一篇中,我们将介绍如何启动分布式训练作业。 ## 制作Docker镜像 -在一个功能齐全的Kubernetes机群里,通常我们会安装Ceph等分布式文件系统来存储训练数据。这样的话,一个分布式Paddle训练任务中的每个进程都可以从Ceph读取数据。在这个例子里,我们只演示一个单机作业,所以可以简化对环境的要求,把训练数据直接放在 -Paddle的Docker image里。为此,我们需要制作一个包含训练数据的Paddle镜像。 +在一个功能齐全的Kubernetes机群里,通常我们会安装Ceph等分布式文件系统来存储训练数据。这样的话,一个分布式PaddlePaddle训练任务中 +的每个进程都可以从Ceph读取数据。在这个例子里,我们只演示一个单机作业,所以可以简化对环境的要求,把训练数据直接放在 +PaddlePaddle的Docker Image里。为此,我们需要制作一个包含训练数据的PaddlePaddle镜像。 + +PaddlePaddle的 `paddlepaddle/paddle:cpu-demo-latest` 镜像里有PaddlePaddle的源码与demo, +(请注意,默认的PaddlePaddle生产环境镜像 `paddlepaddle/paddle:latest` 是不包括源码的,PaddlePaddle的各版本镜像可以参考 +[Docker Installation Guide](http://paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_cn.html)), +下面我们使用这个镜像来下载数据到Docker Container中,并把这个包含了训练数据的Container保存为一个新的镜像。 -Paddle 的 [Quick Start Tutorial](http://www.paddlepaddle.org/doc/demo/quick_start/index_en.html) -里介绍了用Paddle源码中的脚本下载训练数据的过程。 -而 `paddledev/paddle:cpu-demo-latest` 镜像里有 Paddle 源码与demo,( 请注意,默认的 -Paddle镜像 `paddledev/paddle:cpu-latest` 是不包括源码的, Paddle的各版本镜像可以参考 [Docker installation guide](http://www.paddlepaddle.org/doc/build/docker_install.html) ),所以我们使用这个镜像来下载训练数据到Docker container中,然后把这个包含了训练数据的container保存为一个新的镜像。 - ### 运行容器 ``` -$ docker run --name quick_start_data -it paddledev/paddle:cpu-demo-latest +$ docker run --name quick_start_data -it paddlepaddle/paddle:cpu-demo-latest ``` ### 下载数据 @@ -103,7 +104,7 @@ spec: restartPolicy: Never ``` -### 创建Paddle Job +### 创建PaddlePaddle Job 使用上文创建的yaml文件创建Kubernetes Job,命令为: diff --git a/doc/howto/usage/k8s/k8s_distributed_cn.md b/doc/howto/usage/cluster/k8s_distributed_cn.md similarity index 88% rename from doc/howto/usage/k8s/k8s_distributed_cn.md rename to doc/howto/usage/cluster/k8s_distributed_cn.md index a9bebf0955..167089b807 100644 --- a/doc/howto/usage/k8s/k8s_distributed_cn.md +++ b/doc/howto/usage/cluster/k8s_distributed_cn.md @@ -1,8 +1,6 @@ # Kubernetes分布式训练 -前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,文章 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md)介绍了一种通过SSH远程分发任务,进行分布式训练的方法,与此不同的是,本文将介绍在Kubernetes容器管理平台上快速构建PaddlePaddle容器集群,进行分布式训练的方案。 - -有关Kubernetes相关概念以及如何搭建和配置Kubernetes集群,可以参考[k8s_basis](./k8s_basis_cn.md)。 +前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,文章 [Cluster Training](http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cluster/cluster_train_cn.html)介绍了一种通过SSH远程分发任务,进行分布式训练的方法,与此不同的是,本文将介绍在Kubernetes容器管理平台上快速构建PaddlePaddle容器集群,进行分布式训练的方案。 ## 整体方案 @@ -28,7 +26,7 @@ PaddlePaddle镜像需要提供`paddle pserver`与`paddle train`进程的运行 - 拷贝训练文件到容器内 - 生成`paddle pserver`与`paddle train`进程的启动参数,并且启动训练 -因为官方镜像 `paddledev/paddle:cpu-latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能,所以我们可以在这个基础上,添加启动脚本,制作新镜像来完成以上的工作。参考镜像的[*Dockerfile*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/k8s/src/k8s_train/Dockerfile)。 +因为官方镜像 `paddlepaddle/paddle:latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能,所以我们可以在这个基础上,添加启动脚本,制作新镜像来完成以上的工作。参考镜像的[*Dockerfile*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile)。 ```bash $ cd doc/howto/usage/k8s/src/k8s_train @@ -62,7 +60,7 @@ spec: hostNetwork: true containers: - name: paddle-data - image: paddledev/paddle-tutorial:k8s_data + image: paddlepaddle/paddle-tutorial:k8s_data imagePullPolicy: Always volumeMounts: - mountPath: "/mnt" @@ -149,20 +147,19 @@ spec: 文件中,`metadata`下的`name`表示这个job的名字。`parallelism,completions`字段表示这个job会同时开启3个PaddlePaddle节点,成功训练且退出的pod数目为3时,这个job才算成功结束。然后申明一个存储卷`jobpath`,代表宿主机目录`/home/work/mfs`,在对容器的描述`containers`字段中,将此目录挂载为容器的`/home/jobpath`目录,这样容器的`/home/jobpath`目录就成为了共享存储,放在这个目录里的文件其实是保存到了MFS上。 -`env`字段表示容器的环境变量,我们将`paddle`运行的一些参数通过这种方式传递到容器内。 +`env`字段表示容器的环境变量,我们将`paddle`运行的一些参数通过这种方式传递到容器内: + -环境变量 | 说明 ---- | --- -JOB_PATH | 共享存储挂在的路径 -JOB_NAME | Job的名字 -TRAIN_CONFIG_DIR | 本次训练文件所在目录,与JOB_PATH,JOB_NAME组合可以找到本次训练需要的文件路径 -CONF_PADDLE_NIC | `paddle pserver`进程需要的`--nics`参数,即网卡名 -CONF_PADDLE_PORT | `paddle paserver`的`--port`参数 -CONF_PADDLE_PORTS_NUM | 稠密更新的端口数量,即`--ports_num`参数 -CONF_PADDLE_PORTS_NUM_SPARSE | 稀疏更新的端口数量,即`--ports_num_for_sparse`参数 -CONF_PADDLE_GRADIENT_NUM | 训练节点数量,即`--num_gradient_servers参数` +- JOB_PATH:共享存储挂在的路径 +- JOB_NAME:Job的名字 +- TRAIN_CONFIG_DIR:本次训练文件所在目录,与JOB_PATH,JOB_NAME组合可以找到本次训练需要的文件路径 +- CONF_PADDLE_NIC:`paddle pserver`进程需要的`--nics`参数,即网卡名 +- CONF_PADDLE_PORT:`paddle paserver`的`--port`参数 +- CONF_PADDLE_PORTS_NUM:稠密更新的端口数量,即`--ports_num`参数 +- CONF_PADDLE_PORTS_NUM_SPARSE:稀疏更新的端口数量,即`--ports_num_for_sparse`参数 +- CONF_PADDLE_GRADIENT_NUM:训练节点数量,即`--num_gradient_servers参数` -这些参数的具体描述,读者可以查看[这里](http://www.paddlepaddle.org/doc/ui/cmd_argument/detail_introduction.html#parameter-server-and-distributed-communication)。 +这些参数的具体描述,读者可以查看[这里](http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cmd_parameter/detail_introduction_cn.html)。 编写完YAML文件后,可以使用Kubernetes的命令行工具创建job。 diff --git a/doc/howto/usage/k8s/k8s_en.md b/doc/howto/usage/cluster/k8s_en.md similarity index 79% rename from doc/howto/usage/k8s/k8s_en.md rename to doc/howto/usage/cluster/k8s_en.md index 0c3ab05b70..c374f00a49 100644 --- a/doc/howto/usage/k8s/k8s_en.md +++ b/doc/howto/usage/cluster/k8s_en.md @@ -1,18 +1,27 @@ -# Paddle On Kubernetes +# PaddlePaddle On Kubernetes ->In this article, we will introduce how to run Paddle training job on single CPU machine using Kubernetes. In next article, we will introduce how to run Paddle training job on distributed cluster. +In this article, we will introduce how to run PaddlePaddle training job on single CPU machine using Kubernetes. In next article, we will introduce how to run PaddlePaddle training job on distributed cluster. ## Build Docker Image -In distributed Kubernetes cluster, we will use Ceph or other shared storage system for storing training related data so that all processes in Paddle training can retrieve data from Ceph. In this example, we will only demo training job on single machine. In order to simplify the requirement of the environment, we will directly put training data into Paddle's Docker Image, so we need to create a Paddle Docker image that already includes the training data. +In distributed Kubernetes cluster, we will use Ceph or other distributed +storage system for storing training related data so that all processes in +PaddlePaddle training can retrieve data from Ceph. In this example, we will +only demo training job on single machine. In order to simplify the requirement +of the environment, we will directly put training data into the PaddlePaddle Docker Image, +so we need to create a PaddlePaddle Docker image that includes the training data. + +The production Docker Image `paddlepaddle/paddle:cpu-demo-latest` has the PaddlePaddle +source code and demo. (Caution: Default PaddlePaddle Docker Image `paddlepaddle/paddle:latest` doesn't include +the source code, PaddlePaddle's different versions of Docker Image can be referred here: +[Docker Installation Guide](http://paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_en.html)), +so we run this Docker Image and download the training data, and then commit the whole +Container to be a new Docker Image. -Paddle's [Quick Start Tutorial](http://www.paddlepaddle.org/doc/demo/quick_start/index_en.html) introduces how to download and train data by using script from Paddle's source code. -And `paddledev/paddle:cpu-demo-latest` image has the Paddle source code and demo. (Caution: Default Paddle image `paddledev/paddle:cpu-latest` doesn't include the source code, Paddle's different versions of image can be referred here: [Docker installation guide](http://www.paddlepaddle.org/doc/build/docker_install.html)), so we run this container and download the training data, and then commit the whole container to be a new Docker image. - ### Run Docker Container ``` -$ docker run --name quick_start_data -it paddledev/paddle:cpu-demo-latest +$ docker run --name quick_start_data -it paddlepaddle/paddle:cpu-demo-latest ``` ### Download Training Data @@ -67,7 +76,7 @@ $ docker commit quick_start_data mypaddle/paddle:quickstart ## Use Kubernetes For Training ->We will use Kubernetes job for training process, following steps shows how to do the training with Kubernetes. +We will use Kubernetes job for training process, following steps shows how to do the training with Kubernetes. ### Create Yaml Files @@ -99,7 +108,7 @@ spec: restartPolicy: Never ``` -### Start Paddle Job +### Start PaddlePaddle Job Using the above yaml file to start the Kubernetes job. diff --git a/doc/howto/usage/cluster/openmpi_cn.md b/doc/howto/usage/cluster/openmpi_cn.md new file mode 100644 index 0000000000..831cafdc03 --- /dev/null +++ b/doc/howto/usage/cluster/openmpi_cn.md @@ -0,0 +1,41 @@ +# 在OpenMPI集群中提交训练作业 + +## 准备OpenMPI集群 + +执行下面的命令以启动3个节点的OpenMPI集群和一个"head"节点: + +```bash +paddle/scripts/cluster_train_v2/openmpi/docker_cluster +kubectl create -f head.yaml +kubectl create -f mpi-nodes.yaml +``` + +然后可以从head节点ssh无密码登录到OpenMPI的每个节点上。 + +## 启动集群作业 + +您可以按照下面的步骤在OpenMPI集群中提交paddle训练任务: + +```bash +# 获得head和node节点的IP地址 +kubectl get po -o wide +# 将node节点的IP地址保存到machines文件中 +kubectl get po -o wide | grep nodes | awk '{print $6}' > machines +# 拷贝必要的文件到head节点 +scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ +# ssh 登录到head节点 +ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] +# --------------- 以下操作均在head节点中执行 --------------- +# 准备训练数据 +python prepare.py +# 拷贝训练程序和字典文件到每台MPI节点 +cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial +# 创建日志目录 +mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs +# 拷贝训练数据到各自的节点 +scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial +scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial +scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial +# 启动训练任务 +mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh +``` diff --git a/doc/howto/usage/cluster/openmpi_en.md b/doc/howto/usage/cluster/openmpi_en.md new file mode 100644 index 0000000000..09af46e25e --- /dev/null +++ b/doc/howto/usage/cluster/openmpi_en.md @@ -0,0 +1,41 @@ +# Cluster Training Using OpenMPI + +## Prepare an OpenMPI cluster + +Run the following command to start a 3-node MPI cluster and one "head" node. + +```bash +cd paddle/scripts/cluster_train_v2/openmpi/docker_cluster +kubectl create -f head.yaml +kubectl create -f mpi-nodes.yaml +``` + +Then you can log in to every OpenMPI node using ssh without input any passwords. + +## Launching Cluster Job + +Follow the steps to launch a PaddlePaddle training job in OpenMPI cluster:\ + +```bash +# find out node IP addresses +kubectl get po -o wide +# generate a "machines" file containing node IP addresses +kubectl get po -o wide | grep nodes | awk '{print $6}' > machines +# copy necessary files onto "head" node +scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ +# login to head node using ssh +ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] +# --------------- in head node --------------- +# prepare training data +python prepare.py +# copy training data and dict file to MPI nodes +cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial +# creat a directory for storing log files +mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs +# copy training data to every node +scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial +scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial +scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial +# start the job +mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh +``` diff --git a/doc/howto/usage/k8s/src/Dockerfile b/doc/howto/usage/cluster/src/Dockerfile similarity index 54% rename from doc/howto/usage/k8s/src/Dockerfile rename to doc/howto/usage/cluster/src/Dockerfile index 3a73606c61..e178bf4da0 100644 --- a/doc/howto/usage/k8s/src/Dockerfile +++ b/doc/howto/usage/cluster/src/Dockerfile @@ -1,4 +1,4 @@ -FROM paddledev/paddle:cpu-latest +FROM paddlepaddle/paddle:latest MAINTAINER zjsxzong89@gmail.com diff --git a/doc/howto/usage/k8s/src/add_security_group.png b/doc/howto/usage/cluster/src/add_security_group.png similarity index 100% rename from doc/howto/usage/k8s/src/add_security_group.png rename to doc/howto/usage/cluster/src/add_security_group.png diff --git a/doc/howto/usage/k8s/src/create_efs.png b/doc/howto/usage/cluster/src/create_efs.png similarity index 100% rename from doc/howto/usage/k8s/src/create_efs.png rename to doc/howto/usage/cluster/src/create_efs.png diff --git a/doc/howto/usage/k8s/src/efs_mount.png b/doc/howto/usage/cluster/src/efs_mount.png similarity index 100% rename from doc/howto/usage/k8s/src/efs_mount.png rename to doc/howto/usage/cluster/src/efs_mount.png diff --git a/doc/howto/usage/cluster/src/k8s-paddle-arch.png b/doc/howto/usage/cluster/src/k8s-paddle-arch.png new file mode 100644 index 0000000000..b3800c4fe8 Binary files /dev/null and b/doc/howto/usage/cluster/src/k8s-paddle-arch.png differ diff --git a/doc/howto/usage/k8s/src/k8s_data/Dockerfile b/doc/howto/usage/cluster/src/k8s_data/Dockerfile similarity index 100% rename from doc/howto/usage/k8s/src/k8s_data/Dockerfile rename to doc/howto/usage/cluster/src/k8s_data/Dockerfile diff --git a/doc/howto/usage/k8s/src/k8s_data/README.md b/doc/howto/usage/cluster/src/k8s_data/README.md similarity index 100% rename from doc/howto/usage/k8s/src/k8s_data/README.md rename to doc/howto/usage/cluster/src/k8s_data/README.md diff --git a/doc/howto/usage/k8s/src/k8s_data/get_data.sh b/doc/howto/usage/cluster/src/k8s_data/get_data.sh similarity index 100% rename from doc/howto/usage/k8s/src/k8s_data/get_data.sh rename to doc/howto/usage/cluster/src/k8s_data/get_data.sh diff --git a/doc/howto/usage/k8s/src/k8s_train/Dockerfile b/doc/howto/usage/cluster/src/k8s_train/Dockerfile similarity index 77% rename from doc/howto/usage/k8s/src/k8s_train/Dockerfile rename to doc/howto/usage/cluster/src/k8s_train/Dockerfile index c0fca1f9a9..77f021a89a 100644 --- a/doc/howto/usage/k8s/src/k8s_train/Dockerfile +++ b/doc/howto/usage/cluster/src/k8s_train/Dockerfile @@ -1,4 +1,4 @@ -FROM paddledev/paddle:cpu-latest +FROM paddlepaddle/paddle:latest COPY start.sh /root/ COPY start_paddle.py /root/ diff --git a/doc/howto/usage/k8s/src/k8s_train/README.md b/doc/howto/usage/cluster/src/k8s_train/README.md similarity index 100% rename from doc/howto/usage/k8s/src/k8s_train/README.md rename to doc/howto/usage/cluster/src/k8s_train/README.md diff --git a/doc/howto/usage/k8s/src/k8s_train/start.sh b/doc/howto/usage/cluster/src/k8s_train/start.sh similarity index 100% rename from doc/howto/usage/k8s/src/k8s_train/start.sh rename to doc/howto/usage/cluster/src/k8s_train/start.sh diff --git a/doc/howto/usage/k8s/src/k8s_train/start_paddle.py b/doc/howto/usage/cluster/src/k8s_train/start_paddle.py similarity index 90% rename from doc/howto/usage/k8s/src/k8s_train/start_paddle.py rename to doc/howto/usage/cluster/src/k8s_train/start_paddle.py index 935c12bb67..1774f8b640 100755 --- a/doc/howto/usage/k8s/src/k8s_train/start_paddle.py +++ b/doc/howto/usage/cluster/src/k8s_train/start_paddle.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/python # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # diff --git a/doc/howto/usage/k8s/src/managed_policy.png b/doc/howto/usage/cluster/src/managed_policy.png similarity index 100% rename from doc/howto/usage/k8s/src/managed_policy.png rename to doc/howto/usage/cluster/src/managed_policy.png diff --git a/doc/howto/usage/k8s/src/pserver_and_trainer.png b/doc/howto/usage/cluster/src/pserver_and_trainer.png similarity index 100% rename from doc/howto/usage/k8s/src/pserver_and_trainer.png rename to doc/howto/usage/cluster/src/pserver_and_trainer.png diff --git a/doc/howto/usage/k8s/src/route53_create_recordset.png b/doc/howto/usage/cluster/src/route53_create_recordset.png similarity index 100% rename from doc/howto/usage/k8s/src/route53_create_recordset.png rename to doc/howto/usage/cluster/src/route53_create_recordset.png diff --git a/doc/howto/usage/k8s/src/route53_create_zone.png b/doc/howto/usage/cluster/src/route53_create_zone.png similarity index 100% rename from doc/howto/usage/k8s/src/route53_create_zone.png rename to doc/howto/usage/cluster/src/route53_create_zone.png diff --git a/doc/howto/usage/cluster/src/word2vec/api_train_v2.py b/doc/howto/usage/cluster/src/word2vec/api_train_v2.py index c0940f0e56..d449e02023 100644 --- a/doc/howto/usage/cluster/src/word2vec/api_train_v2.py +++ b/doc/howto/usage/cluster/src/word2vec/api_train_v2.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import gzip import math diff --git a/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py b/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py index 2e6d888712..a5dd347f0b 100644 --- a/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py +++ b/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import math import os import paddle.v2 as paddle diff --git a/doc/howto/usage/k8s/src/worker_security_group.png b/doc/howto/usage/cluster/src/worker_security_group.png similarity index 100% rename from doc/howto/usage/k8s/src/worker_security_group.png rename to doc/howto/usage/cluster/src/worker_security_group.png diff --git a/doc/howto/usage/k8s/k8s_basis_cn.md b/doc/howto/usage/k8s/k8s_basis_cn.md deleted file mode 100644 index 4c3dc81ed3..0000000000 --- a/doc/howto/usage/k8s/k8s_basis_cn.md +++ /dev/null @@ -1,75 +0,0 @@ -# Kubernetes 简介 - -[*Kubernetes*](http://kubernetes.io/)是Google开源的容器集群管理系统,其提供应用部署、维护、扩展机制等功能,利用Kubernetes能方便地管理跨机器运行容器化的应用。Kubernetes可以在物理机或虚拟机上运行,且支持部署到[AWS](http://kubernetes.io/docs/getting-started-guides/aws),[Azure](http://kubernetes.io/docs/getting-started-guides/azure/),[GCE](http://kubernetes.io/docs/getting-started-guides/gce)等多种公有云环境。介绍分布式训练之前,需要对[Kubernetes](http://kubernetes.io/)有一个基本的认识,下面先简要介绍一下本文用到的几个Kubernetes概念。 - -- [*Node*](http://kubernetes.io/docs/admin/node/) 表示一个Kubernetes集群中的一个工作节点,这个节点可以是物理机或者虚拟机,Kubernetes集群就是由node节点与master节点组成的。 - -- [*Pod*](http://kubernetes.io/docs/user-guide/pods/) 是一组(一个或多个)容器,pod是Kubernetes的最小调度单元,一个pod中的所有容器会被调度到同一个node上。Pod中的容器共享NET,PID,IPC,UTS等Linux namespace。由于容器之间共享NET namespace,所以它们使用同一个IP地址,可以通过*localhost*互相通信。不同pod之间可以通过IP地址访问。 - -- [*Job*](http://kubernetes.io/docs/user-guide/jobs/) 描述Kubernetes上运行的作业,一次作业称为一个job,通常每个job包括一个或者多个pods,job启动后会创建这些pod并开始执行一个程序,等待这个程序执行成功并返回0则成功退出,如果执行失败,也可以配置不同的重试机制。 - -- [*Volume*](http://kubernetes.io/docs/user-guide/volumes/) 存储卷,是pod内的容器都可以访问的共享目录,也是容器与node之间共享文件的方式,因为容器内的文件都是暂时存在的,当容器因为各种原因被销毁时,其内部的文件也会随之消失。通过volume,就可以将这些文件持久化存储。Kubernetes支持多种volume,例如hostPath(宿主机目录),gcePersistentDisk,awsElasticBlockStore等。 - -- [*Namespaces*](https://kubernetes.io/docs/user-guide/namespaces/) 命名空间,在kubernetes中创建的所有资源对象(例如上文的pod,job)等都属于一个命名空间,在同一个命名空间中,资源对象的名字是唯一的,不同空间的资源名可以重复,命名空间主要为了对象进行逻辑上的分组便于管理。本文只使用了默认命名空间。 - -- [*PersistentVolume*](https://kubernetes.io/docs/user-guide/persistent-volumes/): 和[*PersistentVolumeClaim*](https://kubernetes.io/docs/user-guide/persistent-volumes/#persistentvolumeclaims)结合,将外部的存储服务在Kubernetes中描述成为统一的资源形式,便于存储资源管理和Pod引用。 - -## 部署Kubernetes集群 - -Kubernetes提供了多种集群部署的方案,本文档内不重复介绍。这里给出集中常见的部署方法: - -- [*minikube*](https://kubernetes.io/docs/getting-started-guides/minikube/): 快速在本地启动一个单机的kubernetes服务器,便于本地验证和测试。 -- [*kubeadm*](http://kubernetes.io/docs/getting-started-guides/kubeadm/): 在不同操作系统,不同主机(Bare-Metal, AWS, GCE)条件下,快速部署集群。 -- [*AWS EC2*](https://kubernetes.io/docs/getting-started-guides/aws/): 在aws上快速部署集群。 -- [*Bare-Metal*](https://kubernetes.io/docs/getting-started-guides/centos/centos_manual_config/): 在物理机上手动部署。 - -可以参考[这个表格](https://kubernetes.io/docs/getting-started-guides/#table-of-solutions)选择适合您的场景的合适方案。 - -## 选择存储方案 - -容器不会保留在运行时生成的数据,job或者应用程序在容器中运行时生成的数据会在容器销毁时消失。为了完成分布式机器学习训练任务,需要有一个外部的存储服务来保存训练所需数据和训练输出。 -常见的可选存储服务包括: - -- [*NFS*](https://github.com/kubernetes/kubernetes/tree/master/examples/volumes/nfs): 可以将磁盘上某个目录共享给网络中其他机器访问。部署和配置比较简单,可以用于小量数据的验证。不提供分布式存储,高可用,冗余等功能。NFS的部署方法可以参考[这里](http://www.tecmint.com/how-to-setup-nfs-server-in-linux/)。 -- [*GlusterFS*](http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/): 网络分布式文件系统,可以在Kubernetes中按照[这个](https://github.com/kubernetes/kubernetes/tree/master/examples/volumes/glusterfs)例子使用。 -- [*Ceph*](http://docs.ceph.com/docs/master/): 分布式文件系统,支持rbd,POSIX API接口(ceph fs)和对象存储API,参考[这里](https://kubernetes.io/docs/user-guide/volumes/#rbd)。 -- [*MooseFS*](https://moosefs.com/documentation.html): 一个分布式的存储系统。需要先挂载到服务器Node上再通过kubernetes hostPath Volume挂载到容器中。 - -## 配置kubectl - -### 安装kubectl -``` -# OS X -curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/darwin/amd64/kubectl - -# Linux -curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/linux/amd64/kubectl - -# Windows -curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/windows/amd64/kubectl.exe -``` - -### 配置kubectl访问你的kubernetes集群 - -编辑`~/.kube/config`这个配置文件,修改`Master-IP`的地址。如果使用SSL认证,则需要配置`certificate-authority`和`users`中的用户证书。如果是使用非SSL方式访问(比如通过8080端口),也可以去掉这些证书的配置。 -``` -apiVersion: v1 -clusters: -- cluster: - certificate-authority: /path/to/ca.crt - server: https://[Master-IP]:443 - name: minikube -contexts: -- context: - cluster: minikube - user: minikube - name: minikube -current-context: minikube -kind: Config -preferences: {} -users: -- name: minikube - user: - client-certificate: /path/to/apiserver.crt - client-key: /Users/wuyi/.minikube/apiserver.key -``` diff --git a/doc/howto/usage/k8s/src/k8s-paddle-arch.png b/doc/howto/usage/k8s/src/k8s-paddle-arch.png deleted file mode 100644 index 2183a232ad..0000000000 Binary files a/doc/howto/usage/k8s/src/k8s-paddle-arch.png and /dev/null differ diff --git a/doc/mobile/cross_compiling_for_android_cn.md b/doc/mobile/cross_compiling_for_android_cn.md index 424d7718c6..ae24ced770 100644 --- a/doc/mobile/cross_compiling_for_android_cn.md +++ b/doc/mobile/cross_compiling_for_android_cn.md @@ -1,8 +1,9 @@ # Android平台编译指南 用户可通过如下两种方式,交叉编译Android平台上适用的PaddlePaddle库: -- 基于Docker容器的编译方式 -- 基于Linux交叉编译环境的编译方式 + +- [基于Docker容器的编译方式](#基于docker容器的编译方式) +- [基于Linux交叉编译环境的编译方式](#基于linux交叉编译环境的编译方式) ## 基于Docker容器的编译方式 Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行,因此,使用基于Docker容器的编译方式,用户可在自己熟悉的开发平台上编译Android平台上适用的PaddlePaddle库。 @@ -16,6 +17,12 @@ $ cd Paddle $ docker build -t username/paddle-android:dev . -f Dockerfile.android ``` +用户也可以使用PaddlePaddle提供的官方开发镜像: + +```bash +$ docker pull paddlepaddle/paddle:latest-dev-android +``` + ### 编译PaddlePaddle C-API库 构建好开发镜像后,即可使用开发镜像来编译Android版PaddlePaddle C-API库。 Android的Docker开发镜像向用户提供两个可配置的参数: @@ -41,23 +48,25 @@ Android的Docker开发镜像向用户提供两个可配置的参数: ANDROID_API - >= 21 + >= 16 21 - 编译`armeabi-v7a`,`Android API 21`的PaddlePaddle库 + ```bash $ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev ``` - 编译`arm64-v8a`,`Android API 21`的PaddlePaddle库 + ```bash $ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev ``` -执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文**配置交叉编译参数**章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 +执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 ## 基于Linux交叉编译环境的编译方式 本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。 @@ -83,6 +92,7 @@ your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain 此命令将在`your/path/to/arm_standalone_toolchain`目录生成一套独立编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。 - 构建`arm64-v8a`、 `Android API 21`的独立工具链: + ```bash your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \ --arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain @@ -90,14 +100,12 @@ your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain 此命令将在`your/path/to/arm64_standalone_toolchain`目录生成一套独立编译工具链,面向架构为64位ARM64架构,支持的最小Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。 -注意:**PaddlePaddle要求使用的编译工具链所支持的Android API级别不小于21**。 - ### 配置交叉编译参数 CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)。 交叉编译Android版本的PaddlePaddle库时,有一些必须配置的参数: -- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及Android所需`arm_soft_fp_abi`分支的目标机版OpenBLAS库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`)。 +- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译PaddlePaddle所需的所有第三方库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`、`WITH_MKL=OFF`、`WITH_GOLANG=OFF`)。 - `WITH_C_API`,必须设置为`ON`。在Android平台上只支持使用C-API来预测。 - `WITH_SWIG_PY`,必须设置为`OFF`。在Android平台上不支持通过swig调用来训练或者预测。 @@ -119,7 +127,7 @@ Android平台可选配置参数: 其他配置参数: - `USE_EIGEN_FOR_BLAS`,是否使用Eigen库进行矩阵计算。可设置`ON/OFF`,默认值为`OFF`。 -- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。 +- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC/CXX`的值;若环境变量`CC/CXX`没有设置,则设置成`cc/c++`编译器。 常用的cmake配置如下: @@ -147,9 +155,10 @@ cmake -DCMAKE_SYSTEM_NAME=Android \ .. ``` -用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。 +用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS`来影响PaddlePaddle的编译过程。 **性能TIPS**,为了达到最快的计算速度,在CMake参数配置上,有以下建议: + - 设置`CMAKE_BUILD_TYPE`为`Release` - 使用`clang`编译工具链 - `armeabi-v7a`时,设置`USE_EIGEN_BLAS=ON`,使用Eigen进行矩阵计算;`arm64-v8a`时,设置`USE_EIGEN_FOR_BLAS=OFF`,使用OpenBLAS进行矩阵计算 diff --git a/doc/mobile/cross_compiling_for_android_en.md b/doc/mobile/cross_compiling_for_android_en.md index 26858581fc..0cf50181df 100644 --- a/doc/mobile/cross_compiling_for_android_en.md +++ b/doc/mobile/cross_compiling_for_android_en.md @@ -1,6 +1,9 @@ # Build PaddlePaddle for Android -There are two approaches to build PaddlePaddle for Android: using Docker and on Linux without Docker. +There are two approaches to build PaddlePaddle for Android: + +- [Cross-Compiling Using Docker](#cross-compiling-using-docker) +- [Cross-Compiling on Linux](#cross-compiling-on-linux) ## Cross-Compiling Using Docker @@ -16,6 +19,12 @@ $ cd Paddle $ docker build -t paddle:dev-android . -f Dockerfile.android ``` +Users can directly use the published Docker image. + +```bash +$ docker pull paddlepaddle/paddle:latest-dev-android +``` + ### Build the Inference Library We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below: @@ -47,7 +56,7 @@ The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`: ANDROID_API - >= 21 + >= 16 21 @@ -93,15 +102,13 @@ Android NDK includes everything we need to build the [*standalone toolchain*](ht The generated standalone toolchain will be in `your/path/to/arm64_standalone_toolchain`. -**Please be aware that the minimum level of Android API required by PaddlePaddle is 21.** - ### Cross-Compiling Arguments CMake supports [choosing the toolchain](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling). PaddlePaddle provides [`android.cmake`](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake), which configures the Android cross-compiling toolchain for CMake. `android.cmake` is not required for CMake >= 3.7, which support Android cross-compiling. PaddlePaddle detects the CMake version, for those newer than 3.7, it uses [the official version](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling). Some other CMake arguments you need to know: -- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, and `WITH_RDMA=OFF`. +- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, `WITH_RDMA=OFF`, `WITH_MKL=OFF` and `WITH_GOLANG=OFF`. - `WITH_C_API` must be `ON`, to build the C-based inference library for Android. - `WITH_SWIG_PY` must be `OFF` because the Android platform doesn't support SWIG-based API. @@ -123,7 +130,7 @@ Some Android-specific arguments: Other useful arguments: - `USE_EIGEN_FOR_BLAS`: indicates if using Eigen. Could be `ON` or `OFF`, defaults to `OFF`. -- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC`, or `cc`. +- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC/C++`, or `cc/c++`. Some frequent configurations for your reference: @@ -158,6 +165,7 @@ There are some other arguments you might want to configure. - `CMAKE_BUILD_TYPE-Release` optimizes the runtime performance. Our own tip for performance optimization to use clang and Eigen or OpenBLAS: + - `CMAKE_BUILD_TYPE=Release` - `ANDROID_TOOLCHAIN=clang` - `USE_EIGEN_BLAS=ON` for `armeabi-v7a`, or `USE_EIGEN_FOR_BLAS=OFF` for `arm64-v8a`. diff --git a/doc/mobile/cross_compiling_for_ios_cn.md b/doc/mobile/cross_compiling_for_ios_cn.md index 9da48e7f21..d5196d9a4c 100644 --- a/doc/mobile/cross_compiling_for_ios_cn.md +++ b/doc/mobile/cross_compiling_for_ios_cn.md @@ -18,11 +18,11 @@ PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/ - `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`iOS`。在设置`CMAKE_SYSTEM_NAME=iOS`后,PaddlePaddle的CMake系统会自动编译所有的第三方依赖库,并且强制设置一些PaddlePaddle参数的值(`WITH_C_API=ON`、`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`)。 - `WITH_C_API`,是否编译C-API预测库,必须设置为ON。在iOS平台上只支持使用C-API来预测。 -- `WITH_SWIG_PY`,必须设置为ON。在iOS平台上不支持通过swig调用来训练或者预测。 +- `WITH_SWIG_PY`,必须设置为`OFF`。在iOS平台上不支持通过swig调用来训练或者预测。 iOS平台可选配置参数: -- `IOS_PLATFORM`,可设置为`OS/SIMULATOR`,默认值为`OS`。 +- `IOS_PLATFORM`,可设置为`OS`(默认值)或`SIMULATOR`。 - `OS`,构建目标为`arm`架构的iPhone或者iPad等物理设备。 - `SIMULATOR`,构建目标为`x86`架构的模拟器平台。 - `IOS_ARCH`,目标架构。针对不同的`IOS_PLATFORM`,可设置的目标架构如下表所示,默认编译所有架构: diff --git a/doc/mobile/cross_compiling_for_ios_en.md b/doc/mobile/cross_compiling_for_ios_en.md new file mode 100644 index 0000000000..19bfe86c51 --- /dev/null +++ b/doc/mobile/cross_compiling_for_ios_en.md @@ -0,0 +1,120 @@ +# Build PaddlePaddle for iOS + +This tutorial will walk you through cross compiling the PaddlePaddle library for iOS from the source in MacOS. + +## Preparation + +Apple provides Xcode for cross-compiling and IDE for iOS development. Download from App store or [here](https://developer.apple.com/cn/xcode/). To verify your installation, run command as follows + +```bash +$ xcodebuild -version +Xcode 9.0 +Build version 9A235 +``` + +## Cross-compiling configurations + +PaddlePaddle provides cross-compiling toolchain configuration documentation [cmake/cross_compiling/ios.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/ios.cmake), which has some default settings for frequently used compilers. + +There are some mandatory environment variables need to be set before cross compiling PaddlePaddle for iOS: + +- `CMAKE_SYSTEM_NAME`, CMake compiling target platform name, has to be `iOS`. PaddlePaddle CMake will compile all the third party dependencies and enforce some parameters (`WITH_C_API=ON`, `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`,`WITH_RDMA=OFF`) when this variable is set with value `iOS`. + +- `WITH_C_API`, Whether to compile inference C-API library, has to be `ON`, since C-API is the only supported interface for inferencing in iOS. +- `WITH_SWIG_PY`, has to be `OFF`. It's not supported to inference or train via swig in iOS. + +Optional environment variables for iOS are: + +- `IOS_PLATFORM`, either `OS` (default) or `SIMULATOR`. + - `OS`, build targets ARM-based physical devices like iPhone or iPad. + - `SIMULATOR`, build targets x86 architecture simulators. +- `IOS_ARCH`, target architecture. By default, all architecture types will be compiled. If you need to specify the architecture to compile for, please find valid values for different `IOS_PLATFORM` settings from the table below: + + + + + + + + + + + + + + + + + + + + + + +
IOS_PLATFORMIOS_ARCH
OSarmv7, armv7s, arm64
SIMULATORi386, x86_64
+ +- `IOS_DEPLOYMENT_TARGET`, minimum iOS version to deployment, `7.0` by default. +- `IOS_ENABLE_BITCODE`, whether to enable [Bitcode](https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html#//apple_ref/doc/uid/TP40012582-CH35-SW3), values can be `ON/OFF`, `ON` by default. +- `IOS_USE_VECLIB_FOR_BLAS`, whether to use [vecLib](https://developer.apple.com/documentation/accelerate/veclib) framework for BLAS computing. values can be `ON/OFF`, `OFF` by default. +- `IOS_DEVELOPMENT_ROOT`, the path to `Developer` directory, can be explicitly set with your `/path/to/platform/Developer`. If left blank, PaddlePaddle will automatically pick the Xcode corresponding `platform`'s `Developer` directory based on your `IOS_PLATFORM` value. +- `IOS_SDK_ROOT`, the path to `SDK` root, can be explicitly set with your `/path/to/platform/Developer/SDKs/SDK`. if left black, PaddlePaddle will pick the latest SDK in the directory of `IOS_DEVELOPMENT_ROOT`. + +other settings: + +- `USE_EIGEN_FOR_BLAS`, whether to use Eigen for matrix computing. effective when `IOS_USE_VECLIB_FOR_BLAS=OFF`. Values can be `ON/OFF`, `OFF` by default. +- `HOST_C/CXX_COMPILER`, host C/C++ compiler. Uses value from environment variable `CC/CXX` by default or `cc/c++` if `CC/CXX` doesn't exist. + +some typical cmake configurations: + +```bash +cmake -DCMAKE_SYSTEM_NAME=iOS \ + -DIOS_PLATFORM=OS \ + -DIOS_ARCH="armv7;arm64" \ + -DIOS_ENABLE_BITCODE=ON \ + -DIOS_USE_VECLIB_FOR_BLAS=ON \ + -DCMAKE_INSTALL_PREFIX=your/path/to/install \ + -DWITH_C_API=ON \ + -DWITH_TESTING=OFF \ + -DWITH_SWIG_PY=OFF \ + .. +``` + +```bash +cmake -DCMAKE_SYSTEM_NAME=iOS \ + -DIOS_PLATFORM=SIMULATOR \ + -DIOS_ARCH="x86_64" \ + -DIOS_USE_VECLIB_FOR_BLAS=ON \ + -DCMAKE_INSTALL_PREFIX=your/path/to/install \ + -DWITH_C_API=ON \ + -DWITH_TESTING=OFF \ + -DWITH_SWIG_PY=OFF \ + .. +``` + +You can set other compiling parameters for your own need. I.E. if you are trying to minimize the library size, set `CMAKE_BUILD_TYPE` with `MinSizeRel`; or if the performance is your concern, set `CMAKE_BUILD_TYPE` with `Release`. You can even manipulate the PaddlePaddle compiling procedure by manually set `CMAKE_C/CXX_FLAGS` values. + +**TIPS for a better performance**: + +- set `CMAKE_BUILD_TYPE` with `Release` +- set `IOS_USE_VECLIB_FOR_BLAS` with `ON` + +## Build and install + +After CMake, run following commands, PaddlePaddle will download the compile 3rd party dependencies, compile and install PaddlePaddle inference library. + +``` +$ make +$ make install +``` + +Please Note: if you compiled PaddlePaddle in the source directory for other platforms, do remove `third_party` and `build` directory within the source with `rm -rf` to ensure that all the 3rd party libraries dependencies and PaddlePaddle is newly compiled with current CMake configuration. + +`your/path/to/install` directory will have following directories after `make install`: + +- `include`, contains all the C-API header files. +- `lib`, contains PaddlePaddle C-API static library. +- `third_party` contains all the 3rd party libraries. + +Please note: if PaddlePaddle library need to support both physical devices and simulators, you will need to compile correspondingly, then merge fat library with `lipo`. + +Now you will have PaddlePaddle library compiled and installed, the fat library can be used in deep learning related iOS APPs. Please refer to C-API documentation for usage guides. diff --git a/doc/mobile/index_en.rst b/doc/mobile/index_en.rst index 3c08d73671..ef421dacad 100644 --- a/doc/mobile/index_en.rst +++ b/doc/mobile/index_en.rst @@ -5,4 +5,5 @@ MOBILE :maxdepth: 1 cross_compiling_for_android_en.md + cross_compiling_for_ios_en.md cross_compiling_for_raspberry_en.md diff --git a/doc/v1_api_tutorials/README.md b/doc/v1_api_tutorials/README.md deleted file mode 100644 index 071b8da61f..0000000000 --- a/doc/v1_api_tutorials/README.md +++ /dev/null @@ -1,5 +0,0 @@ -The tutorials in v1_api_tutorials are using v1_api currently, and will be upgraded to v2_api later. -Thus, v1_api_tutorials is a temporary directory. We decide not to maintain it and will delete it in future. - -Please go to [PaddlePaddle/book](https://github.com/PaddlePaddle/book) and -[PaddlePaddle/models](https://github.com/PaddlePaddle/models) to learn PaddlePaddle. diff --git a/doc/v1_api_tutorials/embedding_model/index_cn.md b/doc/v1_api_tutorials/embedding_model/index_cn.md deleted file mode 100644 index 2b4a79fbbf..0000000000 --- a/doc/v1_api_tutorials/embedding_model/index_cn.md +++ /dev/null @@ -1,139 +0,0 @@ -# 中文词向量模型的使用 # ----------- -本文档介绍如何在PaddlePaddle平台上,使用预训练的标准格式词向量模型。 - -在此感谢 @lipeng 提出的代码需求,并给出的相关模型格式的定义。 - -## 介绍 ### -### 中文字典 ### -我们的字典使用内部的分词工具对百度知道和百度百科的语料进行分词后产生。分词风格如下: "《红楼梦》"将被分为 "《","红楼梦","》",和 "《红楼梦》"。字典采用UTF8编码,输出有2列:词本身和词频。字典共包含 3206326个词和4个特殊标记: - - ``: 分词序列的开始 - - ``: 分词序列的结束 - - `PALCEHOLDER_JUST_IGNORE_THE_EMBEDDING`: 占位符,没有实际意义 - - ``: 未知词 - -### 中文词向量的预训练模型 ### -遵循文章 [A Neural Probabilistic Language Model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf)中介绍的方法,模型采用 n-gram 语言模型,结构如下图:6元上下文作为输入层->全连接层->softmax层 。对应于字典,我们预训练得到4种不同维度的词向量,分别为:32维、64维、128维和256维。 -
![](./neural-n-gram-model.png)
-
Figure 1. neural-n-gram-model
- -### 下载和数据抽取 ### -运行以下的命令下载和获取我们的字典和预训练模型: - - cd $PADDLE_ROOT/demo/model_zoo/embedding - ./pre_DictAndModel.sh - -## 中文短语改写的例子 ## -以下示范如何使用预训练的中文字典和词向量进行短语改写。 - -### 数据的准备和预处理 ### -首先,运行以下的命令下载数据集。该数据集(utf8编码)包含20个训练样例,5个测试样例和2个生成式样例。 - - cd $PADDLE_ROOT/demo/seqToseq/data - ./paraphrase_data.sh - -第二步,将数据处理成规范格式,在训练数集上训练生成词向量字典(数据将保存在 `$PADDLE_SOURCE_ROOT/demo/seqToseq/data/pre-paraphrase`): - - cd $PADDLE_ROOT/demo/seqToseq/ - python preprocess.py -i data/paraphrase [--mergeDict] - -- 其中,如果使用`--mergeDict`选项,源语言短语和目标语言短语的字典将被合并(源语言和目标语言共享相同的编码字典)。本实例中,源语言和目标语言都是相同的语言,因此可以使用该选项。 - - -### 使用用户指定的词向量字典 ### -使用如下命令,从预训练模型中,根据用户指定的字典,抽取对应的词向量构成新的词表: - cd $PADDLE_ROOT/demo/model_zoo/embedding - python extract_para.py --preModel PREMODEL --preDict PREDICT --usrModel USRMODEL--usrDict USRDICT -d DIM - -- `--preModel PREMODEL`: 预训练词向量字典模型的路径 -- `--preDict PREDICT`: 预训练模型使用的字典的路径 -- `--usrModel USRMODEL`: 抽取出的新词表的保存路径 -- `--usrDict USRDICT`: 用户指定新的字典的路径,用于构成新的词表 -- `-d DIM`: 参数(词向量)的维度 - -此处,你也可以简单的运行以下的命令: - - cd $PADDLE_ROOT/demo/seqToseq/data/ - ./paraphrase_model.sh - -运行成功以后,你将会看到以下的模型结构: - - paraphrase_model - |--- _source_language_embedding - |--- _target_language_embedding - -### 在PaddlePaddle平台训练模型 ### -首先,配置模型文件,配置如下(可以参考保存在 `demo/seqToseq/paraphrase/train.conf`的配置): - - from seqToseq_net import * - is_generating = False - - ################## Data Definition ##################### - train_conf = seq_to_seq_data(data_dir = "./data/pre-paraphrase", - job_mode = job_mode) - - ############## Algorithm Configuration ################## - settings( - learning_method = AdamOptimizer(), - batch_size = 50, - learning_rate = 5e-4) - - ################# Network configure ##################### - gru_encoder_decoder(train_conf, is_generating, word_vector_dim = 32) - -这个配置与`demo/seqToseq/translation/train.conf` 基本相同 - -然后,使用以下命令进行模型训练: - - cd $PADDLE_SOURCE_ROOT/demo/seqToseq/paraphrase - ./train.sh - -其中,`train.sh` 与`demo/seqToseq/translation/train.sh` 基本相同,只有2个配置不一样: - -- `--init_model_path`: 初始化模型的路径配置为`data/paraphrase_modeldata/paraphrase_model` -- `--load_missing_parameter_strategy`:如果参数模型文件缺失,除词向量模型外的参数将使用正态分布随机初始化 - -如果用户想要了解详细的数据集的格式、模型的结构和训练过程,请查看 [Text generation Tutorial](../text_generation/index_cn.md). - -## 可选功能 ## -### 观测词向量 -PaddlePaddle 平台为想观测词向量的用户提供了将二进制词向量模型转换为文本模型的功能: - - cd $PADDLE_ROOT/demo/model_zoo/embedding - python paraconvert.py --b2t -i INPUT -o OUTPUT -d DIM - -- `-i INPUT`: 输入的(二进制)词向量模型名称 -- `-o OUTPUT`: 输出的文本模型名称 -- `-d DIM`: (词向量)参数维度 - -运行完以上命令,用户可以在输出的文本模型中看到: - - 0,4,32156096 - -0.7845433,1.1937413,-0.1704215,0.4154715,0.9566584,-0.5558153,-0.2503305, ...... - 0.0000909,0.0009465,-0.0008813,-0.0008428,0.0007879,0.0000183,0.0001984, ...... - ...... - -- 其中,第一行是`PaddlePaddle` 输出文件的格式说明,包含3个属性:: - - `PaddlePaddle`的版本号,本例中为0 - - 浮点数占用的字节数,本例中为4 - - 总计的参数个数,本例中为32,156,096 -- 其余行是(词向量)参数行(假设词向量维度为32) - - 每行打印32个参数以','分隔 - - 共有32,156,096/32 = 1,004,877行,也就是说,模型共包含1,004,877个被向量化的词 - -### 词向量模型的修正 -`PaddlePaddle` 为想修正词向量模型的用户提供了将文本词向量模型转换为二进制模型的命令: - - cd $PADDLE_ROOT/demo/model_zoo/embedding - python paraconvert.py --t2b -i INPUT -o OUTPUT - -- `-i INPUT`: 输入的文本词向量模型名称 -- `-o OUTPUT`: 输出的二进制词向量模型名称 - -请注意,输入的文本格式如下: - - -0.7845433,1.1937413,-0.1704215,0.4154715,0.9566584,-0.5558153,-0.2503305, ...... - 0.0000909,0.0009465,-0.0008813,-0.0008428,0.0007879,0.0000183,0.0001984, ...... - ...... -- 输入文本中没有头部(格式说明)行 -- (输入文本)每行存储一个词,以逗号','分隔 diff --git a/doc/v1_api_tutorials/embedding_model/index_en.md b/doc/v1_api_tutorials/embedding_model/index_en.md deleted file mode 100644 index 9525f64f9b..0000000000 --- a/doc/v1_api_tutorials/embedding_model/index_en.md +++ /dev/null @@ -1,140 +0,0 @@ -# Chinese Word Embedding Model Tutorial # ----------- -This tutorial is to guide you through the process of using a Pretrained Chinese Word Embedding Model in the PaddlePaddle standard format. - -We thank @lipeng for the pull request that defined the model schemas and pretrained the models. - -## Introduction ### -### Chinese Word Dictionary ### -Our Chinese-word dictionary is created on Baidu ZhiDao and Baidu Baike by using in-house word segmentor. For example, the participle of "《红楼梦》" is "《","红楼梦","》",and "《红楼梦》". Our dictionary (using UTF-8 format) has has two columns: word and its frequency. The total word count is 3206326, including 4 special token: - - ``: the start of a sequence - - ``: the end of a sequence - - `PALCEHOLDER_JUST_IGNORE_THE_EMBEDDING`: a placeholder, just ignore it and its embedding - - ``: a word not included in dictionary - -### Pretrained Chinese Word Embedding Model ### -Inspired by paper [A Neural Probabilistic Language Model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf), our model architecture (**Embedding joint of six words->FullyConnect->SoftMax**) is as following graph. And for our dictionary, we pretrain four models with different word vector dimenstions, i.e 32, 64, 128, 256. -
![](./neural-n-gram-model.png)
-
Figure 1. neural-n-gram-model
- -### Download and Extract ### -To download and extract our dictionary and pretrained model, run the following commands. - - cd $PADDLE_ROOT/demo/model_zoo/embedding - ./pre_DictAndModel.sh - -## Chinese Paraphrasing Example ## -We provide a paraphrasing task to show the usage of pretrained Chinese Word Dictionary and Embedding Model. - -### Data Preparation and Preprocess ### - -First, run the following commands to download and extract the in-house dataset. The dataset (using UTF-8 format) has 20 training samples, 5 testing samples and 2 generating samples. - - cd $PADDLE_ROOT/demo/seqToseq/data - ./paraphrase_data.sh - -Second, preprocess data and build dictionary on train data by running the following commands, and the preprocessed dataset is stored in `$PADDLE_SOURCE_ROOT/demo/seqToseq/data/pre-paraphrase`: - - cd $PADDLE_ROOT/demo/seqToseq/ - python preprocess.py -i data/paraphrase [--mergeDict] - -- `--mergeDict`: if using this option, the source and target dictionary are merged, i.e, two dictionaries have the same context. Here, as source and target data are all chinese words, this option can be used. - -### User Specified Embedding Model ### -The general command of extracting desired parameters from the pretrained embedding model based on user dictionary is: - - cd $PADDLE_ROOT/demo/model_zoo/embedding - python extract_para.py --preModel PREMODEL --preDict PREDICT --usrModel USRMODEL--usrDict USRDICT -d DIM - -- `--preModel PREMODEL`: the name of pretrained embedding model -- `--preDict PREDICT`: the name of pretrained dictionary -- `--usrModel USRMODEL`: the name of extracted embedding model -- `--usrDict USRDICT`: the name of user specified dictionary -- `-d DIM`: dimension of parameter - -Here, you can simply run the command: - - cd $PADDLE_ROOT/demo/seqToseq/data/ - ./paraphrase_model.sh - -And you will see following embedding model structure: - - paraphrase_model - |--- _source_language_embedding - |--- _target_language_embedding - -### Training Model in PaddlePaddle ### -First, create a model config file, see example `demo/seqToseq/paraphrase/train.conf`: - - from seqToseq_net import * - is_generating = False - - ################## Data Definition ##################### - train_conf = seq_to_seq_data(data_dir = "./data/pre-paraphrase", - job_mode = job_mode) - - ############## Algorithm Configuration ################## - settings( - learning_method = AdamOptimizer(), - batch_size = 50, - learning_rate = 5e-4) - - ################# Network configure ##################### - gru_encoder_decoder(train_conf, is_generating, word_vector_dim = 32) - -This config is almost the same as `demo/seqToseq/translation/train.conf`. - -Then, train the model by running the command: - - cd $PADDLE_SOURCE_ROOT/demo/seqToseq/paraphrase - ./train.sh - -where `train.sh` is almost the same as `demo/seqToseq/translation/train.sh`, the only difference is following two command arguments: - -- `--init_model_path`: path of the initialization model, here is `data/paraphrase_model` -- `--load_missing_parameter_strategy`: operations when model file is missing, here use a normal distibution to initialize the other parameters except for the embedding layer - -For users who want to understand the dataset format, model architecture and training procedure in detail, please refer to [Text generation Tutorial](../text_generation/index_en.md). - -## Optional Function ## -### Embedding Parameters Observation -For users who want to observe the embedding parameters, this function can convert a PaddlePaddle binary embedding model to a text model by running the command: - - cd $PADDLE_ROOT/demo/model_zoo/embedding - python paraconvert.py --b2t -i INPUT -o OUTPUT -d DIM - -- `-i INPUT`: the name of input binary embedding model -- `-o OUTPUT`: the name of output text embedding model -- `-d DIM`: the dimension of parameter - -You will see parameters like this in output text model: - - 0,4,32156096 - -0.7845433,1.1937413,-0.1704215,0.4154715,0.9566584,-0.5558153,-0.2503305, ...... - 0.0000909,0.0009465,-0.0008813,-0.0008428,0.0007879,0.0000183,0.0001984, ...... - ...... - -- 1st line is **PaddlePaddle format file head**, it has 3 attributes: - - version of PaddlePaddle, here is 0 - - sizeof(float), here is 4 - - total number of parameter, here is 32156096 -- Other lines print the paramters (assume `` = 32) - - each line print 32 paramters splitted by ',' - - there is 32156096/32 = 1004877 lines, meaning there is 1004877 embedding words - -### Embedding Parameters Revision -For users who want to revise the embedding parameters, this function can convert a revised text embedding model to a PaddlePaddle binary model by running the command: - - cd $PADDLE_ROOT/demo/model_zoo/embedding - python paraconvert.py --t2b -i INPUT -o OUTPUT - -- `-i INPUT`: the name of input text embedding model. -- `-o OUTPUT`: the name of output binary embedding model - -Note that the format of input text model is as follows: - - -0.7845433,1.1937413,-0.1704215,0.4154715,0.9566584,-0.5558153,-0.2503305, ...... - 0.0000909,0.0009465,-0.0008813,-0.0008428,0.0007879,0.0000183,0.0001984, ...... - ...... -- there is no file header in 1st line -- each line stores parameters for one word, the separator is commas ',' diff --git a/doc/v1_api_tutorials/embedding_model/neural-n-gram-model.png b/doc/v1_api_tutorials/embedding_model/neural-n-gram-model.png deleted file mode 100644 index f70b765b3f..0000000000 Binary files a/doc/v1_api_tutorials/embedding_model/neural-n-gram-model.png and /dev/null differ diff --git a/doc/v1_api_tutorials/gan/gan.png b/doc/v1_api_tutorials/gan/gan.png deleted file mode 100644 index 0eafd7cb49..0000000000 Binary files a/doc/v1_api_tutorials/gan/gan.png and /dev/null differ diff --git a/doc/v1_api_tutorials/gan/index_en.md b/doc/v1_api_tutorials/gan/index_en.md deleted file mode 100644 index ac9ed37b22..0000000000 --- a/doc/v1_api_tutorials/gan/index_en.md +++ /dev/null @@ -1,137 +0,0 @@ -# Generative Adversarial Networks (GAN) - -This demo implements GAN training described in the original [GAN paper](https://arxiv.org/abs/1406.2661) and deep convolutional generative adversarial networks [DCGAN paper](https://arxiv.org/abs/1511.06434). - -The high-level structure of GAN is shown in Figure. 1 below. It is composed of two major parts: a generator and a discriminator, both of which are based on neural networks. The generator takes in some kind of noise with a known distribution and transforms it into an image. The discriminator takes in an image and determines whether it is artificially generated by the generator or a real image. So the generator and the discriminator are in a competitive game in which generator is trying to generate image to look as real as possible to fool the discriminator, while the discriminator is trying to distinguish between real and fake images. - -
![](./gan.png)
-

- Figure 1. GAN-Model-Structure - figure credit -

- -The generator and discriminator take turn to be trained using SGD. The objective function of the generator is for its generated images being classified as real by the discriminator, and the objective function of the discriminator is to correctly classify real and fake images. When the GAN model is trained to converge to the equilibrium state, the generator will transform the given noise distribution to the distribution of real images, and the discriminator will not be able to distinguish between real and fake images at all. - -## Implementation of GAN Model Structure -Since GAN model involves multiple neural networks, it requires to use paddle python API. So the code walk-through below can also partially serve as an introduction to the usage of Paddle Python API. - -There are three networks defined in gan_conf.py, namely **generator_training**, **discriminator_training** and **generator**. The relationship to the model structure we defined above is that **discriminator_training** is the discriminator, **generator** is the generator, and the **generator_training** combined the generator and discriminator since training generator would require the discriminator to provide loss function. This relationship is described in the following code: -```python -if is_generator_training: - noise = data_layer(name="noise", size=noise_dim) - sample = generator(noise) - -if is_discriminator_training: - sample = data_layer(name="sample", size=sample_dim) - -if is_generator_training or is_discriminator_training: - label = data_layer(name="label", size=1) - prob = discriminator(sample) - cost = cross_entropy(input=prob, label=label) - classification_error_evaluator( - input=prob, label=label, name=mode + '_error') - outputs(cost) - -if is_generator: - noise = data_layer(name="noise", size=noise_dim) - outputs(generator(noise)) -``` - -In order to train the networks defined in gan_conf.py, one first needs to initialize a Paddle environment, parse the config, create GradientMachine from the config and create trainer from GradientMachine as done in the code chunk below: -```python -import py_paddle.swig_paddle as api -# init paddle environment -api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', - '--log_period=100', '--gpu_id=' + args.gpu_id, - '--save_dir=' + "./%s_params/" % data_source) - -# Parse config -gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source) -dis_conf = parse_config(conf, "mode=discriminator_training,data=" + data_source) -generator_conf = parse_config(conf, "mode=generator,data=" + data_source) - -# Create GradientMachine -dis_training_machine = api.GradientMachine.createFromConfigProto( -dis_conf.model_config) -gen_training_machine = api.GradientMachine.createFromConfigProto( -gen_conf.model_config) -generator_machine = api.GradientMachine.createFromConfigProto( -generator_conf.model_config) - -# Create trainer -dis_trainer = api.Trainer.create(dis_conf, dis_training_machine) -gen_trainer = api.Trainer.create(gen_conf, gen_training_machine) -``` - -In order to balance the strength between generator and discriminator, we schedule to train whichever one is performing worse by comparing their loss function value. The loss function value can be calculated by a forward pass through the GradientMachine. -```python -def get_training_loss(training_machine, inputs): - outputs = api.Arguments.createArguments(0) - training_machine.forward(inputs, outputs, api.PASS_TEST) - loss = outputs.getSlotValue(0).copyToNumpyMat() - return numpy.mean(loss) -``` - -After training one network, one needs to sync the new parameters to the other networks. The code below demonstrates one example of such use case: -```python -# Train the gen_training -gen_trainer.trainOneDataBatch(batch_size, data_batch_gen) - -# Copy the parameters from gen_training to dis_training and generator -copy_shared_parameters(gen_training_machine, -dis_training_machine) -copy_shared_parameters(gen_training_machine, generator_machine) -``` - - -## A Toy Example -With the infrastructure explained above, we can now walk you through a toy example of generating two dimensional uniform distribution using 10 dimensional Gaussian noise. - -The Gaussian noises are generated using the code below: -```python -def get_noise(batch_size, noise_dim): - return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32') -``` - -The real samples (2-D uniform) are generated using the code below: -```python -# synthesize 2-D uniform data in gan_trainer.py:114 -def load_uniform_data(): - data = numpy.random.rand(1000000, 2).astype('float32') - return data -``` - -The generator and discriminator network are built using fully-connected layer and batch_norm layer, and are defined in gan_conf.py. - -To train the GAN model, one can use the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu). -```bash -$python gan_trainer.py -d uniform --useGpu 1 -``` -The generated samples can be found in ./uniform_samples/ and one example is shown below as Figure 2. One can see that it roughly recovers the 2D uniform distribution. - -
![](./uniform_sample.png)
-

- Figure 2. Uniform Sample -

- -## MNIST Example -### Data preparation -To download the MNIST data, one can use the following commands: -```bash -$cd data/ -$./get_mnist_data.sh -``` - -### Model description -Following the DC-Gan paper (https://arxiv.org/abs/1511.06434), we use convolution/convolution-transpose layer in the discriminator/generator network to better deal with images. The details of the network structures are defined in gan_conf_image.py. - -### Training the model -To train the GAN model on mnist data, one can use the following command: -```bash -$python gan_trainer.py -d mnist --useGpu 1 -``` -The generated sample images can be found at ./mnist_samples/ and one example is shown below as Figure 3. -
![](./mnist_sample.png)
-

- Figure 3. MNIST Sample -

diff --git a/doc/v1_api_tutorials/gan/mnist_sample.png b/doc/v1_api_tutorials/gan/mnist_sample.png deleted file mode 100644 index f9c7bf7ddd..0000000000 Binary files a/doc/v1_api_tutorials/gan/mnist_sample.png and /dev/null differ diff --git a/doc/v1_api_tutorials/gan/uniform_sample.png b/doc/v1_api_tutorials/gan/uniform_sample.png deleted file mode 100644 index e716c48e78..0000000000 Binary files a/doc/v1_api_tutorials/gan/uniform_sample.png and /dev/null differ diff --git a/doc/v1_api_tutorials/imagenet_model/resnet_block.jpg b/doc/v1_api_tutorials/imagenet_model/resnet_block.jpg deleted file mode 100644 index e16bd3c624..0000000000 Binary files a/doc/v1_api_tutorials/imagenet_model/resnet_block.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/imagenet_model/resnet_model_cn.md b/doc/v1_api_tutorials/imagenet_model/resnet_model_cn.md deleted file mode 100644 index 82ec9d70b3..0000000000 --- a/doc/v1_api_tutorials/imagenet_model/resnet_model_cn.md +++ /dev/null @@ -1,284 +0,0 @@ -# Model Zoo - ImageNet # - -[ImageNet](http://www.image-net.org/) 是通用物体分类领域一个众所周知的数据库。本教程提供了一个用于ImageNet上的卷积分类网络模型。 - -## ResNet 介绍 - -论文 [Deep Residual Learning for Image Recognition](http://arxiv.org/abs/1512.03385) 中提出的ResNet网络结构在2015年ImageNet大规模视觉识别竞赛(ILSVRC 2015)的分类任务中赢得了第一名。他们提出残差学习的框架来简化网络的训练,所构建网络结构的的深度比之前使用的网络有大幅度的提高。下图展示的是基于残差的连接方式。左图构造网络模块的方式被用于34层的网络中,而右图的瓶颈连接模块用于50层,101层和152层的网络结构中。 - -
![resnet_block](./resnet_block.jpg)
-
图 1. ResNet 网络模块
- -本教程中我们给出了三个ResNet模型,这些模型都是由原作者提供的模型转换过来的。我们使用PaddlePaddle在ILSVRC的验证集共50,000幅图像上测试了模型的分类错误率,其中输入图像的颜色通道顺序为**BGR**,保持宽高比缩放到短边为256,只截取中心方形的图像区域。分类错误率和模型大小由下表给出。 -
- ----- - - - - - - - - - - - - - - - - - - - - - - - - - - -
ResNetTop-1Model Size
ResNet-5024.9%99M
ResNet-10123.7%173M
ResNet-15223.2%234M
-
- -## ResNet 模型 - -50层,101层和152层的网络配置文件可参照```demo/model_zoo/resnet/resnet.py```。你也可以通过在命令行参数中增加一个参数如```--config_args=layer_num=50```来指定网络层的数目。 - -### 网络可视化 - -你可以通过执行下面的命令来得到ResNet网络的结构可视化图。该脚本会生成一个dot文件,然后可以转换为图片。需要安装graphviz来转换dot文件为图片。 - -``` -cd demo/model_zoo/resnet -./net_diagram.sh -``` - -### 模型下载 - -``` -cd demo/model_zoo/resnet -./get_model.sh -``` -你可以执行上述命令来下载所有的模型和均值文件,如果下载成功,这些文件将会被保存在```demo/model_zoo/resnet/model```路径下。 - -``` -mean_meta_224 resnet_101 resnet_152 resnet_50 -``` - * resnet_50: 50层网络模型。 - * resnet_101: 101层网络模型。 - * resnet_152: 152层网络模型。 - * mean\_meta\_224: 均值图像文件,图像大小为3 x 224 x 224,颜色通道顺序为**BGR**。你也可以使用这三个值: 103.939, 116.779, 123.68。 - -### 参数信息 - -* **卷积层权重** - - 由于每个卷积层后面连接的是batch normalization层,因此该层中没有偏置(bias)参数,并且只有一个权重。 - 形状: `(Co, ky, kx, Ci)` - * Co: 输出特征图的通道数目 - * ky: 滤波器核在垂直方向上的尺寸 - * kx: 滤波器核在水平方向上的尺寸 - * Ci: 输入特征图的通道数目 - - 二维矩阵: (Co * ky * kx, Ci), 行优先次序存储。 - -* **全连接层权重** - - 二维矩阵: (输入层尺寸, 本层尺寸), 行优先次序存储。 - -* **[Batch Normalization]() 层权重** - -本层有四个参数,实际上只有.w0和.wbias是需要学习的参数,另外两个分别是滑动均值和方差。在测试阶段它们将会被加载到模型中。下表展示了batch normalization层的参数。 -
- ----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
参数名尺寸含义
_res2_1_branch1_bn.w0256gamma, 缩放参数
_res2_1_branch1_bn.w1256特征图均值
_res2_1_branch1_bn.w2256特征图方差
_res2_1_branch1_bn.wbias256beta, 偏置参数
-
- -### 参数读取 - -使用者可以使用下面的Python脚本来读取参数值: - -``` -import sys -import numpy as np - -def load(file_name): - with open(file_name, 'rb') as f: - f.read(16) # skip header for float type. - return np.fromfile(f, dtype=np.float32) - -if __name__=='__main__': - weight = load(sys.argv[1]) -``` - -或者直接使用下面的shell命令: - -``` -od -j 16 -f _res2_1_branch1_bn.w0 -``` - -## 特征提取 - -我们提供了C++和Python接口来提取特征。下面的例子使用了`demo/model_zoo/resnet/example`中的数据,详细地展示了整个特征提取的过程。 - -### C++接口 - -首先,在配置文件中的`define_py_data_sources2`里指定图像数据列表,具体请参照示例`demo/model_zoo/resnet/resnet.py`。 - -``` - train_list = 'train.list' if not is_test else None - # mean.meta is mean file of ImageNet dataset. - # mean.meta size : 3 x 224 x 224. - # If you use three mean value, set like: - # "mean_value:103.939,116.779,123.68;" - args={ - 'mean_meta': "model/mean_meta_224/mean.meta", - 'image_size': 224, 'crop_size': 224, - 'color': True,'swap_channel:': [2, 1, 0]} - define_py_data_sources2(train_list, - 'example/test.list', - module="example.image_list_provider", - obj="processData", - args=args) -``` - -第二步,在`resnet.py`文件中指定要提取特征的网络层的名字。例如, - -``` -Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn") -``` - -第三步,在`extract_fea_c++.sh`文件中指定模型路径和输出的目录,然后执行下面的命令。 - -``` -cd demo/model_zoo/resnet -./extract_fea_c++.sh -``` - -如果执行成功,特征将会存到`fea_output/rank-00000`文件中,如下所示。同时你可以使用`load_feature.py`文件中的`load_feature_c`接口来加载该文件。 - -``` --0.115318 -0.108358 ... -0.087884;-1.27664 ... -1.11516 -2.59123; --0.126383 -0.116248 ... -0.00534909;-1.42593 ... -1.04501 -1.40769; -``` - -* 每行存储的是一个样本的特征。其中,第一行存的是图像`example/dog.jpg`的特征,第二行存的是图像`example/cat.jpg`的特征。 -* 不同层的特征由分号`;`隔开,并且它们的顺序与`Outputs()`中指定的层顺序一致。这里,左边是`res5_3_branch2c_conv`层的特征,右边是`res5_3_branch2c_bn`层特征。 - -### Python接口 - -示例`demo/model_zoo/resnet/classify.py`中展示了如何使用Python来提取特征。下面的例子同样使用了`./example/test.list`中的数据。执行的命令如下: - -``` -cd demo/model_zoo/resnet -./extract_fea_py.sh -``` - -extract_fea_py.sh: - -``` -python classify.py \ - --job=extract \ - --conf=resnet.py\ - --use_gpu=1 \ - --mean=model/mean_meta_224/mean.meta \ - --model=model/resnet_50 \ - --data=./example/test.list \ - --output_layer="res5_3_branch2c_conv,res5_3_branch2c_bn" \ - --output_dir=features - -``` -* \--job=extract: 指定工作模式来提取特征。 -* \--conf=resnet.py: 网络配置文件。 -* \--use_gpu=1: 指定是否使用GPU。 -* \--model=model/resnet_50: 模型路径。 -* \--data=./example/test.list: 数据列表。 -* \--output_layer="xxx,xxx": 指定提取特征的层。 -* \--output_dir=features: 输出目录。 - -如果运行成功,你将会看到特征存储在`features/batch_0`文件中,该文件是由cPickle产生的。你可以使用`load_feature.py`中的`load_feature_py`接口来打开该文件,它将返回如下的字典: - -``` -{ -'cat.jpg': {'res5_3_branch2c_conv': array([[-0.12638293, -0.116248 , -0.11883899, ..., -0.00895038, 0.01994277, -0.00534909]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.42593431, -1.28918779, -1.32414699, ..., -1.45933616, -1.04501402, -1.40769434]], dtype=float32)}, -'dog.jpg': {'res5_3_branch2c_conv': array([[-0.11531784, -0.10835785, -0.08809858, ...,0.0055237, 0.01505112, -0.08788397]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.27663755, -1.18272924, -0.90937918, ..., -1.25178063, -1.11515927, -2.59122872]], dtype=float32)} -} -``` - -仔细观察,这些特征值与上述使用C++接口提取的结果是一致的。 - -## 预测 - -`classify.py`文件也可以用于对样本进行预测。我们提供了一个示例脚本`predict.sh`,它使用50层的ResNet模型来对`example/test.list`中的数据进行预测。 - -``` -cd demo/model_zoo/resnet -./predict.sh -``` - -predict.sh调用了`classify.py`: - -``` -python classify.py \ - --job=predict \ - --conf=resnet.py\ - --multi_crop \ - --model=model/resnet_50 \ - --use_gpu=1 \ - --data=./example/test.list -``` -* \--job=extract: 指定工作模型进行预测。 -* \--conf=resnet.py: 网络配置文件。network configure. -* \--multi_crop: 使用10个裁剪图像块,预测概率取平均。 -* \--use_gpu=1: 指定是否使用GPU。 -* \--model=model/resnet_50: 模型路径。 -* \--data=./example/test.list: 数据列表。 - -如果运行成功,你将会看到如下结果,其中156和285是这些图像的分类标签。 - -``` -Label of example/dog.jpg is: 156 -Label of example/cat.jpg is: 282 -``` diff --git a/doc/v1_api_tutorials/imagenet_model/resnet_model_en.md b/doc/v1_api_tutorials/imagenet_model/resnet_model_en.md deleted file mode 100644 index 478ad06193..0000000000 --- a/doc/v1_api_tutorials/imagenet_model/resnet_model_en.md +++ /dev/null @@ -1,284 +0,0 @@ -# Model Zoo - ImageNet # - -[ImageNet](http://www.image-net.org/) is a popular dataset for generic object classification. This tutorial provides convolutional neural network(CNN) models for ImageNet. - -## ResNet Introduction - -ResNets from paper [Deep Residual Learning for Image Recognition](http://arxiv.org/abs/1512.03385) won the 1st place on the ILSVRC 2015 classification task. They present residual learning framework to ease the training of networks that are substantially deeper than those used previously. The residual connections are shown in following figure. The left building block is used in network of 34 layers and the right bottleneck building block is used in network of 50, 101, 152 layers . - -
![resnet_block](./resnet_block.jpg)
-
Figure 1. ResNet Block
- -We present three ResNet models, which are converted from the models provided by the authors . The classfication errors tested in PaddlePaddle on 50,000 ILSVRC validation set with input images channel order of **BGR** by single scale with the shorter side of 256 and single crop as following table. -
- ----- - - - - - - - - - - - - - - - - - - - - - - - - - - -
ResNetTop-1Model Size
ResNet-5024.9%99M
ResNet-10123.7%173M
ResNet-15223.2%234M
-
- -## ResNet Model - -See ```demo/model_zoo/resnet/resnet.py```. This config contains network of 50, 101 and 152 layers. You can specify layer number by adding argument like ```--config_args=layer_num=50``` in command line arguments. - -### Network Visualization - -You can get a diagram of ResNet network by running the following commands. The script generates dot file and then converts dot file to PNG file, which needs to install graphviz to convert. - -``` -cd demo/model_zoo/resnet -./net_diagram.sh -``` - -### Model Download - -``` -cd demo/model_zoo/resnet -./get_model.sh -``` -You can run above command to download all models and mean file and save them in ```demo/model_zoo/resnet/model``` if downloading successfully. - -``` -mean_meta_224 resnet_101 resnet_152 resnet_50 -``` - * resnet_50: model of 50 layers. - * resnet_101: model of 101 layers. - * resnet_152: model of 152 layers. - * mean\_meta\_224: mean file with 3 x 224 x 224 size in **BGR** order. You also can use three mean values: 103.939, 116.779, 123.68. - -### Parameter Info - -* **Convolution Layer Weight** - - As batch normalization layer is connected after each convolution layer, there is no parameter of bias and only one weight in this layer. - shape: `(Co, ky, kx, Ci)` - * Co: channle number of output feature map. - * ky: filter size in vertical direction. - * kx: filter size in horizontal direction. - * Ci: channle number of input feature map. - - 2-Dim matrix: (Co * ky * kx, Ci), saved in row-major order. - -* **Fully connected Layer Weight** - - 2-Dim matrix: (input layer size, this layer size), saved in row-major order. - -* **[Batch Normalization]() Layer Weight** - -There are four parameters in this layer. In fact, only .w0 and .wbias are the learned parameters. The other two are therunning mean and variance respectively. They will be loaded in testing. Following table shows parameters of a batch normzalization layer. -
- ----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Parameter NameNumberMeaning
_res2_1_branch1_bn.w0256gamma, scale parameter
_res2_1_branch1_bn.w1256mean value of feature map
_res2_1_branch1_bn.w2256variance of feature map
_res2_1_branch1_bn.wbias256beta, shift parameter
-
- -### Parameter Observation - -Users who want to observe the parameters can use Python to read: - -``` -import sys -import numpy as np - -def load(file_name): - with open(file_name, 'rb') as f: - f.read(16) # skip header for float type. - return np.fromfile(f, dtype=np.float32) - -if __name__=='__main__': - weight = load(sys.argv[1]) -``` - -or simply use following shell command: - -``` -od -j 16 -f _res2_1_branch1_bn.w0 -``` - -## Feature Extraction - -We provide both C++ and Python interfaces to extract features. The following examples use data in `demo/model_zoo/resnet/example` to show the extracting process in detail. - -### C++ Interface - -First, specify image data list in `define_py_data_sources2` in the config, see example `demo/model_zoo/resnet/resnet.py`. - -``` - train_list = 'train.list' if not is_test else None - # mean.meta is mean file of ImageNet dataset. - # mean.meta size : 3 x 224 x 224. - # If you use three mean value, set like: - # "mean_value:103.939,116.779,123.68;" - args={ - 'mean_meta': "model/mean_meta_224/mean.meta", - 'image_size': 224, 'crop_size': 224, - 'color': True,'swap_channel:': [2, 1, 0]} - define_py_data_sources2(train_list, - 'example/test.list', - module="example.image_list_provider", - obj="processData", - args=args) -``` - -Second, specify layers to extract features in `Outputs()` of `resnet.py`. For example, - -``` -Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn") -``` - -Third, specify model path and output directory in `extract_fea_c++.sh`, and then run the following commands. - -``` -cd demo/model_zoo/resnet -./extract_fea_c++.sh -``` - -If successful, features are saved in `fea_output/rank-00000` as follows. And you can use `load_feature_c` interface in `load_feature.py ` to load such a file. - -``` --0.115318 -0.108358 ... -0.087884;-1.27664 ... -1.11516 -2.59123; --0.126383 -0.116248 ... -0.00534909;-1.42593 ... -1.04501 -1.40769; -``` - -* Each line stores features of a sample. Here, the first line stores features of `example/dog.jpg` and second line stores features of `example/cat.jpg`. -* Features of different layers are splitted by `;`, and their order is consistent with the layer order in `Outputs()`. Here, the left features are `res5_3_branch2c_conv` layer and right features are `res5_3_branch2c_bn` layer. - -### Python Interface - -`demo/model_zoo/resnet/classify.py` is an example to show how to use Python to extract features. Following example still uses data of `./example/test.list`. Command is as follows: - -``` -cd demo/model_zoo/resnet -./extract_fea_py.sh -``` - -extract_fea_py.sh: - -``` -python classify.py \ - --job=extract \ - --conf=resnet.py\ - --use_gpu=1 \ - --mean=model/mean_meta_224/mean.meta \ - --model=model/resnet_50 \ - --data=./example/test.list \ - --output_layer="res5_3_branch2c_conv,res5_3_branch2c_bn" \ - --output_dir=features - -``` -* \--job=extract: specify job mode to extract feature. -* \--conf=resnet.py: network configure. -* \--use_gpu=1: speficy GPU mode. -* \--model=model/resnet_5: model path. -* \--data=./example/test.list: data list. -* \--output_layer="xxx,xxx": specify layers to extract features. -* \--output_dir=features: output diretcoty. - -If run successfully, you will see features saved in `features/batch_0`, this file is produced with cPickle. You can use `load_feature_py` interface in `load_feature.py` to open the file, and it returns a dictionary as follows: - -``` -{ -'cat.jpg': {'res5_3_branch2c_conv': array([[-0.12638293, -0.116248 , -0.11883899, ..., -0.00895038, 0.01994277, -0.00534909]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.42593431, -1.28918779, -1.32414699, ..., -1.45933616, -1.04501402, -1.40769434]], dtype=float32)}, -'dog.jpg': {'res5_3_branch2c_conv': array([[-0.11531784, -0.10835785, -0.08809858, ...,0.0055237, 0.01505112, -0.08788397]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.27663755, -1.18272924, -0.90937918, ..., -1.25178063, -1.11515927, -2.59122872]], dtype=float32)} -} -``` - -Observed carefully, these feature values are consistent with the above results extracted by C++ interface. - -## Prediction - -`classify.py` also can be used to predict. We provide an example script `predict.sh` to predict data in `example/test.list` using a ResNet model with 50 layers. - -``` -cd demo/model_zoo/resnet -./predict.sh -``` - -predict.sh calls the `classify.py`: - -``` -python classify.py \ - --job=predict \ - --conf=resnet.py\ - --multi_crop \ - --model=model/resnet_50 \ - --use_gpu=1 \ - --data=./example/test.list -``` -* \--job=extract: speficy job mode to predict. -* \--conf=resnet.py: network configure. -* \--multi_crop: use 10 crops and average predicting probability. -* \--use_gpu=1: speficy GPU mode. -* \--model=model/resnet_50: model path. -* \--data=./example/test.list: data list. - -If run successfully, you will see following results, where 156 and 285 are labels of the images. - -``` -Label of example/dog.jpg is: 156 -Label of example/cat.jpg is: 282 -``` diff --git a/doc/v1_api_tutorials/quick_start/index_cn.rst b/doc/v1_api_tutorials/quick_start/index_cn.rst deleted file mode 100644 index d565fcf95e..0000000000 --- a/doc/v1_api_tutorials/quick_start/index_cn.rst +++ /dev/null @@ -1,397 +0,0 @@ -============= -快速入门教程 -============= - -我们将以 `文本分类问题 `_ 为例, -介绍PaddlePaddle的基本使用方法。 - -安装 -==== - -请参考 :ref:`install_steps` 安装PaddlePaddle。 - -使用概述 -======== - -**文本分类问题**:对于给定的一条文本,我们从提前给定的类别集合中选择其所属类别。 - -比如, 在购物网站上,通过查看买家对某个产品的评价反馈, 评估该产品的质量。 - -- 这个显示器很棒! (好评) -- 用了两个月之后这个显示器屏幕碎了。(差评) - -使用PaddlePaddle, 每一个任务流程都可以被划分为如下五个步骤。 - - .. image:: src/Pipeline_cn.jpg - :align: center - :scale: 80% - -1. 数据格式准备 - - 本例每行保存一条样本,类别Id和文本信息用 ``Tab`` 间隔,文本中的单词用空格分隔(如果不切词,则字与字之间用空格分隔),例如:``类别Id '\t' 这 个 显 示 器 很 棒 !`` -2. 向系统传送数据 - - PaddlePaddle可以执行用户的python脚本程序来读取各种格式的数据文件。 - - 本例的所有字符都将转换为连续整数表示的Id传给模型。 -3. 描述网络结构和优化算法 - - 本例由易到难展示4种不同的文本分类网络配置:逻辑回归模型,词向量模型,卷积模型,时序模型。 - - 常用优化算法包括Momentum, RMSProp,AdaDelta,AdaGrad,Adam,Adamax等,本例采用Adam优化方法,加了L2正则和梯度截断。 -4. 训练模型 -5. 应用模型 - -数据格式准备 ------------- - -接下来我们将展示如何用PaddlePaddle训练一个文本分类模型,将 `Amazon电子产品评论数据 `_ 分为好评(正样本)和差评(负样本)两种类别。 -`源代码 `_ 的 ``demo/quick_start`` 目录里提供了该数据的下载脚本和预处理脚本,你只需要在命令行输入以下命令,就能够很方便的完成数据下载和相应的预处理工作。 - -.. code-block:: bash - - cd demo/quick_start - ./data/get_data.sh - ./preprocess.sh - -数据预处理完成之后,通过配置类似于 ``dataprovider_*.py`` 的数据读取脚本和类似于 ``trainer_config.*.py`` 的训练模型脚本,PaddlePaddle将以设置参数的方式来设置 -相应的数据读取脚本和训练模型脚本。接下来,我们将对这两个步骤给出了详细的解释,你也可以先跳过本文的解释环节,直接进入训练模型章节, 使用 ``sh train.sh`` 开始训练模型, -查看`train.sh`内容,通过 **自底向上法** (bottom-up approach)来帮助你理解PaddlePaddle的内部运行机制。 - - -向系统传送数据 -============== - -Python脚本读取数据 ------------------- - -`DataProvider` 是PaddlePaddle负责提供数据的模块,主要职责在于将训练数据传入内存或者显存,让模型能够得到训练更新,其包括两个函数: - -* initializer:PaddlePaddle会在调用读取数据的Python脚本之前,先调用initializer函数。在下面例子里,我们在initialzier函数里初始化词表,并且在随后的读取数据过程中填充词表。 -* process:PaddlePaddle调用process函数来读取数据。每次读取一条数据后,process函数会用yield语句输出这条数据,从而能够被PaddlePaddle 捕获 (harvest)。 - -``dataprovider_bow.py`` 文件给出了完整例子: - -.. literalinclude:: ../../../demo/quick_start/dataprovider_bow.py - :language: python - :lines: 21-70 - :linenos: - :emphasize-lines: 8,33 - -详细内容请参见 :ref:`api_dataprovider` 。 - -配置中的数据加载定义 --------------------- - -在模型配置中通过 ``define_py_data_sources2`` 接口来加载数据: - -.. literalinclude:: ../../../demo/quick_start/trainer_config.emb.py - :language: python - :lines: 19-35 - :linenos: - :emphasize-lines: 12 - - -以下是对上述数据加载的解释: - -- data/train.list,data/test.list: 指定训练数据和测试数据 -- module="dataprovider_bow": 处理数据的Python脚本文件 -- obj="process": 指定生成数据的函数 -- args={"dictionary": word_dict}: 额外的参数,这里指定词典 - -更详细数据格式和用例请参考 :ref:`api_pydataprovider2` 。 - -模型网络结构 -============ - -本小节我们将介绍模型网络结构。 - - .. image:: src/PipelineNetwork_cn.jpg - :align: center - :scale: 80% - - -我们将以最基本的逻辑回归网络作为起点,并逐渐展示更加深入的功能。更详细的网络配置连接请参考 :ref:`api_trainer_config_helpers_layers` 。 -所有配置都能在 `源代码 `_ 的 ``demo/quick_start`` 目录下找到。 - -逻辑回归模型 ------------- - -具体流程如下: - - .. image:: src/NetLR_cn.jpg - :align: center - :scale: 80% - -- 获取利用 `one-hot vector `_ 表示的每个单词,维度是词典大小 - - .. code-block:: python - - word = data_layer(name="word", size=word_dim) - -- 获取该条样本类别Id,维度是类别个数。 - - .. code-block:: python - - label = data_layer(name="label", size=label_dim) - -- 利用逻辑回归模型对该向量进行分类,同时会计算分类准确率 - - .. code-block:: python - - # Define a fully connected layer with logistic activation (also called softmax activation). - output = fc_layer(input=word, - size=label_dim, - act_type=SoftmaxActivation()) - # Define cross-entropy classification loss and error. - classification_cost(input=output, label=label) - - - - input: 除去data层,每个层都有一个或多个input,多个input以list方式输入 - - size: 该层神经元个数 - - act_type: 激活函数类型 - -**效果总结**:我们将在后面介绍训练和预测流程的脚本。在此为方便对比不同网络结构,我们总结了各个网络的复杂度和效果。 - - ===================== =============================== ================= - 网络名称 参数数量 错误率 - ===================== =============================== ================= - 逻辑回归 252 KB 8.652 % - ===================== =============================== ================= - -词向量模型 ----------- - -embedding模型需要稍微改变提供数据的Python脚本,即 ``dataprovider_emb.py``,词向量模型、 -卷积模型、时序模型均使用该脚本。其中文本输入类型定义为整数时序类型integer_value_sequence。 - -.. code-block:: python - - def initializer(settings, dictionary, **kwargs): - settings.word_dict = dictionary - settings.input_types = [ - # Define the type of the first input as sequence of integer. - # The value of the integers range from 0 to len(dictrionary)-1 - integer_value_sequence(len(dictionary)), - # Define the second input for label id - integer_value(2)] - - @provider(init_hook=initializer) - def process(settings, file_name): - ... - # omitted, it is same as the data provider for LR model - -该模型依然使用逻辑回归分类网络的框架, 只是将句子用连续向量表示替换为用稀疏向量表示, 即对第三步进行替换。句子表示的计算更新为两步: - -.. image:: src/NetContinuous_cn.jpg - :align: center - :scale: 80% - -- 利用单词Id查找该单词对应的连续向量(维度为word_dim), 输入N个单词,输出为N个word_dim维度向量 - - .. code-block:: python - - emb = embedding_layer(input=word, size=word_dim) - -- 将该句话包含的所有单词向量求平均, 得到句子的表示 - - .. code-block:: python - - avg = pooling_layer(input=emb, pooling_type=AvgPooling()) - -其它部分和逻辑回归网络结构一致。 - -**效果总结:** - - ===================== =============================== ================== - 网络名称 参数数量 错误率 - ===================== =============================== ================== - 词向量模型 15 MB 8.484 % - ===================== =============================== ================== - -卷积模型 ------------ - -卷积网络是一种特殊的从词向量表示到句子表示的方法, 也就是将词向量模型进一步演化为三个新步骤。 - -.. image:: src/NetConv_cn.jpg - :align: center - :scale: 80% - -文本卷积分可为三个步骤: - -1. 首先,从每个单词左右两端分别获取k个相邻的单词, 拼接成一个新的向量; - -2. 其次,对该向量进行非线性变换(例如Sigmoid变换), 使其转变为维度为hidden_dim的新向量; - -3. 最后,对整个新向量集合的每一个维度取最大值来表示最后的句子。 - -这三个步骤可配置为: - -.. code-block:: python - - text_conv = sequence_conv_pool(input=emb, - context_start=k, - context_len=2 * k + 1) - -**效果总结:** - - ===================== =============================== ======================== - 网络名称 参数数量 错误率 - ===================== =============================== ======================== - 卷积模型 16 MB 5.628 % - ===================== =============================== ======================== - -时序模型 ----------- - -.. image:: src/NetRNN_cn.jpg - :align: center - :scale: 80% - -时序模型,也称为RNN模型, 包括简单的 `RNN模型 `_, `GRU模型 `_ 和 `LSTM模型 `_ 等等。 - -- GRU模型配置: - - .. code-block:: python - - gru = simple_gru(input=emb, size=gru_size) - - -- LSTM模型配置: - - .. code-block:: python - - lstm = simple_lstm(input=emb, size=lstm_size) - -本次试验,我们采用单层LSTM模型,并使用了Dropout,**效果总结:** - - ===================== =============================== ========================= - 网络名称 参数数量 错误率 - ===================== =============================== ========================= - 时序模型 16 MB 4.812 % - ===================== =============================== ========================= - -优化算法 -========= - -`优化算法 `_ 包括 -Momentum, RMSProp,AdaDelta,AdaGrad,ADAM,Adamax等,这里采用Adam优化方法,同时使用了L2正则(L2 Regularization)和梯度截断(Gradient Clipping)。 - -.. code-block:: python - - settings(batch_size=128, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -训练模型 -========= - -在数据加载和网络配置完成之后, 我们就可以训练模型了。 - -.. image:: src/PipelineTrain_cn.jpg - :align: center - :scale: 80% - -训练模型,我们只需要运行 ``train.sh`` 训练脚本: - - .. code-block:: bash - - ./train.sh - -``train.sh`` 中包含了训练模型的基本命令。训练时所需设置的主要参数如下: - - .. code-block:: bash - - paddle train \ - --config=trainer_config.py \ - --log_period=20 \ - --save_dir=./output \ - --num_passes=15 \ - --use_gpu=false - -这里只简单介绍了单机训练,如何进行分布式训练,请参考 :ref:`cluster_train` 。 - -预测 -===== - -当模型训练好了之后,我们就可以进行预测了。 - -.. image:: src/PipelineTest_cn.jpg - :align: center - :scale: 80% - -之前配置文件中 ``test.list`` 指定的数据将会被测试,这里直接通过预测脚本 ``predict.sh`` 进行预测, -更详细的说明,请参考 :ref:`api_swig_py_paddle` 。 - - .. code-block:: bash - - model="output/pass-00003" - paddle train \ - --config=trainer_config.lstm.py \ - --use_gpu=false \ - --job=test \ - --init_model_path=$model \ - --config_args=is_predict=1 \ - --predict_output_dir=. \ - - mv rank-00000 result.txt - -这里以 ``output/pass-00003`` 为例进行预测,用户可以根据训练日志,选择测试结果最好的模型来预测。 - -预测结果以文本的形式保存在 ``result.txt`` 中,一行为一个样本,格式如下: - - .. code-block:: bash - - 预测ID;ID为0的概率 ID为1的概率 - 预测ID;ID为0的概率 ID为1的概率 - -总体效果总结 -============== - -在 ``/demo/quick_start`` 目录下,能够找到这里使用的所有数据, 网络配置, 训练脚本等等。 -对于Amazon-Elec测试集(25k), 如下表格,展示了上述网络模型的训练效果: - - ===================== =============================== ============= ================================== - 网络名称 参数数量 错误率 配置文件 - ===================== =============================== ============= ================================== - 逻辑回归模型 252 KB 8.652% trainer_config.lr.py - 词向量模型 15 MB 8.484% trainer_config.emb.py - 卷积模型 16 MB 5.628% trainer_config.cnn.py - 时序模型 16 MB 4.812% trainer_config.lstm.py - ===================== =============================== ============= ================================== - - -附录 -===== - -命令行参数 ----------- - -* \--config:网络配置 -* \--save_dir:模型存储路径 -* \--log_period:每隔多少batch打印一次日志 -* \--num_passes:训练轮次,一个pass表示过一遍所有训练样本 -* \--config_args:命令指定的参数会传入网络配置中。 -* \--init_model_path:指定初始化模型路径,可用在测试或训练时指定初始化模型。 - -默认一个pass保存一次模型,也可以通过saving_period_by_batches设置每隔多少batch保存一次模型。 -可以通过show_parameter_stats_period设置打印参数信息等。 -其他参数请参考 命令行参数文档(链接待补充)。 - -输出日志 ---------- - -.. code-block:: bash - - TrainerInternal.cpp:160] Batch=20 samples=2560 AvgCost=0.628761 CurrentCost=0.628761 Eval: classification_error_evaluator=0.304297 CurrentEval: classification_error_evaluator=0.304297 - -模型训练会看到类似上面这样的日志信息,详细的参数解释,请参考如下表格: - - =========================================== ============================================================== - 名称 解释 - =========================================== ============================================================== - Batch=20 表示过了20个batch - samples=2560 表示过了2560个样本 - AvgCost 每个pass的第0个batch到当前batch所有样本的平均cost - CurrentCost 当前log_period个batch所有样本的平均cost - Eval: classification_error_evaluator 每个pass的第0个batch到当前batch所有样本的平均分类错误率 - CurrentEval: classification_error_evaluator 当前log_period个batch所有样本的平均分类错误率 - =========================================== ============================================================== diff --git a/doc/v1_api_tutorials/quick_start/index_en.md b/doc/v1_api_tutorials/quick_start/index_en.md deleted file mode 100644 index ca110431cf..0000000000 --- a/doc/v1_api_tutorials/quick_start/index_en.md +++ /dev/null @@ -1,562 +0,0 @@ -# Quick Start - -This tutorial will teach the basics of deep learning (DL), including how to implement many different models in PaddlePaddle. You will learn how to: - - Prepare data into the standardized format that PaddlePaddle accepts. - - Write data providers that read data into PaddlePaddle. - - Configure neural networks in PaddlePaddle layer by layer. - - Train models. - - Perform inference with trained models. - - -## Install - -To get started, please install PaddlePaddle on your computer. Throughout this tutorial, you will learn by implementing different DL models for text classification. - -To install PaddlePaddle, please follow the instructions here: Build and Install. - -## Overview -For the first step, you will use PaddlePaddle to build a **text classification** system. For example, suppose you run an e-commence website, and you want to analyze the sentiment of user reviews to evaluate product quality. - -For example, given the input - -``` -This monitor is fantastic. -``` - -Your classifier should output “positive”, since this text snippet shows that the user is satisfied with the product. Given this input: - -``` -The monitor breaks down two months after purchase. -``` - -the classifier should output “negative“. - -To build your text classification system, your code will need to perform five steps: -
![](./src/Pipeline_en.jpg)
- - - Preprocess data into a standardized format. - - Provide data to the learning model. - - Specify the neural network structure. - - Train the model. - - Inference (make prediction on test examples). - - -1. Preprocess data into standardized format - - In the text classification example, you will start with a text file with one training example per line. Each line contains category id (in machine learning, often denoted the target y), followed by the input text (often denoted x); these two elements are separated by a Tab. For example: ```positive [tab] This monitor is fantastic```. You will preprocess this raw data into a format that Paddle can use. - -2. Provide data to the learning model. - - You can write data providers in Python. For any required data preprocessing step, you can add the preprocessing code to the PyDataProvider Python file. - - In our text classification example, every word or character will be converted into an integer id, specified in a dictionary file. It perform a dictionary lookup in PyDataProvider to get the id. -3. Specify neural network structure. (From easy to hard, we provide 4 kinds of network configurations) - - A logistic regression model. - - A word embedding model. - - A convolutional neural network model. - - A sequential recurrent neural network model. - - You will also learn different learning algorithms. -4. Training model. -5. Inference. - -## Preprocess data into standardized format -In this example, you are going to use [Amazon electronic product review dataset](http://jmcauley.ucsd.edu/data/amazon/) to build a bunch of deep neural network models for text classification. Each text in this dataset is a product review. This dataset has two categories: “positive” and “negative”. Positive means the reviewer likes the product, while negative means the reviewer does not like the product. - -`demo/quick_start` in the [source code](https://github.com/PaddlePaddle/Paddle) provides script for downloading the preprocessed data as shown below. (If you want to process the raw data, you can use the script `demo/quick_start/data/proc_from_raw_data/get_data.sh`). - -```bash -cd demo/quick_start -./data/get_data.sh -``` - -## Transfer Data to Model -### Write Data Provider with Python -The following `dataprovider_bow.py` gives a complete example of writing data provider with Python. It includes the following parts: - -* initalizer: define the additional meta-data of the data provider and the types of the input data. -* process: Each `yield` returns a data sample. In this case, it return the text representation and category id. The order of features in the returned result needs to be consistent with the definition of the input types in `initalizer`. - -```python -from paddle.trainer.PyDataProvider2 import * - -# id of the word not in dictionary -UNK_IDX = 0 - -# initializer is called by the framework during initialization. -# It allows the user to describe the data types and setup the -# necessary data structure for later use. -# `settings` is an object. initializer need to properly fill settings.input_types. -# initializer can also store other data structures needed to be used at process(). -# In this example, dictionary is stored in settings. -# `dictionay` and `kwargs` are arguments passed from trainer_config.lr.py -def initializer(settings, dictionary, **kwargs): - # Put the word dictionary into settings - settings.word_dict = dictionary - - # setting.input_types specifies what the data types the data provider - # generates. - settings.input_types = [ - # The first input is a sparse_binary_vector, - # which means each dimension of the vector is either 0 or 1. It is the - # bag-of-words (BOW) representation of the texts. - sparse_binary_vector(len(dictionary)), - # The second input is an integer. It represents the category id of the - # sample. 2 means there are two labels in the dataset. - # (1 for positive and 0 for negative) - integer_value(2)] - -# Delaring a data provider. It has an initializer 'data_initialzer'. -# It will cache the generated data of the first pass in memory, so that -# during later pass, no on-the-fly data generation will be needed. -# `setting` is the same object used by initializer() -# `file_name` is the name of a file listed train_list or test_list file given -# to define_py_data_sources2(). See trainer_config.lr.py. -@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file_name): - # Open the input data file. - with open(file_name, 'r') as f: - # Read each line. - for line in f: - # Each line contains the label and text of the comment, separated by \t. - label, comment = line.strip().split('\t') - - # Split the words into a list. - words = comment.split() - - # convert the words into a list of ids by looking them up in word_dict. - word_vector = [settings.word_dict.get(w, UNK_IDX) for w in words] - - # Return the features for the current comment. The first is a list - # of ids representing a 0-1 binary sparse vector of the text, - # the second is the integer id of the label. - yield word_vector, int(label) -``` - -### Define Python Data Provider in Configuration files. -You need to add a data provider definition `define_py_data_sources2` in our network configuration. This definition specifies: - -- The path of the training and testing data (`data/train.list`, `data/test.list`). -- The location of the data provider file (`dataprovider_bow`). -- The function to call to get data. (`process`). -- Additional arguments or data. Here it passes the path of word dictionary. - -```python -from paddle.trainer_config_helpers import * - -file = "data/dict.txt" -word_dict = dict() -with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i -# define the data sources for the model. -# We need to use different process for training and prediction. -# For training, the input data includes both word IDs and labels. -# For prediction, the input data only includs word Ids. -define_py_data_sources2(train_list='data/train.list', - test_list='data/test.list', - module="dataprovider_bow", - obj="process", - args={"dictionary": word_dict}) -``` -You can refer to the following link for more detailed examples and data formats: PyDataProvider2. - -## Network Architecture -We will describe four kinds of network architectures in this section. -
![](./src/PipelineNetwork_en.jpg)
- -First, you will build a logistic regression model. Later, you will also get chance to build other more powerful network architectures. -For more detailed documentation, you could refer to: layer documentation. All configuration files are in `demo/quick_start` directory. - -### Logistic Regression -The architecture is illustrated in the following picture: -
![](./src/NetLR_en.png)
- -- You need define the data for text features. The size of the data layer is the number of words in the dictionary. - -```python -word = data_layer(name="word", size=voc_dim) -``` - -- You also need to define the category id for each example. The size of the data layer is the number of labels. - -```python -label = data_layer(name="label", size=label_dim) -``` - -- It uses logistic regression model to classify the vector, and it will output the classification error during training. - - Each layer has an *input* argument that specifies its input layer. Some layers can have multiple input layers. You can use a list of the input layers as input in that case. - - *size* for each layer means the number of neurons of the layer. - - *act_type* means activation function applied to the output of each neuron independently. - - Some layers can have additional special inputs. For example, `classification_cost` needs ground truth label as input to compute classification loss and error. -```python -# Define a fully connected layer with logistic activation (also called softmax activation). -output = fc_layer(input=word, - size=label_dim, - act_type=SoftmaxActivation()) -# Define cross-entropy classification loss and error. -classification_cost(input=output, label=label) -``` - -Performance summary: You can refer to the training and testing scripts later. In order to compare different network architectures, the model complexity and test classification error are listed in the following table: - - -
- - - - - - - - - - - - - - - - - -
Network nameNumber of parametersTest error
Logistic regression252 KB8.652%
- -
- -### Word Embedding Model -In order to use the word embedding model, you need to change the data provider a little bit to make the input words as a sequence of word IDs. The revised data provider `dataprovider_emb.py` is listed below. You only need to change initializer() for the type of the first input. It is changed from sparse_binary_vector to sequence of intergers. process() remains the same. This data provider can also be used for later sequence models. - -```python -def initializer(settings, dictionary, **kwargs): - # Put the word dictionary into settings - settings.word_dict = dictionary - settings.input_types = [ - # Define the type of the first input as a sequence of integers. - integer_value_sequence(len(dictionary)), - # Define the second input for label id - integer_value(2)] - -@provider(init_hook=initializer) -def process(settings, file_name): - ... - # omitted, it is same as the data provider for LR model -``` - -This model is very similar to the framework of logistic regression, but it uses word embedding vectors instead of a sparse vectors to represent words. -
![](./src/NetContinuous_en.png)
- -- It can look up the dense word embedding vector in the dictionary (its words embedding vector is `word_dim`). The input is a sequence of N words, the output is N word_dim dimensional vectors. - -```python -emb = embedding_layer(input=word, dim=word_dim) -``` - -- It averages all the word embedding in a sentence to get its sentence representation. - -```python -avg = pooling_layer(input=emb, pooling_type=AvgPooling()) -``` - -The other parts of the model are the same as logistic regression network. - -The performance is summarized in the following table: - - -
- - - - - - - - - - - - - - - - - -
Network nameNumber of parametersTest error
Word embedding model15 MB8.484%
-
-
- -### Convolutional Neural Network Model -Convolutional neural network converts a sequence of word embeddings into a sentence representation using temporal convolutions. You will transform the fully connected layer of the word embedding model to 3 new sub-steps. -
![](./src/NetConv_en.png)
- - -Text convolution has 3 steps: -1. Get K nearest neighbor context of each word in a sentence, stack them into a 2D vector representation. -2. Apply temporal convolution to this representation to produce a new hidden_dim dimensional vector. -3. Apply max-pooling to the new vectors at all the time steps in a sentence to get a sentence representation. - -```python -# context_len means convolution kernel size. -# context_start means the start of the convolution. It can be negative. In that case, zero padding is applied. -text_conv = sequence_conv_pool(input=emb, - context_start=k, - context_len=2 * k + 1) -``` - -The performance is summarized in the following table: - - -
- - - - - - - - - - - - - - - - - -
Network nameNumber of parametersTest error
Convolutional model16 MB5.628%
-
- -### Recurrent Model -
![](./src/NetRNN_en.png)
- -You can use Recurrent neural network as our time sequence model, including simple RNN model, GRU model, and LSTM model。 - -- GRU model can be specified via: - -```python -gru = simple_gru(input=emb, size=gru_size) -``` - -- LSTM model can be specified via: - -```python -lstm = simple_lstm(input=emb, size=lstm_size) -``` - -You can use single layer LSTM model with Dropout for our text classification problem. The performance is summarized in the following table: - - -
- - - - - - - - - - - - - - - - - -
Network nameNumber of parametersTest error
Recurrent model16 MB4.812%
- -
- -## Optimization Algorithm -Optimization algorithms include Momentum, RMSProp, AdaDelta, AdaGrad, Adam, and Adamax. You can use Adam optimization method here, with L2 regularization and gradient clipping, because Adam has been proved to work very well for training recurrent neural network. - -```python -settings(batch_size=128, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) -``` - -## Training Model -After completing data preparation and network architecture specification, you will run the training script. -
![](./src/PipelineTrain_en.png)
- -Training script: our training script is in `train.sh` file. The training arguments are listed below: - -```bash -paddle train \ ---config=trainer_config.py \ ---log_period=20 \ ---save_dir=./output \ ---num_passes=15 \ ---use_gpu=false -``` - -We do not provide examples on how to train on clusters here. If you want to train on clusters, please follow the distributed training documentation or other demos for more details. - -## Inference -You can use the trained model to perform prediction on the dataset with no labels. You can also evaluate the model on dataset with labels to obtain its test accuracy. -
![](./src/PipelineTest_en.png)
- -The test script is listed below. PaddlePaddle can evaluate a model on the data with labels specified in `test.list`. - -```bash -paddle train \ ---config=trainer_config.lstm.py \ ---use_gpu=false \ ---job=test \ ---init_model_path=./output/pass-0000x -``` - -We will give an example of performing prediction using Recurrent model on a dataset with no labels. You can refer to Python Prediction API tutorial,or other demo for the prediction process using Python. You can also use the following script for inference or evaluation. - -inference script (predict.sh): - -```bash -model="output/pass-00003" -paddle train \ - --config=trainer_config.lstm.py \ - --use_gpu=false \ - --job=test \ - --init_model_path=$model \ - --config_args=is_predict=1 \ - --predict_output_dir=. \ - -mv rank-00000 result.txt -``` -User can choose the best model base on the training log instead of model `output/pass-00003`. There are several differences between training and inference network configurations. -- You do not need labels during inference. -- Outputs need to be specified to the classification probability layer (the output of softmax layer), or the id of maximum probability (`max_id` layer). An example to output the id and probability is given in the code snippet. -- batch_size = 1. -- You need to specify the location of `test_list` in the test data. - -The results in `result.txt` is as follows, each line is one sample. - -``` -predicted_label_id;probability_of_label_0 probability_of_label_1 # the first sample -predicted_label_id;probability_of_label_0 probability_of_label_1 # the second sample -``` - - -```python -is_predict = get_config_arg('is_predict', bool, False) -trn = 'data/train.list' if not is_predict else None -tst = 'data/test.list' if not is_predict else 'data/pred.list' -obj = 'process' if not is_predict else 'process_pre' -batch_size = 128 if not is_predict else 1 -if is_predict: - maxid = maxid_layer(output) - outputs([maxid,output]) -else: - label = data_layer(name="label", size=2) - cls = classification_cost(input=output, label=label) outputs(cls) -``` - -## Summary -The scripts of data downloading, network configurations, and training scrips are in `/demo/quick_start`. The following table summarizes the performance of our network architecture on Amazon-Elec dataset(25k): - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Network nameNumber of parametersError rateConfiguration file name
Logistic regression model(BOW) 252KB 8.652%trainer_config.lr.py
Word embedding 15MB 8.484%trainer_config.emb.py
Convolution model 16MB 5.628%trainer_config.cnn.py
Time sequence model 16MB 4.812%trainer_config.lstm.py
-
-
- -## Appendix -### Command Line Argument - -* \--config:network architecture path. -* \--save_dir:model save directory. -* \--log_period:the logging period per batch. -* \--num_passes:number of training passes. One pass means the training would go over the whole training dataset once. -* \--config_args:Other configuration arguments. -* \--init_model_path:The path of the initial model parameter. - -By default, the trainer will save model every pass. You can also specify `saving_period_by_batches` to set the frequency of batch saving. You can use `show_parameter_stats_period` to print the statistics of the parameters, which are very useful for tuning parameters. Other command line arguments can be found in command line argument documentation。 - -### Log - -``` -TrainerInternal.cpp:160] Batch=20 samples=2560 AvgCost=0.628761 CurrentCost=0.628761 Eval: classification_error_evaluator=0.304297 CurrentEval: classification_error_evaluator=0.304297 -``` -During model training, you will see the log like the examples above: -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameExplanation
Batch=20 You have trained 20 batches.
samples=2560 You have trained 2560 examples.
AvgCost The average cost from the first batch to the current batch.
CurrentCost the average cost of the last log_period batches
Eval: classification_error_evaluator The average classification error from the first batch to the current batch.
CurrentEval: classification_error_evaluator The average error rate of the last log_period batches
-
-
diff --git a/doc/v1_api_tutorials/quick_start/src/NetContinuous_cn.jpg b/doc/v1_api_tutorials/quick_start/src/NetContinuous_cn.jpg deleted file mode 100755 index b18e452a48..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/NetContinuous_cn.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/NetContinuous_en.png b/doc/v1_api_tutorials/quick_start/src/NetContinuous_en.png deleted file mode 100644 index 7bdef1aa36..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/NetContinuous_en.png and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/NetConv_cn.jpg b/doc/v1_api_tutorials/quick_start/src/NetConv_cn.jpg deleted file mode 100755 index 0f5ebfa52f..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/NetConv_cn.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/NetConv_en.png b/doc/v1_api_tutorials/quick_start/src/NetConv_en.png deleted file mode 100644 index ad618d1d6f..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/NetConv_en.png and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/NetLR_cn.jpg b/doc/v1_api_tutorials/quick_start/src/NetLR_cn.jpg deleted file mode 100755 index ee65d1f412..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/NetLR_cn.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/NetLR_en.png b/doc/v1_api_tutorials/quick_start/src/NetLR_en.png deleted file mode 100644 index 9d514bf1b1..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/NetLR_en.png and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/NetRNN_cn.jpg b/doc/v1_api_tutorials/quick_start/src/NetRNN_cn.jpg deleted file mode 100755 index f8bc081827..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/NetRNN_cn.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/NetRNN_en.png b/doc/v1_api_tutorials/quick_start/src/NetRNN_en.png deleted file mode 100644 index 180f273d32..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/NetRNN_en.png and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/PipelineNetwork_cn.jpg b/doc/v1_api_tutorials/quick_start/src/PipelineNetwork_cn.jpg deleted file mode 100755 index 7e68891d7a..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/PipelineNetwork_cn.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/PipelineNetwork_en.jpg b/doc/v1_api_tutorials/quick_start/src/PipelineNetwork_en.jpg deleted file mode 100644 index e779aed06d..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/PipelineNetwork_en.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/PipelineTest_cn.jpg b/doc/v1_api_tutorials/quick_start/src/PipelineTest_cn.jpg deleted file mode 100755 index 01715db886..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/PipelineTest_cn.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/PipelineTest_en.png b/doc/v1_api_tutorials/quick_start/src/PipelineTest_en.png deleted file mode 100644 index 7e7ef520b5..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/PipelineTest_en.png and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/PipelineTrain_cn.jpg b/doc/v1_api_tutorials/quick_start/src/PipelineTrain_cn.jpg deleted file mode 100755 index 8049d3e53c..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/PipelineTrain_cn.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/PipelineTrain_en.png b/doc/v1_api_tutorials/quick_start/src/PipelineTrain_en.png deleted file mode 100644 index 132d29bfd5..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/PipelineTrain_en.png and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/Pipeline_cn.jpg b/doc/v1_api_tutorials/quick_start/src/Pipeline_cn.jpg deleted file mode 100755 index d5d99253ea..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/Pipeline_cn.jpg and /dev/null differ diff --git a/doc/v1_api_tutorials/quick_start/src/Pipeline_en.jpg b/doc/v1_api_tutorials/quick_start/src/Pipeline_en.jpg deleted file mode 100644 index 21a7a7bb6a..0000000000 Binary files a/doc/v1_api_tutorials/quick_start/src/Pipeline_en.jpg and /dev/null differ diff --git a/go/pserver/client/c/test/test_cclient.c b/go/pserver/client/c/test/test_cclient.c index 89c4d7f00a..05ec421fff 100644 --- a/go/pserver/client/c/test/test_cclient.c +++ b/go/pserver/client/c/test/test_cclient.c @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include diff --git a/go/pserver/client/c/test/test_mnist.py b/go/pserver/client/c/test/test_mnist.py index c3a3af55e2..7b50a10afc 100644 --- a/go/pserver/client/c/test/test_mnist.py +++ b/go/pserver/client/c/test/test_mnist.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2 as paddle import gzip diff --git a/go/pserver/client/c/test/test_train.py b/go/pserver/client/c/test/test_train.py index 8d9c6b9b20..7ef0fca496 100644 --- a/go/pserver/client/c/test/test_train.py +++ b/go/pserver/client/c/test/test_train.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2 as paddle import paddle.v2.dataset.uci_housing as uci_housing import paddle.v2.master as master diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index 7d2becbdd7..4a98ede278 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -24,6 +24,7 @@ else() add_subdirectory(framework) add_subdirectory(operators) add_subdirectory(pybind) + add_subdirectory(inference) endif() if(WITH_SWIG_PY) diff --git a/paddle/api/CMakeLists.txt b/paddle/api/CMakeLists.txt index d6b8464100..cf84568ecd 100644 --- a/paddle/api/CMakeLists.txt +++ b/paddle/api/CMakeLists.txt @@ -25,8 +25,18 @@ FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py) SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON) +SET(SWIG_NEED_FLAGS + -ftls-model=global-dynamic + -Wno-parentheses-equality + -Wno-self-assign + -Wno-maybe-uninitialized + -Wno-missing-field-initializers) + FOREACH(flag ${SWIG_NEED_FLAGS}) + safe_set_cxxflag(SWIG_CXX_FLAGS ${flag}) +ENDFOREACH() + SET(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR}) -SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign -ftls-model=global-dynamic") +SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${SWIG_CXX_FLAGS}") SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS paddle_parameter diff --git a/paddle/api/test/testTrainConfig.py b/paddle/api/test/testTrainConfig.py index 77e0cd37d5..ab9a83e4a3 100644 --- a/paddle/api/test/testTrainConfig.py +++ b/paddle/api/test/testTrainConfig.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=100, learning_method=AdamOptimizer()) diff --git a/paddle/capi/Main.cpp b/paddle/capi/Main.cpp index bb8249a551..c038789340 100644 --- a/paddle/capi/Main.cpp +++ b/paddle/capi/Main.cpp @@ -43,4 +43,11 @@ paddle_error paddle_init(int argc, char** argv) { isInit = true; return kPD_NO_ERROR; } + +paddle_error paddle_init_thread() { + if (FLAGS_use_gpu) { + hl_init(FLAGS_gpu_id); + } + return kPD_NO_ERROR; +} } diff --git a/paddle/capi/Matrix.cpp b/paddle/capi/Matrix.cpp index 30f3a766f0..cbacd1fb71 100644 --- a/paddle/capi/Matrix.cpp +++ b/paddle/capi/Matrix.cpp @@ -40,7 +40,7 @@ paddle_error paddle_matrix_destroy(paddle_matrix mat) { paddle_error paddle_matrix_set_row(paddle_matrix mat, uint64_t rowID, paddle_real* rowArray) { - if (mat == nullptr) return kPD_NULLPTR; + if (mat == nullptr || rowArray == nullptr) return kPD_NULLPTR; auto ptr = cast(mat); if (ptr->mat == nullptr) return kPD_NULLPTR; if (rowID >= ptr->mat->getHeight()) return kPD_OUT_OF_RANGE; diff --git a/paddle/capi/error.cpp b/paddle/capi/error.cpp new file mode 100644 index 0000000000..96ce31b45f --- /dev/null +++ b/paddle/capi/error.cpp @@ -0,0 +1,32 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "error.h" + +extern "C" const char* paddle_error_string(paddle_error err) { + switch (err) { + case kPD_NULLPTR: + return "nullptr error"; + case kPD_OUT_OF_RANGE: + return "out of range error"; + case kPD_PROTOBUF_ERROR: + return "protobuf error"; + case kPD_NOT_SUPPORTED: + return "not supported error"; + case kPD_UNDEFINED_ERROR: + return "undefined error"; + default: + return ""; + } +} diff --git a/paddle/capi/error.h b/paddle/capi/error.h index 44d8c2040d..2da9e0a3ef 100644 --- a/paddle/capi/error.h +++ b/paddle/capi/error.h @@ -15,6 +15,8 @@ limitations under the License. */ #ifndef __PADDLE_CAPI_ERROR_H__ #define __PADDLE_CAPI_ERROR_H__ +#include "config.h" + /** * Error Type for Paddle API. */ @@ -27,4 +29,17 @@ typedef enum { kPD_UNDEFINED_ERROR = -1, } paddle_error; +#ifdef __cplusplus +extern "C" { +#endif + +/** + * Error string for Paddle API. + */ +PD_API const char* paddle_error_string(paddle_error err); + +#ifdef __cplusplus +} +#endif + #endif diff --git a/paddle/capi/examples/model_inference/common/common.h b/paddle/capi/examples/model_inference/common/common.h index e32f2f9836..9efcbc387e 100644 --- a/paddle/capi/examples/model_inference/common/common.h +++ b/paddle/capi/examples/model_inference/common/common.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #ifndef __CAPI_EXAMPLE_COMMON_H__ #define __CAPI_EXAMPLE_COMMON_H__ #include diff --git a/paddle/capi/examples/model_inference/dense/main.c b/paddle/capi/examples/model_inference/dense/main.c index 5eeaf7e31f..376cd46fb0 100644 --- a/paddle/capi/examples/model_inference/dense/main.c +++ b/paddle/capi/examples/model_inference/dense/main.c @@ -3,59 +3,82 @@ #include "../common/common.h" +// Modify this path as needed. #define CONFIG_BIN "./trainer_config.bin" +// Modify this path as needed. +// This demo assumes that merged model is not used, then this path is the +// directory storing all the trained parameters. +// If the model is trained by PaddlePaddle V2 API, the model is saved as +// a compressed file. You need to uncompress the compressed file first. +#define MODEL_PATH "models/pass_4" int main() { - // Initalize Paddle + // Initalize the PaddlePaddle runtime environment. char* argv[] = {"--use_gpu=False"}; CHECK(paddle_init(1, (char**)argv)); - // Reading config binary file. It is generated by `convert_protobin.sh` + // Read the binary configuration file generated by `convert_protobin.sh` long size; void* buf = read_config(CONFIG_BIN, &size); - // Create a gradient machine for inference. + // Create the gradient machine for inference. paddle_gradient_machine machine; CHECK(paddle_gradient_machine_create_for_inference(&machine, buf, (int)size)); - CHECK(paddle_gradient_machine_randomize_param(machine)); - // Loading parameter. Uncomment the following line and change the directory. - // CHECK(paddle_gradient_machine_load_parameter_from_disk(machine, - // "./some_where_to_params")); + // Load the trained model. Modify the parameter MODEL_PATH to set the correct + // path of the trained model. + CHECK(paddle_gradient_machine_load_parameter_from_disk(machine, MODEL_PATH)); + + // Inputs and outputs of the network are organized as paddle_arguments object + // in C-API. In the comments below, "argument" specifically means one input of + // the neural network in PaddlePaddle C-API. paddle_arguments in_args = paddle_arguments_create_none(); - // There is only one input of this network. + // There is only one data layer in this demo MNIST network, invoke this + // function to create one argument. CHECK(paddle_arguments_resize(in_args, 1)); - // Create input matrix. - paddle_matrix mat = paddle_matrix_create(/* sample_num */ 1, - /* size */ 784, - /* useGPU */ false); - srand(time(0)); + // Each argument needs one matrix or one ivector (integer vector, for sparse + // index input, usually used in NLP task) to holds the real input data. + // In the comments below, "matrix" specifically means the object needed by + // argument to hold the data. Here we create the matrix for the above created + // agument to store the testing samples. + paddle_matrix mat = + paddle_matrix_create(/* height = batch size */ 1, + /* width = dimensionality of the data layer */ 784, + /* whether to use GPU */ false); paddle_real* array; - - // Get First row. + // Get the pointer pointing to the start address of the first row of the + // created matrix. CHECK(paddle_matrix_get_row(mat, 0, &array)); + // Fill the matrix with a randomly generated test sample. + srand(time(0)); for (int i = 0; i < 784; ++i) { array[i] = rand() / ((float)RAND_MAX); } + // Assign the matrix to the argument. CHECK(paddle_arguments_set_value(in_args, 0, mat)); + // Create the output argument. paddle_arguments out_args = paddle_arguments_create_none(); + + // Invoke the forward computation. CHECK(paddle_gradient_machine_forward(machine, in_args, out_args, - /* isTrain */ false)); - paddle_matrix prob = paddle_matrix_create_none(); + /* is train taks or not */ false)); + // Create the matrix to hold the forward result of the neural network. + paddle_matrix prob = paddle_matrix_create_none(); + // Access the matrix of the output argument, the predicted result is stored in + // which. CHECK(paddle_arguments_get_value(out_args, 0, prob)); uint64_t height; uint64_t width; - CHECK(paddle_matrix_get_shape(prob, &height, &width)); CHECK(paddle_matrix_get_row(prob, 0, &array)); @@ -68,6 +91,7 @@ int main() { } printf("\n"); + // The cleaning up. CHECK(paddle_matrix_destroy(prob)); CHECK(paddle_arguments_destroy(out_args)); CHECK(paddle_matrix_destroy(mat)); diff --git a/paddle/capi/examples/model_inference/dense/merge_v2_model.py b/paddle/capi/examples/model_inference/dense/merge_v2_model.py new file mode 100644 index 0000000000..760a485a53 --- /dev/null +++ b/paddle/capi/examples/model_inference/dense/merge_v2_model.py @@ -0,0 +1,21 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from paddle.utils.merge_model import merge_v2_model + +from mnist_v2 import network + +net = network(is_infer=True) +param_file = "models/params_pass_4.tar" +output_file = "output.paddle.model" +merge_v2_model(net, param_file, output_file) diff --git a/paddle/capi/examples/model_inference/dense/mnist_v2.py b/paddle/capi/examples/model_inference/dense/mnist_v2.py new file mode 100644 index 0000000000..174436bd1d --- /dev/null +++ b/paddle/capi/examples/model_inference/dense/mnist_v2.py @@ -0,0 +1,130 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import os +import sys +import gzip +import logging +import argparse +from PIL import Image +import numpy as np + +import paddle.v2 as paddle +from paddle.utils.dump_v2_config import dump_v2_config + +logger = logging.getLogger("paddle") +logger.setLevel(logging.INFO) + + +def multilayer_perceptron(img, layer_size, lbl_dim): + for idx, size in enumerate(layer_size): + hidden = paddle.layer.fc(input=(img if not idx else hidden), + size=size, + act=paddle.activation.Relu()) + return paddle.layer.fc(input=hidden, + size=lbl_dim, + act=paddle.activation.Softmax()) + + +def network(input_dim=784, lbl_dim=10, is_infer=False): + images = paddle.layer.data( + name='pixel', type=paddle.data_type.dense_vector(input_dim)) + + predict = multilayer_perceptron( + images, layer_size=[128, 64], lbl_dim=lbl_dim) + + if is_infer: + return predict + else: + label = paddle.layer.data( + name='label', type=paddle.data_type.integer_value(lbl_dim)) + return paddle.layer.classification_cost(input=predict, label=label) + + +def main(task="train", use_gpu=False, trainer_count=1, save_dir="models"): + if task == "train": + if not os.path.exists(save_dir): + os.mkdir(save_dir) + + paddle.init(use_gpu=use_gpu, trainer_count=trainer_count) + cost = network() + parameters = paddle.parameters.create(cost) + optimizer = paddle.optimizer.Momentum( + learning_rate=0.1 / 128.0, + momentum=0.9, + regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128)) + + trainer = paddle.trainer.SGD(cost=cost, + parameters=parameters, + update_equation=optimizer) + + def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 100 == 0: + logger.info("Pass %d, Batch %d, Cost %f, %s" % + (event.pass_id, event.batch_id, event.cost, + event.metrics)) + if isinstance(event, paddle.event.EndPass): + with gzip.open( + os.path.join(save_dir, "params_pass_%d.tar" % + event.pass_id), "w") as f: + trainer.save_parameter_to_tar(f) + + trainer.train( + reader=paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=8192), + batch_size=128), + event_handler=event_handler, + num_passes=5) + elif task == "dump_config": + predict = network(is_infer=True) + dump_v2_config(predict, "trainer_config.bin", True) + else: + raise RuntimeError(("Error value for parameter task. " + "Available options are: train and dump_config.")) + + +def parse_cmd(): + parser = argparse.ArgumentParser( + description="PaddlePaddle MNIST demo for CAPI.") + parser.add_argument( + "--task", + type=str, + required=False, + help=("A string indicating the taks type. " + "Available options are: \"train\", \"dump_config\"."), + default="train") + parser.add_argument( + "--use_gpu", + type=bool, + help=("A bool flag indicating whether to use GPU device or not."), + default=False) + parser.add_argument( + "--trainer_count", + type=int, + help=("This parameter is only used in training task. It indicates " + "how many computing threads are created in training."), + default=1) + parser.add_argument( + "--save_dir", + type=str, + help=("This parameter is only used in training task. It indicates " + "path of the directory to save the trained models."), + default="models") + return parser.parse_args() + + +if __name__ == "__main__": + args = parse_cmd() + main(args.task, args.use_gpu, args.trainer_count, args.save_dir) diff --git a/paddle/capi/examples/model_inference/dense/trainer_config.py b/paddle/capi/examples/model_inference/dense/trainer_config.py index 873ec119e7..fbf0890357 100644 --- a/paddle/capi/examples/model_inference/dense/trainer_config.py +++ b/paddle/capi/examples/model_inference/dense/trainer_config.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * img = data_layer(name='pixel', size=784) diff --git a/paddle/capi/examples/model_inference/multi_thread/CMakeLists.txt b/paddle/capi/examples/model_inference/multi_thread/CMakeLists.txt index 98e411ddc0..2fc8debdde 100644 --- a/paddle/capi/examples/model_inference/multi_thread/CMakeLists.txt +++ b/paddle/capi/examples/model_inference/multi_thread/CMakeLists.txt @@ -1,8 +1,29 @@ project(multi_thread) cmake_minimum_required(VERSION 2.8) -aux_source_directory(. SRC_LIST) -add_executable(${PROJECT_NAME} ${SRC_LIST}) + find_package (Threads) + +if(NOT PADDLE_ROOT) + set(PADDLE_ROOT $ENV{PADDLE_ROOT} CACHE PATH "Paddle Path") +endif() +if(PADDLE_ROOT) + include_directories(${PADDLE_ROOT}/include) + link_directories(${PADDLE_ROOT}/lib) +endif() + +set(CPU_SRCS main.c) +add_executable(${PROJECT_NAME} ${CPU_SRCS}) set_property(TARGET ${PROJECT_NAME} PROPERTY C_STANDARD 99) -target_link_libraries(${PROJECT_NAME} -lpaddle_capi_shared - ${CMAKE_THREAD_LIBS_INIT}) +target_link_libraries(${PROJECT_NAME} + -lpaddle_capi_shared + ${CMAKE_THREAD_LIBS_INIT}) + +find_package(CUDA QUIET) +if(CUDA_FOUND) + set(GPU_SRCS main_gpu.c) + cuda_add_executable(${PROJECT_NAME}_gpu ${GPU_SRCS}) + set_property(TARGET ${PROJECT_NAME}_gpu PROPERTY C_STANDARD 99) + target_link_libraries(${PROJECT_NAME}_gpu + -lpaddle_capi_shared + ${CMAKE_THREAD_LIBS_INIT}) +endif(CUDA_FOUND) diff --git a/paddle/capi/examples/model_inference/multi_thread/main_gpu.c b/paddle/capi/examples/model_inference/multi_thread/main_gpu.c new file mode 100644 index 0000000000..6fd376e0d1 --- /dev/null +++ b/paddle/capi/examples/model_inference/multi_thread/main_gpu.c @@ -0,0 +1,113 @@ +#include +#include +#include +#include "../common/common.h" + +#define CONFIG_BIN "./trainer_config.bin" +#define NUM_THREAD 4 +#define NUM_ITER 1000 + +pthread_mutex_t mutex; + +/* + * @brief It is an simple inference example that runs multi-threads on a GPU. + * Each thread holds it own local gradient_machine but shares the same + * parameters. + * If you want to run on different GPUs, you need to launch + * multi-processes or set trainer_count > 1. + */ +void* thread_main(void* gm_ptr) { + // Initialize the thread environment of Paddle. + CHECK(paddle_init_thread()); + + paddle_gradient_machine machine = (paddle_gradient_machine)(gm_ptr); + // Create input arguments. + paddle_arguments in_args = paddle_arguments_create_none(); + // Create input matrix. + paddle_matrix mat = paddle_matrix_create(/* sample_num */ 1, + /* size */ 784, + /* useGPU */ true); + // Create output arguments. + paddle_arguments out_args = paddle_arguments_create_none(); + // Create output matrix. + paddle_matrix prob = paddle_matrix_create_none(); + + // CPU buffer to cache the input and output. + paddle_real* cpu_input = (paddle_real*)malloc(784 * sizeof(paddle_real)); + paddle_real* cpu_output = (paddle_real*)malloc(10 * sizeof(paddle_real)); + for (int iter = 0; iter < NUM_ITER; ++iter) { + // There is only one input layer of this network. + CHECK(paddle_arguments_resize(in_args, 1)); + CHECK(paddle_arguments_set_value(in_args, 0, mat)); + + for (int i = 0; i < 784; ++i) { + cpu_input[i] = rand() / ((float)RAND_MAX); + } + CHECK(paddle_matrix_set_value(mat, cpu_input)); + + CHECK(paddle_gradient_machine_forward(machine, + in_args, + out_args, + /* isTrain */ false)); + + CHECK(paddle_arguments_get_value(out_args, 0, prob)); + CHECK(paddle_matrix_get_value(prob, cpu_output)); + + pthread_mutex_lock(&mutex); + printf("Prob: "); + for (int i = 0; i < 10; ++i) { + printf("%.2f ", cpu_output[i]); + } + printf("\n"); + pthread_mutex_unlock(&mutex); + } + + CHECK(paddle_matrix_destroy(prob)); + CHECK(paddle_arguments_destroy(out_args)); + CHECK(paddle_matrix_destroy(mat)); + CHECK(paddle_arguments_destroy(in_args)); + CHECK(paddle_gradient_machine_destroy(machine)); + + free(cpu_input); + free(cpu_output); + + return NULL; +} + +int main() { + // Initalize Paddle + char* argv[] = {"--use_gpu=True"}; + CHECK(paddle_init(1, (char**)argv)); + + // Reading config binary file. It is generated by `convert_protobin.sh` + long size; + void* buf = read_config(CONFIG_BIN, &size); + + // Create a gradient machine for inference. + paddle_gradient_machine machine; + CHECK(paddle_gradient_machine_create_for_inference(&machine, buf, (int)size)); + CHECK(paddle_gradient_machine_randomize_param(machine)); + + // Loading parameter. Uncomment the following line and change the directory. + // CHECK(paddle_gradient_machine_load_parameter_from_disk(machine, + // "./some_where_to_params")); + srand(time(0)); + pthread_mutex_init(&mutex, NULL); + + pthread_t threads[NUM_THREAD]; + + for (int i = 0; i < NUM_THREAD; ++i) { + paddle_gradient_machine thread_local_machine; + CHECK(paddle_gradient_machine_create_shared_param( + machine, buf, size, &thread_local_machine)); + pthread_create(&threads[i], NULL, thread_main, thread_local_machine); + } + + for (int i = 0; i < NUM_THREAD; ++i) { + pthread_join(threads[i], NULL); + } + + pthread_mutex_destroy(&mutex); + + return 0; +} diff --git a/paddle/capi/examples/model_inference/sequence/trainer_config.py b/paddle/capi/examples/model_inference/sequence/trainer_config.py index 6bbc7a909a..c1326bb955 100644 --- a/paddle/capi/examples/model_inference/sequence/trainer_config.py +++ b/paddle/capi/examples/model_inference/sequence/trainer_config.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * WORD_DIM = 3000 diff --git a/paddle/capi/examples/model_inference/sparse_binary/main.c b/paddle/capi/examples/model_inference/sparse_binary/main.c index 8ba67aee56..029b94ee63 100644 --- a/paddle/capi/examples/model_inference/sparse_binary/main.c +++ b/paddle/capi/examples/model_inference/sparse_binary/main.c @@ -1,5 +1,6 @@ #include #include + #include "../common/common.h" #define CONFIG_BIN "./trainer_config.bin" @@ -9,16 +10,18 @@ int main() { char* argv[] = {"--use_gpu=False"}; CHECK(paddle_init(1, (char**)argv)); - // Reading config binary file. It is generated by `convert_protobin.sh` + // Read the binary configuration file which is generated by + // `convert_protobin.sh` long size; void* buf = read_config(CONFIG_BIN, &size); - // Create a gradient machine for inference. + // Create the gradient machine for inference. paddle_gradient_machine machine; CHECK(paddle_gradient_machine_create_for_inference(&machine, buf, (int)size)); CHECK(paddle_gradient_machine_randomize_param(machine)); - // Loading parameter. Uncomment the following line and change the directory. + // Load the trained parameters. Uncomment the following line and change the + // directory as needed. // CHECK(paddle_gradient_machine_load_parameter_from_disk(machine, // "./some_where_to_params")); paddle_arguments in_args = paddle_arguments_create_none(); @@ -26,7 +29,7 @@ int main() { // There is only one input of this network. CHECK(paddle_arguments_resize(in_args, 1)); - // Create input matrix. + // Create the input matrix. paddle_matrix mat = paddle_matrix_create_sparse(1, 784, 3, true, false); srand(time(0)); paddle_real* array; diff --git a/paddle/capi/gradient_machine.cpp b/paddle/capi/gradient_machine.cpp index 482b51e8a8..1f0e033c5b 100644 --- a/paddle/capi/gradient_machine.cpp +++ b/paddle/capi/gradient_machine.cpp @@ -168,3 +168,13 @@ paddle_error paddle_gradient_machine_get_layer_output( out->args.push_back(layerOutput); return kPD_NO_ERROR; } + +paddle_error paddle_gradient_machine_release_layer_output( + paddle_gradient_machine machine) { + auto m = cast(machine); + if (m == nullptr || m->machine == nullptr) { + return kPD_NULLPTR; + } + m->machine->releaseOutput(); + return kPD_NO_ERROR; +} diff --git a/paddle/capi/gradient_machine.h b/paddle/capi/gradient_machine.h index 28eeb23e3b..7e37dea00b 100644 --- a/paddle/capi/gradient_machine.h +++ b/paddle/capi/gradient_machine.h @@ -113,6 +113,14 @@ paddle_gradient_machine_get_layer_output(paddle_gradient_machine machine, const char* layerName, paddle_arguments args); +/** + * @brief Release the middle layer's output memory of the gradient machine. + * @param [in] gradient machine that have run a inference + * @return paddle_error + */ +PD_API paddle_error +paddle_gradient_machine_release_layer_output(paddle_gradient_machine machine); + #ifdef __cplusplus } #endif diff --git a/paddle/capi/main.h b/paddle/capi/main.h index 893ebcbd58..99c4e8428d 100644 --- a/paddle/capi/main.h +++ b/paddle/capi/main.h @@ -26,6 +26,13 @@ extern "C" { */ PD_API paddle_error paddle_init(int argc, char** argv); +/** + * Initialize the thread environment of Paddle. + * @note it is requisite for GPU runs but optional for CPU runs. + * For GPU runs, all threads will run on the same GPU devices. + */ +PD_API paddle_error paddle_init_thread(); + #ifdef __cplusplus } #endif diff --git a/paddle/capi/tests/test_predict_network.py b/paddle/capi/tests/test_predict_network.py index 82ef5cb1a7..46a985d476 100644 --- a/paddle/capi/tests/test_predict_network.py +++ b/paddle/capi/tests/test_predict_network.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=100) diff --git a/paddle/cuda/src/avx_mathfun.h b/paddle/cuda/src/avx_mathfun.h index 2412ed5abc..a0ba71faba 100644 --- a/paddle/cuda/src/avx_mathfun.h +++ b/paddle/cuda/src/avx_mathfun.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* AVX implementation of sin, cos, sincos, exp and log diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 4b0eff3adb..8e5a956061 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -5,10 +5,18 @@ cc_library(ddim SRCS ddim.cc DEPS eigen3) cc_test(ddim_test SRCS ddim_test.cc DEPS ddim) nv_test(dim_test SRCS dim_test.cu DEPS ddim) -cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context) +if (WITH_GPU) + nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS ddim place paddle_memory device_context framework_proto) +else() + cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS ddim place paddle_memory device_context framework_proto) +endif () cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) -cc_test(tensor_util_test SRCS tensor_util_test.cc DEPS tensor) +if (WITH_GPU) + nv_test(tensor_util_test SRCS tensor_util_test.cc tensor_util_test.cu DEPS tensor) +else() + cc_test(tensor_util_test SRCS tensor_util_test.cc DEPS tensor) +endif() cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) @@ -18,9 +26,23 @@ nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor) cc_test(variable_test SRCS variable_test.cc) -cc_library(scope SRCS scope.cc DEPS glog) +cc_library(threadpool SRCS threadpool.cc) +cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool) + +cc_library(scope SRCS scope.cc DEPS glog threadpool) cc_test(scope_test SRCS scope_test.cc DEPS scope) +cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor) +nv_test(data_device_transform_test SRCS data_device_transform_test.cu + DEPS operator op_registry init math_function) + +cc_library(data_type_transform SRCS data_type_transform.cc DEPS tensor) + +cc_library(data_layout_transform SRCS data_layout_transform.cc DEPS tensor math_function) +cc_test(data_layout_transform_test SRCS data_layout_transform_test.cc DEPS data_layout_transform) + +cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor + framework_proto selected_rows data_device_transform data_type_transform data_layout_transform) cc_library(attribute SRCS attribute.cc DEPS framework_proto) cc_test(program_desc_test SRCS program_desc_test.cc DEPS proto_desc @@ -28,13 +50,14 @@ device_context) cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute) cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) -cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute) -cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog shape_inference) -cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) +cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context) +cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog + shape_inference data_transform lod_tensor) +cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry init) cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog) cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc) -cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) +nv_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) py_proto_compile(framework_py_proto SRCS framework.proto) # Generate an empty __init__.py to make framework_py_proto as a valid python module. @@ -58,3 +81,9 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry proto_desc) cc_library(selected_rows SRCS selected_rows.cc DEPS tensor) cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows) + +cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece operator) +cc_test(init_test SRCS init_test.cc DEPS init) + +cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto) +cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc) diff --git a/paddle/framework/attribute.cc b/paddle/framework/attribute.cc index b1e1793641..b0fd4d2750 100644 --- a/paddle/framework/attribute.cc +++ b/paddle/framework/attribute.cc @@ -19,42 +19,42 @@ limitations under the License. */ namespace paddle { namespace framework { -Attribute GetAttrValue(const OpDesc::Attr& attr_desc) { +Attribute GetAttrValue(const proto::OpDesc::Attr& attr_desc) { switch (attr_desc.type()) { - case framework::AttrType::BOOLEAN: { + case proto::AttrType::BOOLEAN: { return attr_desc.b(); } - case framework::AttrType::INT: { + case proto::AttrType::INT: { return attr_desc.i(); } - case framework::AttrType::FLOAT: { + case proto::AttrType::FLOAT: { return attr_desc.f(); } - case framework::AttrType::STRING: { + case proto::AttrType::STRING: { return attr_desc.s(); } - case framework::AttrType::BOOLEANS: { + case proto::AttrType::BOOLEANS: { std::vector val(attr_desc.bools_size()); for (int i = 0; i < attr_desc.bools_size(); ++i) { val[i] = attr_desc.bools(i); } return val; } - case framework::AttrType::INTS: { + case proto::AttrType::INTS: { std::vector val(attr_desc.ints_size()); for (int i = 0; i < attr_desc.ints_size(); ++i) { val[i] = attr_desc.ints(i); } return val; } - case framework::AttrType::FLOATS: { + case proto::AttrType::FLOATS: { std::vector val(attr_desc.floats_size()); for (int i = 0; i < attr_desc.floats_size(); ++i) { val[i] = attr_desc.floats(i); } return val; } - case framework::AttrType::STRINGS: { + case proto::AttrType::STRINGS: { std::vector val(attr_desc.strings_size()); for (int i = 0; i < attr_desc.strings_size(); ++i) { val[i] = attr_desc.strings(i); diff --git a/paddle/framework/attribute.h b/paddle/framework/attribute.h index 0641907d6f..c1c63d9cb1 100644 --- a/paddle/framework/attribute.h +++ b/paddle/framework/attribute.h @@ -27,12 +27,12 @@ limitations under the License. */ namespace paddle { namespace framework { template -inline AttrType AttrTypeID() { +inline proto::AttrType AttrTypeID() { Attribute tmp = T(); - return static_cast(tmp.which() - 1); + return static_cast(tmp.which() - 1); } -Attribute GetAttrValue(const OpDesc::Attr& attr_desc); +Attribute GetAttrValue(const proto::OpDesc::Attr& attr_desc); class AttrReader { public: diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index 7294ba1a9c..85e693434a 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/backward.h" #include "paddle/operators/net_op.h" @@ -42,7 +42,7 @@ static std::unordered_set& CtrlFlowOps() { static inline std::unique_ptr CreateGradOp( const OperatorBase& op, const std::unordered_set& no_grad_set, std::unordered_map* grad_to_var) { - OpDescBind op_desc; + OpDesc op_desc; op_desc.SetInputMap(op.Inputs()); op_desc.SetOutputMap(op.Outputs()); op_desc.SetType(op.Type()); @@ -53,7 +53,7 @@ static inline std::unique_ptr CreateGradOp( grad_ops.reserve(grad_descs.size()); std::transform(grad_descs.begin(), grad_descs.end(), std::back_inserter(grad_ops), - [](const std::unique_ptr& grad_desc) { + [](const std::unique_ptr& grad_desc) { return OpRegistry::CreateOp(*grad_desc); }); PADDLE_ENFORCE(!grad_ops.empty()); @@ -190,8 +190,9 @@ static std::unique_ptr BackwardRecursive( // collect all the offset for each alias, // insert a sum operator to add all aliases to output insert_position.push_back( - {dup_op.back(), OpRegistry::CreateOp("sum", {{"X", dup_outputs}}, - {{"Out", {name}}}, {})}); + {dup_op.back(), + OpRegistry::CreateOp("sum", {{"X", dup_outputs}}, {{"Out", {name}}}, + AttributeMap{})}); } // make sure the inserted `sum` ops follow the BFS order. @@ -216,7 +217,8 @@ static std::unique_ptr BackwardRecursive( // If part of input gradient of that operator is not calculated, fill // zero variables to that input gradient. net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}}, - {{"Y", {grad_input}}}, {})); + {{"Out", {grad_input}}}, + AttributeMap{})); } return false; }); @@ -294,7 +296,7 @@ static std::string FwdName(const std::string& grad_name) { static void CreateGradVarInBlock( size_t grad_op_start_index, const std::unordered_map& param_name_map, - BlockDescBind* block_desc, + BlockDesc* block_desc, std::unordered_map* grad_var_record) { auto ops = block_desc->AllOps(); for (size_t op_index = grad_op_start_index; op_index < ops.size(); @@ -339,7 +341,7 @@ static void CreateGradVarInBlock( auto* param = block_desc->FindVarRecursive(pname); auto* grad = block_desc->FindVar(arg); if (param == nullptr) { - grad->SetDataType(DataType::FP32); + grad->SetDataType(proto::DataType::FP32); } else { grad->SetDataType(param->GetDataType()); } @@ -348,12 +350,11 @@ static void CreateGradVarInBlock( } } -std::vector> MakeOpGrad( - const OpDescBind* op_desc, std::unordered_set* no_grad_vars, +std::vector> MakeOpGrad( + const OpDesc* op_desc, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var, - const std::vector& grad_block = - std::vector()) { - std::vector> grad_op_descs; + const std::vector& grad_block = std::vector()) { + std::vector> grad_op_descs; // All input gradients of forwarding operator do not need to calculate. const std::vector& inputs = op_desc->InputArgumentNames(); if (AllGradInSet(inputs, *no_grad_vars)) { @@ -384,7 +385,7 @@ std::vector> MakeOpGrad( .Get(op_desc->Type()) .GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var, grad_block); - std::list> pending_fill_zeros_ops; + std::list> pending_fill_zeros_ops; for (auto& desc : grad_op_descs) { for (const std::string& in_name : desc->InputArgumentNames()) { if (no_grad_vars->count(in_name)) { @@ -392,8 +393,9 @@ std::vector> MakeOpGrad( 0, in_name.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1); std::string new_name = prefix + kZeroVarSuffix; desc->Rename(in_name, new_name); - std::unique_ptr fill_zeros_op(new OpDescBind( - "fill_zeros_like", {{"X", {prefix}}}, {{"Y", {new_name}}}, {})); + std::unique_ptr fill_zeros_op( + new OpDesc("fill_zeros_like", {{"X", {prefix}}}, + {{"Out", {new_name}}}, AttributeMap{})); pending_fill_zeros_ops.push_back(std::move(fill_zeros_op)); } } @@ -405,36 +407,36 @@ std::vector> MakeOpGrad( return grad_op_descs; } -static BlockDescBind* CreateStepBlock( - ProgramDescBind& program_desc, - std::unordered_set* no_grad_vars, +static BlockDesc* CreateStepBlock( + ProgramDesc& program_desc, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var, int step_block_idx); -std::vector> MakeBlockBackward( - ProgramDescBind& program_desc, int block_idx, +std::vector> MakeBlockBackward( + ProgramDesc& program_desc, int block_idx, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var) { VLOG(5) << "MakeBlockBackward"; - BlockDescBind* cur_block = program_desc.MutableBlock(block_idx); - std::vector op_descs = cur_block->AllOps(); + BlockDesc* cur_block = program_desc.MutableBlock(block_idx); + std::vector op_descs = cur_block->AllOps(); std::unordered_map> dup_out_ops; size_t grad_desc_idx = 0; - std::vector> backward_descs; + std::vector> backward_descs; for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) { VLOG(5) << "Making backward " << (*it)->Type() << " op"; - std::vector> op_grads; + std::vector> op_grads; - if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") { - int step_block_idx = (*it)->GetBlockAttr("step_block"); - BlockDescBind* backward_block = CreateStepBlock( - program_desc, no_grad_vars, grad_to_var, step_block_idx); + if ((*it)->Type() == "recurrent" || (*it)->Type() == "while" || + (*it)->Type() == "parallel_do") { + int step_block_idx = (*it)->GetBlockAttr("sub_block"); + BlockDesc* backward_block = CreateStepBlock(program_desc, no_grad_vars, + grad_to_var, step_block_idx); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); } else if ((*it)->Type() == "conditional_block") { - BlockDescBind* backward_block = + BlockDesc* backward_block = CreateStepBlock(program_desc, no_grad_vars, grad_to_var, - (*it)->GetBlockAttr("block")); + (*it)->GetBlockAttr("sub_block")); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); } else { op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var); @@ -460,14 +462,14 @@ std::vector> MakeBlockBackward( } ++grad_desc_idx; } - std::transform( - op_grads.begin(), op_grads.end(), std::back_inserter(backward_descs), - [](std::unique_ptr& ptr) { return std::move(ptr); }); + std::transform(op_grads.begin(), op_grads.end(), + std::back_inserter(backward_descs), + [](std::unique_ptr& ptr) { return std::move(ptr); }); } VLOG(5) << "Appending Sums"; // Check whether some variables are written more than once - std::list>> pending_sum_ops; + std::list>> pending_sum_ops; for (const auto& dup : dup_out_ops) { const std::string& out_name = dup.first; const std::vector dup_op = dup.second; @@ -483,17 +485,17 @@ std::vector> MakeBlockBackward( sum_op_inputs.emplace_back(new_name); next_g_name = sum_op_inputs.back(); } - std::unique_ptr sum_op(new OpDescBind( - "sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {})); + std::unique_ptr sum_op(new OpDesc("sum", {{"X", sum_op_inputs}}, + {{"Out", {out_name}}}, + AttributeMap{})); pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)}); } } - pending_sum_ops.sort( - [](const std::pair>& a, - const std::pair>& b) { - return a.first > b.first; - }); + pending_sum_ops.sort([](const std::pair>& a, + const std::pair>& b) { + return a.first > b.first; + }); for (auto& p : pending_sum_ops) { backward_descs.insert(backward_descs.begin() + p.first + 1, std::move(p.second)); @@ -504,14 +506,13 @@ std::vector> MakeBlockBackward( return backward_descs; } -static BlockDescBind* CreateStepBlock( - ProgramDescBind& program_desc, - std::unordered_set* no_grad_vars, +static BlockDesc* CreateStepBlock( + ProgramDesc& program_desc, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var, int step_block_idx) { auto backward_block_op_descs = MakeBlockBackward(program_desc, step_block_idx, no_grad_vars, grad_to_var); - BlockDescBind* backward_block = + BlockDesc* backward_block = program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx)); for (auto& ptr : backward_block_op_descs) { backward_block->AppendAllocatedOp(move(ptr)); @@ -520,7 +521,7 @@ static BlockDescBind* CreateStepBlock( } ParamGradInfoMap AppendBackward( - ProgramDescBind& program_desc, const VarDescBind& target, + ProgramDesc& program_desc, const VarDesc& target, const std::unordered_set& no_grad_vars) { std::unordered_set no_grad_var_names; no_grad_var_names.reserve(no_grad_vars.size() + 1); @@ -537,11 +538,11 @@ ParamGradInfoMap AppendBackward( PADDLE_ENFORCE(is_scalar, "target should be scalar"); VLOG(3) << "backward from loss=" << target.Name() << " data_type=" << target.GetDataType(); - std::unique_ptr fill_one_op( - new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}}, - {{"shape", std::vector{1}}, - {"value", static_cast(1.0)}, - {"dtype", target.GetDataType()}})); + std::unique_ptr fill_one_op( + new OpDesc("fill_constant", {}, {{"Out", {fill_one_op_out}}}, + {{"shape", std::vector{1}}, + {"value", static_cast(1.0)}, + {"dtype", target.GetDataType()}})); // infer var type of fill_one_op fill_one_op->InferVarType(root_block); diff --git a/paddle/framework/backward.h b/paddle/framework/backward.h index 96154fa82c..69ee380236 100644 --- a/paddle/framework/backward.h +++ b/paddle/framework/backward.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -49,7 +49,7 @@ using ParamGradInfoMap = std::unordered_map; ParamGradInfoMap AppendBackward( - ProgramDescBind& program_desc, const VarDescBind& target, + ProgramDesc& program_desc, const VarDesc& target, const std::unordered_set& no_grad_vars); } // namespace framework diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md deleted file mode 100644 index ac60be5724..0000000000 --- a/paddle/framework/backward.md +++ /dev/null @@ -1,100 +0,0 @@ -# Operator/expression 's Backward - -## Motivation - -In Neural Network, most models are solved by the backpropagation algorithm(known as **BP**) at present. Technically, BP calculates the gradient of the loss function, then propagates it back through the networks following the chain rule. Hence we need a module that chains the gradient operators/expressions together to construct the backward pass. Every forward network needs a backward network to construct the full computation graph. The operator/expression's backward pass will be generated with respect to the forward pass. - -## Implementation - -In this design doc, we exported only one API for generating the backward pass. - -```c++ -std::unique_ptr Backward(const OperatorBase& forwardOp, - const std::unordered_set& no_grad_vars); -``` - -The implementation behind it can be divided into two parts, **Backward Operator Creating** and **Backward Operator Building**. - -### Backward Operator Registry - -A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs, and output gradients and then calculate its input gradients. - -| | forward operator | backward operator -| ---------------------- | ---------------- |------------------------- | -| **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients | -| **Operator::outputs_** | Outputs | InputGradients | - - In most cases, there is a one-to-one relation between the forward and backward operators. These relations are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and to make operators pluggable, the registry mechanism is introduced. - -For example, we have `mul_op`, and we can register its information and corresponding backward operator by the following macro: - -```cpp -REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad); -``` - -`mul` is the operator's type. `MulOp` and `MulOpMaker` are the operator class and the operator maker class respectively. - -`mul_grad` is the type of backward operator, and `MulOpGrad` is its class name. - -### Backward Opeartor Creating - -Given a certain forward operator, we can get its corresponding backward operator by calling: - -```cpp -OperatorBase* bwd_op = BuildGradOp(const OperatorBase* fwd_op); -``` - -The function `BuildGradOp` will sequentially execute following processes: - -1. Get the `type_` of given forward operator, and then get the corresponding backward operator's type by looking up the `OpInfoMap`. - -2. Build two maps named `inputs` and `outputs` to temporarily store backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing. - -3. Add forward inputs' gradient variables into map `output`, adding forward outputs' gradient variables into map `input`. - -4. Building backward operator with `inputs`, `outputs` and forward operator's attributes. - -### Backward Network Building - -A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and appending them together one by one. There are some corner cases that need special processing. - -1. Op - - When the input forward network is an Op, return its gradient Operator immediately. If all of its outputs are in no gradient set, then return a special `NOP`. - -2. NetOp - - In our design, the network itself is also a kind of operator(**NetOp**). So the operators contained by a big network may be some small network. When the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp. - -3. RnnOp - - RnnOp is a nested stepnet operator. Backward module needs to recusively call `Backward` for every stepnet. - -4. Sharing Variables - - As illustrated in the figure 1 and figure 2, two operators share the same variable name **W@GRAD**, which will overwrite their shared input variable. - -

-
- -​ Figure 1. Sharing variables in operators. - -

- -​ Sharing variable between operators or same input variable used in multiple operators can lead to duplicate gradient variables. As illustrated in figure 2, we need to rename the gradient names recursively and add a generic add operator to prevent overwriting. - -

-
- -​ Figure 2. Replace sharing variable's gradient with `Add` operator. - -

- -​ Because the framework finds variables according to their names, we need to rename the output links. We add an integer suffix to represent its position in the clockwise direction. - -5. Part of the Gradient is Zero. - - In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implementation, we insert a special `fillZeroLike` operator. - - -Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it. diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index 2b858f5ea0..72743b5fd0 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include "paddle/framework/backward.h" @@ -58,13 +58,13 @@ class RowWiseAddGradMaker : public SingleGradOpDescMaker { using SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto grad_op = new OpDescBind(); + std::unique_ptr Apply() const override { + auto grad_op = new OpDesc(); grad_op->SetInput(GradVarName("Out"), OutputGrad("Out")); grad_op->SetOutput(GradVarName("X"), InputGrad("X")); grad_op->SetOutput(GradVarName("b"), InputGrad("b")); grad_op->SetType("rowwise_add_grad"); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -106,15 +106,15 @@ class FcOp : public operators::NetOp { FcOp(const std::string &type, const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs) : NetOp(type, inputs, outputs, attrs) { - AppendOp(OpRegistry::CreateOp("mul", - {{"X", {Input("X")}}, {"Y", {Input("W")}}}, - {{"Out", {Output("mul_result")}}}, {})); + AppendOp(OpRegistry::CreateOp( + "mul", {{"X", {Input("X")}}, {"Y", {Input("W")}}}, + {{"Out", {Output("mul_result")}}}, AttributeMap{})); auto input_b = Inputs("b"); std::string before_act = "mul_result"; if (input_b.size() != 0) { AppendOp(OpRegistry::CreateOp( "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}}, - {{"Out", {Output("add_result")}}}, {})); + {{"Out", {Output("add_result")}}}, AttributeMap{})); before_act = "add_result"; } else { auto out_varname = Output("add_result"); @@ -124,7 +124,7 @@ class FcOp : public operators::NetOp { } AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}}, - {{"Out", {Output("Out")}}}, {})); + {{"Out", {Output("Out")}}}, AttributeMap{})); CompleteAddOp(false); } }; @@ -159,14 +159,14 @@ class FillZeroOpMaker : public OpProtoAndCheckerMaker { FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "x"); - AddOutput("Y", "out"); + AddOutput("Out", "out"); AddComment(""); } }; class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: - SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SumOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "the input tensors of sum operator.").AsDuplicable(); AddOutput("Out", "the output tensor of sum operator."); @@ -190,11 +190,11 @@ class MinusGradOpDescMaker : public GradOpDescMakerBase { public: using GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() const override { - std::vector> retv; + std::vector> operator()() const override { + std::vector> retv; auto x_g = InputGrad("X"); if (!x_g.empty()) { - auto *op_desc = new OpDescBind(); + auto *op_desc = new OpDesc(); op_desc->SetType("scale"); op_desc->SetInput("X", OutputGrad("Out")); op_desc->SetOutput("Out", x_g); @@ -204,7 +204,7 @@ class MinusGradOpDescMaker : public GradOpDescMakerBase { auto y_g = InputGrad("Y"); if (!y_g.empty()) { - auto *op_desc = new OpDescBind(); + auto *op_desc = new OpDesc(); op_desc->SetType("scale"); op_desc->SetInput("X", OutputGrad("Out")); op_desc->SetOutput("Out", y_g); @@ -278,8 +278,9 @@ REGISTER_OPERATOR(scale, f::NoneOp); REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel); TEST(Backward, simple_op_not_need_grad) { - auto fwd = f::OpRegistry::CreateOp( - "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); + auto fwd = + f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, + {{"Out", {"out"}}}, f::AttributeMap{}); ASSERT_NE(fwd, nullptr); auto gop = f::Backward(*fwd, {"x"}); ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName); @@ -296,9 +297,10 @@ TEST(Backward, net_fc_backward_normal) { {{"mul_result", {"mul_res"}}, {"add_result", {"add_re"}}, {"Out", {"out"}}}, - {}); + f::AttributeMap{}); ASSERT_NE(fwd, nullptr); - std::shared_ptr gop = f::Backward(*fwd, {}); + std::shared_ptr gop = + f::Backward(*fwd, std::unordered_set{}); ASSERT_TRUE(gop->IsNetOp()); auto net = static_cast(gop.get()); @@ -322,9 +324,10 @@ TEST(Backward, net_fc_backward_not_have_b) { {{"mul_result", {"mul_res"}}, {"add_result", {"add_res"}}, {"Out", {"tmp"}}}, - {}); + f::AttributeMap{}); ASSERT_NE(fwd, nullptr); - std::shared_ptr gop = f::Backward(*fwd, {}); + std::shared_ptr gop = + f::Backward(*fwd, std::unordered_set{}); ASSERT_TRUE(gop->IsNetOp()); auto net = static_cast(gop.get()); @@ -346,13 +349,13 @@ TEST(Backward, net_input_of_network_not_need_grad) { {{"mul_result", {"mul_tmp_0"}}, {"add_result", {"add_tmp_0"}}, {"Out", {"hidden0"}}}, - {})); + f::AttributeMap{})); net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}}, {{"mul_result", {"mul_tmp_1"}}, {"add_result", {"add_tmp_1"}}, {"Out", {"hidden1"}}}, - {})); + f::AttributeMap{})); net.CompleteAddOp(); auto bwd = Backward(net, {"x"}); // x@GRAD is not need. ASSERT_TRUE(bwd->IsNetOp()); @@ -381,12 +384,13 @@ TEST(Backward, net_input_of_network_not_need_grad) { TEST(Backward, net_shared_weight) { ops::NetOp net; net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}}, - {{"Out", {"out"}}}, {})); + {{"Out", {"out"}}}, f::AttributeMap{})); net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}}, - {{"Out", {"FinalOut"}}}, {})); + {{"Out", {"FinalOut"}}}, + f::AttributeMap{})); net.CompleteAddOp(); - auto bwd = f::Backward(net, {}); + auto bwd = f::Backward(net, std::unordered_set{}); ASSERT_TRUE(bwd->IsNetOp()); auto bwd_net = static_cast(bwd.get()); ASSERT_EQ(3UL, bwd_net->ops_.size()); @@ -394,8 +398,9 @@ TEST(Backward, net_shared_weight) { } TEST(Backward, op_all_input_are_not_need) { - auto fwd = f::OpRegistry::CreateOp( - "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); + auto fwd = + f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, + {{"Out", {"out"}}}, f::AttributeMap{}); auto backward = f::Backward(*fwd, {"x", "b"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); @@ -403,8 +408,9 @@ TEST(Backward, op_all_input_are_not_need) { } TEST(Backward, op_all_output_are_not_need) { - auto fwd = f::OpRegistry::CreateOp( - "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); + auto fwd = + f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, + {{"Out", {"out"}}}, f::AttributeMap{}); auto backward = f::Backward(*fwd, {"out"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); @@ -412,8 +418,9 @@ TEST(Backward, op_all_output_are_not_need) { } TEST(Backward, op_part_of_output_are_not_need) { - auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}}, - {{"y", {"Y"}}, {"z", {"Z"}}}, {}); + auto fwd = + f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}}, + {{"y", {"Y"}}, {"z", {"Z"}}}, f::AttributeMap{}); auto backward = f::Backward(*fwd, {"Z"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); @@ -423,8 +430,8 @@ TEST(Backward, op_part_of_output_are_not_need) { ASSERT_EQ("fill_zeros_like", fill_zero.Type()); ASSERT_EQ(1UL, fill_zero.Inputs("X").size()); ASSERT_EQ("Z", fill_zero.Input("X")); - ASSERT_EQ(1UL, fill_zero.Outputs("Y").size()); - ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Y")); + ASSERT_EQ(1UL, fill_zero.Outputs("Out").size()); + ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Out")); auto &d_many_out = *net->ops_[1]; ASSERT_EQ("many_output_op_grad", d_many_out.Type()); @@ -437,7 +444,7 @@ TEST(Backward, op_part_of_output_are_not_need) { TEST(Backward, op_part_of_input_are_not_need) { auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}}, - {{"Out", {"out"}}}, {}); + {{"Out", {"out"}}}, f::AttributeMap{}); auto backward = f::Backward(*fwd, {"a"}); auto &grad_mul = *backward; ASSERT_EQ(grad_mul.Type(), "mul_grad"); @@ -458,19 +465,19 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { {{"mul_result", {"mul_out1"}}, {"add_result", {"add_out1"}}, {"Out", {"out1"}}}, - {})); + f::AttributeMap{})); net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}}, {{"mul_result", {"mul_out2"}}, {"add_result", {"tmp_out2"}}, {"Out", {"out2"}}}, - {})); + f::AttributeMap{})); net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}}, {{"mul_result", {"mul_out3"}}, {"add_result", {"tmp_out3"}}, {"Out", {"out3"}}}, - {})); + f::AttributeMap{})); net.CompleteAddOp(); auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"}); @@ -498,24 +505,25 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { } TEST(Backward, simple_single_op) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - f::OpDescBind *op = block->AppendOp(); + f::OpDesc *op = block->AppendOp(); op->SetType("rowwise_add"); op->SetInput("X", {"x"}); op->SetInput("b", {"b"}); op->SetOutput("Out", {"out"}); - auto target = f::VarDescBind("out"); + auto target = f::VarDesc("out"); target.SetShape({1}); - auto var_to_grad = AppendBackward(program, target, {}); + auto var_to_grad = + AppendBackward(program, target, std::unordered_set{}); ASSERT_EQ(block->AllOps().size(), 3UL); - f::OpDescBind *fill_op = block->AllOps()[1]; + f::OpDesc *fill_op = block->AllOps()[1]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op = block->AllOps()[2]; + f::OpDesc *grad_op = block->AllOps()[2]; EXPECT_EQ(grad_op->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op->InputNames().size(), 1UL); ASSERT_EQ(grad_op->OutputNames().size(), 2UL); @@ -535,63 +543,64 @@ TEST(Backward, simple_single_op) { } TEST(Backward, default_attribute) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op = block->AppendOp(); op->SetType("mul"); op->SetInput("X", {"x"}); op->SetInput("Y", {"y"}); op->SetOutput("Out", {"out"}); op->CheckAttrs(); - auto target = f::VarDescBind("out"); + auto target = f::VarDesc("out"); target.SetShape({1}); - AppendBackward(program, target, {}); + AppendBackward(program, target, std::unordered_set{}); ASSERT_EQ(block->AllOps().size(), 3UL); EXPECT_EQ(boost::get(op->GetAttr("x_num_col_dims")), 1); EXPECT_EQ(boost::get(op->GetAttr("y_num_col_dims")), 1); - f::OpDescBind *fill_op = block->AllOps()[1]; + f::OpDesc *fill_op = block->AllOps()[1]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op = block->AllOps()[2]; + f::OpDesc *grad_op = block->AllOps()[2]; ASSERT_EQ(grad_op->Type(), "mul_grad"); EXPECT_EQ(boost::get(grad_op->GetAttr("x_num_col_dims")), 1); EXPECT_EQ(boost::get(grad_op->GetAttr("y_num_col_dims")), 1); } TEST(Backward, simple_mult_op) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op1 = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op1 = block->AppendOp(); op1->SetType("rowwise_add"); op1->SetInput("X", {"x1"}); op1->SetInput("b", {"b1"}); op1->SetOutput("Out", {"out1"}); - f::OpDescBind *op2 = block->AppendOp(); + f::OpDesc *op2 = block->AppendOp(); op2->SetType("mul"); op2->SetInput("X", {"out1"}); op2->SetInput("Y", {"y2"}); op2->SetOutput("Out", {"out2"}); - f::OpDescBind *op3 = block->AppendOp(); + f::OpDesc *op3 = block->AppendOp(); op3->SetType("rowwise_add"); op3->SetInput("X", {"out2"}); op3->SetInput("b", {"b3"}); op3->SetOutput("Out", {"out3"}); - auto target = f::VarDescBind("out3"); + auto target = f::VarDesc("out3"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); - auto var_to_grad = AppendBackward(program, target, {}); + auto var_to_grad = + AppendBackward(program, target, std::unordered_set{}); ASSERT_EQ(block->AllOps().size(), 6UL + 1); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op1 = block->AllOps()[6]; + f::OpDesc *grad_op1 = block->AllOps()[6]; EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op1->InputNames().size(), 1UL); ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); @@ -602,7 +611,7 @@ TEST(Backward, simple_mult_op) { EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), std::vector({f::GradVarName("b1")})); - f::OpDescBind *grad_op2 = block->AllOps()[5]; + f::OpDesc *grad_op2 = block->AllOps()[5]; EXPECT_EQ(grad_op2->Type(), "mul_grad"); ASSERT_EQ(grad_op2->InputNames().size(), 4UL); ASSERT_EQ(grad_op2->OutputNames().size(), 2UL); @@ -616,7 +625,7 @@ TEST(Backward, simple_mult_op) { EXPECT_EQ(grad_op2->Output(f::GradVarName("Y")), std::vector({f::GradVarName("y2")})); - f::OpDescBind *grad_op3 = block->AllOps()[4]; + f::OpDesc *grad_op3 = block->AllOps()[4]; EXPECT_EQ(grad_op3->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op3->InputNames().size(), 1UL); ASSERT_EQ(grad_op3->OutputNames().size(), 2UL); @@ -646,42 +655,42 @@ TEST(Backward, simple_mult_op) { } TEST(Backward, intermedia_var_no_grad) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op1 = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op1 = block->AppendOp(); op1->SetType("rowwise_add"); op1->SetInput("X", {"x1"}); op1->SetInput("b", {"b1"}); op1->SetOutput("Out", {"out1"}); - f::OpDescBind *op2 = block->AppendOp(); + f::OpDesc *op2 = block->AppendOp(); op2->SetType("mul"); op2->SetInput("X", {"x2"}); op2->SetInput("Y", {"y2"}); op2->SetOutput("Out", {"out2"}); - f::OpDescBind *op3 = block->AppendOp(); + f::OpDesc *op3 = block->AppendOp(); op3->SetType("rowwise_add"); op3->SetInput("X", {"out2"}); op3->SetInput("b", {"b3"}); op3->SetOutput("Out", {"out3"}); - f::OpDescBind *op4 = block->AppendOp(); + f::OpDesc *op4 = block->AppendOp(); op4->SetType("mul"); op4->SetInput("X", {"out1"}); op4->SetInput("Y", {"out3"}); op4->SetOutput("Out", {"out4"}); - auto target = f::VarDescBind("out4"); + auto target = f::VarDesc("out4"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"out3"}); ASSERT_EQ(block->AllOps().size(), 7UL); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op1 = block->AllOps()[6]; + f::OpDesc *grad_op1 = block->AllOps()[6]; EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op1->InputNames().size(), 1UL); ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); @@ -692,7 +701,7 @@ TEST(Backward, intermedia_var_no_grad) { EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), std::vector({f::GradVarName("b1")})); - f::OpDescBind *grad_op4 = block->AllOps()[5]; + f::OpDesc *grad_op4 = block->AllOps()[5]; EXPECT_EQ(grad_op4->Type(), "mul_grad"); ASSERT_EQ(grad_op4->InputNames().size(), 4UL); ASSERT_EQ(grad_op4->OutputNames().size(), 2UL); @@ -717,32 +726,32 @@ TEST(Backward, intermedia_var_no_grad) { } TEST(Backward, var_no_grad) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op1 = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op1 = block->AppendOp(); op1->SetType("mult_in_out"); op1->SetInput("X", {"x1"}); op1->SetInput("H", {"h1"}); op1->SetOutput("Y", {"y1"}); op1->SetOutput("Z", {"z1"}); - f::OpDescBind *op2 = block->AppendOp(); + f::OpDesc *op2 = block->AppendOp(); op2->SetType("mult_in_out"); op2->SetInput("X", {"y1"}); op2->SetInput("H", {"z1"}); op2->SetOutput("Y", {"y2"}); op2->SetOutput("Z", {"z2"}); - auto target = f::VarDescBind("z2"); + auto target = f::VarDesc("z2"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"z1"}); ASSERT_EQ(block->AllOps().size(), 6UL); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op2 = block->AllOps()[3]; + f::OpDesc *grad_op2 = block->AllOps()[3]; ASSERT_EQ(grad_op2->Type(), "mult_in_out_grad"); ASSERT_EQ(grad_op2->InputNames().size(), 6UL); ASSERT_EQ(grad_op2->OutputNames().size(), 2UL); @@ -758,15 +767,15 @@ TEST(Backward, var_no_grad) { std::vector({f::GradVarName("y1")})); EXPECT_EQ(grad_op2->Output(f::GradVarName("H")), std::vector()); - f::OpDescBind *fill_zero_op = block->AllOps()[4]; + f::OpDesc *fill_zero_op = block->AllOps()[4]; ASSERT_EQ(fill_zero_op->Type(), "fill_zeros_like"); ASSERT_EQ(fill_zero_op->InputNames().size(), 1UL); ASSERT_EQ(fill_zero_op->OutputNames().size(), 1UL); EXPECT_EQ(fill_zero_op->Input("X"), std::vector({"z1"})); - EXPECT_EQ(fill_zero_op->Output("Y"), + EXPECT_EQ(fill_zero_op->Output("Out"), std::vector({std::string("z1") + f::kZeroVarSuffix})); - f::OpDescBind *grad_op1 = block->AllOps()[5]; + f::OpDesc *grad_op1 = block->AllOps()[5]; ASSERT_EQ(grad_op1->Type(), "mult_in_out_grad"); ASSERT_EQ(grad_op1->InputNames().size(), 6UL); ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); @@ -794,36 +803,37 @@ TEST(Backward, var_no_grad) { } TEST(Backward, shared_var) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op1 = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op1 = block->AppendOp(); op1->SetType("rowwise_add"); op1->SetInput("X", {"x1"}); op1->SetInput("b", {"b1"}); op1->SetOutput("Out", {"out1"}); - f::OpDescBind *op2 = block->AppendOp(); + f::OpDesc *op2 = block->AppendOp(); op2->SetType("mul"); op2->SetInput("X", {"out1"}); op2->SetInput("Y", {"y2"}); op2->SetOutput("Out", {"out2"}); - f::OpDescBind *op3 = block->AppendOp(); + f::OpDesc *op3 = block->AppendOp(); op3->SetType("rowwise_add"); op3->SetInput("X", {"out1"}); op3->SetInput("b", {"b3"}); op3->SetOutput("Out", {"out3"}); - auto target = f::VarDescBind("out3"); + auto target = f::VarDesc("out3"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); - auto var_to_grad = AppendBackward(program, target, {}); + auto var_to_grad = + AppendBackward(program, target, std::unordered_set{}); ASSERT_EQ(block->AllOps().size(), 8UL); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op3 = block->AllOps()[4]; + f::OpDesc *grad_op3 = block->AllOps()[4]; ASSERT_EQ(grad_op3->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op3->InputNames().size(), 1UL); ASSERT_EQ(grad_op3->OutputNames().size(), 2UL); @@ -834,7 +844,7 @@ TEST(Backward, shared_var) { EXPECT_EQ(grad_op3->Output(f::GradVarName("b")), std::vector({f::GradVarName("b3")})); - f::OpDescBind *grad_op4 = block->AllOps()[5]; + f::OpDesc *grad_op4 = block->AllOps()[5]; ASSERT_EQ(grad_op4->Type(), "mul_grad"); ASSERT_EQ(grad_op4->InputNames().size(), 4UL); ASSERT_EQ(grad_op4->OutputNames().size(), 2UL); @@ -848,7 +858,7 @@ TEST(Backward, shared_var) { EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector({f::GradVarName("y2")})); - f::OpDescBind *sum_op = block->AllOps()[6]; + f::OpDesc *sum_op = block->AllOps()[6]; ASSERT_EQ(sum_op->Type(), "sum"); ASSERT_EQ(sum_op->InputNames().size(), 1UL); ASSERT_EQ(sum_op->OutputNames().size(), 1UL); @@ -858,7 +868,7 @@ TEST(Backward, shared_var) { EXPECT_EQ(sum_op->Output("Out"), std::vector({f::GradVarName("out1")})); - f::OpDescBind *grad_op1 = block->AllOps()[7]; + f::OpDesc *grad_op1 = block->AllOps()[7]; ASSERT_EQ(grad_op1->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op1->InputNames().size(), 1UL); ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); @@ -885,19 +895,19 @@ TEST(Backward, shared_var) { } TEST(Backward, half_backward) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); auto *op1 = block->AppendOp(); op1->SetType("minus"); op1->SetInput("X", {"a"}); op1->SetInput("Y", {"b"}); op1->SetOutput("Out", {"out"}); - auto target = f::VarDescBind("out"); + auto target = f::VarDesc("out"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"b"}); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); auto ops = block->AllOps(); ASSERT_EQ(3UL, ops.size()); diff --git a/paddle/framework/block_desc.cc b/paddle/framework/block_desc.cc index 6a7a07d5cf..54498e175d 100644 --- a/paddle/framework/block_desc.cc +++ b/paddle/framework/block_desc.cc @@ -19,18 +19,18 @@ limitations under the License. */ namespace paddle { namespace framework { -VarDescBind *BlockDescBind::Var(const std::string &name) { +VarDesc *BlockDesc::Var(const std::string &name) { auto it = vars_.find(name); if (it != vars_.end()) { return it->second.get(); } need_update_ = true; - auto *var = new VarDescBind(name); + auto *var = new VarDesc(name); vars_[name].reset(var); return var; } -VarDescBind *BlockDescBind::FindVar(const std::string &name) const { +VarDesc *BlockDesc::FindVar(const std::string &name) const { auto it = vars_.find(name); if (it == vars_.end()) { return nullptr; @@ -38,11 +38,11 @@ VarDescBind *BlockDescBind::FindVar(const std::string &name) const { return it->second.get(); } -bool BlockDescBind::HasVar(const std::string &name) const { +bool BlockDesc::HasVar(const std::string &name) const { return vars_.find(name) != vars_.end(); } -VarDescBind *BlockDescBind::FindVarRecursive(const std::string &name) const { +VarDesc *BlockDesc::FindVarRecursive(const std::string &name) const { if (name == kEmptyVarName) return nullptr; auto it = vars_.find(name); @@ -53,53 +53,67 @@ VarDescBind *BlockDescBind::FindVarRecursive(const std::string &name) const { return it->second.get(); } -VarDescBind *BlockDescBind::FindRecursiveOrCreateVar( - const std::string &name_bytes) { - VarDescBind *res = FindVarRecursive(name_bytes); +VarDesc &BlockDesc::FindRecursiveOrCreateVar(const std::string &name_bytes) { + VarDesc *res = FindVarRecursive(name_bytes); if (res == nullptr) { res = Var(name_bytes); } - return res; + return *res; } -bool BlockDescBind::HasVarRecursive(const std::string &name) const { +bool BlockDesc::HasVarRecursive(const std::string &name) const { return FindVarRecursive(name) != nullptr; } -std::vector BlockDescBind::AllVars() const { - std::vector res; +std::vector BlockDesc::AllVars() const { + std::vector res; for (const auto &p : vars_) { res.push_back(p.second.get()); } return res; } -OpDescBind *BlockDescBind::AppendOp() { +OpDesc *BlockDesc::AppendOp() { need_update_ = true; - ops_.emplace_back(new OpDescBind()); + ops_.emplace_back(new OpDesc()); return ops_.back().get(); } -void BlockDescBind::AppendAllocatedOp(std::unique_ptr &&op_desc) { +void BlockDesc::AppendAllocatedOp(std::unique_ptr &&op_desc) { need_update_ = true; ops_.emplace_back(std::move(op_desc)); } -OpDescBind *BlockDescBind::PrependOp() { +OpDesc *BlockDesc::PrependOp() { need_update_ = true; - ops_.emplace_front(new OpDescBind()); + ops_.emplace_front(new OpDesc()); return ops_.front().get(); } -std::vector BlockDescBind::AllOps() const { - std::vector res; +void BlockDesc::RemoveOp(size_t s, size_t e) { + if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) { + return; + } + need_update_ = true; + for (auto it = ops_.begin() + s; it != ops_.begin() + e; it++) { + auto names = (*it)->InputArgumentNames(); + for (auto n : names) { + // TODO(typhoonzero): delete vars if no other op use it. + VLOG(3) << "deleting var " << n; + } + } + ops_.erase(ops_.begin() + s, ops_.begin() + e); +} + +std::vector BlockDesc::AllOps() const { + std::vector res; for (const auto &op : ops_) { res.push_back(op.get()); } return res; } -void BlockDescBind::Flush() { +void BlockDesc::Flush() { for (auto &op_desc : ops_) { op_desc->Flush(); } @@ -121,43 +135,43 @@ void BlockDescBind::Flush() { } } -BlockDescBind *BlockDescBind::ParentBlock() const { +BlockDesc *BlockDesc::ParentBlock() const { if (this->desc_->parent_idx() == kNoneBlockIndex) { return nullptr; } return prog_->MutableBlock(static_cast(this->desc_->parent_idx())); } -BlockDesc *BlockDescBind::Proto() { +proto::BlockDesc *BlockDesc::Proto() { Flush(); return desc_; } -BlockDescBind::BlockDescBind(ProgramDescBind *prog, BlockDesc *desc) +BlockDesc::BlockDesc(ProgramDesc *prog, proto::BlockDesc *desc) : prog_(prog), desc_(desc), need_update_(false) { - for (const VarDesc &var_desc : desc_->vars()) { - vars_[var_desc.name()].reset(new VarDescBind(var_desc)); + for (const proto::VarDesc &var_desc : desc_->vars()) { + vars_[var_desc.name()].reset(new VarDesc(var_desc)); } - for (const OpDesc &op_desc : desc_->ops()) { - ops_.emplace_back(new OpDescBind(op_desc, prog)); + for (const proto::OpDesc &op_desc : desc_->ops()) { + ops_.emplace_back(new OpDesc(op_desc, prog)); } } -BlockDescBind::BlockDescBind(const BlockDescBind &other, BlockDesc *desc, - ProgramDescBind *prog) +BlockDesc::BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, + ProgramDesc *prog) : prog_(prog), desc_(desc) { need_update_ = true; for (auto &op : other.ops_) { - ops_.emplace_back(new OpDescBind(*op)); + ops_.emplace_back(new OpDesc(*op)); } for (auto &it : other.vars_) { - auto *var = new VarDescBind(*it.second); + auto *var = new VarDesc(*it.second); vars_[it.first].reset(var); } } -void BlockDescBind::ClearPBOps() { +void BlockDesc::ClearPBOps() { auto ops = this->desc_->mutable_ops(); while (!ops->empty()) { // we do not own the OpDesc, so release the ownership. @@ -165,7 +179,7 @@ void BlockDescBind::ClearPBOps() { } } -void BlockDescBind::ClearPBVars() { +void BlockDesc::ClearPBVars() { auto vars = this->desc_->mutable_vars(); while (!vars->empty()) { // we do not own the VarDesc, so release the ownership. diff --git a/paddle/framework/block_desc.h b/paddle/framework/block_desc.h index 8e967e5378..4b609e4bcb 100644 --- a/paddle/framework/block_desc.h +++ b/paddle/framework/block_desc.h @@ -28,20 +28,19 @@ limitations under the License. */ namespace paddle { namespace framework { -class ProgramDescBind; +class ProgramDesc; // Each Protobuf Message, we provide a XXXBind class. In that class, we optimize // read/write speed. Only when we want the protobuf message, the local changes // will be synchronized (by `Sync` method). -class BlockDescBind { +class BlockDesc { public: - BlockDescBind(ProgramDescBind *prog, BlockDesc *desc); + BlockDesc(ProgramDesc *prog, proto::BlockDesc *desc); - BlockDescBind(const BlockDescBind &other, BlockDesc *desc, - ProgramDescBind *prog); + BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, ProgramDesc *prog); - ~BlockDescBind() { + ~BlockDesc() { this->ClearPBVars(); this->ClearPBOps(); } @@ -50,15 +49,15 @@ class BlockDescBind { int32_t Parent() const { return desc_->parent_idx(); } - VarDescBind *Var(const std::string &name_bytes); + VarDesc *Var(const std::string &name_bytes); - VarDescBind *FindVar(const std::string &name_bytes) const; + VarDesc *FindVar(const std::string &name_bytes) const; bool HasVar(const std::string &var_name) const; - VarDescBind *FindVarRecursive(const std::string &name_bytes) const; + VarDesc *FindVarRecursive(const std::string &name_bytes) const; - VarDescBind *FindRecursiveOrCreateVar(const std::string &name_bytes); + VarDesc &FindRecursiveOrCreateVar(const std::string &name_bytes); bool HasVarRecursive(const std::string &var_name) const; @@ -70,41 +69,43 @@ class BlockDescBind { return var_names; } - std::vector AllVars() const; + std::vector AllVars() const; - BlockDescBind *ParentBlock() const; + BlockDesc *ParentBlock() const; - OpDescBind *AppendOp(); + OpDesc *AppendOp(); - void AppendAllocatedOp(std::unique_ptr &&op_desc); + void AppendAllocatedOp(std::unique_ptr &&op_desc); - OpDescBind *PrependOp(); + OpDesc *PrependOp(); - std::vector AllOps() const; + void RemoveOp(size_t s, size_t e); + + std::vector AllOps() const; size_t OpSize() const { return ops_.size(); } - OpDescBind *Op(int idx) { return ops_.at(idx).get(); } + OpDesc *Op(int idx) { return ops_.at(idx).get(); } void Flush(); - BlockDesc *Proto(); + proto::BlockDesc *Proto(); - ProgramDescBind *Program() { return this->prog_; } + ProgramDesc *Program() { return this->prog_; } private: void ClearPBOps(); void ClearPBVars(); private: - ProgramDescBind *prog_; // not_own - BlockDesc *desc_; // not_own + ProgramDesc *prog_; // not_own + proto::BlockDesc *desc_; // not_own bool need_update_; - std::deque> ops_; - std::unordered_map> vars_; + std::deque> ops_; + std::unordered_map> vars_; - DISABLE_COPY_AND_ASSIGN(BlockDescBind); + DISABLE_COPY_AND_ASSIGN(BlockDesc); }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/data_device_transform.cc b/paddle/framework/data_device_transform.cc new file mode 100644 index 0000000000..d38d87927f --- /dev/null +++ b/paddle/framework/data_device_transform.cc @@ -0,0 +1,45 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/data_device_transform.h" + +namespace paddle { +namespace framework { + +static const platform::DeviceContext* GetDeviceContext( + const platform::Place& src_place, const platform::Place& dst_place) { + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + + if (platform::is_gpu_place(src_place) && platform::is_cpu_place(dst_place)) { + return pool.Get(src_place); + } else if (platform::is_cpu_place(src_place) && + platform::is_gpu_place(dst_place)) { + return pool.Get(dst_place); + } else { + PADDLE_THROW( + "Currently, model parallelism is only supported between CPU and CUDA"); + } +} + +void DeviceTransform(const Tensor& in, const platform::Place& dst_place, + Tensor* out) { + VLOG(3) << "DeviceTransform in, src_place " << in.place() + << " dst_place: " << dst_place; + auto* dev_ctx = GetDeviceContext(in.place(), dst_place); + dev_ctx->Wait(); + Copy(in, dst_place, *dev_ctx, out); + dev_ctx->Wait(); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_device_transform.h b/paddle/framework/data_device_transform.h new file mode 100644 index 0000000000..b21ed0be34 --- /dev/null +++ b/paddle/framework/data_device_transform.h @@ -0,0 +1,28 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/tensor.h" +#include "paddle/framework/tensor_util.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace framework { + +void DeviceTransform(const Tensor& in, const platform::Place& dst_place, + Tensor* out); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_device_transform_test.cu b/paddle/framework/data_device_transform_test.cu new file mode 100644 index 0000000000..efc05b3106 --- /dev/null +++ b/paddle/framework/data_device_transform_test.cu @@ -0,0 +1,168 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "gtest/gtest.h" + +#include "paddle/framework/init.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/op_info.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/elementwise_op_function.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace framework { + +template +struct AddFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a + b; } +}; + +class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { + public: + OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("input", "input1 of test op"); + AddOutput("output", "output of test op"); + AddAttr("use_gpu", "force to use gpu kernel").SetDefault(false); + AddComment("This is test op"); + } +}; + +class TestOpWithKernel : public OperatorWithKernel { + public: + using OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override {} + OpKernelType GetExpectedKernelType( + const ExecutionContext& ctx) const override { + if (Attr("use_gpu")) { + VLOG(3) << "force use gpu kernel"; + return OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0)); + } else { + VLOG(3) << "use default kernel"; + return OpKernelType(proto::DataType::FP32, + ctx.Input("input")->place()); + } + } +}; + +template +class TestKernel : public OpKernel { + public: + void Compute(const ExecutionContext& ctx) const { + std::cout << ctx.op().DebugString() << std::endl; + + const Tensor* input = ctx.Input("input"); + + std::cout << "input place:" << input->place() << std::endl; + auto* output = ctx.Output("output"); + output->Resize(input->dims()); + output->mutable_data(ctx.GetPlace()); + + operators::TransformFunctor, T, DeviceContext> functor( + input, input, output, ctx.template device_context(), + AddFunctor()); + functor.Run(); + } +}; + +} // namespace framework +} // namespace paddle + +REGISTER_OP_WITHOUT_GRADIENT( + test_op, paddle::framework::TestOpWithKernel, + paddle::framework::OpKernelTestProtoAndCheckerMaker); +REGISTER_OP_CPU_KERNEL( + test_op, + paddle::framework::TestKernel); +REGISTER_OP_CUDA_KERNEL( + test_op, + paddle::framework::TestKernel); + +static void BuildVar(const std::string& param_name, + std::initializer_list arguments, + paddle::framework::proto::OpDesc::Var* var) { + var->set_parameter(param_name); + for (auto& arg_name : arguments) { + *var->mutable_arguments()->Add() = arg_name; + } +} + +TEST(Operator, CPUtoGPU) { + using namespace paddle::framework; + using namespace paddle::platform; + InitDevices(); + + paddle::framework::Scope scope; + paddle::platform::CPUPlace cpu_place; + + // create an op to run on CPU + paddle::framework::proto::OpDesc cpu_op_desc; + cpu_op_desc.set_type("test_op"); + BuildVar("input", {"IN1"}, cpu_op_desc.add_inputs()); + BuildVar("output", {"OUT1"}, cpu_op_desc.add_outputs()); + + auto cpu_op = paddle::framework::OpRegistry::CreateOp(cpu_op_desc); + // prepare input + auto* in_t = scope.Var("IN1")->GetMutable(); + auto* src_ptr = in_t->mutable_data({2, 3}, CPUPlace()); + for (int i = 0; i < 2 * 3; ++i) { + src_ptr[i] = static_cast(i); + } + + // get output + auto* output = scope.Var("OUT1"); + cpu_op->Run(scope, cpu_place); + + auto* output_ptr = output->Get().data(); + for (int i = 0; i < 2 * 3; ++i) { + ASSERT_EQ(output_ptr[i], static_cast(i) * 2); + } + + // create an op to run on GPU + paddle::framework::proto::OpDesc gpu_op_desc; + gpu_op_desc.set_type("test_op"); + BuildVar("input", {"OUT1"}, gpu_op_desc.add_inputs()); + BuildVar("output", {"OUT2"}, gpu_op_desc.add_outputs()); + + auto attr = gpu_op_desc.mutable_attrs()->Add(); + attr->set_name("use_gpu"); + attr->set_type(paddle::framework::proto::AttrType::BOOLEAN); + attr->set_b(true); + + auto gpu_op = paddle::framework::OpRegistry::CreateOp(gpu_op_desc); + + paddle::platform::CUDAPlace cuda_place(0); + // get output + auto* output2 = scope.Var("OUT2"); + gpu_op->Run(scope, cuda_place); + VLOG(3) << "after gpu_op run"; + + // auto* output2_ptr = output2->Get().data(); + DeviceContextPool& pool = DeviceContextPool::Instance(); + auto dev_ctx = pool.Get(cuda_place); + + paddle::framework::Tensor output_tensor; + Copy(output2->Get(), paddle::platform::CPUPlace(), *dev_ctx, + &output_tensor); + + dev_ctx->Wait(); + float* output2_ptr = output_tensor.data(); + for (int i = 0; i < 2 * 3; ++i) { + ASSERT_EQ(output2_ptr[i], static_cast(i) * 4); + } +} diff --git a/paddle/framework/data_layout.h b/paddle/framework/data_layout.h new file mode 100644 index 0000000000..31817251ed --- /dev/null +++ b/paddle/framework/data_layout.h @@ -0,0 +1,67 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include + +#include "paddle/platform/enforce.h" + +namespace paddle { +namespace framework { + +enum class DataLayout { + kNHWC = 0, + kNCHW = 1, + kAnyLayout = 2, +}; + +inline DataLayout StringToDataLayout(const std::string& str) { + std::string s(str); + for (size_t i = 0; i < s.size(); ++i) { + s[i] = toupper(s[i]); + } + + if (s == "NHWC") { + return DataLayout::kNHWC; + } else if (s == "NCHW") { + return DataLayout::kNCHW; + } else if (s == "ANYLAYOUT") { + return DataLayout::kAnyLayout; + } else { + PADDLE_THROW("Unknown storage order string: %s", s); + } +} + +inline std::string DataLayoutToString(const DataLayout& data_layout) { + switch (data_layout) { + case DataLayout::kNHWC: + return "NHWC"; + case DataLayout::kNCHW: + return "NCHW"; + case DataLayout::kAnyLayout: + return "ANY_LAYOUT"; + default: + PADDLE_THROW("unknown DataLayou %d", data_layout); + } +} + +inline std::ostream& operator<<(std::ostream& out, const DataLayout& l) { + out << DataLayoutToString(l); + return out; +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_layout_transform.cc b/paddle/framework/data_layout_transform.cc new file mode 100644 index 0000000000..1059bd9761 --- /dev/null +++ b/paddle/framework/data_layout_transform.cc @@ -0,0 +1,91 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/data_layout_transform.h" + +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace framework { + +std::vector GetAxis(const DataLayout& from, const DataLayout& to) { + PADDLE_ENFORCE_NE(from, to, + "layout transform should transform different layout"); + if (from == DataLayout::kNCHW && to == DataLayout::kNHWC) { + return {0, 2, 3, 1}; + } else if (from == DataLayout::kNHWC && to == DataLayout::kNCHW) { + return {0, 3, 1, 2}; + } else { + PADDLE_THROW("unsupported transform"); + } +} + +struct CastDataLayout { + CastDataLayout(const platform::DeviceContext* ctx, + const std::vector& axis, const framework::Tensor& in, + framework::Tensor* out) + : in_(in), out_(out), ctx_(ctx), axis_(axis) {} + const framework::Tensor in_; + framework::Tensor* out_; + const platform::DeviceContext* ctx_; + const std::vector axis_; + + template + void operator()() { + auto place = ctx_->GetPlace(); + + if (platform::is_cpu_place(place)) { + operators::math::Transpose trans4; + auto* context = static_cast(ctx_); + trans4(*context, in_, out_, axis_); + } else { + PADDLE_THROW("Unsupport CPU <-> GPU!"); + } + } +}; + +void TransDataLayout(const OpKernelType& kernel_type_for_var, + const OpKernelType& expected_kernel_type, const Tensor& in, + Tensor* out) { + PADDLE_ENFORCE( + platform::places_are_same_class(kernel_type_for_var.place_, + expected_kernel_type.place_), + "TransDataLayout only support DataLayout transform on same place!"); + + PADDLE_ENFORCE(arity(in.dims()) == 4, "Input Arity only support 4!"); + + auto& pool = platform::DeviceContextPool::Instance(); + + auto src_dim = in.dims(); + std::vector dst_dim; + + auto axis = GetAxis(kernel_type_for_var.data_layout_, + expected_kernel_type.data_layout_); + dst_dim.resize(axis.size()); + for (size_t i = 0; i < axis.size(); i++) { + dst_dim[i] = src_dim[axis[i]]; + } + + out->Resize(make_ddim(dst_dim)); + out->mutable_data(expected_kernel_type.place_, in.type()); + + framework::VisitDataType( + framework::ToDataType(in.type()), + CastDataLayout(pool.Get(expected_kernel_type.place_), axis, in, out)); + + out->set_layout(expected_kernel_type.data_layout_); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_layout_transform.h b/paddle/framework/data_layout_transform.h new file mode 100644 index 0000000000..ec87257d70 --- /dev/null +++ b/paddle/framework/data_layout_transform.h @@ -0,0 +1,31 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_kernel_type.h" +#include "paddle/framework/tensor.h" +#include "paddle/framework/variable.h" + +namespace paddle { +namespace framework { + +std::vector GetAxis(const DataLayout& from, const DataLayout& to); + +void TransDataLayout(const OpKernelType& kernel_type_for_var, + const OpKernelType& expected_kernel_type, const Tensor& in, + Tensor* out); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_layout_transform_test.cc b/paddle/framework/data_layout_transform_test.cc new file mode 100644 index 0000000000..2eb99fa04a --- /dev/null +++ b/paddle/framework/data_layout_transform_test.cc @@ -0,0 +1,44 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/data_layout_transform.h" + +#include "gtest/gtest.h" +#include "paddle/platform/device_context.h" + +TEST(DataTransform, DataLayoutFunction) { + using namespace paddle::framework; + using namespace paddle::platform; + + auto place = CPUPlace(); + Tensor in = Tensor(); + Tensor out = Tensor(); + in.mutable_data(make_ddim({2, 3, 1, 2}), place); + in.set_layout(DataLayout::kNHWC); + + auto kernel_nhwc = OpKernelType(proto::DataType::FP32, place, + DataLayout::kNHWC, LibraryType::kPlain); + auto kernel_ncwh = OpKernelType(proto::DataType::FP32, place, + DataLayout::kNCHW, LibraryType::kPlain); + + TransDataLayout(kernel_nhwc, kernel_ncwh, in, &out); + + EXPECT_TRUE(out.layout() == DataLayout::kNCHW); + EXPECT_TRUE(out.dims() == make_ddim({2, 2, 3, 1})); + + TransDataLayout(kernel_ncwh, kernel_nhwc, in, &out); + + EXPECT_TRUE(in.layout() == DataLayout::kNHWC); + EXPECT_TRUE(in.dims() == make_ddim({2, 3, 1, 2})); +} \ No newline at end of file diff --git a/paddle/framework/data_transform.cc b/paddle/framework/data_transform.cc new file mode 100644 index 0000000000..e28b2e015d --- /dev/null +++ b/paddle/framework/data_transform.cc @@ -0,0 +1,77 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/data_transform.h" + +#include "paddle/framework/data_device_transform.h" +#include "paddle/framework/data_layout_transform.h" + +namespace paddle { +namespace framework { + +static void PassTensorData(Tensor* from, Tensor* to) { + to->ShareDataWith(*from); + *from = Tensor(); +} + +void DataTransform(const OpKernelType& expected_kernel_type, + const OpKernelType& kernel_type_for_var, + const Tensor& input_tensor, Tensor* output_tensor) { + bool transformed = false; + Tensor in; + in.ShareDataWith(input_tensor); + Tensor out; + + // do layout transform + if (NeedTransformLayout(expected_kernel_type.data_layout_, + kernel_type_for_var.data_layout_)) { + TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out); + transformed = true; + PassTensorData(&out, &in); + } + + // do device transform + if (!platform::is_same_place(kernel_type_for_var.place_, + expected_kernel_type.place_)) { + DeviceTransform(in, expected_kernel_type.place_, &out); + transformed = true; + PassTensorData(&out, &in); + } + + PADDLE_ENFORCE(transformed, "no transform is done, please check!"); + // get output data + output_tensor->ShareDataWith(in); +} + +void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor, + Variable& out_var) { + if (in_var.IsType()) { + auto& in_lod_tensor = in_var.Get(); + auto* tran_lod_tensor = out_var.GetMutable(); + tran_lod_tensor->set_lod(in_lod_tensor.lod()); + tran_lod_tensor->set_layout(in_lod_tensor.layout()); + tran_lod_tensor->ShareDataWith(tensor); + } else if (in_var.IsType()) { + auto& in_selected_rows = in_var.Get(); + auto* trans_selected_rows = out_var.GetMutable(); + trans_selected_rows->set_height(in_selected_rows.height()); + trans_selected_rows->set_rows(in_selected_rows.rows()); + trans_selected_rows->mutable_value()->ShareDataWith(tensor); + } else { + PADDLE_THROW("unknown var type"); + } +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_transform.h b/paddle/framework/data_transform.h new file mode 100644 index 0000000000..a4b7890237 --- /dev/null +++ b/paddle/framework/data_transform.h @@ -0,0 +1,41 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include + +#include "paddle/framework/op_kernel_type.h" +#include "paddle/framework/selected_rows.h" +#include "paddle/framework/tensor.h" +#include "paddle/framework/variable.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/macros.h" +#include "paddle/platform/transform.h" + +namespace paddle { +namespace framework { + +void DataTransform(const OpKernelType& expected_kernel_type, + const OpKernelType& kernel_type_for_var, + const Tensor& input_tensor, Tensor* out); + +void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor, + Variable& out_var); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_type.h b/paddle/framework/data_type.h index c54d2d4ddf..6a372ac32e 100644 --- a/paddle/framework/data_type.h +++ b/paddle/framework/data_type.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include @@ -20,7 +20,8 @@ namespace paddle { namespace framework { -inline DataType ToDataType(std::type_index type) { +inline proto::DataType ToDataType(std::type_index type) { + using namespace paddle::framework::proto; if (typeid(float).hash_code() == type.hash_code()) { return DataType::FP32; } else if (typeid(double).hash_code() == type.hash_code()) { @@ -36,7 +37,8 @@ inline DataType ToDataType(std::type_index type) { } } -inline std::type_index ToTypeIndex(DataType type) { +inline std::type_index ToTypeIndex(proto::DataType type) { + using namespace paddle::framework::proto; switch (type) { case DataType::FP32: return typeid(float); @@ -54,7 +56,8 @@ inline std::type_index ToTypeIndex(DataType type) { } template -inline void VisitDataType(DataType type, Visitor visitor) { +inline void VisitDataType(proto::DataType type, Visitor visitor) { + using namespace paddle::framework::proto; switch (type) { case DataType::FP32: visitor.template operator()(); diff --git a/paddle/framework/data_type_transform.cc b/paddle/framework/data_type_transform.cc new file mode 100644 index 0000000000..63373232e9 --- /dev/null +++ b/paddle/framework/data_type_transform.cc @@ -0,0 +1,99 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/data_type_transform.h" + +#include "paddle/framework/selected_rows.h" +#include "paddle/platform/transform.h" + +namespace paddle { +namespace framework { + +template +struct CastDataTypeFunctor { + HOSTDEVICE inline OutType operator()(InType in) const { + return static_cast(in); + } +}; + +template +struct CastDataType { + CastDataType(const framework::Tensor& in, framework::Tensor* out, + const platform::DeviceContext* ctx) + : in_(in), out_(out), ctx_(ctx) {} + const framework::Tensor in_; + framework::Tensor* out_; + const platform::DeviceContext* ctx_; + + template + void operator()() { + auto place = ctx_->GetPlace(); + + auto* in_begin = in_.data(); + auto numel = in_.numel(); + auto* in_end = in_begin + numel; + auto* out_begin = out_->mutable_data(place); + + if (platform::is_cpu_place(place)) { + platform::Transform trans; + auto* context = static_cast(ctx_); + trans(*context, in_begin, in_end, out_begin, + CastDataTypeFunctor()); + } else { + // TODO(dzhwinter): enhance Copy CPU<->GPU with different data type? + PADDLE_THROW("Unsupport CPU <-> GPU!"); + } + } +}; + +void TransDataType(const platform::DeviceContext* ctx, + const KernelTypePair& kernel_pair, const Variable& in, + Variable* out) { + PADDLE_ENFORCE(in.IsType(), "Only Support Tensor transform!."); + PADDLE_ENFORCE( + platform::places_are_same_class(kernel_pair.first.place_, + kernel_pair.second.place_), + "TransDataType Only Support DataType transform on same place!"); + + auto src = in.Get(); + auto* dst = out->GetMutable(); + + auto dims = src.dims(); + dst->Resize(dims); + auto dst_type = kernel_pair.second.data_type_; + auto src_type = kernel_pair.first.data_type_; + + switch (src_type) { + case proto::DataType::FP32: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + case proto::DataType::FP64: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + case proto::DataType::INT32: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + case proto::DataType::INT64: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + case proto::DataType::BOOL: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + default: + PADDLE_THROW("Not support type %d", src_type); + } +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_type_transform.h b/paddle/framework/data_type_transform.h new file mode 100644 index 0000000000..8ec9074225 --- /dev/null +++ b/paddle/framework/data_type_transform.h @@ -0,0 +1,31 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_kernel_type.h" +#include "paddle/framework/variable.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace framework { + +using KernelTypePair = std::pair; + +void TransDataType(const platform::DeviceContext* ctx, + const KernelTypePair& kernel_pair, const Variable& in, + Variable* out); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/ddim_test.cc b/paddle/framework/ddim_test.cc index 756232b1b5..bc259d1f60 100644 --- a/paddle/framework/ddim_test.cc +++ b/paddle/framework/ddim_test.cc @@ -1,3 +1,16 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include diff --git a/paddle/framework/details/cow_ptr.h b/paddle/framework/details/cow_ptr.h new file mode 100644 index 0000000000..7e308ffb5a --- /dev/null +++ b/paddle/framework/details/cow_ptr.h @@ -0,0 +1,98 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include + +namespace paddle { +namespace framework { +namespace details { + +// Change it to thread safe flags if needed. +class ThreadUnsafeOwnershipFlags { + public: + ThreadUnsafeOwnershipFlags(bool flag) : flag_(flag) {} + + ThreadUnsafeOwnershipFlags(const ThreadUnsafeOwnershipFlags& other) = delete; + ThreadUnsafeOwnershipFlags& operator=( + const ThreadUnsafeOwnershipFlags& other) = delete; + ThreadUnsafeOwnershipFlags(ThreadUnsafeOwnershipFlags&& other) = default; + + void SetOwnership(bool flag) { flag_ = flag; } + + // Invoke the callback if it is not owned. + template + void AcquireOwnershipOnce(Callback acquire) { + if (!flag_) { + acquire(); + flag_ = true; + } + } + + private: + bool flag_; +}; + +// Copy-On-Write pointer. +// It will hold a T* pointer, and only copy once when `MutableData` is invoked. +// +// The template parameter OwnershipFlags should have: +// * a constructor takes a bool. True if own. +// * SetOwnership(bool flag). +// * AcquireOwnershipOnce(Callback). It will invoke the callback if it is not +// owned. +// +// https://en.wikipedia.org/wiki/Copy-on-write +template +class COWPtr { + public: + // Ctor from raw pointer. + explicit COWPtr(T* ptr) : payload_(ptr), ownership_{true} {} + + // Move methods. Steal ownership from origin + COWPtr(COWPtr&& other) + : payload_(other.payload_), ownership_{std::move(other.ownership_)} {} + COWPtr& operator=(COWPtr&& origin) = default; + + // Copy methods. Not own payload + COWPtr(const COWPtr& other) : payload_(other.payload_), ownership_{false} {} + COWPtr& operator=(const COWPtr& other) { + payload_ = other.payload_; + ownership_.SetOwnership(false); + return *this; + } + + // Access read only data. + const T& Data() const { return *payload_; } + + // Access mutable data. If the data is not owned, the data will be copied + // before. + T* MutableData() { + ownership_.AcquireOwnershipOnce( + [this] { payload_.reset(new T(*payload_)); }); + return payload_.get(); + } + + private: + // Actual data pointer. + std::shared_ptr payload_; + + // Ownership flag. + OwnershipFlags ownership_; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/operators/seq_expand_op.cu b/paddle/framework/details/cow_ptr_test.cc similarity index 50% rename from paddle/operators/seq_expand_op.cu rename to paddle/framework/details/cow_ptr_test.cc index f1e4b82a76..936954a233 100644 --- a/paddle/operators/seq_expand_op.cu +++ b/paddle/framework/details/cow_ptr_test.cc @@ -1,4 +1,4 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. @@ -12,12 +12,24 @@ See the License for the specific language governing permissions and limitations under the License. */ -#define EIGEN_USE_GPU -#include "paddle/operators/seq_expand_op.h" +#include "paddle/framework/details/cow_ptr.h" +#include "gtest/gtest.h" -namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(seq_expand, - ops::SeqExpandKernel); -REGISTER_OP_GPU_KERNEL( - seq_expand_grad, - ops::SeqExpandGradKernel); +namespace paddle { +namespace framework { +namespace details { + +TEST(COWPtr, all) { + COWPtr ptr(new int{0}); + ASSERT_EQ(ptr.Data(), 0); + COWPtr ptr2 = ptr; + ASSERT_EQ(ptr2.Data(), 0); + ASSERT_EQ(&ptr2.Data(), &ptr.Data()); + *ptr2.MutableData() = 10; + ASSERT_EQ(ptr.Data(), 0); + ASSERT_EQ(ptr2.Data(), 10); +} + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/details/op_registry.h b/paddle/framework/details/op_registry.h index f91e0e0341..6d50e820b2 100644 --- a/paddle/framework/details/op_registry.h +++ b/paddle/framework/details/op_registry.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -90,7 +90,7 @@ struct OpInfoFiller { template struct OpInfoFiller { void operator()(const char* op_type, OpInfo* info) const { - info->proto_ = new OpProto; + info->proto_ = new proto::OpProto; info->checker_ = new OpAttrChecker(); auto maker = T(info->proto_, info->checker_); maker.Validate(); @@ -106,10 +106,10 @@ template struct OpInfoFiller { void operator()(const char* op_type, OpInfo* info) const { info->grad_op_maker_ = []( - const OpDescBind& fwd_op, + const OpDesc& fwd_op, const std::unordered_set& no_grad_set, std::unordered_map* grad_to_var, - const std::vector& grad_block) { + const std::vector& grad_block) { T maker(fwd_op, no_grad_set, grad_to_var, grad_block); return maker(); }; @@ -119,7 +119,7 @@ struct OpInfoFiller { template struct OpInfoFiller { void operator()(const char* op_type, OpInfo* info) const { - info->infer_var_type_ = [](const OpDescBind& fwd_op, BlockDescBind* block) { + info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) { T inference; inference(fwd_op, block); }; diff --git a/paddle/framework/dim.h b/paddle/framework/dim.h index 04d4b0e604..ec17d7c615 100644 --- a/paddle/framework/dim.h +++ b/paddle/framework/dim.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #pragma once #include diff --git a/paddle/framework/dim_test.cu b/paddle/framework/dim_test.cu index 0a6a87669c..2bcab7c5c2 100644 --- a/paddle/framework/dim_test.cu +++ b/paddle/framework/dim_test.cu @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include #include diff --git a/paddle/framework/eigen_test.cc b/paddle/framework/eigen_test.cc index bc4a2db32c..c6f77ecfab 100644 --- a/paddle/framework/eigen_test.cc +++ b/paddle/framework/eigen_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); diff --git a/paddle/framework/executor.cc b/paddle/framework/executor.cc index 83aa927c29..c0418c9266 100644 --- a/paddle/framework/executor.cc +++ b/paddle/framework/executor.cc @@ -14,18 +14,18 @@ limitations under the License. */ #include "paddle/framework/executor.h" -#include -#include -#include #include -#include +#include "gflags/gflags.h" #include "paddle/framework/feed_fetch_type.h" #include "paddle/framework/lod_rank_table.h" -#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/op_registry.h" -#include "paddle/framework/scope.h" +#include "paddle/platform/place.h" + +DEFINE_bool(check_nan_inf, false, + "Checking whether operator produce NAN/INF or not. It will be " + "extremely slow so please use this flag wisely."); namespace paddle { namespace framework { @@ -33,107 +33,104 @@ namespace framework { const std::string kFeedOpType = "feed"; const std::string kFetchOpType = "fetch"; -Executor::Executor(const std::vector& places) : own_(true) { - PADDLE_ENFORCE_GT(places.size(), 0); - device_contexts_.resize(places.size()); - for (size_t i = 0; i < places.size(); i++) { - if (platform::is_cpu_place(places[i])) { - device_contexts_[i] = new platform::CPUDeviceContext( - boost::get(places[i])); - } else if (platform::is_gpu_place(places[i])) { -#ifdef PADDLE_WITH_CUDA - device_contexts_[i] = new platform::CUDADeviceContext( - boost::get(places[i])); -#else - PADDLE_THROW( - "'GPUPlace' is not supported, Please re-compile with WITH_GPU " - "option"); -#endif - } - } -} +Executor::Executor(const platform::Place& place) : place_(place) {} -Executor::~Executor() { - if (own_) { - for (auto& device_context : device_contexts_) { - delete device_context; - } - } -} - -static void CreateTensor(Variable* var, VarDesc::VarType var_type) { - if (var_type == VarDesc::LOD_TENSOR) { +static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) { + if (var_type == proto::VarDesc::LOD_TENSOR) { var->GetMutable(); - } else if (var_type == VarDesc::SELECTED_ROWS) { + } else if (var_type == proto::VarDesc::SELECTED_ROWS) { var->GetMutable(); - } else if (var_type == VarDesc::FEED_MINIBATCH) { + } else if (var_type == proto::VarDesc::FEED_MINIBATCH) { var->GetMutable(); - } else if (var_type == VarDesc::FETCH_LIST) { + } else if (var_type == proto::VarDesc::FETCH_LIST) { var->GetMutable(); - } else if (var_type == VarDesc::STEP_SCOPES) { + } else if (var_type == proto::VarDesc::STEP_SCOPES) { var->GetMutable>(); - } else if (var_type == VarDesc::LOD_RANK_TABLE) { + } else if (var_type == proto::VarDesc::LOD_RANK_TABLE) { var->GetMutable(); - } else if (var_type == VarDesc::LOD_TENSOR_ARRAY) { + } else if (var_type == proto::VarDesc::LOD_TENSOR_ARRAY) { var->GetMutable(); + } else if (var_type == proto::VarDesc::PLACE_LIST) { + var->GetMutable(); } else { PADDLE_THROW( "Variable type %d is not in " - "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE]", + "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE," + " PLACE_LIST]", var_type); } } -void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id, - bool create_local_scope) { +static void CheckTensorNANOrInf(const std::string& name, + const framework::Tensor& tensor) { + if (tensor.memory_size() == 0) { + return; + } + if (tensor.type().hash_code() != typeid(float).hash_code() && + tensor.type().hash_code() != typeid(double).hash_code()) { + return; + } + PADDLE_ENFORCE(!framework::HasInf(tensor), "Tensor %s has Inf", name); + PADDLE_ENFORCE(!framework::HasNAN(tensor), "Tensor %s has NAN", name); +} + +void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, + bool create_local_scope, bool create_vars) { // TODO(tonyyang-svail): // - only runs on the first device (i.e. no interdevice communication) // - will change to use multiple blocks for RNN op and Cond Op PADDLE_ENFORCE_LT(static_cast(block_id), pdesc.Size()); auto& block = pdesc.Block(block_id); - auto& device = device_contexts_[0]; Scope* local_scope = scope; - if (create_local_scope) { - local_scope = &scope->NewScope(); - for (auto& var : block.AllVars()) { - if (var->Name() == framework::kEmptyVarName) { - continue; + if (create_vars) { + if (create_local_scope) { + local_scope = &scope->NewScope(); + for (auto& var : block.AllVars()) { + if (var->Name() == framework::kEmptyVarName) { + continue; + } + + if (var->Persistable()) { + auto* ptr = scope->Var(var->Name()); + CreateTensor(ptr, var->GetType()); + VLOG(3) << "Create Variable " << var->Name() + << " global, which pointer is " << ptr; + } else { + auto* ptr = local_scope->Var(var->Name()); + CreateTensor(ptr, var->GetType()); + VLOG(3) << "Create Variable " << var->Name() + << " locally, which pointer is " << ptr; + } } - - if (var->Persistable()) { - auto* ptr = scope->Var(var->Name()); - CreateTensor(ptr, var->GetType()); - VLOG(3) << "Create Variable " << var->Name() - << " global, which pointer is " << ptr; - } else { + } else { + for (auto& var : block.AllVars()) { auto* ptr = local_scope->Var(var->Name()); CreateTensor(ptr, var->GetType()); - VLOG(3) << "Create Variable " << var->Name() - << " locally, which pointer is " << ptr; + VLOG(3) << "Create variable " << var->Name() << ", which pointer is " + << ptr; } - } - } else { - for (auto& var : block.AllVars()) { - auto* ptr = local_scope->Var(var->Name()); - CreateTensor(ptr, var->GetType()); - VLOG(3) << "Create variable " << var->Name() << ", which pointer is " - << ptr; - } - } + } // if (create_local_scope) + } // if (create_vars) for (auto& op_desc : block.AllOps()) { auto op = paddle::framework::OpRegistry::CreateOp(*op_desc); - VLOG(3) << op->DebugString(); - op->Run(*local_scope, *device); + VLOG(3) << op->DebugStringEx(local_scope); + op->Run(*local_scope, place_); + if (FLAGS_check_nan_inf) { + for (auto& vname : op->OutputVars(true)) { + auto* var = local_scope->FindVar(vname); + if (var == nullptr) continue; + if (var->IsType()) { + CheckTensorNANOrInf(vname, var->Get()); + } + } + } } - if (create_local_scope) { + if (create_vars && create_local_scope) { scope->DeleteScope(local_scope); } } -Executor::Executor(const platform::DeviceContext& device) - : device_contexts_({&device}), own_(false) {} - } // namespace framework } // namespace paddle diff --git a/paddle/framework/executor.h b/paddle/framework/executor.h index b745f4f647..d869e18901 100644 --- a/paddle/framework/executor.h +++ b/paddle/framework/executor.h @@ -18,15 +18,18 @@ limitations under the License. */ #include "paddle/framework/program_desc.h" #include "paddle/framework/scope.h" #include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace framework { class Executor { public: - explicit Executor(const std::vector& places); - explicit Executor(const platform::DeviceContext& devices); - ~Executor(); + // TODO(dzhwinter) : Do not rely on this function, it will be removed + explicit Executor(const platform::DeviceContext& device) + : Executor(device.GetPlace()) {} + + explicit Executor(const platform::Place& place); /* @Brief * Runtime evaluation of the given ProgramDesc under certain Scope @@ -35,11 +38,11 @@ class Executor { * ProgramDesc * Scope */ - void Run(const ProgramDescBind&, Scope*, int, bool create_local_scope = true); + void Run(const ProgramDesc&, Scope*, int, bool create_local_scope = true, + bool create_vars = true); private: - std::vector device_contexts_; - bool own_; + const platform::Place place_; }; } // namespace framework diff --git a/paddle/framework/feed_fetch_type.h b/paddle/framework/feed_fetch_type.h index bc4ae440fc..9bc4a90c44 100644 --- a/paddle/framework/feed_fetch_type.h +++ b/paddle/framework/feed_fetch_type.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index f1fc4529e1..ea69b87e2a 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -14,7 +14,7 @@ limitations under the License. */ syntax = "proto2"; option optimize_for = LITE_RUNTIME; -package paddle.framework; +package paddle.framework.proto; enum AttrType { INT = 0; @@ -123,6 +123,7 @@ message VarDesc { STEP_SCOPES = 5; LOD_RANK_TABLE = 6; LOD_TENSOR_ARRAY = 7; + PLACE_LIST = 8; } required string name = 1; required VarType type = 2; diff --git a/paddle/framework/grad_op_desc_maker.h b/paddle/framework/grad_op_desc_maker.h index 998186e339..2082f8bb76 100644 --- a/paddle/framework/grad_op_desc_maker.h +++ b/paddle/framework/grad_op_desc_maker.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include @@ -22,21 +22,27 @@ namespace paddle { namespace framework { +/* + This functor class is responsible for creating the gradient ops for the given + operator fwd_op. After it is called (through operator()), the pairs of + (gradient variable, corresponding input variable of fwd_op) will be added to + grad_to_var. If an input variable of fwd_op is contained in no_grad_set, its + gradient varialbe will be ignored or kEmptyVarName depending on the template + argument DropEmptyIG in the derived classes. + */ class GradOpDescMakerBase { public: explicit GradOpDescMakerBase( - const OpDescBind& fwd_op, - const std::unordered_set& no_grad_set, + const OpDesc& fwd_op, const std::unordered_set& no_grad_set, std::unordered_map* grad_to_var, - const std::vector& grad_block = - std::vector()) + const std::vector& grad_block = std::vector()) : fwd_op_(fwd_op), no_grad_set_(no_grad_set), grad_to_var_(grad_to_var), grad_block_(grad_block) {} virtual ~GradOpDescMakerBase() = default; - virtual std::vector> operator()() const = 0; + virtual std::vector> operator()() const = 0; protected: std::vector InputGrad(const std::string& name, @@ -58,6 +64,16 @@ class GradOpDescMakerBase { if (!drop_empty_grad) { return ret_val; } + PADDLE_ENFORCE_LE(var_names.size(), 1UL, + "BUG from operator developer:" + " for input argument with a list of variables, " + " drop_empty_grad is not allowed because it makes" + " the correspondence bewteen a variable and its gradient" + " ambiguous. Use REGISTER_OP_EX to register the op" + " or call InputGrad(?,false) in GradOpDescMaker." + " Op type %s", + fwd_op_.Type()); + std::vector dropped_ret_val; dropped_ret_val.reserve(ret_val.size()); std::copy_if(ret_val.begin(), ret_val.end(), @@ -71,7 +87,11 @@ class GradOpDescMakerBase { auto onames = this->Output(name); ret_val.reserve(onames.size()); std::transform(onames.begin(), onames.end(), std::back_inserter(ret_val), - GradVarName); + [this](const std::string& fwd_var_name) -> std::string { + auto g_name = GradVarName(fwd_var_name); + (*this->grad_to_var_)[g_name] = fwd_var_name; + return g_name; + }); return ret_val; } @@ -105,26 +125,26 @@ class GradOpDescMakerBase { std::string ForwardOpType() const { return this->fwd_op_.Type(); } private: - const OpDescBind& fwd_op_; + const OpDesc& fwd_op_; const std::unordered_set& no_grad_set_; std::unordered_map* grad_to_var_; protected: - std::vector grad_block_; + std::vector grad_block_; }; class SingleGradOpDescMaker : public GradOpDescMakerBase { public: using GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() const { - std::vector> retv; + std::vector> operator()() const { + std::vector> retv; retv.emplace_back(this->Apply()); return retv; } protected: - virtual std::unique_ptr Apply() const = 0; + virtual std::unique_ptr Apply() const = 0; }; template @@ -133,8 +153,8 @@ class DefaultGradOpDescMaker : public SingleGradOpDescMaker { using SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - virtual std::unique_ptr Apply() const { - auto* grad = new OpDescBind(); + virtual std::unique_ptr Apply() const { + auto* grad = new OpDesc(); grad->SetType(this->GradOpType()); for (auto& input_param : this->InputNames()) { @@ -150,7 +170,7 @@ class DefaultGradOpDescMaker : public SingleGradOpDescMaker { grad->SetAttrMap(this->Attrs()); - return std::unique_ptr(grad); + return std::unique_ptr(grad); } virtual std::string GradOpType() const { @@ -161,7 +181,7 @@ class DefaultGradOpDescMaker : public SingleGradOpDescMaker { class EmptyGradOpMaker : public GradOpDescMakerBase { public: using GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() const override { + std::vector> operator()() const override { return {}; } }; diff --git a/paddle/framework/init.cc b/paddle/framework/init.cc new file mode 100644 index 0000000000..4ef82a541e --- /dev/null +++ b/paddle/framework/init.cc @@ -0,0 +1,71 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#include // for strdup +#include +#include + +#include "paddle/framework/init.h" +#include "paddle/framework/operator.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/place.h" +#include "paddle/string/piece.h" + +namespace paddle { +namespace framework { + +std::once_flag gflags_init_flag; + +void InitGflags(std::vector &argv) { + std::call_once(gflags_init_flag, [&]() { + int argc = argv.size(); + char **arr = new char *[argv.size()]; + std::string line; + for (size_t i = 0; i < argv.size(); i++) { + arr[i] = &argv[i][0]; + line += argv[i]; + line += ' '; + } + google::ParseCommandLineFlags(&argc, &arr, true); + VLOG(1) << "Init commandline: " << line; + }); +} + +void InitDevices() { + /*Init all avaiable devices by default */ + + std::vector places; + places.emplace_back(platform::CPUPlace()); + +#ifdef PADDLE_WITH_CUDA + int count = platform::GetCUDADeviceCount(); + for (int i = 0; i < count; ++i) { + places.emplace_back(platform::CUDAPlace(i)); + } +#else + LOG(WARNING) + << "'GPU' is not supported, Please re-compile with WITH_GPU option"; +#endif + + platform::DeviceContextPool::Init(places); +} + +void InitGLOG(const std::string &prog_name) { + // glog will not hold the ARGV[0] inside. + // Use strdup to alloc a new string. + google::InitGoogleLogging(strdup(prog_name.c_str())); + google::InstallFailureSignalHandler(); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/init.h b/paddle/framework/init.h new file mode 100644 index 0000000000..c8fd964d00 --- /dev/null +++ b/paddle/framework/init.h @@ -0,0 +1,30 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#pragma once +#include + +#include "gflags/gflags.h" +#include "glog/logging.h" + +namespace paddle { +namespace framework { + +void InitGflags(std::vector &argv); + +void InitGLOG(const std::string &prog_name); + +void InitDevices(); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/init_test.cc b/paddle/framework/init_test.cc new file mode 100644 index 0000000000..f837a965d3 --- /dev/null +++ b/paddle/framework/init_test.cc @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#include "gtest/gtest.h" + +#include "paddle/framework/init.h" +#include "paddle/platform/device_context.h" + +TEST(InitDevices, CPU) { + using paddle::framework::InitDevices; + using paddle::platform::DeviceContextPool; + + InitDevices(); + DeviceContextPool& pool = DeviceContextPool::Instance(); + ASSERT_GE(pool.size(), 1U); +} diff --git a/paddle/framework/library_type.h b/paddle/framework/library_type.h new file mode 100644 index 0000000000..1e30848354 --- /dev/null +++ b/paddle/framework/library_type.h @@ -0,0 +1,71 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include + +namespace paddle { +namespace framework { + +// For more details about the design of LibraryType, Please refer to +// https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md#library + +enum class LibraryType { + kPlain = 0, + kMKLDNN = 1, + kCUDNN = 2, +}; + +inline std::string LibraryTypeToString(const LibraryType& library_type) { + switch (library_type) { + case LibraryType::kPlain: + return "PLAIN"; + case LibraryType::kMKLDNN: + return "MKLDNN"; + case LibraryType::kCUDNN: + return "CUDNN"; + default: + PADDLE_THROW("unknown LibraryType %d", static_cast(library_type)); + } +} + +inline LibraryType StringToLibraryType(const char* ctype) { + std::string s(ctype); + for (size_t i = 0; i < s.size(); ++i) { + s[i] = toupper(s[i]); + } + if (s == std::string("PLAIN")) { + return LibraryType::kPlain; + } else if (s == std::string("MKLDNN")) { + return LibraryType::kMKLDNN; + } else if (s == std::string("CUDNN")) { + return LibraryType::kCUDNN; + // To be compatible with register macro. + // CPU, CUDA, PLAIN are same library type. + } else if (s == std::string("CPU")) { + return LibraryType::kPlain; + } else if (s == std::string("CUDA")) { + return LibraryType::kPlain; + } else { + PADDLE_THROW("Unknown LibraryType %s", s.c_str()); + } +} + +inline std::ostream& operator<<(std::ostream& out, LibraryType l) { + out << LibraryTypeToString(l); + return out; +} + +} // namespace +} // framework diff --git a/paddle/framework/lod_rank_table.cc b/paddle/framework/lod_rank_table.cc index 1c2fba70c8..704bce2a0e 100644 --- a/paddle/framework/lod_rank_table.cc +++ b/paddle/framework/lod_rank_table.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/lod_rank_table.h" @@ -46,4 +46,13 @@ void LoDRankTable::Reset(const LoD& lod, size_t level) { } } // namespace framework + +std::ostream& operator<<(std::ostream& out, + const framework::LoDRankTable& table) { + out << "NumOfSequence " << table.items().size() << "\n"; + for (auto& each_item : table.items()) { + out << "\tSeq #" << each_item.index << ", Len=" << each_item.length << "\n"; + } + return out; +} } // namespace paddle diff --git a/paddle/framework/lod_rank_table.h b/paddle/framework/lod_rank_table.h index 9faa3a4d7b..df188709e9 100644 --- a/paddle/framework/lod_rank_table.h +++ b/paddle/framework/lod_rank_table.h @@ -1,18 +1,19 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once +#include #include "paddle/framework/lod_tensor.h" namespace paddle { @@ -52,4 +53,8 @@ class LoDRankTable { }; } // namespace framework + +std::ostream& operator<<(std::ostream& out, + const framework::LoDRankTable& table); + } // namespace paddle diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index fdf6de4bab..b29f528f3f 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/lod_tensor.h" #include "paddle/framework/data_type.h" @@ -43,16 +43,36 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) { return os; } -LoD SliceLevels(const LoD &in, size_t level_begin, size_t level_end) { - LoD new_lod; - new_lod.reserve(level_end - level_begin); - for (size_t i = level_begin; i < level_end; i++) { - new_lod.emplace_back(in.at(i)); +std::ostream &operator<<(std::ostream &os, const LoDTensor &t) { + PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code()); + + if (!platform::is_cpu_place(t.place())) { + LoDTensor tt; + framework::Copy(t, platform::CPUPlace(), &tt); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(t.place()); + dev_ctx.Wait(); + + os << tt; + return os; + } + + os << "dim: " << t.dims() << "\n"; + os << "lod: " << t.lod() << "\n"; + + // only print first ten elements + int64_t size = t.numel() < 10 ? t.numel() : 10; + for (int64_t i = 0; i < size; ++i) { + os << t.data()[i] << " "; } - // transform the lowest level to absolute offset. - LoD abs_offset_lod = ToAbsOffset(in); - new_lod.back() = abs_offset_lod[level_end - 1]; - return new_lod; + + return os; +} + +std::string LoDToString(const LoD &lod) { + std::ostringstream stream; + stream << lod; + return stream.str(); } LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin, @@ -115,41 +135,63 @@ bool operator==(const LoD &a, const LoD &b) { return true; } -size_t LoDTensor::NumElements(size_t level, size_t idx) const { - PADDLE_ENFORCE_LT(level, NumLevels()); - PADDLE_ENFORCE_LT(idx, NumElements(level)); - return lod_[level][idx + 1] - lod_[level][idx]; -} +bool CheckLoD(const LoD &in, int tensor_height) { + if (in.empty()) return true; + for (const auto &level : in) { + // check: there should be more than 2 offsets existing in each level. + if (level.size() < 2) return false; + // check: the first offset(the begin offset) of each level should be 0. + if (level.front() != 0) return false; + // check: all the offsets in a level should be ascending(no same items + // allows). + if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) { + if (a < b) return true; + return false; + })) { + LOG(INFO) << "ascending error"; + return false; + } + } + // check: the lowest level's last offset should equals `tensor_height` if + // tensor_height>0. + if (tensor_height > 0 && (size_t)tensor_height != in.back().back()) + return false; -size_t LoDTensor::NumInstancesInElement(size_t level, size_t idx) const { - PADDLE_ENFORCE_LT(level, NumLevels()); - PADDLE_ENFORCE_LT(idx, NumElements(level)); - auto abs_lod = ToAbsOffset(lod()); - size_t begin = abs_lod[level][idx]; - size_t end = abs_lod[level][idx + 1]; - return end - begin; + // check: the higher level's last offset should equals the lower level's + // size-1. + // NOTE LoD store the levels from top to bottom, so the higher level goes + // first. + for (size_t level = 0; level < in.size() - 1; level++) { + if (in[level].back() != in[level + 1].size() - 1) return false; + } + return true; } -void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) { - auto new_lod = framework::SliceLevels(lod_, level_begin, level_end); - lod_ = new_lod; -} +bool CheckAbsLoD(const LoD &in, int tensor_height) { + if (in.empty()) return true; + for (const auto &level : in) { + // check: all the offsets in a level should be ascending(no same items + // allows). + if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) { + if (a < b) return true; + return false; + })) { + return false; + } -void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin, - size_t elem_end) { - PADDLE_ENFORCE_LT(level, NumLevels()); - PADDLE_ENFORCE_LT(elem_begin, NumElements(level)); - PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1); - - auto abs_lod = framework::ToAbsOffset(lod()); - auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end); - lod_ = new_lod; - - // slice the underlying tensor - size_t begin = abs_lod[level][elem_begin]; - size_t end = abs_lod[level][elem_end]; - PADDLE_ENFORCE_LT(begin, end, "Cannot shrink, the result tensor is empty."); - ShareDataWith(Slice(begin, end)); + // check: there should be more than 2 offsets existing in each level. + if (level.size() < 2) return false; + + // check: the first offset of each level should be 0, and the last should be + // the same(the height of underlying tensor). + if (level.front() != 0) return false; + if (tensor_height < 0) { + tensor_height = level.back(); + } else if ((size_t)tensor_height != level.back()) { + return false; + } + } + return true; } using LoDAndOffset = std::pair>; @@ -177,6 +219,9 @@ void AppendLoD(LoD *lod, const LoD &lod_length) { lod->empty() || lod->size() == lod_length.size(), "The lod_length should has the same size with the appended lod."); if (lod->empty()) { + for (size_t i = 0; i < lod_length.size(); ++i) { + lod->emplace_back(1, 0); // size = 1, value = 0; + } *lod = LoD(lod_length.size(), std::vector({0})); } for (size_t i = 0; i < lod->size(); ++i) { @@ -189,62 +234,16 @@ void AppendLoD(LoD *lod, const LoD &lod_length) { void SerializeToStream(std::ostream &os, const LoDTensor &tensor, const platform::DeviceContext &dev_ctx) { - // TODO(typhoonzero): serialize to ostream - { // the 1st field, uint32_t version + { // the 1st field, uint32_t version for LoDTensor constexpr uint32_t version = 0; os.write(reinterpret_cast(&version), sizeof(version)); } - { // the 2nd field, tensor description - // int32_t size - // void* protobuf message - framework::TensorDesc desc; - desc.set_data_type(framework::ToDataType(tensor.type())); - auto dims = framework::vectorize(tensor.dims()); - auto *pb_dims = desc.mutable_dims(); - pb_dims->Resize(static_cast(dims.size()), 0); - std::copy(dims.begin(), dims.end(), pb_dims->begin()); - int32_t size = desc.ByteSize(); - os.write(reinterpret_cast(&size), sizeof(size)); - auto out = desc.SerializeAsString(); - os.write(out.data(), size); - } - { // the 3rd field, tensor data - uint64_t size = tensor.memory_size(); - auto *data_ptr = tensor.data(); - PADDLE_ENFORCE(size < std::numeric_limits::max(), - "Index overflow when writing tensor"); - if (platform::is_gpu_place(tensor.place())) { -#ifdef PADDLE_WITH_CUDA - constexpr size_t kBufSize = 1024 * 1024 * 64; // 64MB - std::unique_ptr buf(new char[kBufSize]); - auto &gpu_dev_ctx = - static_cast(dev_ctx); - platform::CPUPlace cpu; - uintptr_t data = reinterpret_cast(data_ptr); - while (size != 0) { - size_t size_to_write = std::min(kBufSize, static_cast(size)); - memory::Copy(cpu, buf.get(), - boost::get(tensor.place()), - reinterpret_cast(data), size_to_write, - gpu_dev_ctx.stream()); - gpu_dev_ctx.Wait(); - os.write(buf.get(), size_to_write); - data += size_to_write; - size -= size_to_write; - } -#else - PADDLE_THROW("Unexpected branch"); -#endif - } else { - os.write(static_cast(data_ptr), - static_cast(size)); - } - } - { // the 4th field, lod information - // uint64_t lod_level - // uint64_t lod_level_1 size in byte. - // int* lod_level_1 data - // ... + { + // the 2st field, LoD information + // uint64_t lod_level + // uint64_t lod_level_1 size in byte. + // int* lod_level_1 data + // ... auto lod = tensor.lod(); uint64_t size = lod.size(); os.write(reinterpret_cast(&size), sizeof(size)); @@ -256,49 +255,20 @@ void SerializeToStream(std::ostream &os, const LoDTensor &tensor, static_cast(size)); } } + // the 3st field, Tensor + SerializeToStream(os, static_cast(tensor), dev_ctx); } -void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { - uint32_t version; - is.read(reinterpret_cast(&version), sizeof(version)); - PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); - framework::TensorDesc desc; - { // int32_t size - // proto buffer - int32_t size; - is.read(reinterpret_cast(&size), sizeof(size)); - std::unique_ptr buf(new char[size]); - is.read(reinterpret_cast(buf.get()), size); - PADDLE_ENFORCE(desc.ParseFromArray(buf.get(), size), - "Cannot parse tensor desc"); +void DeserializeFromStream(std::istream &is, LoDTensor *tensor, + const platform::DeviceContext &dev_ctx) { + { + // the 1st field, unit32_t version for LoDTensor + uint32_t version; + is.read(reinterpret_cast(&version), sizeof(version)); + PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); } - { // read tensor - std::vector dims; - dims.reserve(static_cast(desc.dims().size())); - std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); - tensor->Resize(framework::make_ddim(dims)); - - void *buf; - platform::Place cpu = platform::CPUPlace(); - switch (desc.data_type()) { - case framework::FP32: - buf = tensor->mutable_data(cpu); - break; - case framework::FP64: - buf = tensor->mutable_data(cpu); - break; - case framework::INT32: - buf = tensor->mutable_data(cpu); - break; - case framework::INT64: - buf = tensor->mutable_data(cpu); - break; - default: - PADDLE_THROW("DataType %d not supported", desc.data_type()); - } - is.read(static_cast(buf), tensor->memory_size()); - } - { // read lod + { + // the 2st field, LoD information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); auto &lod = *tensor->mutable_lod(); @@ -312,6 +282,97 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { lod[i] = tmp; } } + // the 3st filed, Tensor + DeserializeFromStream(is, static_cast(tensor), dev_ctx); +} + +std::vector LoDTensor::SplitLoDTensor( + const std::vector places) const { + check_memory_size(); + int batch_size = + lod().empty() ? dims()[0] : static_cast(lod()[0].size()) - 1; + size_t result_size = std::min(static_cast(batch_size), places.size()); + size_t remainder = batch_size % places.size(); + + std::vector results; + results.reserve(result_size); + + int step_width = static_cast(batch_size / result_size); + for (size_t i = 0; i < result_size; ++i) { + int begin = static_cast(i * step_width); + int end = static_cast((i + 1) * step_width); + if (i + 1 == places.size()) { // last + end += remainder; + } + + LoDTensor dst; + if (lod().empty()) { + auto src = Slice(begin, end); + auto &dst_place = places[i]; + framework::Copy(src, dst_place, &dst); + } else { + auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0); + + auto &offset = lod_and_offset.second; + auto src = Slice(offset.first, offset.second); + auto &dst_place = places[i]; + framework::Copy(src, dst_place, &dst); + + LoD my_lod; + for (auto &l : lod_and_offset.first) { + std::vector v{0}; + for (auto &ll : l) { + v.push_back(ll + v.back()); + } + my_lod.emplace_back(v); + } + dst.set_lod(my_lod); + } + results.emplace_back(dst); + } + + return results; +} + +void LoDTensor::MergeLoDTensor( + const std::vector &lod_tensors, + platform::Place dst_place) { + PADDLE_ENFORCE(!lod_tensors.empty()); + + framework::DDim new_dim = lod_tensors[0]->dims(); + std::type_index new_type = lod_tensors[0]->type(); + framework::DataLayout new_layout = lod_tensors[0]->layout(); + LoD new_lod = lod_tensors[0]->lod(); + for (size_t i = 1; i < lod_tensors.size(); ++i) { + auto *t = lod_tensors[i]; + PADDLE_ENFORCE_EQ(new_type.hash_code(), t->type().hash_code()); + PADDLE_ENFORCE_EQ(new_layout, t->layout()); + + PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0], + framework::product(t->dims()) / t->dims()[0]); + new_dim[0] += t->dims()[0]; + + auto &lod = t->lod(); + for (size_t j = 0; j < lod.size(); ++j) { + auto &sub_lod = new_lod[j]; + auto &offset = sub_lod.back(); + for (size_t k = 1; k < lod[j].size(); ++k) { + sub_lod.push_back(lod[j][k] + offset); + } + } + } + Resize(new_dim); + set_layout(new_layout); + set_lod(new_lod); + mutable_data(dst_place, new_type); + + int begin = 0; + for (auto *src : lod_tensors) { + int end = begin + src->dims()[0]; + auto dst = Slice(begin, end); + framework::Copy(*src, dst_place, &dst); + begin = end; + } } } // namespace framework diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 9411c96aea..9d1294fdeb 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -58,14 +58,9 @@ using Vector = thrust::host_vector< using LoD = std::vector>; std::ostream& operator<<(std::ostream& os, const LoD& lod); +std::ostream& operator<<(std::ostream& os, const LoDTensor& t); -/* - * Slice levels from a LoD. - * NOTE the lowest level should always be the absolute offsets of the underlying - * tensor instances. So if higher layers are sliced without the lowest level, - * the lower level of the sliced LoD will be transformed to the absolute offset. - */ -LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end); +std::string LoDToString(const LoD& lod); LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin, size_t elem_end); @@ -76,6 +71,38 @@ LoD ToAbsOffset(const LoD& in); bool operator==(const LoD& a, const LoD& b); +/* + * Check whether this lod's format is valid. + * + * ATTENTION: + * - Empty lod is treated as valid. + * + * It will check two things: + * + * 1. all the offsets in a level should be ascending(no same items allows). + * 2. there should be more than 2 offsets existing in each level. + * 3. the higher level's last offset should equals the lower level's size-1. + * 4. the first offset(the begin offset) of each level should be 0. + * 5. the lowest level's last offset should equals `tensor_height` if + * tensor_height>0. + */ + +bool CheckLoD(const LoD& in, int tensor_height = -1); +/* + * Check whether this absolute lod's format is valid. + * + * ATTENTION: + * - Empty lod is treated as valid. + * + * It will check two things: + * 1. all the offsets in a level should be ascending(no same items allows) + * 2. there should be more than 2 offsets existing in each level. + * 3. the first offset of each level should be 0, and the last should be the + * same(the height of underlying tensor) or `tensor_height` if + * tensor_height>0. + */ +bool CheckAbsLoD(const LoD& in, int tensor_height = -1); + /* * LoDTensor (Level of details Tensor) * see https://en.wikipedia.org/wiki/Level_of_details for reference. @@ -115,34 +142,11 @@ class LoDTensor : public Tensor { return (lod_)[level].size() - 1; } - /* - * Number of lower-level elements. - * For example, a 2-level lod-tensor - * - * 0-th level | | - * 1-th level || ||| - * - * NumElements(0, 0) get 2 - * NumElements(0, 1) get 3 - */ - size_t NumElements(size_t level, size_t idx) const; - - /* - * Get the number of instances in the underlying tensor in the `idx`-th - * element. - */ - size_t NumInstancesInElement(size_t level, size_t idx) const; + std::vector SplitLoDTensor( + const std::vector places) const; - /* - * Shrink levels[level_begin:level_end] - */ - void ShrinkLevels(size_t level_begin, size_t level_end); - - /* - * Shrink elements of a level, [elem_begin: elem_end] - * @note: low performance in slice lod_. - */ - void ShrinkInLevel(size_t level, size_t elem_begin, size_t elem_end); + void MergeLoDTensor(const std::vector& lod_tensors, + platform::Place place); private: LoD lod_; @@ -177,13 +181,25 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level, for (size_t ins = 0; ins < num_instances; ins++) { for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) { auto slice = tensor.Slice(elem, elem + 1); - CopyFrom(source.Slice(ins, ins + 1), platform::CPUPlace(), - platform::CPUDeviceContext(), &slice); + Copy(source.Slice(ins, ins + 1), platform::CPUPlace(), + platform::CPUDeviceContext(), &slice); } } return tensor; } +// Get the absolute offset of a lod[start_level][start_idx:end_idx] and +// relative length of details for every levels(i.e., [start_level: ]). +// +// For example, +// lod = [[0, 3, 4, 8], [0, 9, 10, 11, 13, 17, 19, 22, 24]] +// start_level = 0 +// start_idx = 1 +// end_idx = 3 +// +// Returns: +// LoD = [[1, 4], [2, 4, 2, 3, 2]] +// pair = {11, 24} std::pair> GetSubLoDAndAbsoluteOffset( const LoD& lod, size_t start_idx, size_t end_idx, size_t start_level); @@ -196,7 +212,8 @@ void AppendLoD(LoD* lod, const LoD& lod_length); */ void SerializeToStream(std::ostream& os, const LoDTensor& tensor, const platform::DeviceContext& dev_ctx); -void DeserializeFromStream(std::istream& is, LoDTensor* tensor); +void DeserializeFromStream(std::istream& is, LoDTensor* tensor, + const platform::DeviceContext& dev_ctx); } // namespace framework } // namespace paddle diff --git a/paddle/framework/lod_tensor_array.h b/paddle/framework/lod_tensor_array.h index 13f0608d24..4a8e7f4fa5 100644 --- a/paddle/framework/lod_tensor_array.h +++ b/paddle/framework/lod_tensor_array.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc index 02d84b6823..2c4d2e10e0 100644 --- a/paddle/framework/lod_tensor_test.cc +++ b/paddle/framework/lod_tensor_test.cc @@ -1,15 +1,16 @@ -/* - Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. -*/ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/lod_tensor.h" @@ -22,110 +23,6 @@ namespace paddle { namespace framework { -const int kLodTensorSize = 20 * 128; - -class LoDTensorTester : public ::testing::Test { - public: - virtual void SetUp() override { - // tensor's batch_size: 30 - // 3 levels - // 0 10 20 - // 0 5 10 15 20 - // 0 2 5 7 10 12 15 20 - LoD lod; - lod.push_back(std::vector{0, 2, 3}); - lod.push_back(std::vector{0, 2, 5, 8}); - lod.push_back(std::vector{0, 2, 5, 7, 10, 12, 15, 17, 20}); - - ASSERT_EQ(lod.size(), 3UL); - - lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/}); - // malloc memory - float* dst_ptr = lod_tensor_.mutable_data(place); - for (int i = 0; i < kLodTensorSize; ++i) { - dst_ptr[i] = i; - } - - lod_tensor_.set_lod(lod); - } - - protected: - platform::CPUPlace place; - LoDTensor lod_tensor_; -}; - -TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); } - -TEST_F(LoDTensorTester, NumElements) { - ASSERT_EQ(lod_tensor_.NumElements(0), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(1), 3UL); - ASSERT_EQ(lod_tensor_.NumElements(2), 8UL); -} - -TEST_F(LoDTensorTester, NumElements2) { - ASSERT_EQ(lod_tensor_.NumElements(0, 0), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(0, 1), 1UL); - ASSERT_EQ(lod_tensor_.NumElements(1, 1), 3UL); -} - -TEST_F(LoDTensorTester, ShrinkLevels) { - // slice 1 level - for (size_t level = 0; level < 3UL; ++level) { - LoDTensor new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkLevels(level, level + 1); - ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); - } - // shrink 2 level - for (size_t level = 0; level < 2UL; ++level) { - LoDTensor new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkLevels(level, level + 2); - // the lowest level's last element should be the tensor's batch_size. - ASSERT_EQ(new_lod_tensor.lod().back().back(), - lod_tensor_.lod().back().back()); - ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); - } -} - -TEST_F(LoDTensorTester, ShrinkInLevel) { - size_t level = 0; - LoDTensor new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkInLevel(level, 0, 1); - ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(2), 5UL); - ASSERT_EQ(new_lod_tensor.dims()[0], 12); - for (int i = 0; i < 12 * 128; i++) { - ASSERT_EQ(new_lod_tensor.data()[i], i); - } - - level = 1; - new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkInLevel(level, 1, 2); - ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 3UL); - ASSERT_EQ(new_lod_tensor.dims()[0], 7); - for (int i = 5 * 128; i < 12 * 128; i++) { - ASSERT_EQ(new_lod_tensor.data()[i - 5 * 128], i); - } - - LoDTensor t1; - t1.set_lod(lod_tensor_.lod()); - t1.ShareDataWith(lod_tensor_); - - LoDTensor t2; - t2.set_lod(lod_tensor_.lod()); - t2.ShareDataWith(lod_tensor_); - - t1.ShrinkInLevel(0, 1, 2); - t2.ShrinkInLevel(0, 0, 1); - EXPECT_NE(t1.data(), t2.data()); - EXPECT_NE(t1.data(), lod_tensor_.data()); -} - TEST(LodExpand, test) { LoD lod{{0, 2}}; LoDTensor tensor; @@ -187,5 +84,134 @@ TEST(LoD, AppendLoD) { EXPECT_EQ(origin, expected); } +TEST(LoD, ToAbsOffset) { + LoD relative_lod; + relative_lod.push_back(std::vector({0, 2})); + relative_lod.push_back(std::vector({0, 1, 3})); + relative_lod.push_back(std::vector({0, 2, 4, 5})); + + LoD abs_lod = paddle::framework::ToAbsOffset(relative_lod); + + LoD expected; + expected.push_back(std::vector({0, 5})); + expected.push_back(std::vector({0, 2, 5})); + expected.push_back(std::vector({0, 2, 4, 5})); + + EXPECT_EQ(abs_lod, expected); +} + +TEST(LoD, SplitLoDTensor) { + LoD lod; + lod.push_back(std::vector({0, 2, 4, 5, 6})); + lod.push_back(std::vector({0, 1, 6, 8, 13, 15, 20})); + + platform::CPUPlace place; + LoDTensor lod_tensor; + lod_tensor.Resize({20, 1}); + float* dst_ptr = lod_tensor.mutable_data(place); + for (int i = 0; i < lod_tensor.numel(); ++i) { + dst_ptr[i] = i; + } + lod_tensor.set_lod(lod); + + std::vector places{platform::CPUPlace(), + platform::CPUPlace()}; + LoD lod0; + lod0.push_back(std::vector({0, 2, 4})); + lod0.push_back(std::vector({0, 1, 6, 8, 13})); + LoD lod1; + lod1.push_back(std::vector({0, 1, 2})); + lod1.push_back(std::vector({0, 2, 7})); + + auto lods = lod_tensor.SplitLoDTensor(places); + EXPECT_EQ(lods[0].lod(), lod0); + EXPECT_EQ(lods[1].lod(), lod1); +} + +TEST(LoD, MergeLoDTensor) { + LoD lod; + lod.push_back(std::vector({0, 2, 4, 5, 6})); + lod.push_back(std::vector({0, 1, 6, 8, 13, 15, 20})); + + platform::CPUPlace place; + + LoDTensor lod_tensor0; + LoD lod0; + lod0.push_back(std::vector({0, 2, 4})); + lod0.push_back(std::vector({0, 1, 6, 8, 13})); + lod_tensor0.set_lod(lod0); + + lod_tensor0.Resize({13, 1}); + float* dst_ptr = lod_tensor0.mutable_data(place); + for (int i = 0; i < lod_tensor0.numel(); ++i) { + dst_ptr[i] = i; + } + + LoDTensor lod_tensor1; + LoD lod1; + lod1.push_back(std::vector({0, 1, 2})); + lod1.push_back(std::vector({0, 2, 7})); + lod_tensor1.set_lod(lod1); + lod_tensor1.Resize({7, 1}); + dst_ptr = lod_tensor1.mutable_data(place); + for (int i = 0; i < lod_tensor1.numel(); ++i) { + dst_ptr[i] = i; + } + + std::vector lods{&lod_tensor0, &lod_tensor1}; + + LoDTensor lod_tensor; + lod_tensor.MergeLoDTensor(lods, place); + EXPECT_EQ(lod_tensor.lod(), lod); +} + +TEST(LoD, CheckLoD) { + LoD relative_lod; + relative_lod.push_back(std::vector({0, 2})); + relative_lod.push_back(std::vector({0, 1, 3})); + relative_lod.push_back(std::vector({0, 2, 4, 5})); + + // check compatible + ASSERT_TRUE(CheckLoD(relative_lod)); + relative_lod[1].back()++; + ASSERT_FALSE(CheckLoD(relative_lod)); + relative_lod[1].back()--; // recover it + + // check empty + LoD empty_lod; + ASSERT_TRUE(CheckLoD(empty_lod)); + + // check less than 2 offsets in a level + LoD some_lod0; + some_lod0.push_back(std::vector({0})); + ASSERT_FALSE(CheckLoD(some_lod0)); + + // check with underlying tensor storage. + ASSERT_TRUE(CheckLoD(relative_lod, 5)); + ASSERT_FALSE(CheckLoD(relative_lod, 9)); +} + +TEST(LoD, CheckAbsLoD) { + LoD relative_lod; + relative_lod.push_back(std::vector({0, 2})); + relative_lod.push_back(std::vector({0, 1, 3})); + relative_lod.push_back(std::vector({0, 2, 4, 5})); + + auto abs_lod = ToAbsOffset(relative_lod); + + ASSERT_TRUE(CheckAbsLoD(abs_lod)); + + // check less than 2 offsets in a level. + + // check the last item should be compatible with tensor height. + abs_lod.back().back()++; + ASSERT_FALSE(CheckAbsLoD(abs_lod)); + abs_lod.back().back()--; // restore + + // check less than 2 offsets in a lod. + LoD abs_lod0; + abs_lod0.push_back(std::vector({0})); + ASSERT_FALSE(CheckAbsLoD(abs_lod0)); +} } // namespace framework } // namespace paddle diff --git a/paddle/framework/lod_tensor_test.cu b/paddle/framework/lod_tensor_test.cu index 5b90fbfca7..0f46e9b1e3 100644 --- a/paddle/framework/lod_tensor_test.cu +++ b/paddle/framework/lod_tensor_test.cu @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); @@ -27,7 +40,7 @@ __global__ void test(size_t* a, int size) { TEST(LoDTensor, LoDInGPU) { paddle::framework::LoDTensor lod_tensor; - paddle::platform::GPUPlace place(0); + paddle::platform::CUDAPlace place(0); paddle::framework::LoD src_lod; src_lod.push_back(std::vector{0, 2, 4, 6, 8, 10, 12, 14}); diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc index 2281d93df9..1c0372bb16 100644 --- a/paddle/framework/op_desc.cc +++ b/paddle/framework/op_desc.cc @@ -25,12 +25,11 @@ limitations under the License. */ namespace paddle { namespace framework { -class OpDescBind; -class BlockDescBind; +class OpDesc; +class BlockDesc; class CompileTimeInferShapeContext : public InferShapeContext { public: - CompileTimeInferShapeContext(const OpDescBind &op, - const BlockDescBind &block); + CompileTimeInferShapeContext(const OpDesc &op, const BlockDesc &block); bool HasInput(const std::string &name) const override; @@ -58,31 +57,31 @@ class CompileTimeInferShapeContext : public InferShapeContext { PADDLE_ENFORCE_LT(j, Outputs(out).size()); auto *in_var = block_.FindVarRecursive(Inputs(in)[i]); auto *out_var = block_.FindVarRecursive(Outputs(out)[j]); - if (in_var->GetType() != VarDesc::LOD_TENSOR) { - VLOG(3) << "input " << in << "is not LodTensor"; + if (in_var->GetType() != proto::VarDesc::LOD_TENSOR) { + VLOG(3) << "input " << in << " is not LodTensor"; return; } - PADDLE_ENFORCE_EQ(in_var->GetType(), VarDesc::LOD_TENSOR, + PADDLE_ENFORCE_EQ(in_var->GetType(), proto::VarDesc::LOD_TENSOR, "The %d-th output of Output(%s) must be LoDTensor.", j, out); - out_var->SetLoDLevel(in_var->GetLodLevel()); + out_var->SetLoDLevel(in_var->GetLoDLevel()); } + bool IsRuntime() const override; protected: - VarDesc::VarType GetVarType(const std::string &name) const override; + proto::VarDesc::VarType GetVarType(const std::string &name) const override; DDim GetDim(const std::string &name) const override; void SetDim(const std::string &name, const DDim &dim) override; - const OpDescBind &op_; - const BlockDescBind &block_; + const OpDesc &op_; + const BlockDesc &block_; }; -OpDescBind::OpDescBind(const std::string &type, const VariableNameMap &inputs, - const VariableNameMap &outputs, - const AttributeMap &attrs) { +OpDesc::OpDesc(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, const AttributeMap &attrs) { desc_.set_type(type); inputs_ = inputs; outputs_ = outputs; @@ -90,12 +89,20 @@ OpDescBind::OpDescBind(const std::string &type, const VariableNameMap &inputs, need_update_ = true; } -OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog) +void OpDesc::CopyFrom(const OpDesc &op_desc) { + desc_.set_type(op_desc.Type()); + inputs_ = op_desc.inputs_; + outputs_ = op_desc.outputs_; + attrs_ = op_desc.attrs_; + need_update_ = true; +} + +OpDesc::OpDesc(const proto::OpDesc &desc, ProgramDesc *prog) : desc_(desc), need_update_(false) { // restore inputs_ int input_size = desc_.inputs_size(); for (int i = 0; i < input_size; ++i) { - const OpDesc::Var &var = desc_.inputs(i); + const proto::OpDesc::Var &var = desc_.inputs(i); std::vector &args = inputs_[var.parameter()]; int argu_size = var.arguments_size(); args.reserve(argu_size); @@ -106,7 +113,7 @@ OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog) // restore outputs_ int output_size = desc_.outputs_size(); for (int i = 0; i < output_size; ++i) { - const OpDesc::Var &var = desc_.outputs(i); + const proto::OpDesc::Var &var = desc_.outputs(i); std::vector &args = outputs_[var.parameter()]; int argu_size = var.arguments_size(); args.reserve(argu_size); @@ -115,9 +122,9 @@ OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog) } } // restore attrs_ - for (const OpDesc::Attr &attr : desc_.attrs()) { + for (const proto::OpDesc::Attr &attr : desc_.attrs()) { std::string attr_name = attr.name(); - if (attr.type() != AttrType::BLOCK) { + if (attr.type() != proto::AttrType::BLOCK) { attrs_[attr_name] = GetAttrValue(attr); } else { auto bid = attr.block_idx(); @@ -126,20 +133,19 @@ OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog) } } -OpDesc *OpDescBind::Proto() { +proto::OpDesc *OpDesc::Proto() { Flush(); return &desc_; } -const std::vector &OpDescBind::Input( - const std::string &name) const { +const std::vector &OpDesc::Input(const std::string &name) const { auto it = inputs_.find(name); PADDLE_ENFORCE(it != inputs_.end(), "Input %s cannot be found in Op %s", name, Type()); return it->second; } -std::vector OpDescBind::InputArgumentNames() const { +std::vector OpDesc::InputArgumentNames() const { std::vector retv; for (auto &ipt : this->inputs_) { retv.insert(retv.end(), ipt.second.begin(), ipt.second.end()); @@ -147,21 +153,20 @@ std::vector OpDescBind::InputArgumentNames() const { return retv; } -void OpDescBind::SetInput(const std::string ¶m_name, - const std::vector &args) { +void OpDesc::SetInput(const std::string ¶m_name, + const std::vector &args) { need_update_ = true; inputs_[param_name] = args; } -const std::vector &OpDescBind::Output( - const std::string &name) const { +const std::vector &OpDesc::Output(const std::string &name) const { auto it = outputs_.find(name); PADDLE_ENFORCE(it != outputs_.end(), "Output %s cannot be found in Op %s", name, Type()); return it->second; } -std::vector OpDescBind::OutputArgumentNames() const { +std::vector OpDesc::OutputArgumentNames() const { std::vector retv; for (auto &ipt : this->outputs_) { retv.insert(retv.end(), ipt.second.begin(), ipt.second.end()); @@ -169,19 +174,19 @@ std::vector OpDescBind::OutputArgumentNames() const { return retv; } -void OpDescBind::SetOutput(const std::string ¶m_name, - const std::vector &args) { +void OpDesc::SetOutput(const std::string ¶m_name, + const std::vector &args) { need_update_ = true; this->outputs_[param_name] = args; } -AttrType OpDescBind::GetAttrType(const std::string &name) const { +proto::AttrType OpDesc::GetAttrType(const std::string &name) const { auto it = attrs_.find(name); PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); - return static_cast(it->second.which() - 1); + return static_cast(it->second.which() - 1); } -std::vector OpDescBind::AttrNames() const { +std::vector OpDesc::AttrNames() const { std::vector retv; retv.reserve(attrs_.size()); for (auto &attr : attrs_) { @@ -190,41 +195,39 @@ std::vector OpDescBind::AttrNames() const { return retv; } -void OpDescBind::SetAttr(const std::string &name, const Attribute &v) { +void OpDesc::SetAttr(const std::string &name, const Attribute &v) { this->attrs_[name] = v; need_update_ = true; } -void OpDescBind::SetBlockAttr(const std::string &name, BlockDescBind &block) { +void OpDesc::SetBlockAttr(const std::string &name, BlockDesc &block) { this->attrs_[name] = █ need_update_ = true; } -void OpDescBind::SetAttrMap( +void OpDesc::SetAttrMap( const std::unordered_map &attr_map) { attrs_ = attr_map; need_update_ = true; } -Attribute OpDescBind::GetAttr(const std::string &name) const { +Attribute OpDesc::GetAttr(const std::string &name) const { auto it = attrs_.find(name); PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); return it->second; } -int OpDescBind::GetBlockAttr(const std::string &name) const { +int OpDesc::GetBlockAttr(const std::string &name) const { auto it = attrs_.find(name); PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); - return boost::get(it->second)->ID(); + return boost::get(it->second)->ID(); } -const std::unordered_map &OpDescBind::GetAttrMap() - const { +const std::unordered_map &OpDesc::GetAttrMap() const { return attrs_; } -void OpDescBind::Rename(const std::string &old_name, - const std::string &new_name) { +void OpDesc::Rename(const std::string &old_name, const std::string &new_name) { for (auto &input : inputs_) { std::replace(input.second.begin(), input.second.end(), old_name, new_name); } @@ -235,8 +238,8 @@ void OpDescBind::Rename(const std::string &old_name, need_update_ = true; } -void OpDescBind::RenameOutput(const std::string &old_name, - const std::string &new_name) { +void OpDesc::RenameOutput(const std::string &old_name, + const std::string &new_name) { for (auto &output : outputs_) { std::replace(output.second.begin(), output.second.end(), old_name, new_name); @@ -244,8 +247,8 @@ void OpDescBind::RenameOutput(const std::string &old_name, need_update_ = true; } -void OpDescBind::RenameInput(const std::string &old_name, - const std::string &new_name) { +void OpDesc::RenameInput(const std::string &old_name, + const std::string &new_name) { for (auto &input : inputs_) { std::replace(input.second.begin(), input.second.end(), old_name, new_name); } @@ -253,12 +256,18 @@ void OpDescBind::RenameInput(const std::string &old_name, } struct SetAttrDescVisitor : public boost::static_visitor { - explicit SetAttrDescVisitor(OpDesc::Attr *attr) : attr_(attr) {} - mutable OpDesc::Attr *attr_; + explicit SetAttrDescVisitor(proto::OpDesc::Attr *attr) : attr_(attr) {} + mutable proto::OpDesc::Attr *attr_; void operator()(int v) const { attr_->set_i(v); } void operator()(float v) const { attr_->set_f(v); } void operator()(const std::string &v) const { attr_->set_s(v); } - void operator()(bool b) const { attr_->set_b(b); } + + // Please refer to https://github.com/PaddlePaddle/Paddle/issues/7162 + template ::value>::type> + void operator()(T b) const { + attr_->set_b(b); + } void operator()(const std::vector &v) const { VectorToRepeated(v, attr_->mutable_ints()); @@ -272,11 +281,11 @@ struct SetAttrDescVisitor : public boost::static_visitor { void operator()(const std::vector &v) const { VectorToRepeated(v, attr_->mutable_bools()); } - void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->idx()); } + void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->ID()); } void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); } }; -void OpDescBind::Flush() { +void OpDesc::Flush() { if (need_update_) { this->desc_.mutable_inputs()->Clear(); for (auto &ipt : inputs_) { @@ -297,7 +306,7 @@ void OpDescBind::Flush() { auto *attr_desc = desc_.add_attrs(); attr_desc->set_name(attr.first); attr_desc->set_type( - static_cast(attr.second.which() - 1)); + static_cast(attr.second.which() - 1)); SetAttrDescVisitor visitor(attr_desc); boost::apply_visitor(visitor, attr.second); } @@ -316,8 +325,8 @@ static void InitInferShapeFuncs() { for (auto &kern_pair : OperatorWithKernel::AllOpKernels()) { auto op_type = kern_pair.first; auto &op_info = info_map.at(op_type); - auto op = - static_cast(op_info.Creator()("", {}, {}, {})); + auto op = static_cast(op_info.Creator()( + "", VariableNameMap{}, VariableNameMap{}, AttributeMap{})); if (op_info.infer_shape_) { // infer_shape has been registered. continue; } @@ -328,7 +337,7 @@ static void InitInferShapeFuncs() { }); } -void OpDescBind::CheckAttrs() { +void OpDesc::CheckAttrs() { PADDLE_ENFORCE(!Type().empty(), "CheckAttr() can not be called before type is setted."); auto *checker = OpInfoMap::Instance().Get(Type()).Checker(); @@ -340,7 +349,7 @@ void OpDescBind::CheckAttrs() { checker->Check(attrs_); } -void OpDescBind::InferShape(const BlockDescBind &block) const { +void OpDesc::InferShape(const BlockDesc &block) const { VLOG(3) << "CompileTime infer shape on " << Type(); InitInferShapeFuncs(); auto &infer_shape = OpInfoMap::Instance().Get(this->Type()).infer_shape_; @@ -363,7 +372,7 @@ void OpDescBind::InferShape(const BlockDescBind &block) const { infer_shape(&ctx); } -void OpDescBind::InferVarType(BlockDescBind *block) const { +void OpDesc::InferVarType(BlockDesc *block) const { auto &info = OpInfoMap::Instance().Get(this->Type()); if (info.infer_var_type_) { info.infer_var_type_(*this, block); @@ -375,14 +384,14 @@ void OpDescBind::InferVarType(BlockDescBind *block) const { for (auto &out_pair : this->outputs_) { for (auto &out_var_name : out_pair.second) { block->FindRecursiveOrCreateVar(out_var_name) - ->SetType(VarDesc::LOD_TENSOR); + .SetType(proto::VarDesc::LOD_TENSOR); } } } } CompileTimeInferShapeContext::CompileTimeInferShapeContext( - const OpDescBind &op, const BlockDescBind &block) + const OpDesc &op, const BlockDesc &block) : op_(op), block_(block) {} bool CompileTimeInferShapeContext::HasInput(const std::string &name) const { @@ -484,7 +493,7 @@ void CompileTimeInferShapeContext::SetDim(const std::string &name, } bool CompileTimeInferShapeContext::IsRuntime() const { return false; } -VarDesc::VarType CompileTimeInferShapeContext::GetVarType( +proto::VarDesc::VarType CompileTimeInferShapeContext::GetVarType( const std::string &name) const { return block_.FindVarRecursive(name)->GetType(); } diff --git a/paddle/framework/op_desc.h b/paddle/framework/op_desc.h index da032319af..a5ffb16292 100644 --- a/paddle/framework/op_desc.h +++ b/paddle/framework/op_desc.h @@ -23,19 +23,21 @@ limitations under the License. */ namespace paddle { namespace framework { -class BlockDescBind; -class ProgramDescBind; +class BlockDesc; +class ProgramDesc; -class OpDescBind { +class OpDesc { public: - OpDescBind() {} + OpDesc() {} - OpDescBind(const std::string &type, const VariableNameMap &inputs, - const VariableNameMap &outputs, const AttributeMap &attrs); + OpDesc(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, const AttributeMap &attrs); - OpDescBind(const OpDesc &desc, ProgramDescBind *prog); + OpDesc(const proto::OpDesc &desc, ProgramDesc *prog); - OpDesc *Proto(); + void CopyFrom(const OpDesc &op_desc); + + proto::OpDesc *Proto(); std::string Type() const { return desc_.type(); } @@ -59,13 +61,13 @@ class OpDescBind { return attrs_.find(name) != attrs_.end(); } - AttrType GetAttrType(const std::string &name) const; + proto::AttrType GetAttrType(const std::string &name) const; std::vector AttrNames() const; void SetAttr(const std::string &name, const Attribute &v); - void SetBlockAttr(const std::string &name, BlockDescBind &block); + void SetBlockAttr(const std::string &name, BlockDesc &block); Attribute GetAttr(const std::string &name) const; @@ -107,9 +109,9 @@ class OpDescBind { void CheckAttrs(); - void InferShape(const BlockDescBind &block) const; + void InferShape(const BlockDesc &block) const; - void InferVarType(BlockDescBind *block) const; + void InferVarType(BlockDesc *block) const; void MarkAsTarget() { desc_.set_is_target(true); } @@ -126,8 +128,10 @@ class OpDescBind { return ret_val; } - OpDesc desc_; + proto::OpDesc desc_; + // input arg name => input variable names VariableNameMap inputs_; + // output arg name => output variable names VariableNameMap outputs_; AttributeMap attrs_; diff --git a/paddle/framework/op_info.cc b/paddle/framework/op_info.cc index 81ba29797c..b520108109 100644 --- a/paddle/framework/op_info.cc +++ b/paddle/framework/op_info.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_info.h" diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h index d3b1a3b5fa..d9b89f9cac 100644 --- a/paddle/framework/op_info.h +++ b/paddle/framework/op_info.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include @@ -34,7 +34,7 @@ class InferShapeBase { struct OpInfo { OpCreator creator_; GradOpMakerFN grad_op_maker_; - OpProto* proto_{nullptr}; + proto::OpProto* proto_{nullptr}; OpAttrChecker* checker_{nullptr}; InferVarTypeFN infer_var_type_; InferShapeFN infer_shape_; @@ -43,7 +43,7 @@ struct OpInfo { return proto_ != nullptr && checker_ != nullptr; } - const OpProto& Proto() const { + const proto::OpProto& Proto() const { PADDLE_ENFORCE_NOT_NULL(proto_, "Operator Proto has not been registered"); PADDLE_ENFORCE(proto_->IsInitialized(), "Operator Proto must be initialized in op info"); diff --git a/paddle/framework/op_kernel_type.h b/paddle/framework/op_kernel_type.h new file mode 100644 index 0000000000..44adb94d2a --- /dev/null +++ b/paddle/framework/op_kernel_type.h @@ -0,0 +1,99 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/data_layout.h" +#include "paddle/framework/data_type.h" +#include "paddle/framework/library_type.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/place.h" + +namespace paddle { +namespace framework { + +struct OpKernelType { + struct Hash { + size_t operator()(const OpKernelType& key) const { + int place = key.place_.which(); + int data_type = static_cast(key.data_type_) << LEFT_SHIFT; + int data_layout = static_cast(key.data_layout_) << (LEFT_SHIFT * 2); + int library_type = static_cast(key.library_type_) + << (LEFT_SHIFT * 3); + + std::hash hasher; + return hasher(place + data_type + data_layout + library_type); + } + }; + + // place, data_type, library_type kinds less than 2^8 + constexpr static int LEFT_SHIFT = 8; + + proto::DataType data_type_; + DataLayout data_layout_; + platform::Place place_; + LibraryType library_type_; + + OpKernelType(proto::DataType data_type, platform::Place place, + DataLayout data_layout = DataLayout::kAnyLayout, + LibraryType library_type = LibraryType::kPlain) + : data_type_(data_type), + data_layout_(data_layout), + place_(place), + library_type_(library_type) {} + + OpKernelType(proto::DataType data_type, + const platform::DeviceContext& dev_ctx, + DataLayout data_layout = DataLayout::kAnyLayout, + LibraryType library_type = LibraryType::kPlain) + : data_type_(data_type), + data_layout_(data_layout), + place_(dev_ctx.GetPlace()), + library_type_(library_type) {} + + bool operator==(const OpKernelType& o) const { + return platform::places_are_same_class(place_, o.place_) && + data_type_ == o.data_type_ && data_layout_ == o.data_layout_ && + library_type_ == o.library_type_; + } + + bool operator!=(const OpKernelType& o) const { return !(*this == o); } +}; + +inline std::ostream& operator<<(std::ostream& os, + const OpKernelType& kernel_key) { + os << "data_type[" << kernel_key.data_type_ << "]:data_layout[" + << kernel_key.data_layout_ << "]:place[" << kernel_key.place_ + << "]:library_type[" << kernel_key.library_type_ << "]"; + return os; +} + +inline std::string KernelTypeToString(const OpKernelType& kernel_key) { + std::ostringstream stream; + stream << kernel_key; + return stream.str(); +} + +inline bool NeedTransformLayout(const DataLayout& l, const DataLayout& r) { + return l != DataLayout::kAnyLayout && r != DataLayout::kAnyLayout && l != r; +} + +inline bool TransFromNeeded(const OpKernelType& l, const OpKernelType& r) { + return (!platform::places_are_same_class(l.place_, r.place_)) || + (l.data_type_ != r.data_type_) || + NeedTransformLayout(l.data_layout_, r.data_layout_); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_kernel_type_test.cc b/paddle/framework/op_kernel_type_test.cc new file mode 100644 index 0000000000..649afeee8a --- /dev/null +++ b/paddle/framework/op_kernel_type_test.cc @@ -0,0 +1,49 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/op_kernel_type.h" +#include +#include + +TEST(OpKernelType, ToString) { + using OpKernelType = paddle::framework::OpKernelType; + using DataType = paddle::framework::proto::DataType; + using CPUPlace = paddle::platform::CPUPlace; + using DataLayout = paddle::framework::DataLayout; + using LibraryType = paddle::framework::LibraryType; + + OpKernelType op_kernel_type(DataType::FP32, CPUPlace(), DataLayout::kNCHW, + LibraryType::kCUDNN); + + ASSERT_EQ( + paddle::framework::KernelTypeToString(op_kernel_type), + "data_type[5]:data_layout[NCHW]:place[CPUPlace]:library_type[CUDNN]"); +} + +TEST(OpKernelType, Hash) { + using OpKernelType = paddle::framework::OpKernelType; + using DataType = paddle::framework::proto::DataType; + using CPUPlace = paddle::platform::CPUPlace; + using CUDAPlace = paddle::platform::CUDAPlace; + using DataLayout = paddle::framework::DataLayout; + using LibraryType = paddle::framework::LibraryType; + + OpKernelType op_kernel_type_1(DataType::FP32, CPUPlace(), DataLayout::kNCHW, + LibraryType::kCUDNN); + OpKernelType op_kernel_type_2(DataType::FP32, CUDAPlace(0), DataLayout::kNCHW, + LibraryType::kCUDNN); + + OpKernelType::Hash hasher; + ASSERT_NE(hasher(op_kernel_type_1), hasher(op_kernel_type_2)); +} diff --git a/paddle/framework/op_proto_maker.h b/paddle/framework/op_proto_maker.h index 44e8ab1689..efd3a5ca53 100644 --- a/paddle/framework/op_proto_maker.h +++ b/paddle/framework/op_proto_maker.h @@ -22,6 +22,8 @@ namespace framework { // this class not only make proto but also init attribute checkers. class OpProtoAndCheckerMaker { public: + using OpProto = proto::OpProto; + using OpAttrChecker = framework::OpAttrChecker; OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : proto_(proto), op_checker_(op_checker) {} @@ -80,7 +82,7 @@ class OpProtoAndCheckerMaker { class NOPMaker : public OpProtoAndCheckerMaker { public: - NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + NOPMaker(OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) {} }; diff --git a/paddle/framework/op_proto_maker_test.cc b/paddle/framework/op_proto_maker_test.cc index 988a14cf4d..f16cb6fa3a 100644 --- a/paddle/framework/op_proto_maker_test.cc +++ b/paddle/framework/op_proto_maker_test.cc @@ -18,7 +18,7 @@ limitations under the License. */ class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { public: - TestAttrProtoMaker(paddle::framework::OpProto* proto, + TestAttrProtoMaker(paddle::framework::proto::OpProto* proto, paddle::framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("scale", "scale of test op"); @@ -27,7 +27,7 @@ class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { }; TEST(ProtoMaker, DuplicatedAttr) { - paddle::framework::OpProto op_proto; + paddle::framework::proto::OpProto op_proto; paddle::framework::OpAttrChecker op_checker; auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker); ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); @@ -35,7 +35,7 @@ TEST(ProtoMaker, DuplicatedAttr) { class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { public: - TestInOutProtoMaker(paddle::framework::OpProto* proto, + TestInOutProtoMaker(paddle::framework::proto::OpProto* proto, paddle::framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("input", "input of test op"); @@ -44,7 +44,7 @@ class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { }; TEST(ProtoMaker, DuplicatedInOut) { - paddle::framework::OpProto op_proto; + paddle::framework::proto::OpProto op_proto; paddle::framework::OpAttrChecker op_checker; auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker); ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index 8dedd873aa..dfa151316d 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -31,7 +31,8 @@ std::unique_ptr OpRegistry::CreateOp( } static VariableNameMap ConvertOpDescVarsToVarNameMap( - const google::protobuf::RepeatedPtrField& op_desc_vars) { + const google::protobuf::RepeatedPtrField& + op_desc_vars) { VariableNameMap ret_val; for (auto& var : op_desc_vars) { auto& var_names = ret_val[var.parameter()]; @@ -43,9 +44,10 @@ static VariableNameMap ConvertOpDescVarsToVarNameMap( return ret_val; } -std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { +std::unique_ptr OpRegistry::CreateOp( + const proto::OpDesc& op_desc) { VLOG(1) << "CreateOp directly from OpDesc is deprecated. It should only be" - "used in unit tests. Use CreateOp(const OpDescBind& op_desc) " + "used in unit tests. Use CreateOp(const OpDesc& op_desc) " "instead."; VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); @@ -57,7 +59,7 @@ std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { return CreateOp(op_desc.type(), inputs, outputs, attrs); } -std::unique_ptr OpRegistry::CreateOp(const OpDescBind& op_desc) { +std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { return CreateOp(op_desc.Type(), op_desc.Inputs(), op_desc.Outputs(), op_desc.GetAttrMap()); } diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index daade439e5..5de9ae559c 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -37,8 +37,8 @@ class Registrar { public: // In our design, various kinds of classes, e.g., operators and kernels, // have their corresponding registry and registrar. The action of - // registration is in the constructor of a global registrar variable, which, - // however, are not used in the code that calls package framework, and would + // registration is in the constructor of a global registrar variable, which + // are not used in the code that calls package framework, and would // be removed from the generated binary file by the linker. To avoid such // removal, we add Touch to all registrar classes and make USE_OP macros to // call this method. So, as long as the callee code calls USE_OP, the global @@ -61,25 +61,14 @@ struct OperatorRegistrar : public Registrar { class OpRegistry { public: - template - static void RegisterOp(const std::string& op_type, - const std::string& grad_op_type) { - OperatorRegistrar reg(op_type.c_str()); - reg.info.grad_op_type_ = grad_op_type; - // register gradient op - if (!grad_op_type.empty()) { - OperatorRegistrar grad_reg(grad_op_type.c_str()); - } - } - static std::unique_ptr CreateOp(const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, AttributeMap attrs); - static std::unique_ptr CreateOp(const OpDesc& op_desc); + static std::unique_ptr CreateOp(const proto::OpDesc& op_desc); - static std::unique_ptr CreateOp(const OpDescBind& op_desc); + static std::unique_ptr CreateOp(const OpDesc& op_desc); }; template @@ -90,30 +79,31 @@ struct OpKernelRegistrarFunctor { using KERNEL_TYPE = typename std::tuple_element>::type; - void operator()(const char* op_type) const { + void operator()(const char* op_type, const char* library_type) const { using T = typename KERNEL_TYPE::ELEMENT_TYPE; - OpKernelType key(ToDataType(std::type_index(typeid(T))), PlaceType()); + OpKernelType key(ToDataType(std::type_index(typeid(T))), PlaceType(), + DataLayout::kAnyLayout, StringToLibraryType(library_type)); OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KERNEL_TYPE); constexpr auto size = std::tuple_size>::value; OpKernelRegistrarFunctor func; - func(op_type); + func(op_type, library_type); } }; template struct OpKernelRegistrarFunctor { - void operator()(const char* op_type) const {} + void operator()(const char* op_type, const char* library_type) const {} }; // User can register many kernel in one place. The data type could be different. template class OpKernelRegistrar : public Registrar { public: - explicit OpKernelRegistrar(const char* op_type) { + explicit OpKernelRegistrar(const char* op_type, const char* library_type) { OpKernelRegistrarFunctor func; - func(op_type); + func(op_type, library_type); } }; @@ -126,6 +116,14 @@ class OpKernelRegistrar : public Registrar { __test_global_namespace_##uniq_name##__>::value, \ msg) +/* + The variadic arguments should be class types derived from one of the + following classes: + OpProtoAndCheckerMaker + GradOpDescMakerBase + VarTypeInference + InferShapeBase +*/ #define REGISTER_OPERATOR(op_type, op_class, ...) \ STATIC_ASSERT_GLOBAL_NAMESPACE( \ __reg_op__##op_type, \ @@ -144,20 +142,29 @@ class OpKernelRegistrar : public Registrar { } /** - * Macro to register Operator. + * Macro to register Operator. When the input is duplicable, you should + * use REGISTER_OP_EX with deop_empty_grad=false instead. */ -#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \ - grad_op_class) \ - REGISTER_OPERATOR(grad_op_type, grad_op_class); \ - class _GradOpDescMaker_##grad_op_type##_ \ - : public ::paddle::framework::DefaultGradOpDescMaker { \ - using ::paddle::framework::DefaultGradOpDescMaker< \ - true>::DefaultGradOpDescMaker; \ - \ - protected: \ - virtual std::string GradOpType() const { return #grad_op_type; } \ - }; \ - REGISTER_OPERATOR(op_type, op_class, _GradOpDescMaker_##grad_op_type##_, \ +#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \ + grad_op_class) \ + REGISTER_OP_EX(op_type, op_class, op_maker_class, grad_op_type, \ + grad_op_class, true) + +// When an argument is duplicable, we need to use this version. +// Perhaps we can omit DropEmptyIG template parameter and +// only have one version of REGISTER_OP. +#define REGISTER_OP_EX(op_type, op_class, op_maker_class, grad_op_type, \ + grad_op_class, drop_empty_grad) \ + REGISTER_OPERATOR(grad_op_type, grad_op_class); \ + class _GradOpDescMaker_##grad_op_type##_ \ + : public ::paddle::framework::DefaultGradOpDescMaker { \ + using ::paddle::framework::DefaultGradOpDescMaker< \ + drop_empty_grad>::DefaultGradOpDescMaker; \ + \ + protected: \ + virtual std::string GradOpType() const { return #grad_op_type; } \ + }; \ + REGISTER_OPERATOR(op_type, op_class, _GradOpDescMaker_##grad_op_type##_, \ op_maker_class); #define REGISTER_OP_WITH_KERNEL(op_type, ...) \ @@ -170,19 +177,20 @@ class OpKernelRegistrar : public Registrar { /** * Macro to register OperatorKernel. */ -#define REGISTER_OP_KERNEL(op_type, DEVICE_TYPE, place_class, ...) \ - STATIC_ASSERT_GLOBAL_NAMESPACE( \ - __reg_op_kernel_##op_type##_##DEVICE_TYPE##__, \ - "REGISTER_OP_KERNEL must be called in global namespace"); \ - static ::paddle::framework::OpKernelRegistrar \ - __op_kernel_registrar_##op_type##_##DEVICE_TYPE##__(#op_type); \ - int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() { \ - __op_kernel_registrar_##op_type##_##DEVICE_TYPE##__.Touch(); \ - return 0; \ +#define REGISTER_OP_KERNEL(op_type, LIBRARY_TYPE, place_class, ...) \ + STATIC_ASSERT_GLOBAL_NAMESPACE( \ + __reg_op_kernel_##op_type##_##LIBRARY_TYPE##__, \ + "REGISTER_OP_KERNEL must be called in global namespace"); \ + static ::paddle::framework::OpKernelRegistrar \ + __op_kernel_registrar_##op_type##_##LIBRARY_TYPE##__(#op_type, \ + #LIBRARY_TYPE); \ + int TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE() { \ + __op_kernel_registrar_##op_type##_##LIBRARY_TYPE##__.Touch(); \ + return 0; \ } -#define REGISTER_OP_GPU_KERNEL(op_type, ...) \ - REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__) +#define REGISTER_OP_CUDA_KERNEL(op_type, ...) \ + REGISTER_OP_KERNEL(op_type, CUDA, ::paddle::platform::CUDAPlace, __VA_ARGS__) #define REGISTER_OP_CPU_KERNEL(op_type, ...) \ REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__) @@ -200,14 +208,14 @@ class OpKernelRegistrar : public Registrar { static int use_op_itself_##op_type##_ __attribute__((unused)) = \ TouchOpRegistrar_##op_type() -#define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \ - STATIC_ASSERT_GLOBAL_NAMESPACE( \ - __use_op_kernel_##op_type##_##DEVICE_TYPE##__, \ - "USE_OP_DEVICE_KERNEL must be in global namespace"); \ - extern int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE(); \ - static int use_op_kernel_##op_type##_##DEVICE_TYPE##_ \ - __attribute__((unused)) = \ - TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() +#define USE_OP_DEVICE_KERNEL(op_type, LIBRARY_TYPE) \ + STATIC_ASSERT_GLOBAL_NAMESPACE( \ + __use_op_kernel_##op_type##_##LIBRARY_TYPE##__, \ + "USE_OP_DEVICE_KERNEL must be in global namespace"); \ + extern int TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE(); \ + static int use_op_kernel_##op_type##_##LIBRARY_TYPE##_ \ + __attribute__((unused)) = \ + TouchOpKernelRegistrar_##op_type##_##LIBRARY_TYPE() // TODO(fengjiayi): The following macros // seems ugly, do we have better method? @@ -217,7 +225,7 @@ class OpKernelRegistrar : public Registrar { #else #define USE_OP_KERNEL(op_type) \ USE_OP_DEVICE_KERNEL(op_type, CPU); \ - USE_OP_DEVICE_KERNEL(op_type, GPU) + USE_OP_DEVICE_KERNEL(op_type, CUDA) #endif #define USE_NO_KERNEL_OP(op_type) USE_OP_ITSELF(op_type); @@ -226,9 +234,9 @@ class OpKernelRegistrar : public Registrar { USE_OP_ITSELF(op_type); \ USE_OP_DEVICE_KERNEL(op_type, CPU); -#define USE_GPU_ONLY_OP(op_type) \ - USE_OP_ITSELF(op_type); \ - USE_OP_DEVICE_KERNEL(op_type, GPU) +#define USE_CUDA_ONLY_OP(op_type) \ + USE_OP_ITSELF(op_type); \ + USE_OP_DEVICE_KERNEL(op_type, CUDA) #define USE_OP(op_type) \ USE_OP_ITSELF(op_type); \ diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index b860fe6cac..341da8befd 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -1,15 +1,31 @@ -#include "paddle/framework/op_registry.h" +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include #include +#include "paddle/framework/op_registry.h" + namespace pd = paddle::framework; namespace paddle { namespace framework { + class CosineOp : public OperatorBase { public: using OperatorBase::OperatorBase; - void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const override {} + void Run(const Scope& scope, const platform::Place& place) const override {} }; class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { @@ -28,8 +44,7 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class MyTestOp : public OperatorBase { public: using OperatorBase::OperatorBase; - void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const override {} + void Run(const Scope& scope, const platform::Place& place) const override {} }; class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { @@ -51,7 +66,7 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { static void BuildVar(const std::string& param_name, std::initializer_list arguments, - paddle::framework::OpDesc::Var* var) { + paddle::framework::proto::OpDesc::Var* var) { var->set_parameter(param_name); for (auto& arg_name : arguments) { var->add_arguments(arg_name); @@ -63,7 +78,7 @@ REGISTER_OP_WITHOUT_GRADIENT(my_test_op, paddle::framework::MyTestOp, paddle::framework::MyTestOpProtoAndCheckerMaker); TEST(OpRegistry, CreateOp) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("cos_sim"); BuildVar("input", {"aa"}, op_desc.add_inputs()); BuildVar("output", {"bb"}, op_desc.add_outputs()); @@ -71,26 +86,26 @@ TEST(OpRegistry, CreateOp) { float scale = 3.3; auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(scale); auto op = paddle::framework::OpRegistry::CreateOp(op_desc); paddle::framework::Scope scope; - paddle::platform::CPUDeviceContext dev_ctx; - op->Run(scope, dev_ctx); + paddle::platform::CPUPlace cpu_place; + op->Run(scope, cpu_place); float scale_get = op->Attr("scale"); ASSERT_EQ(scale_get, scale); } TEST(OpRegistry, IllegalAttr) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("cos_sim"); BuildVar("input", {"aa"}, op_desc.add_inputs()); BuildVar("output", {"bb"}, op_desc.add_outputs()); auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(-2.0); bool caught = false; @@ -108,7 +123,7 @@ TEST(OpRegistry, IllegalAttr) { } TEST(OpRegistry, DefaultValue) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("cos_sim"); BuildVar("input", {"aa"}, op_desc.add_inputs()); BuildVar("output", {"bb"}, op_desc.add_outputs()); @@ -117,13 +132,13 @@ TEST(OpRegistry, DefaultValue) { auto op = paddle::framework::OpRegistry::CreateOp(op_desc); paddle::framework::Scope scope; - paddle::platform::CPUDeviceContext dev_ctx; - op->Run(scope, dev_ctx); + paddle::platform::CPUPlace cpu_place; + op->Run(scope, cpu_place); ASSERT_EQ(op->Attr("scale"), 1.0); } TEST(OpRegistry, CustomChecker) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("my_test_op"); BuildVar("input", {"ii"}, op_desc.add_inputs()); BuildVar("output", {"oo"}, op_desc.add_outputs()); @@ -145,7 +160,7 @@ TEST(OpRegistry, CustomChecker) { // set 'test_attr' set to an illegal value auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("test_attr"); - attr->set_type(paddle::framework::AttrType::INT); + attr->set_type(paddle::framework::proto::AttrType::INT); attr->set_i(3); caught = false; try { @@ -164,12 +179,12 @@ TEST(OpRegistry, CustomChecker) { op_desc.mutable_attrs()->Clear(); attr = op_desc.mutable_attrs()->Add(); attr->set_name("test_attr"); - attr->set_type(paddle::framework::AttrType::INT); + attr->set_type(paddle::framework::proto::AttrType::INT); attr->set_i(4); auto op = paddle::framework::OpRegistry::CreateOp(op_desc); - paddle::platform::CPUDeviceContext dev_ctx; + paddle::platform::CPUPlace cpu_place; paddle::framework::Scope scope; - op->Run(scope, dev_ctx); + op->Run(scope, cpu_place); int test_attr = op->Attr("test_attr"); ASSERT_EQ(test_attr, 4); } @@ -184,3 +199,175 @@ TEST(OperatorRegistrar, Test) { using namespace paddle::framework; OperatorRegistrar reg("cos"); } + +namespace paddle { +namespace framework { + +class OpKernelTestMaker : public OpProtoAndCheckerMaker { + public: + OpKernelTestMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddComment("NoGradOp, same input output. no Grad"); + } +}; + +class OpWithKernelTest : public OperatorWithKernel { + public: + using OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(InferShapeContext* ctx) const override {} + + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType(proto::DataType::FP32, ctx.device_context()); + } +}; + +template +class OpKernelTest : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const {} +}; + +} // namespace framework +} // namespace paddle + +REGISTER_OP_WITHOUT_GRADIENT(op_with_kernel, + paddle::framework::OpWithKernelTest, + paddle::framework::OpKernelTestMaker); +REGISTER_OP_CPU_KERNEL( + op_with_kernel, + paddle::framework::OpKernelTest); + +REGISTER_OP_CUDA_KERNEL(op_with_kernel, + paddle::framework::OpKernelTest< + paddle::platform::CUDADeviceContext, float>); + +TEST(OperatorRegistrar, CPU) { + paddle::framework::proto::OpDesc op_desc; + paddle::platform::CPUPlace cpu_place; + paddle::framework::Scope scope; + + op_desc.set_type("op_with_kernel"); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + + op->Run(scope, cpu_place); +} + +TEST(OperatorRegistrar, CUDA) { + paddle::framework::proto::OpDesc op_desc; + paddle::platform::CUDAPlace cuda_place(0); + paddle::framework::Scope scope; + + op_desc.set_type("op_with_kernel"); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + + op->Run(scope, cuda_place); +} + +static int op_test_value = 0; + +using paddle::platform::DeviceContext; +using paddle::platform::CPUDeviceContext; +using paddle::platform::CUDADeviceContext; + +namespace paddle { +namespace framework { + +class OpWithMultiKernelTest : public OperatorWithKernel { + public: + using OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(InferShapeContext* ctx) const override {} + + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + proto::DataType::FP32, platform::CUDAPlace(0), DataLayout::kAnyLayout, + framework::LibraryType::kCUDNN); + } +}; + +template +class OpMultiKernelTest : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const; +}; + +template +class OpMultiKernelTest + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + ++op_test_value; + } +}; + +template +class OpMultiKernelTest + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + --op_test_value; + } +}; + +template +class OpMultiKernelTest2 : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const; +}; + +template +class OpMultiKernelTest2 + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + op_test_value += 10; + } +}; + +template +class OpMultiKernelTest2 + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + op_test_value -= 10; + } +}; + +} // namespace framework +} // namespace paddle + +REGISTER_OP_WITHOUT_GRADIENT(op_with_multi_kernel, + paddle::framework::OpWithMultiKernelTest, + paddle::framework::OpKernelTestMaker); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CPU, paddle::platform::CPUPlace, + paddle::framework::OpMultiKernelTest); +REGISTER_OP_KERNEL( + op_with_multi_kernel, MKLDNN, paddle::platform::CPUPlace, + paddle::framework::OpMultiKernelTest2); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CUDA, paddle::platform::CUDAPlace, + paddle::framework::OpMultiKernelTest); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CUDNN, paddle::platform::CUDAPlace, + paddle::framework::OpMultiKernelTest2); + +TEST(OperatorRegistrar, OpWithMultiKernel) { + paddle::framework::proto::OpDesc op_desc; + paddle::platform::CUDAPlace cuda_place(0); + paddle::platform::CPUPlace cpu_place; + paddle::framework::Scope scope; + + op_desc.set_type("op_with_multi_kernel"); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + + // TODO(qiao) add priority back + // use all available kernels + op->Run(scope, cuda_place); + EXPECT_EQ(op_test_value, -10); +} diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index f1444eeee9..831b1e2a1e 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -11,30 +11,60 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include +#include -#include "paddle/framework/operator.h" #include -#include -#include "paddle/framework/lod_tensor_array.h" + +#include "paddle/framework/data_transform.h" +#include "paddle/framework/executor.h" +#include "paddle/framework/operator.h" #include "paddle/framework/shape_inference.h" #include "paddle/framework/var_type.h" +DEFINE_bool(op_sync, false, + "Default cuda is asynchronous device, set to True will" + "force op run in synchronous mode."); + namespace paddle { namespace framework { -template <> -Eigen::DefaultDevice& ExecutionContext::GetEigenDevice< - platform::CPUPlace, Eigen::DefaultDevice>() const { - return *device_context_.GetEigenDevice(); +std::vector> kKernelPriority = { + std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN), + std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain), + std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN), + std::make_tuple(platform::CPUPlace(), LibraryType::kPlain), +}; + +static DDim GetDims(const Scope& scope, const std::string& name) { + Variable* var = scope.FindVar(name); + if (var == nullptr) { + return DDim({-1}); + } + + if (var->IsType()) { + return var->Get().dims(); + } else if (var->IsType()) { + return var->Get().GetCompleteDims(); + } else { + return DDim({-1}); + } } -#ifdef PADDLE_WITH_CUDA -template <> -Eigen::GpuDevice& -ExecutionContext::GetEigenDevice() const { - return *device_context_.GetEigenDevice(); +static LoD GetLoD(const Scope& scope, const std::string& name) { + Variable* var = scope.FindVar(name); + auto default_lod = LoD({{}}); + + if (var == nullptr) { + return default_lod; + } + + if (var->IsType()) { + return var->Get().lod(); + } else { + return default_lod; + } } -#endif std::string OperatorBase::Input(const std::string& name) const { auto& ins = Inputs(name); @@ -68,7 +98,7 @@ const std::vector& OperatorBase::Outputs( return it->second; } -std::string OperatorBase::DebugString() const { +std::string OperatorBase::DebugStringEx(const Scope* scope) const { std::stringstream ss; ss << "Op(" << type_ << "), inputs:{"; for (auto it = inputs_.begin(); it != inputs_.end();) { @@ -76,6 +106,10 @@ std::string OperatorBase::DebugString() const { ss << input.first << "["; for (size_t i = 0; i < input.second.size(); ++i) { ss << input.second[i]; + if (scope) { + ss << "[" << GetDims(*scope, input.second[i]) << "]"; + ss << "(" << GetLoD(*scope, input.second[i]) << ")"; + } if (i != input.second.size() - 1) { ss << ", "; } @@ -92,6 +126,10 @@ std::string OperatorBase::DebugString() const { ss << output.first << "["; for (size_t i = 0; i < output.second.size(); ++i) { ss << output.second[i]; + if (scope) { + ss << "[" << GetDims(*scope, output.second[i]) << "]"; + ss << "(" << GetLoD(*scope, output.second[i]) << ")"; + } if (i != output.second.size() - 1) { ss << ", "; } @@ -189,34 +227,37 @@ void OperatorBase::GenerateTemporaryNames() { } } -static const Tensor* GetTensorFromVar(const Variable* var) { - const Tensor* t = nullptr; +static bool VarIsTensor(const Variable* var) { + return var->IsType() || var->IsType(); +} + +static const Tensor* GetTensorFromVar(Variable* var) { if (var->IsType()) { - t = &(var->Get()); + return var->GetMutable(); } else if (var->IsType()) { - t = &(var->Get().value()); + return var->GetMutable()->mutable_value(); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", + var->Type().name()); } - return t; } static Tensor* GetMutableTensorFromVar(Variable* var) { - Tensor* t = nullptr; if (var->IsType()) { - t = var->GetMutable(); + return var->GetMutable(); } else if (var->IsType()) { - t = var->GetMutable()->mutable_value(); + return var->GetMutable()->mutable_value(); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", + var->Type().name()); } - return t; } template <> const Tensor* ExecutionContext::Input(const std::string& name) const { auto* var = InputVar(name); - return var == nullptr ? nullptr : GetTensorFromVar(var); + return var == nullptr ? nullptr + : GetTensorFromVar(const_cast(var)); } template <> @@ -254,17 +295,12 @@ std::vector ExecutionContext::MultiOutput( return res; } -std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key) { - os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_ - << "]"; - return os; -} - bool OpSupportGPU(const std::string& op_type) { auto& all_kernels = OperatorWithKernel::AllOpKernels(); auto it = all_kernels.find(op_type); if (it == all_kernels.end()) { // All control operator must support GPU + return true; } for (auto& kern_pair : it->second) { @@ -364,6 +400,25 @@ class RuntimeInferShapeContext : public InferShapeContext { auto in_tensor = in_var->Get(); auto* out_tensor = out_var->GetMutable(); out_tensor->set_lod(in_tensor.lod()); + + // TODO(dzhwinter) : reuse ShareLoD in most operators. + // Need to call ShareLayout explicitly in sequence related ops. + // Shall we have a better method to shared info between in/out Tensor? + out_tensor->set_layout(in_tensor.layout()); + } + + void ShareLayout(const std::string& in, const std::string& out, size_t i = 0, + size_t j = 0) const { + PADDLE_ENFORCE_LT(i, Inputs(in).size()); + PADDLE_ENFORCE_LT(j, Outputs(out).size()); + Variable* in_var = scope_.FindVar(Inputs(in)[i]); + Variable* out_var = scope_.FindVar(Outputs(out)[j]); + if (!in_var->IsType()) return; + PADDLE_ENFORCE(out_var->IsType(), + "The %d-th output of Output(%s) must be LoDTensor.", j, out); + auto in_tensor = in_var->Get(); + auto* out_tensor = out_var->GetMutable(); + out_tensor->set_layout(in_tensor.layout()); } bool IsRuntime() const override { return true; } @@ -376,7 +431,8 @@ class RuntimeInferShapeContext : public InferShapeContext { } else if (var->IsType()) { return var->Get().GetCompleteDims(); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", + name, var->Type().name()); } } @@ -387,11 +443,12 @@ class RuntimeInferShapeContext : public InferShapeContext { } else if (var->IsType()) { var->GetMutable()->set_height(dim[0]); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", + name, var->Type().name()); } } - VarDesc::VarType GetVarType(const std::string& name) const override { + proto::VarDesc::VarType GetVarType(const std::string& name) const override { auto* var = scope_.FindVar(name); return ToVarType(var->Type()); } @@ -402,11 +459,11 @@ class RuntimeInferShapeContext : public InferShapeContext { }; void OperatorWithKernel::Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const { + const platform::Place& place) const { RuntimeInferShapeContext infer_shape_ctx(*this, scope); this->InferShape(&infer_shape_ctx); - - ExecutionContext ctx(*this, scope, dev_ctx); + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto dev_ctx = pool.Get(place); // check if op[type] has kernel registered. auto& all_op_kernels = AllOpKernels(); @@ -416,22 +473,70 @@ void OperatorWithKernel::Run(const Scope& scope, "There are no kernels which are registered in the %s operator.", type_); } - // check if op[type] have kernel for kernel_key + ExecutionContext ctx(*this, scope, *dev_ctx); + OpKernelMap& kernels = kernels_iter->second; - auto kernel_key = GetKernelType(ctx); - auto kernel_iter = kernels.find(kernel_key); + // TODO(dzhwinter) : kernel fallback mechanism will be added when all the + // transform functions are ready. + + // for (auto& candidate : kKernelPriority) { + // Do selection + // } + + auto expected_kernel_key = this->GetExpectedKernelType(ctx); + VLOG(3) << "expected_kernel_key:" << expected_kernel_key; + + auto kernel_iter = kernels.find(expected_kernel_key); if (kernel_iter == kernels.end()) { - PADDLE_THROW("The operator %s does not support %s", type_, kernel_key); + PADDLE_THROW("op %s does not have kernel for %s", type_, + KernelTypeToString(expected_kernel_key)); } - kernel_iter->second->Compute(ctx); -} -OpKernelType OperatorWithKernel::GetKernelType( - const ExecutionContext& ctx) const { - return OpKernelType(IndicateDataType(ctx), ctx.device_context()); + // do data transform + Scope& new_scope = scope.NewScope(); + + for (auto& var_name_item : this->Inputs()) { + for (auto& var_name : var_name_item.second) { + auto* var = scope.FindVar(var_name); + if (var && VarIsTensor(var)) { + auto* tensor_in = GetTensorFromVar(var); + if (tensor_in->IsInitialized()) { + auto kernel_type_for_var = this->GetKernelTypeForVar( + var_name_item.first, *tensor_in, expected_kernel_key); + if (TransFromNeeded(kernel_type_for_var, expected_kernel_key)) { + auto out_var_names = OutputVars(true); + if (std::find(out_var_names.begin(), out_var_names.end(), + var_name) != out_var_names.end()) { + PADDLE_THROW( + "var %s is both input and output, " + "does not support transform", + var_name); + } + VLOG(3) << "Transform Variable " << var_name << " from " + << kernel_type_for_var << " to " << expected_kernel_key; + auto* trans_var = new_scope.Var(var_name); + std::shared_ptr out(new Tensor); + DataTransform(expected_kernel_key, kernel_type_for_var, *tensor_in, + out.get()); + CopyVariableWithTensor(*var, *(out.get()), *trans_var); + } + } + } + } + } + + auto* new_dev_ctx = pool.Get(expected_kernel_key.place_); + kernel_iter->second->Compute( + ExecutionContext(*this, new_scope, *new_dev_ctx)); + + /*For profiling/benchmark only*/ + if (FLAGS_op_sync) { + new_dev_ctx->Wait(); + } } -DataType OperatorWithKernel::IndicateDataType( + +proto::DataType OperatorWithKernel::IndicateDataType( const ExecutionContext& ctx) const { auto& scope = ctx.scope(); int data_type = -1; @@ -457,7 +562,18 @@ DataType OperatorWithKernel::IndicateDataType( } } PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input"); - return static_cast(data_type); + return static_cast(data_type); +} + +OpKernelType OperatorWithKernel::GetExpectedKernelType( + const ExecutionContext& ctx) const { + return OpKernelType(IndicateDataType(ctx), ctx.GetPlace()); +} + +OpKernelType OperatorWithKernel::GetKernelTypeForVar( + const std::string& var_name, const Tensor& tensor, + const OpKernelType& expected_kernel_type) const { + return OpKernelType(expected_kernel_type.data_type_, tensor.place()); } } // namespace framework diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 60861d9293..c9140f304c 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -17,21 +17,21 @@ limitations under the License. */ #include #include #include +#include #include #include #include "glog/logging.h" // For VLOG #include "paddle/framework/attribute.h" #include "paddle/framework/block_desc.h" -#include "paddle/framework/data_type.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_info.h" +#include "paddle/framework/op_kernel_type.h" #include "paddle/framework/scope.h" #include "paddle/framework/selected_rows.h" #include "paddle/framework/tensor.h" #include "paddle/platform/device_context.h" -#include "paddle/platform/place.h" #include "paddle/platform/variant.h" #include "paddle/utils/Error.h" @@ -53,6 +53,10 @@ constexpr char kGradVarSuffix[] = "@GRAD"; /// Variables with this suffix are supposed to be filled up with zeros. constexpr char kZeroVarSuffix[] = "@ZERO"; +// define some kernel priority +/* Define multiple kernel type fallback order*/ +extern std::vector> kKernelPriority; + inline std::string GradVarName(const std::string& var_name) { return var_name + kGradVarSuffix; } @@ -80,11 +84,16 @@ class OperatorBase { return boost::get(attrs_.at(name)); } - virtual std::string DebugString() const; + /// if scope is not null, also show dimensions of arguments + virtual std::string DebugStringEx(const Scope* scope) const; + + std::string DebugString() const { return DebugStringEx(nullptr); } /// Net will call this function to Run an op. - virtual void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const = 0; + virtual void Run(const Scope& scope, const platform::Place& place) const = 0; + + // FIXME(typhoonzero): this is only used for recv_op to stop event_loop. + virtual void Stop() {} virtual bool IsNetOp() const { return false; } @@ -159,8 +168,7 @@ class OperatorBase { class NOP : public OperatorBase { public: using OperatorBase::OperatorBase; - void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const override {} + void Run(const Scope& scope, const platform::Place& place) const override {} std::unique_ptr Clone() const override { return std::unique_ptr(new NOP(*this)); } @@ -276,17 +284,25 @@ class ExecutionContext { out_tensor->set_lod(in_tensor.lod()); } - template ::EigenDeviceType> - DeviceType& GetEigenDevice() const; - platform::Place GetPlace() const { return device_context_.GetPlace(); } + template + const DeviceContextType& device_context() const { + return *reinterpret_cast(&device_context_); + } + const platform::DeviceContext& device_context() const { return device_context_; } +#ifdef PADDLE_WITH_CUDA + const inline platform::CUDADeviceContext& cuda_device_context() const { + PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace())); + return *reinterpret_cast( + &device_context_); + } +#endif + //! Get actual name vector for this input. const std::vector& Inputs(const std::string& name) const { return op_.Inputs(name); @@ -297,14 +313,6 @@ class ExecutionContext { return op_.Outputs(name); } -#ifdef PADDLE_WITH_CUDA - const inline platform::CUDADeviceContext& cuda_device_context() const { - PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace())); - return *reinterpret_cast( - &device_context_); - } -#endif - private: const OperatorBase& op_; const Scope& scope_; @@ -345,33 +353,6 @@ class OpKernel : public OpKernelBase { using ELEMENT_TYPE = T; }; -struct OpKernelType { - struct Hash { - std::hash hash_; - size_t operator()(const OpKernelType& key) const { - int place = key.place_.which(); - int data_type = static_cast(key.data_type_); - int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT | - (place & ((1 << NUM_PLACE_TYPE_LIMIT_IN_BIT) - 1)); - return hash_(pre_hash); - } - }; - - platform::Place place_; - DataType data_type_; - - OpKernelType(DataType data_type, platform::Place place) - : place_(place), data_type_(data_type) {} - - OpKernelType(DataType data_type, const platform::DeviceContext& dev_ctx) - : place_(dev_ctx.GetPlace()), data_type_(data_type) {} - - bool operator==(const OpKernelType& o) const { - return platform::places_are_same_class(place_, o.place_) && - data_type_ == o.data_type_; - } -}; - class OperatorWithKernel : public OperatorBase { public: using OpKernelMap = @@ -382,8 +363,7 @@ class OperatorWithKernel : public OperatorBase { const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} - void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const final; + void Run(const Scope& scope, const platform::Place& place) const final; static std::unordered_map& AllOpKernels() { @@ -404,16 +384,17 @@ class OperatorWithKernel : public OperatorBase { } protected: - virtual OpKernelType GetKernelType(const ExecutionContext& ctx) const; + virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const; + virtual OpKernelType GetKernelTypeForVar( + const std::string& var_name, const Tensor& tensor, + const OpKernelType& expected_kernel_type) const; private: // indicate kernel DataType by input data. Defaultly all input data must be // same. - DataType IndicateDataType(const ExecutionContext& ctx) const; + proto::DataType IndicateDataType(const ExecutionContext& ctx) const; }; -std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key); - extern bool OpSupportGPU(const std::string& op_type); } // namespace framework diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 1e19f82b34..b69d7c7a74 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -11,11 +11,12 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - -#include "paddle/framework/operator.h" #include "gtest/gtest.h" + +#include "paddle/framework/init.h" #include "paddle/framework/op_info.h" #include "paddle/framework/op_registry.h" +#include "paddle/framework/operator.h" namespace paddle { namespace framework { @@ -27,8 +28,7 @@ class OpWithoutKernelTest : public OperatorBase { OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs), x(1) {} - void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const override { + void Run(const Scope& scope, const platform::Place& place) const override { ++op_run_num; ASSERT_EQ(static_cast(inputs_.size()), 1); ASSERT_EQ(static_cast(outputs_.size()), 1); @@ -41,10 +41,9 @@ class OpWithoutKernelTest : public OperatorBase { int x{0}; }; -class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { +class OpWithoutKernelCheckerMaker : public OpProtoAndCheckerMaker { public: - OpeWithoutKernelTestProtoAndCheckerMaker(OpProto* proto, - OpAttrChecker* op_checker) + OpWithoutKernelCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("input", "input of test op"); AddOutput("output", "output of test op"); @@ -58,35 +57,36 @@ class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { static void BuildVar(const std::string& param_name, std::initializer_list arguments, - paddle::framework::OpDesc::Var* var) { + paddle::framework::proto::OpDesc::Var* var) { var->set_parameter(param_name); for (auto& arg_name : arguments) { *var->mutable_arguments()->Add() = arg_name; } } -REGISTER_OP_WITHOUT_GRADIENT( - test_operator, paddle::framework::OpWithoutKernelTest, - paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker); +REGISTER_OP_WITHOUT_GRADIENT(test_operator, + paddle::framework::OpWithoutKernelTest, + paddle::framework::OpWithoutKernelCheckerMaker); TEST(OperatorBase, all) { - paddle::framework::OpDesc op_desc; + paddle::framework::InitDevices(); + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("test_operator"); BuildVar("input", {"IN1"}, op_desc.add_inputs()); BuildVar("output", {"OUT1"}, op_desc.add_outputs()); auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(3.14); - paddle::platform::CPUDeviceContext device_context; + paddle::platform::CPUPlace cpu_place; paddle::framework::Scope scope; auto op = paddle::framework::OpRegistry::CreateOp(op_desc); scope.Var("OUT1"); ASSERT_EQ(paddle::framework::op_run_num, 0); - op->Run(scope, device_context); + op->Run(scope, cpu_place); ASSERT_EQ(paddle::framework::op_run_num, 1); } @@ -114,8 +114,9 @@ class OpWithKernelTest : public OperatorWithKernel { protected: void InferShape(framework::InferShapeContext* ctx) const override {} - OpKernelType GetKernelType(const ExecutionContext& ctx) const override { - return OpKernelType(DataType::FP32, ctx.device_context()); + OpKernelType GetExpectedKernelType( + const ExecutionContext& ctx) const override { + return OpKernelType(proto::DataType::FP32, ctx.GetPlace()); } }; @@ -123,7 +124,6 @@ template class CPUKernelTest : public OpKernel { public: void Compute(const ExecutionContext& ctx) const { - std::cout << "this is cpu kernel" << std::endl; std::cout << ctx.op().DebugString() << std::endl; cpu_kernel_run_num++; ASSERT_EQ(ctx.op().Input("x"), "IN1"); @@ -195,22 +195,23 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel, // test with single input TEST(OpKernel, all) { - paddle::framework::OpDesc op_desc; + paddle::framework::InitDevices(); + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("op_with_kernel"); BuildVar("x", {"IN1"}, op_desc.add_inputs()); BuildVar("y", {"OUT1"}, op_desc.add_outputs()); auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(3.14); - paddle::platform::CPUDeviceContext cpu_device_context; + paddle::platform::CPUPlace cpu_place; paddle::framework::Scope scope; auto op = paddle::framework::OpRegistry::CreateOp(op_desc); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0); - op->Run(scope, cpu_device_context); + op->Run(scope, cpu_place); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1); } @@ -224,7 +225,9 @@ REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel, TEST(OpKernel, multi_inputs) { using namespace paddle::framework; - OpDesc op_desc; + paddle::framework::InitDevices(); + proto::OpDesc op_desc; + op_desc.set_type("op_multi_inputs_with_kernel"); BuildVar("xs", {"x0", "x1", "x2"}, op_desc.add_inputs()); BuildVar("k", {"k0"}, op_desc.add_inputs()); @@ -232,10 +235,10 @@ TEST(OpKernel, multi_inputs) { auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(3.14); - paddle::platform::CPUDeviceContext cpu_device_context; + paddle::platform::CPUPlace cpu_place; paddle::framework::Scope scope; scope.Var("x0")->GetMutable(); scope.Var("x1")->GetMutable(); @@ -245,7 +248,7 @@ TEST(OpKernel, multi_inputs) { scope.Var("y1")->GetMutable(); auto op = paddle::framework::OpRegistry::CreateOp(op_desc); - op->Run(scope, cpu_device_context); + op->Run(scope, cpu_place); } class OperatorClone : public paddle::framework::OperatorBase { @@ -257,11 +260,14 @@ class OperatorClone : public paddle::framework::OperatorBase { const paddle::framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const paddle::framework::Scope& scope, - const paddle::platform::DeviceContext& dev_ctx) const override {} + const paddle::platform::Place& place) const override {} }; TEST(Operator, Clone) { - OperatorClone a("ABC", {}, {}, {}); + paddle::framework::InitDevices(); + OperatorClone a("ABC", paddle::framework::VariableNameMap{}, + paddle::framework::VariableNameMap{}, + paddle::framework::AttributeMap{}); auto b = a.Clone(); ASSERT_EQ(a.Type(), b->Type()); } diff --git a/paddle/framework/program_desc.cc b/paddle/framework/program_desc.cc index 4af8d94563..b5d9e5e385 100644 --- a/paddle/framework/program_desc.cc +++ b/paddle/framework/program_desc.cc @@ -18,49 +18,49 @@ limitations under the License. */ namespace paddle { namespace framework { -BlockDescBind *ProgramDescBind::AppendBlock(const BlockDescBind &parent) { +BlockDesc *ProgramDesc::AppendBlock(const BlockDesc &parent) { auto *b = desc_.add_blocks(); b->set_parent_idx(parent.ID()); b->set_idx(desc_.blocks_size() - 1); - blocks_.emplace_back(new BlockDescBind(this, b)); + blocks_.emplace_back(new BlockDesc(this, b)); return blocks_.back().get(); } -ProgramDesc *ProgramDescBind::Proto() { +proto::ProgramDesc *ProgramDesc::Proto() { for (auto &block : blocks_) { block->Flush(); } return &desc_; } -ProgramDescBind::ProgramDescBind() { +ProgramDesc::ProgramDesc() { auto *block = desc_.mutable_blocks()->Add(); block->set_idx(kRootBlockIndex); block->set_parent_idx(kNoneBlockIndex); - blocks_.emplace_back(new BlockDescBind(this, block)); + blocks_.emplace_back(new BlockDesc(this, block)); } -ProgramDescBind::ProgramDescBind(const ProgramDescBind &o) { +ProgramDesc::ProgramDesc(const ProgramDesc &o) { desc_ = o.desc_; for (int i = 0; i < desc_.blocks_size(); ++i) { auto *block = desc_.mutable_blocks(i); - blocks_.emplace_back(new BlockDescBind(*o.blocks_[i], block, this)); + blocks_.emplace_back(new BlockDesc(*o.blocks_[i], block, this)); } } -ProgramDescBind::ProgramDescBind(const ProgramDesc &desc) { +ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) { desc_ = desc; for (auto &block_desc : *desc_.mutable_blocks()) { - blocks_.emplace_back(new BlockDescBind(this, &block_desc)); + blocks_.emplace_back(new BlockDesc(this, &block_desc)); } } -ProgramDescBind::ProgramDescBind(const std::string &binary_str) { +ProgramDesc::ProgramDesc(const std::string &binary_str) { PADDLE_ENFORCE(desc_.ParseFromString(binary_str), "Fail to parse program_desc from binary string."); for (auto &block_desc : *desc_.mutable_blocks()) { - blocks_.emplace_back(new BlockDescBind(this, &block_desc)); + blocks_.emplace_back(new BlockDesc(this, &block_desc)); } } diff --git a/paddle/framework/program_desc.h b/paddle/framework/program_desc.h index b1cb086de4..15a962bb69 100644 --- a/paddle/framework/program_desc.h +++ b/paddle/framework/program_desc.h @@ -23,32 +23,32 @@ limitations under the License. */ namespace paddle { namespace framework { -class BlockDescBind; +class BlockDesc; -class ProgramDescBind { +class ProgramDesc { public: - ProgramDescBind(); + ProgramDesc(); - explicit ProgramDescBind(const ProgramDesc &desc); + explicit ProgramDesc(const proto::ProgramDesc &desc); - ProgramDescBind(const ProgramDescBind &o); + ProgramDesc(const ProgramDesc &o); - explicit ProgramDescBind(const std::string &binary_str); + explicit ProgramDesc(const std::string &binary_str); - BlockDescBind *AppendBlock(const BlockDescBind &parent); + BlockDesc *AppendBlock(const BlockDesc &parent); - BlockDescBind *MutableBlock(size_t idx) { return blocks_[idx].get(); } + BlockDesc *MutableBlock(size_t idx) { return blocks_[idx].get(); } - const BlockDescBind &Block(size_t idx) const { return *blocks_[idx]; } + const BlockDesc &Block(size_t idx) const { return *blocks_[idx]; } size_t Size() const { return blocks_.size(); } - ProgramDesc *Proto(); + proto::ProgramDesc *Proto(); private: - ProgramDesc desc_; + proto::ProgramDesc desc_; - std::vector> blocks_; + std::vector> blocks_; }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/program_desc_test.cc b/paddle/framework/program_desc_test.cc index 83e7286e0e..59947c9f21 100644 --- a/paddle/framework/program_desc_test.cc +++ b/paddle/framework/program_desc_test.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/program_desc.h" #include "gtest/gtest.h" @@ -19,18 +19,18 @@ namespace paddle { namespace framework { TEST(ProgramDesc, copy_ctor) { - ProgramDescBind program; + ProgramDesc program; auto* global_block = program.MutableBlock(0); auto* x = global_block->Var("X"); - x->SetType(VarDesc_VarType_LOD_TENSOR); + x->SetType(proto::VarDesc_VarType_LOD_TENSOR); x->SetLoDLevel(0); - x->SetDataType(FP32); + x->SetDataType(proto::FP32); x->SetShape({1000, 784}); auto* y = global_block->Var("Y"); - y->SetType(VarDesc_VarType_LOD_TENSOR); + y->SetType(proto::VarDesc_VarType_LOD_TENSOR); y->SetLoDLevel(0); - y->SetDataType(FP32); + y->SetDataType(proto::FP32); y->SetShape({784, 100}); auto* op = global_block->AppendOp(); @@ -39,15 +39,15 @@ TEST(ProgramDesc, copy_ctor) { op->SetInput("Y", {y->Name()}); auto* out = global_block->Var("Out"); - out->SetType(VarDesc_VarType_LOD_TENSOR); + out->SetType(proto::VarDesc_VarType_LOD_TENSOR); op->SetOutput("Y", {out->Name()}); - ProgramDescBind program_copy(program); + ProgramDesc program_copy(program); auto* global_block_copy = program_copy.MutableBlock(0); ASSERT_NE(global_block, global_block_copy); - auto assert_same_var = [&](const std::string& name, VarDescBind* var_before) { + auto assert_same_var = [&](const std::string& name, VarDesc* var_before) { ASSERT_TRUE(global_block_copy->HasVar(name)); auto* copy = global_block_copy->Var(name); ASSERT_NE(copy, var_before); @@ -81,18 +81,18 @@ TEST(ProgramDesc, copy_ctor) { } TEST(ProgramDescBind, serialize_and_deserialize) { - ProgramDescBind program_origin; + ProgramDesc program_origin; auto* global_block = program_origin.MutableBlock(0); auto* x = global_block->Var("X"); - x->SetType(VarDesc_VarType_LOD_TENSOR); + x->SetType(proto::VarDesc_VarType_LOD_TENSOR); x->SetLoDLevel(0); - x->SetDataType(FP32); + x->SetDataType(proto::FP32); x->SetShape({1000, 784}); auto* y = global_block->Var("Y"); - y->SetType(VarDesc_VarType_LOD_TENSOR); + y->SetType(proto::VarDesc_VarType_LOD_TENSOR); y->SetLoDLevel(0); - y->SetDataType(FP32); + y->SetDataType(proto::FP32); y->SetShape({784, 100}); auto* op = global_block->AppendOp(); @@ -101,17 +101,17 @@ TEST(ProgramDescBind, serialize_and_deserialize) { op->SetInput("Y", {y->Name()}); auto* out = global_block->Var("Out"); - out->SetType(VarDesc_VarType_LOD_TENSOR); + out->SetType(proto::VarDesc_VarType_LOD_TENSOR); op->SetOutput("Y", {out->Name()}); std::string binary_str; program_origin.Proto()->SerializeToString(&binary_str); - ProgramDescBind program_restored(binary_str); + ProgramDesc program_restored(binary_str); auto* global_block_restored = program_restored.MutableBlock(0); ASSERT_NE(global_block, global_block_restored); - auto assert_same_var = [&](const std::string& name, VarDescBind* var_before) { + auto assert_same_var = [&](const std::string& name, VarDesc* var_before) { ASSERT_TRUE(global_block_restored->HasVar(name)); auto* restored = global_block_restored->Var(name); ASSERT_NE(restored, var_before); diff --git a/paddle/framework/prune.cc b/paddle/framework/prune.cc index da76052eb4..25eb813ffb 100644 --- a/paddle/framework/prune.cc +++ b/paddle/framework/prune.cc @@ -29,7 +29,7 @@ const std::string kFetchOpType = "fetch"; const std::string kDropOutOpType = "dropout"; const std::string kBatchNormOpType = "batch_norm"; -bool HasDependentVar(const OpDesc& op_desc, +bool HasDependentVar(const proto::OpDesc& op_desc, const std::set& dependent_vars) { for (auto& var : op_desc.outputs()) { for (auto& argu : var.arguments()) { @@ -41,14 +41,15 @@ bool HasDependentVar(const OpDesc& op_desc, return false; } -bool IsTarget(const OpDesc& op_desc) { +bool IsTarget(const proto::OpDesc& op_desc) { if (op_desc.has_is_target()) { return op_desc.is_target(); } return false; } -void prune_impl(const ProgramDesc& input, ProgramDesc* output, int block_id) { +void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output, + int block_id) { // TODO(tonyyang-svail): // - will change to use multiple blocks for RNN op and Cond Op @@ -104,12 +105,12 @@ void prune_impl(const ProgramDesc& input, ProgramDesc* output, int block_id) { } // TODO(fengjiayi): Prune() could be inplaced to avoid unnecessary copies -void Prune(const ProgramDesc& input, ProgramDesc* output) { +void Prune(const proto::ProgramDesc& input, proto::ProgramDesc* output) { prune_impl(input, output, 0); } -void inference_optimize_impl(const ProgramDesc& input, ProgramDesc* output, - int block_id) { +void inference_optimize_impl(const proto::ProgramDesc& input, + proto::ProgramDesc* output, int block_id) { *output = input; auto* op_field = output->mutable_blocks(block_id)->mutable_ops(); for (auto& op_desc : *op_field) { @@ -125,7 +126,8 @@ void inference_optimize_impl(const ProgramDesc& input, ProgramDesc* output, } } -void InferenceOptimize(const ProgramDesc& input, ProgramDesc* output) { +void InferenceOptimize(const proto::ProgramDesc& input, + proto::ProgramDesc* output) { inference_optimize_impl(input, output, 0); } diff --git a/paddle/framework/prune.h b/paddle/framework/prune.h index 23db014894..593292523d 100644 --- a/paddle/framework/prune.h +++ b/paddle/framework/prune.h @@ -20,9 +20,10 @@ limitations under the License. */ namespace paddle { namespace framework { -void Prune(const ProgramDesc& input, ProgramDesc* output); +void Prune(const proto::ProgramDesc& input, proto::ProgramDesc* output); -void InferenceOptimize(const ProgramDesc& input, ProgramDesc* output); +void InferenceOptimize(const proto::ProgramDesc& input, + proto::ProgramDesc* output); } // namespace framework } // namespace paddle diff --git a/paddle/framework/prune_test.cc b/paddle/framework/prune_test.cc index 5988874809..d76c5abca9 100644 --- a/paddle/framework/prune_test.cc +++ b/paddle/framework/prune_test.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/prune.h" @@ -29,12 +29,12 @@ namespace ops = paddle::operators; void AddOp(const std::string &type, const f::VariableNameMap &inputs, const f::VariableNameMap &outputs, f::AttributeMap attrs, - paddle::framework::BlockDescBind *block) { + paddle::framework::BlockDesc *block) { // insert output for (auto kv : outputs) { for (auto v : kv.second) { auto var = block->Var(v); - var->SetDataType(paddle::framework::DataType::FP32); + var->SetDataType(paddle::framework::proto::DataType::FP32); } } @@ -51,88 +51,102 @@ void AddOp(const std::string &type, const f::VariableNameMap &inputs, } TEST(Prune, one_operator) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block); + AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, f::AttributeMap{}, + block); - f::ProgramDesc *pdesc = program.Proto(); - f::ProgramDesc pruned; + f::proto::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc pruned; - Prune(*pdesc, &pruned); + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 0); pdesc->mutable_blocks(0)->mutable_ops(0)->set_is_target(true); - Prune(*pdesc, &pruned); + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 1); } TEST(Prune, forward) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block); - AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, {}, block); - AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, {}, block); - AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, {}, block); + AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, f::AttributeMap{}, + block); - f::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc *pdesc = program.Proto(); for (int i = 0; i < pdesc->blocks(0).ops_size(); ++i) { - f::ProgramDesc pruned; + f::proto::ProgramDesc pruned; pdesc->mutable_blocks(0)->mutable_ops(i)->set_is_target(true); - Prune(*pdesc, &pruned); + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), i + 1); } } TEST(Prune, multi_input_op) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, {}, block); - AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, {}, block); - AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, {}, block); - AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}}, {}, + AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, f::AttributeMap{}, block); + AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, f::AttributeMap{}, + block); + AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}}, + f::AttributeMap{}, block); - f::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc *pdesc = program.Proto(); pdesc->mutable_blocks(0)->mutable_ops(3)->set_is_target(true); - f::ProgramDesc pruned; - Prune(*pdesc, &pruned); + f::proto::ProgramDesc pruned; + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 4); } TEST(Prune, multi_output_op) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block); - AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block); - AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block); + AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, + f::AttributeMap{}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, f::AttributeMap{}, + block); - f::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc *pdesc = program.Proto(); pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true); - f::ProgramDesc pruned; - Prune(*pdesc, &pruned); + f::proto::ProgramDesc pruned; + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 2); } TEST(Prune, multi_target) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block); - AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block); - AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block); + AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, + f::AttributeMap{}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, f::AttributeMap{}, + block); - f::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc *pdesc = program.Proto(); pdesc->mutable_blocks(0)->mutable_ops(1)->set_is_target(true); pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true); - f::ProgramDesc pruned; - Prune(*pdesc, &pruned); + f::proto::ProgramDesc pruned; + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 3); } diff --git a/paddle/framework/scope.cc b/paddle/framework/scope.cc index 656736e238..2bd0ac8f5a 100644 --- a/paddle/framework/scope.cc +++ b/paddle/framework/scope.cc @@ -17,6 +17,7 @@ limitations under the License. */ #include // for unique_ptr #include // for call_once #include "glog/logging.h" +#include "paddle/framework/threadpool.h" #include "paddle/string/printf.h" namespace paddle { @@ -74,17 +75,9 @@ void Scope::DropKids() { kids_.clear(); } -std::vector Scope::GetAllNames(bool recursive) const { - std::vector known_vars(vars_.size()); - - if (recursive) { - for (auto& kid : kids_) { - auto kid_vars = kid->GetAllNames(); - for (auto& p : kid_vars) { - known_vars.emplace_back(p); - } - } - } +std::vector Scope::LocalVarNames() const { + std::vector known_vars; + known_vars.reserve(this->vars_.size()); for (auto& p : vars_) { known_vars.emplace_back(p.first); } @@ -95,7 +88,8 @@ void Scope::DeleteScope(Scope* scope) { auto it = std::find(this->kids_.begin(), this->kids_.end(), scope); PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope); this->kids_.erase(it); - delete scope; + // Make delete async. + Async([scope] { delete scope; }); } void Scope::Rename(const std::string& origin_name, @@ -115,6 +109,7 @@ std::string Scope::Rename(const std::string& origin_name) const { Rename(origin_name, var_name); return var_name; } + Variable* Scope::FindVarLocally(const std::string& name) const { auto it = vars_.find(name); if (it != vars_.end()) return it->second; diff --git a/paddle/framework/scope.h b/paddle/framework/scope.h index 56e815db54..a1da81cc79 100644 --- a/paddle/framework/scope.h +++ b/paddle/framework/scope.h @@ -66,7 +66,7 @@ class Scope { void DropKids(); // enumerate all the variables current contains. - std::vector GetAllNames(bool recursive = false) const; + std::vector LocalVarNames() const; // Rename variable to a new name void Rename(const std::string& origin_name, @@ -75,9 +75,9 @@ class Scope { // Rename variable to a new name and return the new name std::string Rename(const std::string& origin_name) const; - private: Variable* FindVarLocally(const std::string& name) const; + private: // Call Scope::NewScope for a sub-scope. explicit Scope(Scope const* parent) : parent_(parent) {} diff --git a/paddle/framework/scope_test.cc b/paddle/framework/scope_test.cc index f738d5ba9e..0f5b86061d 100644 --- a/paddle/framework/scope_test.cc +++ b/paddle/framework/scope_test.cc @@ -61,7 +61,7 @@ TEST(Scope, GetAllNames) { Variable* v = s.Var("a"); EXPECT_EQ(&s, s.FindScope(v)); - std::vector ans = s.GetAllNames(); + std::vector ans = s.LocalVarNames(); std::string str; for (auto& var : ans) { str += var; diff --git a/paddle/framework/selected_rows.cc b/paddle/framework/selected_rows.cc index c74459c9dd..3b3e60177a 100644 --- a/paddle/framework/selected_rows.cc +++ b/paddle/framework/selected_rows.cc @@ -12,5 +12,58 @@ limitations under the License. */ #include "paddle/framework/selected_rows.h" namespace paddle { -namespace framework {} // namespace framework +namespace framework { +void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows, + const platform::DeviceContext& dev_ctx) { + { // the 1st field, uint32_t version + constexpr uint32_t version = 0; + os.write(reinterpret_cast(&version), sizeof(version)); + } + { + // the 2st field, rows information + auto& rows = selected_rows.rows(); + uint64_t size = rows.size(); + os.write(reinterpret_cast(&size), sizeof(size)); + for (uint64_t i = 0; i < size; ++i) { + os.write(reinterpret_cast(&rows[i]), sizeof(rows[i])); + } + } + { + // the 3st field, the height of SelectedRows + int64_t height = selected_rows.height(); + os.write(reinterpret_cast(&height), sizeof(height)); + } + // the 4st field, Tensor data + SerializeToStream(os, selected_rows.value(), dev_ctx); +} + +void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows, + const platform::DeviceContext& dev_ctx) { + { + // the 1st field, unit32_t version for SelectedRows + uint32_t version; + is.read(reinterpret_cast(&version), sizeof(version)); + PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); + } + { + // the 2st field, rows information + uint64_t size; + is.read(reinterpret_cast(&size), sizeof(size)); + auto& rows = *selected_rows->mutable_rows(); + rows.resize(size); + for (uint64_t i = 0; i < size; ++i) { + is.read(reinterpret_cast(&rows[i]), sizeof(int64_t)); + } + } + { + // the 3st field, the height of the SelectedRows + int64_t height; + is.read(reinterpret_cast(&height), sizeof(int64_t)); + selected_rows->set_height(height); + } + // the 4st field, tensor which contains the data + DeserializeFromStream(is, selected_rows->mutable_value(), dev_ctx); +} + +} // namespace framework } // namespace paddle diff --git a/paddle/framework/selected_rows.h b/paddle/framework/selected_rows.h index 0332b91323..30d3dfc1e8 100644 --- a/paddle/framework/selected_rows.h +++ b/paddle/framework/selected_rows.h @@ -59,5 +59,15 @@ class SelectedRows { int64_t height_; }; +/* + * Serialize/Desiralize SelectedRows to std::ostream + * You can pass ofstream or ostringstream to serilize to file + * or to a in memory string. GPU tensor will be copied to CPU. + */ +void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows, + const platform::DeviceContext& dev_ctx); +void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows, + const platform::DeviceContext& dev_ctx); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/selected_rows_test.cc b/paddle/framework/selected_rows_test.cc index 4ee13a65d7..8ff3fb6a97 100644 --- a/paddle/framework/selected_rows_test.cc +++ b/paddle/framework/selected_rows_test.cc @@ -43,5 +43,21 @@ TEST_F(SelectedRowsTester, complete_dims) { ASSERT_EQ(selected_rows_->GetCompleteDims(), make_ddim({10, 100})); } +TEST_F(SelectedRowsTester, SerializeAndDeseralize) { + SelectedRows dst_tensor; + platform::CPUDeviceContext cpu_ctx(place_); + std::ostringstream oss; + + SerializeToStream(oss, *selected_rows_, cpu_ctx); + + std::istringstream iss(oss.str()); + DeserializeFromStream(iss, &dst_tensor, cpu_ctx); + + ASSERT_EQ(selected_rows_->rows(), dst_tensor.rows()); + ASSERT_EQ(selected_rows_->height(), dst_tensor.height()); + ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims()); + ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims()); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/shape_inference.cc b/paddle/framework/shape_inference.cc index 7dac1cfd5e..e53cc0cdab 100644 --- a/paddle/framework/shape_inference.cc +++ b/paddle/framework/shape_inference.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/shape_inference.h" #include "grad_op_desc_maker.h" #include "paddle/framework/operator.h" @@ -57,17 +57,17 @@ void InferShapeContext::SetDims(const std::vector &names, SetDim(names[i], dims[i]); } } -std::vector InferShapeContext::GetInputsVarType( +std::vector InferShapeContext::GetInputsVarType( const std::string &name) const { return GetVarTypes(Inputs(name)); } -std::vector InferShapeContext::GetOutputsVarType( +std::vector InferShapeContext::GetOutputsVarType( const std::string &name) const { return GetVarTypes(Outputs(name)); } -std::vector InferShapeContext::GetVarTypes( +std::vector InferShapeContext::GetVarTypes( const std::vector &names) const { - std::vector retv; + std::vector retv; retv.resize(names.size()); std::transform(names.begin(), names.end(), retv.begin(), std::bind(std::mem_fn(&InferShapeContext::GetVarType), this, diff --git a/paddle/framework/shape_inference.h b/paddle/framework/shape_inference.h index 46f2ea84b4..f93319d8f2 100644 --- a/paddle/framework/shape_inference.h +++ b/paddle/framework/shape_inference.h @@ -27,8 +27,9 @@ class InferShapeContext { virtual bool HasInput(const std::string &name) const = 0; virtual bool HasOutput(const std::string &name) const = 0; - std::vector GetInputsVarType(const std::string &name) const; - std::vector GetOutputsVarType( + std::vector GetInputsVarType( + const std::string &name) const; + std::vector GetOutputsVarType( const std::string &name) const; virtual bool HasInputs(const std::string &name) const = 0; @@ -65,10 +66,10 @@ class InferShapeContext { std::vector GetDims( const std::vector &names) const; - std::vector GetVarTypes( + std::vector GetVarTypes( const std::vector &names) const; - virtual VarDesc::VarType GetVarType(const std::string &name) const = 0; + virtual proto::VarDesc::VarType GetVarType(const std::string &name) const = 0; }; } // namespace framework diff --git a/paddle/framework/tensor.cc b/paddle/framework/tensor.cc index ea7b2a1f7b..f922e60624 100644 --- a/paddle/framework/tensor.cc +++ b/paddle/framework/tensor.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/tensor.h" diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 6a0c5133c9..4aaa29d794 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -20,12 +20,12 @@ limitations under the License. */ #include #include +#include "paddle/framework/data_layout.h" #include "paddle/framework/ddim.h" #include "paddle/memory/memory.h" #include "paddle/platform/device_context.h" #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" -#include "unsupported/Eigen/CXX11/Tensor" namespace paddle { @@ -55,6 +55,10 @@ class Tensor { template inline const T* data() const; + inline bool IsInitialized() const; + + inline void switch_place(platform::Place new_place); + /** * @brief Return a pointer to mutable memory block. * @note If not exist, then allocation. @@ -115,6 +119,10 @@ class Tensor { inline void check_memory_size() const; + inline DataLayout layout() const { return layout_; } + + inline void set_layout(const DataLayout layout) { layout_ = layout; } + private: friend class LoDTensor; @@ -173,6 +181,19 @@ class Tensor { DDim dims_; + /** + * @brief the layout of memory block, default is NHWC. + * + * @note the memory allocation order, describe how weight/data is stored + * For example, in 4-D Tensor(rank=4), there are three commonly + * used layout. They are + * NCHW, NHWC, CHWN. + * N,C,H,W for respectively the batch size, the number of + * feature maps, the height. + */ + + DataLayout layout_ = DataLayout::kNHWC; + /** * @brief A PlaceHolder may be shared by more than one tensor. * @@ -183,6 +204,15 @@ class Tensor { size_t offset_; }; +inline void Tensor::switch_place(platform::Place new_place) { + if (holder_->place() == new_place) { + return; + } + + // TODO(tonyyang-svail): do memcpy here. + PADDLE_THROW("Not Implemented"); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor.md b/paddle/framework/tensor.md index 7a80816d8e..0a27ac9bb6 100644 --- a/paddle/framework/tensor.md +++ b/paddle/framework/tensor.md @@ -71,7 +71,7 @@ private: ``` ```c++ -typedef boost::variant Place; +typedef boost::variant Place; typedef boost::variant, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, Dim<7>, Dim<8>, Dim<9>> DDimVar; typedef boost::variant< diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index aba1f9f093..1340c5e485 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -84,6 +84,8 @@ inline const T* Tensor::data() const { reinterpret_cast(holder_->ptr()) + offset_); } +inline bool Tensor::IsInitialized() const { return holder_ != nullptr; } + template inline T* Tensor::data() { check_memory_size(); @@ -125,11 +127,11 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) { boost::get(place), size, type)); } else if (platform::is_gpu_place(place)) { #ifndef PADDLE_WITH_CUDA - PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); + PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); } #else - holder_.reset(new PlaceholderImpl( - boost::get(place), size, type)); + holder_.reset(new PlaceholderImpl( + boost::get(place), size, type)); } #endif offset_ = 0; @@ -165,6 +167,7 @@ inline Tensor Tensor::Slice(int begin_idx, int end_idx) const { size_t base = numel() / dims_[0]; Tensor dst; dst.holder_ = holder_; + dst.set_layout(layout_); DDim dst_dims = dims_; dst_dims[0] = end_idx - begin_idx; dst.Resize(dst_dims); diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index ceca64365a..c04cd38697 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); @@ -15,12 +28,13 @@ #include #include +namespace framework = paddle::framework; +namespace platform = paddle::platform; + TEST(Tensor, Dims) { - using namespace paddle::framework; - using namespace paddle::platform; - Tensor tt; + framework::Tensor tt; tt.Resize({2, 3, 4}); - DDim dims = tt.dims(); + framework::DDim dims = tt.dims(); ASSERT_EQ(arity(dims), 3); for (int i = 0; i < 3; ++i) { EXPECT_EQ(i + 2, dims[i]); @@ -28,12 +42,12 @@ TEST(Tensor, Dims) { } TEST(Tensor, DataAssert) { - paddle::framework::Tensor src_tensor; + framework::Tensor src_tensor; bool caught = false; try { src_tensor.data(); - } catch (paddle::platform::EnforceNotMet err) { + } catch (platform::EnforceNotMet err) { caught = true; std::string msg = "holder_ should not be null\nTensor holds no memory. Call " @@ -50,61 +64,65 @@ TEST(Tensor, DataAssert) { because Memory::Alloc() and Memory::Free() have not been ready. */ TEST(Tensor, MutableData) { - using namespace paddle::framework; - using namespace paddle::platform; { - Tensor src_tensor; + framework::Tensor src_tensor; float* p1 = nullptr; float* p2 = nullptr; // initialization - p1 = src_tensor.mutable_data(make_ddim({1, 2, 3}), CPUPlace()); + p1 = src_tensor.mutable_data(framework::make_ddim({1, 2, 3}), + platform::CPUPlace()); EXPECT_NE(p1, nullptr); // set src_tensor a new dim with large size // momery is supposed to be re-allocated - p2 = src_tensor.mutable_data(make_ddim({3, 4}), CPUPlace()); + p2 = src_tensor.mutable_data(framework::make_ddim({3, 4}), + platform::CPUPlace()); EXPECT_NE(p2, nullptr); EXPECT_NE(p1, p2); // set src_tensor a new dim with same size // momery block is supposed to be unchanged - p1 = src_tensor.mutable_data(make_ddim({2, 2, 3}), CPUPlace()); + p1 = src_tensor.mutable_data(framework::make_ddim({2, 2, 3}), + platform::CPUPlace()); EXPECT_EQ(p1, p2); // set src_tensor a new dim with smaller size // momery block is supposed to be unchanged - p2 = src_tensor.mutable_data(make_ddim({2, 2}), CPUPlace()); + p2 = src_tensor.mutable_data(framework::make_ddim({2, 2}), + platform::CPUPlace()); EXPECT_EQ(p1, p2); } #ifdef PADDLE_WITH_CUDA { - Tensor src_tensor; + framework::Tensor src_tensor; float* p1 = nullptr; float* p2 = nullptr; // initialization - p1 = src_tensor.mutable_data(make_ddim({1, 2, 3}), GPUPlace()); + p1 = src_tensor.mutable_data(framework::make_ddim({1, 2, 3}), + platform::CUDAPlace()); EXPECT_NE(p1, nullptr); // set src_tensor a new dim with large size // momery is supposed to be re-allocated - p2 = src_tensor.mutable_data(make_ddim({3, 4}), GPUPlace()); + p2 = src_tensor.mutable_data(framework::make_ddim({3, 4}), + platform::CUDAPlace()); EXPECT_NE(p2, nullptr); EXPECT_NE(p1, p2); // set src_tensor a new dim with same size // momery block is supposed to be unchanged - p1 = src_tensor.mutable_data(make_ddim({2, 2, 3}), GPUPlace()); + p1 = src_tensor.mutable_data(framework::make_ddim({2, 2, 3}), + platform::CUDAPlace()); EXPECT_EQ(p1, p2); // set src_tensor a new dim with smaller size // momery block is supposed to be unchanged - p2 = src_tensor.mutable_data(make_ddim({2, 2}), GPUPlace()); + p2 = src_tensor.mutable_data(framework::make_ddim({2, 2}), + platform::CUDAPlace()); EXPECT_EQ(p1, p2); } #endif } TEST(Tensor, ShareDataWith) { - using namespace paddle::framework; - using namespace paddle::platform; { - Tensor src_tensor; - Tensor dst_tensor; + framework::Tensor src_tensor; + framework::Tensor dst_tensor; // Try to share data form uninitialized tensor bool caught = false; try { @@ -121,16 +139,18 @@ TEST(Tensor, ShareDataWith) { } ASSERT_TRUE(caught); - src_tensor.mutable_data(make_ddim({2, 3, 4}), CPUPlace()); + src_tensor.mutable_data(framework::make_ddim({2, 3, 4}), + platform::CPUPlace()); dst_tensor.ShareDataWith(src_tensor); ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } #ifdef PADDLE_WITH_CUDA { - Tensor src_tensor; - Tensor dst_tensor; - src_tensor.mutable_data(make_ddim({2, 3, 4}), GPUPlace()); + framework::Tensor src_tensor; + framework::Tensor dst_tensor; + src_tensor.mutable_data(framework::make_ddim({2, 3, 4}), + platform::CUDAPlace()); dst_tensor.ShareDataWith(src_tensor); ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } @@ -138,13 +158,12 @@ TEST(Tensor, ShareDataWith) { } TEST(Tensor, Slice) { - using namespace paddle::framework; - using namespace paddle::platform; { - Tensor src_tensor; - src_tensor.mutable_data(make_ddim({5, 3, 4}), CPUPlace()); - Tensor slice_tensor = src_tensor.Slice(1, 3); - DDim slice_dims = slice_tensor.dims(); + framework::Tensor src_tensor; + src_tensor.mutable_data(framework::make_ddim({5, 3, 4}), + platform::CPUPlace()); + framework::Tensor slice_tensor = src_tensor.Slice(1, 3); + framework::DDim slice_dims = slice_tensor.dims(); ASSERT_EQ(arity(slice_dims), 3); EXPECT_EQ(slice_dims[0], 2); EXPECT_EQ(slice_dims[1], 3); @@ -153,11 +172,12 @@ TEST(Tensor, Slice) { uintptr_t src_data_address = reinterpret_cast(src_tensor.data()); uintptr_t src_mutable_data_address = reinterpret_cast( - src_tensor.mutable_data(src_tensor.dims(), CPUPlace())); + src_tensor.mutable_data(src_tensor.dims(), platform::CPUPlace())); uintptr_t slice_data_address = reinterpret_cast(slice_tensor.data()); - uintptr_t slice_mutable_data_address = reinterpret_cast( - slice_tensor.mutable_data(slice_tensor.dims(), CPUPlace())); + uintptr_t slice_mutable_data_address = + reinterpret_cast(slice_tensor.mutable_data( + slice_tensor.dims(), platform::CPUPlace())); EXPECT_EQ(src_data_address, src_mutable_data_address); EXPECT_EQ(slice_data_address, slice_mutable_data_address); EXPECT_EQ(src_data_address + 3 * 4 * 1 * sizeof(int), slice_data_address); @@ -165,22 +185,25 @@ TEST(Tensor, Slice) { #ifdef PADDLE_WITH_CUDA { - Tensor src_tensor; - src_tensor.mutable_data(make_ddim({6, 9}), GPUPlace()); - Tensor slice_tensor = src_tensor.Slice(2, 6); - DDim slice_dims = slice_tensor.dims(); + framework::Tensor src_tensor; + src_tensor.mutable_data(framework::make_ddim({6, 9}), + platform::CUDAPlace()); + framework::Tensor slice_tensor = src_tensor.Slice(2, 6); + framework::DDim slice_dims = slice_tensor.dims(); ASSERT_EQ(arity(slice_dims), 2); EXPECT_EQ(slice_dims[0], 4); EXPECT_EQ(slice_dims[1], 9); uintptr_t src_data_address = reinterpret_cast(src_tensor.data()); - uintptr_t src_mutable_data_address = reinterpret_cast( - src_tensor.mutable_data(src_tensor.dims(), GPUPlace())); + uintptr_t src_mutable_data_address = + reinterpret_cast(src_tensor.mutable_data( + src_tensor.dims(), platform::CUDAPlace())); uintptr_t slice_data_address = reinterpret_cast(slice_tensor.data()); - uintptr_t slice_mutable_data_address = reinterpret_cast( - slice_tensor.mutable_data(slice_tensor.dims(), GPUPlace())); + uintptr_t slice_mutable_data_address = + reinterpret_cast(slice_tensor.mutable_data( + slice_tensor.dims(), platform::CUDAPlace())); EXPECT_EQ(src_data_address, src_mutable_data_address); EXPECT_EQ(slice_data_address, slice_mutable_data_address); EXPECT_EQ(src_data_address + 9 * 2 * sizeof(double), slice_data_address); @@ -189,14 +212,19 @@ TEST(Tensor, Slice) { } TEST(Tensor, ReshapeToMatrix) { - using namespace paddle::framework; - using namespace paddle::platform; - Tensor src; - int* src_ptr = src.mutable_data({2, 3, 4, 9}, CPUPlace()); + framework::Tensor src; + int* src_ptr = src.mutable_data({2, 3, 4, 9}, platform::CPUPlace()); for (int i = 0; i < 2 * 3 * 4 * 9; ++i) { src_ptr[i] = i; } - Tensor res = ReshapeToMatrix(src, 2); + framework::Tensor res = framework::ReshapeToMatrix(src, 2); ASSERT_EQ(res.dims()[0], 2 * 3); ASSERT_EQ(res.dims()[1], 4 * 9); } + +TEST(Tensor, Layout) { + framework::Tensor src; + ASSERT_EQ(src.layout(), framework::DataLayout::kNHWC); + src.set_layout(framework::DataLayout::kAnyLayout); + ASSERT_EQ(src.layout(), framework::DataLayout::kAnyLayout); +} diff --git a/paddle/framework/tensor_util.cc b/paddle/framework/tensor_util.cc new file mode 100644 index 0000000000..a5b83eaa07 --- /dev/null +++ b/paddle/framework/tensor_util.cc @@ -0,0 +1,119 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/tensor_util.h" + +namespace paddle { +namespace framework { +template +struct AnyDTypeVisitor { + Predicate predicate_; + const Tensor& tensor_; + const DevCtx& ctx_; + Tensor* out_; + + AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx, + Tensor* out) + : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {} + + template + void operator()() const { + auto t = EigenVector::Flatten(tensor_); + auto o = EigenScalar::From(*out_); + // return any of predicate_(t) is true. + o.device(*ctx_.eigen_device()) = predicate_(t).any(); + } +}; + +template +inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor, + const DevCtx& ctx, framework::Tensor* out) { + VisitDataType(ToDataType(tensor.type()), AnyDTypeVisitor( + predicate, tensor, ctx, out)); +} + +template +struct AnyVisitor : public boost::static_visitor { + const framework::Tensor& tensor_; + Predicate predicate_; + + AnyVisitor(const framework::Tensor& tensor, Predicate predicate) + : tensor_(tensor), predicate_(std::move(predicate)) {} + + template + bool operator()(const Place& place) const { + framework::Tensor out; + out.Resize({1}); + out.mutable_data(place); + auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place); + AnyImpl(predicate_, tensor_, *ctx, &out); + return this->GetResult(out, place); + } + + bool GetResult(const framework::Tensor& out, + const platform::CUDAPlace& gpu) const { + platform::CPUPlace cpu; + framework::Tensor tmp; + tmp.Resize({1}); + tmp.mutable_data(cpu); + auto gpuctx = platform::DeviceContextPool::Instance().Get(gpu); + gpuctx->Wait(); + Copy(out, cpu, *gpuctx, &tmp); + gpuctx->Wait(); + return GetResult(tmp, cpu); + } + + bool GetResult(const framework::Tensor& out, + const platform::CPUPlace& cpu) const { + return *out.data(); + } +}; + +template +inline bool Any(const framework::Tensor& tensor, Predicate predicate) { + AnyVisitor visitor(tensor, predicate); + auto place = tensor.place(); + return platform::VisitPlace(place, visitor); +} + +struct HasNANPredicate { + template + auto operator()(const T& eigen_vec) const + -> decltype(std::declval().isnan()) { + // Cast eigen_vector to vector of bool. true if is inf. + return eigen_vec.isnan(); + } +}; + +bool HasNAN(const framework::Tensor& tensor) { + HasNANPredicate predicate; + return Any(tensor, predicate); +} + +struct HasInfPredicate { + template + auto operator()(const T& eigen_vec) const + -> decltype(std::declval().isinf()) { + // Cast eigen_vector to vector of bool. true if is inf. + return eigen_vec.isinf(); + } +}; + +bool HasInf(const framework::Tensor& tensor) { + HasInfPredicate predicate; + return Any(tensor, predicate); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/tensor_util.cu b/paddle/framework/tensor_util.cu new file mode 120000 index 0000000000..b00e6e59d9 --- /dev/null +++ b/paddle/framework/tensor_util.cu @@ -0,0 +1 @@ +./tensor_util.cc \ No newline at end of file diff --git a/paddle/framework/tensor_util.h b/paddle/framework/tensor_util.h index 4e34b90d57..b49c614499 100644 --- a/paddle/framework/tensor_util.h +++ b/paddle/framework/tensor_util.h @@ -1,19 +1,23 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once +#include "paddle/framework/data_type.h" +#include "paddle/framework/eigen.h" +#include "paddle/framework/framework.pb.h" #include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace framework { @@ -25,14 +29,16 @@ namespace framework { * @param[in] dst_place The dst place. * @param[in] ctx The device context contains device resources. * - * @note CopyFrom supports CPU <-> GPU, GPU <-> GPU. + * @note Copy supports CPU <-> GPU, GPU <-> GPU. */ - -inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, - const platform::DeviceContext& ctx, Tensor* dst) { +inline void Copy(const Tensor& src, const platform::Place& dst_place, + const platform::DeviceContext& ctx, Tensor* dst) { + VLOG(3) << "Copy " << src.dims() << " from " << src.place() << " to " + << dst_place; src.check_memory_size(); dst->Resize(src.dims()); + dst->set_layout(src.layout()); auto src_place = src.place(); auto src_ptr = src.data(); @@ -47,11 +53,11 @@ inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, #ifdef PADDLE_WITH_CUDA else if (platform::is_gpu_place(src_place) && // NOLINT platform::is_cpu_place(dst_place)) { - auto src_gpu_place = boost::get(src_place); + auto src_gpu_place = boost::get(src_place); auto dst_cpu_place = boost::get(dst_place); auto ctx_place = ctx.GetPlace(); PADDLE_ENFORCE(platform::is_gpu_place(ctx_place)); - auto ctx_gpu_place = boost::get(ctx_place); + auto ctx_gpu_place = boost::get(ctx_place); PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place); memory::Copy( dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, @@ -59,21 +65,21 @@ inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, } else if (platform::is_cpu_place(src_place) && platform::is_gpu_place(dst_place)) { auto src_cpu_place = boost::get(src_place); - auto dst_gpu_place = boost::get(dst_place); + auto dst_gpu_place = boost::get(dst_place); auto ctx_place = ctx.GetPlace(); PADDLE_ENFORCE(platform::is_gpu_place(ctx_place)); - auto ctx_gpu_place = boost::get(ctx_place); + auto ctx_gpu_place = boost::get(ctx_place); PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place); memory::Copy( dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, reinterpret_cast(ctx).stream()); } else if (platform::is_gpu_place(src_place) && platform::is_gpu_place(dst_place)) { - auto src_gpu_place = boost::get(src_place); - auto dst_gpu_place = boost::get(dst_place); + auto src_gpu_place = boost::get(src_place); + auto dst_gpu_place = boost::get(dst_place); auto ctx_place = ctx.GetPlace(); PADDLE_ENFORCE(platform::is_gpu_place(ctx_place)); - auto ctx_gpu_place = boost::get(ctx_place); + auto ctx_gpu_place = boost::get(ctx_place); PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place); memory::Copy( dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, @@ -82,14 +88,36 @@ inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, #endif } +/** + * @brief Wrapper on + * Copy(const Tensor& src, const platform::Place& dst_place, + * const platform::DeviceContext& ctx, Tensor* dst); + * + * @param[in] src The external tensor. + * @param[in] dst_place The dst place. + * + * @note Copy supports CPU <-> GPU, GPU <-> GPU. + */ +inline void Copy(const Tensor& src, const platform::Place& dst_place, + Tensor* dst) { + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + const platform::DeviceContext* dev_ctx; + if (platform::is_gpu_place(src.place())) { + dev_ctx = pool.Get(src.place()); + } else { + dev_ctx = pool.Get(dst_place); + } + Copy(src, dst_place, *dev_ctx, dst); +} + /** * @brief Copy the content of an external vector to a tensor. * * @param[in] src The external tensor. * @param[in] ctx The device context contains device resources. * - * * @note CopyFromVector assumes that the tensor has been resized - * before invoking. + * * @note CopyFromVector will resize dst to an 1D tensor with the same + * size as src. */ template inline void CopyFromVector(const std::vector& src, @@ -108,13 +136,28 @@ inline void CopyFromVector(const std::vector& src, #ifdef PADDLE_WITH_CUDA else if (platform::is_gpu_place(dst_place)) { // NOLINT memory::Copy( - boost::get(dst_place), dst_ptr, src_place, src_ptr, + boost::get(dst_place), dst_ptr, src_place, src_ptr, size, reinterpret_cast(ctx).stream()); } #endif } +/** + * @brief CopyFromVector CPU vector -> CPU Tensor + */ +template +inline void CopyFromVector(const std::vector& src, Tensor* dst) { + platform::CPUPlace dst_place = platform::CPUPlace(); + auto src_ptr = static_cast(src.data()); + platform::CPUPlace src_place; + dst->Resize({static_cast(src.size())}); + auto dst_ptr = static_cast(dst->mutable_data(dst_place)); + auto size = src.size() * sizeof(T); + + memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size); +} + /** * @brief Copy the content of a tensor to a vector * @@ -141,12 +184,150 @@ inline void CopyToVector(const Tensor& src, const platform::DeviceContext& ctx, #ifdef PADDLE_WITH_CUDA else if (platform::is_gpu_place(src.place())) { // NOLINT memory::Copy( - dst_place, dst_ptr, boost::get(src.place()), + dst_place, dst_ptr, boost::get(src.place()), src_ptr, size, reinterpret_cast(ctx).stream()); } #endif } +/** + * @brief CopyToVector CPUTensor <-> CPU Vector + */ +template +inline void CopyToVector(const Tensor& src, std::vector* dst) { + auto src_ptr = static_cast(src.data()); + auto size = src.numel() * sizeof(T); + + platform::CPUPlace dst_place; + dst->resize(src.numel()); + auto dst_ptr = static_cast(dst->data()); + + PADDLE_ENFORCE(platform::is_cpu_place(src.place())); + + memory::Copy(dst_place, dst_ptr, boost::get(src.place()), + src_ptr, size); +} + +// Returns true if a tensor contains NAN, i.e., Not A Number. +bool HasNAN(const framework::Tensor& tensor); + +// Returns true if a tensor contains Inf, i.e., Infinity. +bool HasInf(const framework::Tensor& tensor); + +inline void SerializeToStream(std::ostream& os, const Tensor& tensor, + const platform::DeviceContext& dev_ctx) { + // TODO(typhoonzero): serialize to ostream + { // the 1st field, uint32_t version + constexpr uint32_t version = 0; + os.write(reinterpret_cast(&version), sizeof(version)); + } + { // the 2nd field, tensor description + // int32_t size + // void* protobuf message + proto::TensorDesc desc; + desc.set_data_type(framework::ToDataType(tensor.type())); + auto dims = framework::vectorize(tensor.dims()); + auto* pb_dims = desc.mutable_dims(); + pb_dims->Resize(static_cast(dims.size()), 0); + std::copy(dims.begin(), dims.end(), pb_dims->begin()); + int32_t size = desc.ByteSize(); + os.write(reinterpret_cast(&size), sizeof(size)); + auto out = desc.SerializeAsString(); + os.write(out.data(), size); + } + { // the 3rd field, tensor data + uint64_t size = tensor.memory_size(); + auto* data_ptr = tensor.data(); + PADDLE_ENFORCE(size < std::numeric_limits::max(), + "Index overflow when writing tensor"); + if (platform::is_gpu_place(tensor.place())) { +#ifdef PADDLE_WITH_CUDA + constexpr size_t kBufSize = 1024 * 1024 * 64; // 64MB + std::unique_ptr buf(new char[kBufSize]); + auto& gpu_dev_ctx = + static_cast(dev_ctx); + platform::CPUPlace cpu; + uintptr_t data = reinterpret_cast(data_ptr); + while (size != 0) { + size_t size_to_write = std::min(kBufSize, static_cast(size)); + memory::Copy(cpu, buf.get(), + boost::get(tensor.place()), + reinterpret_cast(data), size_to_write, + gpu_dev_ctx.stream()); + gpu_dev_ctx.Wait(); + os.write(buf.get(), size_to_write); + data += size_to_write; + size -= size_to_write; + } +#else + PADDLE_THROW("Unexpected branch"); +#endif + } else { + os.write(static_cast(data_ptr), + static_cast(size)); + } + } +} + +struct DeserializedDataFunctor { + DeserializedDataFunctor(void** buf, Tensor* tensor, + const platform::Place& place) + : buf_(buf), tensor_(tensor), place_(place) {} + + template + void operator()() { + *buf_ = tensor_->mutable_data(place_); + } + + void** buf_; + Tensor* tensor_; + platform::Place place_; +}; + +inline void DeserializeFromStream(std::istream& is, Tensor* tensor, + const platform::DeviceContext& dev_ctx) { + uint32_t version; + is.read(reinterpret_cast(&version), sizeof(version)); + PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); + proto::TensorDesc desc; + { // int32_t size + // proto buffer + int32_t size; + is.read(reinterpret_cast(&size), sizeof(size)); + std::unique_ptr buf(new char[size]); + is.read(reinterpret_cast(buf.get()), size); + PADDLE_ENFORCE(desc.ParseFromArray(buf.get(), size), + "Cannot parse tensor desc"); + } + { // read tensor + std::vector dims; + dims.reserve(static_cast(desc.dims().size())); + std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); + tensor->Resize(framework::make_ddim(dims)); + void* buf; + auto ctx = platform::CPUDeviceContext(); + if (platform::is_gpu_place(dev_ctx.GetPlace())) { +#ifdef PADDLE_WITH_CUDA + Tensor cpu_tensor; + cpu_tensor.Resize(framework::make_ddim(dims)); + framework::VisitDataType( + desc.data_type(), + DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace())); + is.read(static_cast(buf), cpu_tensor.memory_size()); + auto dst_place = dev_ctx.GetPlace(); + framework::Copy(cpu_tensor, dst_place, dev_ctx, tensor); +#else + PADDLE_THROW("Unexpected branch"); +#endif + } else { + framework::VisitDataType( + desc.data_type(), + DeserializedDataFunctor(&buf, tensor, ctx.GetPlace())); + is.read(static_cast(buf), tensor->memory_size()); + } + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor_util_test.cc b/paddle/framework/tensor_util_test.cc index 03a70de182..f541927c0e 100644 --- a/paddle/framework/tensor_util_test.cc +++ b/paddle/framework/tensor_util_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); @@ -13,11 +26,13 @@ #include "paddle/framework/tensor_util.h" #include +#include #include namespace paddle { namespace framework { -TEST(CopyFrom, Tensor) { + +TEST(Copy, Tensor) { Tensor src_tensor; Tensor dst_tensor; platform::CPUDeviceContext cpu_ctx((platform::CPUPlace())); @@ -27,9 +42,10 @@ TEST(CopyFrom, Tensor) { int arr[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; memcpy(src_ptr, arr, 9 * sizeof(int)); + src_tensor.set_layout(DataLayout::kAnyLayout); auto cpu_place = new platform::CPUPlace(); - CopyFrom(src_tensor, *cpu_place, cpu_ctx, &dst_tensor); + Copy(src_tensor, *cpu_place, &dst_tensor); const int* dst_ptr = dst_tensor.data(); ASSERT_NE(src_ptr, dst_ptr); @@ -37,14 +53,18 @@ TEST(CopyFrom, Tensor) { EXPECT_EQ(src_ptr[i], dst_ptr[i]); } + EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout()); + Tensor slice_tensor = src_tensor.Slice(1, 2); - CopyFrom(slice_tensor, *cpu_place, cpu_ctx, &dst_tensor); + Copy(slice_tensor, *cpu_place, &dst_tensor); const int* slice_ptr = slice_tensor.data(); dst_ptr = dst_tensor.data(); ASSERT_NE(dst_ptr, slice_ptr); for (size_t i = 0; i < 3; ++i) { EXPECT_EQ(dst_ptr[i], slice_ptr[i]); } + EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout()); + #ifdef PADDLE_WITH_CUDA { Tensor src_tensor; @@ -58,13 +78,13 @@ TEST(CopyFrom, Tensor) { memcpy(src_ptr, arr, 9 * sizeof(int)); // CPU Tensor to GPU Tensor - auto gpu_place = new platform::GPUPlace(0); + auto gpu_place = new platform::CUDAPlace(0); platform::CUDADeviceContext gpu_ctx(*gpu_place); - CopyFrom(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor); + Copy(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor); // GPU Tensor to CPU Tensor auto cpu_place = new platform::CPUPlace(); - CopyFrom(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); + Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -77,10 +97,10 @@ TEST(CopyFrom, Tensor) { Tensor slice_tensor = src_tensor.Slice(1, 2); // CPU Slice Tensor to GPU Tensor - CopyFrom(slice_tensor, *gpu_place, gpu_ctx, &gpu_tensor); + Copy(slice_tensor, *gpu_place, gpu_ctx, &gpu_tensor); // GPU Tensor to CPU Tensor - CopyFrom(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); + Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); // Sync before Compare Slice Tensors gpu_ctx.Wait(); @@ -90,6 +110,8 @@ TEST(CopyFrom, Tensor) { for (size_t i = 0; i < 3; ++i) { EXPECT_EQ(dst_ptr[i], slice_ptr[i]); } + + EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout()); } #endif } @@ -104,8 +126,7 @@ TEST(CopyFromVector, Tensor) { // Copy to CPU Tensor cpu_tensor.Resize(make_ddim({3, 3})); auto cpu_place = new paddle::platform::CPUPlace(); - CPUDeviceContext cpu_ctx(*cpu_place); - CopyFromVector(src_vec, cpu_ctx, &cpu_tensor); + CopyFromVector(src_vec, &cpu_tensor); // Compare Tensors const int* cpu_ptr = cpu_tensor.data(); @@ -117,7 +138,7 @@ TEST(CopyFromVector, Tensor) { src_vec.erase(src_vec.begin(), src_vec.begin() + 5); cpu_tensor.Resize(make_ddim({2, 2})); - CopyFromVector(src_vec, cpu_ctx, &cpu_tensor); + CopyFromVector(src_vec, &cpu_tensor); cpu_ptr = cpu_tensor.data(); src_ptr = src_vec.data(); ASSERT_NE(src_ptr, cpu_ptr); @@ -143,11 +164,11 @@ TEST(CopyFromVector, Tensor) { // Copy to GPUTensor gpu_tensor.Resize(make_ddim({3, 3})); - auto gpu_place = new paddle::platform::GPUPlace(); + auto gpu_place = new paddle::platform::CUDAPlace(); CUDADeviceContext gpu_ctx(*gpu_place); CopyFromVector(src_vec, gpu_ctx, &gpu_tensor); // Copy from GPU to CPU tensor for comparison - CopyFrom(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); + Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -167,7 +188,7 @@ TEST(CopyFromVector, Tensor) { CopyFromVector(src_vec, cpu_ctx, &cpu_tensor); gpu_tensor.Resize(make_ddim({2, 2})); CopyFromVector(src_vec, gpu_ctx, &gpu_tensor); - CopyFrom(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); + Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -198,9 +219,8 @@ TEST(CopyToVector, Tensor) { } CPUPlace place; - CPUDeviceContext cpu_ctx(place); std::vector dst; - CopyToVector(src, cpu_ctx, &dst); + CopyToVector(src, &dst); for (int i = 0; i < 3 * 3; ++i) { EXPECT_EQ(src_ptr[i], dst[i]); @@ -210,7 +230,7 @@ TEST(CopyToVector, Tensor) { { std::vector src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9}; Tensor gpu_tensor; - GPUPlace place; + CUDAPlace place; CUDADeviceContext gpu_ctx(place); CopyFromVector(src_vec, gpu_ctx, &gpu_tensor); @@ -224,5 +244,78 @@ TEST(CopyToVector, Tensor) { #endif } +TEST(HasNAN, CPU) { + using namespace paddle::framework; + using namespace paddle::platform; + Tensor src; + float* buf = src.mutable_data({3}, CPUPlace()); + buf[0] = 0.0; + buf[1] = NAN; + buf[2] = 0.0; + + ASSERT_TRUE(HasNAN(src)); +} + +TEST(HasInf, CPU) { + using namespace paddle::framework; + using namespace paddle::platform; + Tensor src; + double* buf = src.mutable_data({3}, CPUPlace()); + buf[0] = 1.0; + buf[1] = INFINITY; + buf[2] = 0.0; + ASSERT_TRUE(HasInf(src)); +} + +TEST(Tensor, SerializeAndDeserialize) { + framework::Tensor src_tensor; + int array[6] = {1, 2, 3, 4, 5, 6}; + src_tensor.Resize({2, 3}); + int* src_ptr = src_tensor.mutable_data(platform::CPUPlace()); + for (int i = 0; i < 6; ++i) { + src_ptr[i] = array[i]; + } + { + framework::Tensor dst_tensor; + auto place = new platform::CPUPlace(); + platform::CPUDeviceContext cpu_ctx(*place); + std::ostringstream oss; + SerializeToStream(oss, src_tensor, cpu_ctx); + + std::istringstream iss(oss.str()); + DeserializeFromStream(iss, &dst_tensor, cpu_ctx); + int* dst_ptr = dst_tensor.mutable_data(platform::CPUPlace()); + for (int i = 0; i < 5; ++i) { + ASSERT_EQ(dst_ptr[i], array[i]); + } + ASSERT_EQ(dst_tensor.dims(), src_tensor.dims()); + delete place; + } +#ifdef PADDLE_WITH_CUDA + { + Tensor gpu_tensor; + gpu_tensor.Resize({2, 3}); + Tensor dst_tensor; + + auto gpu_place = new platform::CUDAPlace(); + platform::CUDADeviceContext gpu_ctx(*gpu_place); + + Copy(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor); + + std::ostringstream oss; + SerializeToStream(oss, gpu_tensor, gpu_ctx); + + std::istringstream iss(oss.str()); + DeserializeFromStream(iss, &dst_tensor, gpu_ctx); + + int* dst_ptr = dst_tensor.mutable_data(platform::CPUPlace()); + for (int i = 0; i < 6; ++i) { + ASSERT_EQ(dst_ptr[i], array[i]); + } + delete gpu_place; + } +#endif +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor_util_test.cu b/paddle/framework/tensor_util_test.cu new file mode 100644 index 0000000000..ebd35fdf6c --- /dev/null +++ b/paddle/framework/tensor_util_test.cu @@ -0,0 +1,57 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "gtest/gtest.h" +#include "paddle/framework/tensor_util.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/place.h" + +namespace paddle { +namespace framework { + +static __global__ void FillNAN(float* buf) { + buf[0] = 0.0; + buf[1] = 0.1; + buf[2] = NAN; +} +static __global__ void FillInf(float* buf) { + buf[0] = 0.0; + buf[1] = INFINITY; + buf[2] = 0.5; +} + +TEST(HasNAN, GPU) { + Tensor tensor; + platform::CUDAPlace gpu(0); + auto& pool = platform::DeviceContextPool::Instance(); + auto* cuda_ctx = pool.GetByPlace(gpu); + float* buf = tensor.mutable_data({3}, gpu); + FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf); + cuda_ctx->Wait(); + ASSERT_TRUE(HasNAN(tensor)); +} + +TEST(HasInf, GPU) { + Tensor tensor; + platform::CUDAPlace gpu(0); + auto& pool = platform::DeviceContextPool::Instance(); + auto* cuda_ctx = pool.GetByPlace(gpu); + float* buf = tensor.mutable_data({3}, gpu); + FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf); + cuda_ctx->Wait(); + ASSERT_TRUE(HasInf(tensor)); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/operators/pool_cudnn_op.h b/paddle/framework/threadpool.cc similarity index 76% rename from paddle/operators/pool_cudnn_op.h rename to paddle/framework/threadpool.cc index 5adf27f5bc..109a7e7dc4 100644 --- a/paddle/operators/pool_cudnn_op.h +++ b/paddle/framework/threadpool.cc @@ -1,19 +1,24 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#pragma once - -#include "paddle/framework/op_registry.h" -#include "paddle/operators/pool_op.h" +#include "paddle/framework/threadpool.h" namespace paddle { -namespace operators {} // namespace operators +namespace framework { + +std::unique_ptr ThreadPool::threadpool(nullptr); +std::once_flag ThreadPool::init_flag; + +} // namespace framework } // namespace paddle diff --git a/paddle/framework/threadpool.h b/paddle/framework/threadpool.h new file mode 100644 index 0000000000..3ac345851c --- /dev/null +++ b/paddle/framework/threadpool.h @@ -0,0 +1,171 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include +#include +#include +#include + +#include "paddle/platform/enforce.h" + +namespace paddle { +namespace framework { + +class ThreadPool { + public: + typedef std::packaged_task Task; + + /** + * @brief Get a instance of threadpool, the thread number will + * be specified as the number of hardware thread contexts + */ + static ThreadPool* GetInstance() { + std::call_once(init_flag, &ThreadPool::Init); + return threadpool.get(); + } + + ~ThreadPool() { + { + // notify all threads to stop running + running_ = false; + scheduled_.notify_all(); + } + + for (auto& t : threads_) { + t->join(); + t.reset(nullptr); + } + } + + int GetNumThreads() const { return num_threads_; } + + int GetAvailable() { + std::unique_lock lock(mutex_); + return available_; + } + + /** + * @brief Push a function to the queue, and will be scheduled and + * executed if a thread is available. + * @param[in] Task, will be pushed to the task queue. + * @return std::future, we could wait for the task finished by + * f.wait(). + */ + template + std::future Run(Callback fn) { + std::unique_lock lock(mutex_); + Task task(std::bind(fn)); + std::future f = task.get_future(); + tasks_.push(std::move(task)); + lock.unlock(); + scheduled_.notify_one(); + return f; + } + + /** + * @brief Wait until all the tasks are completed. + */ + void Wait() { + std::unique_lock lock(mutex_); + completed_.wait(lock, [=] { return Done() == true; }); + } + + private: + DISABLE_COPY_AND_ASSIGN(ThreadPool); + + explicit ThreadPool(int num_threads) + : num_threads_(num_threads), available_(num_threads), running_(true) { + threads_.resize(num_threads); + for (auto& thread : threads_) { + // TODO(Yancey1989): binding the thread on the specify CPU number + thread.reset(new std::thread(std::bind(&ThreadPool::TaskLoop, this))); + } + } + + /** + * @brief If the task queue is empty and avaialbe + * is equal to the number of threads, means that + * all tasks are completed. + * + * Note: this function is not thread-safe. + * + * @return true if all tasks are completed. + */ + bool Done() { return tasks_.empty() && available_ == num_threads_; } + + void TaskLoop() { + while (running_) { + std::unique_lock lock(mutex_); + scheduled_.wait(lock, [=] { return !tasks_.empty() || !running_; }); + + if (!running_) { + break; + } + // pop a task from the task queue + auto task = std::move(tasks_.front()); + tasks_.pop(); + + --available_; + lock.unlock(); + + // run the task + task(); + + { + std::unique_lock lock(mutex_); + ++available_; + if (Done()) { + completed_.notify_all(); + } + } + } + } + + static void Init() { + if (threadpool.get() == nullptr) { + // TODO(Yancey1989): specify the max threads number + int num_threads = std::thread::hardware_concurrency(); + PADDLE_ENFORCE_GT(num_threads, 0); + threadpool.reset(new ThreadPool(num_threads)); + } + } + + private: + static std::unique_ptr threadpool; + static std::once_flag init_flag; + + int num_threads_; + int available_; + bool running_; + std::queue tasks_; + std::vector> threads_; + std::mutex mutex_; + std::condition_variable scheduled_; + std::condition_variable completed_; +}; + +// Run a function asynchronously. +// NOTE: The function must return void. If the function need to return a value, +// you can use lambda to capture a value pointer. +template +std::future Async(Callback callback) { + return ThreadPool::GetInstance()->Run(callback); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/threadpool_test.cc b/paddle/framework/threadpool_test.cc new file mode 100644 index 0000000000..50b6238cd8 --- /dev/null +++ b/paddle/framework/threadpool_test.cc @@ -0,0 +1,61 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include + +#include "threadpool.h" + +namespace framework = paddle::framework; + +void do_sum(framework::ThreadPool* pool, std::atomic& sum, int cnt) { + std::vector> fs; + for (int i = 0; i < cnt; ++i) { + auto f = pool->Run([&sum]() { sum.fetch_add(1); }); + fs.push_back(std::move(f)); + } + for (auto& f : fs) { + f.wait(); + } +} + +TEST(ThreadPool, ConcurrentInit) { + framework::ThreadPool* pool; + int n = 50; + std::vector threads; + for (int i = 0; i < n; ++i) { + std::thread t([&pool]() { pool = framework::ThreadPool::GetInstance(); }); + threads.push_back(std::move(t)); + } + for (auto& t : threads) { + t.join(); + } +} + +TEST(ThreadPool, ConcurrentRun) { + framework::ThreadPool* pool = framework::ThreadPool::GetInstance(); + std::atomic sum(0); + std::vector threads; + int n = 50; + // sum = (n * (n + 1)) / 2 + for (int i = 1; i <= n; ++i) { + std::thread t(do_sum, pool, std::ref(sum), i); + threads.push_back(std::move(t)); + } + for (auto& t : threads) { + t.join(); + } + pool->Wait(); + EXPECT_EQ(sum, ((n + 1) * n) / 2); +} diff --git a/paddle/framework/type_defs.h b/paddle/framework/type_defs.h index baeb98c9bd..d834d34375 100644 --- a/paddle/framework/type_defs.h +++ b/paddle/framework/type_defs.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include @@ -25,11 +25,9 @@ namespace paddle { namespace framework { class OperatorBase; -class OpDescBind; -class BlockDescBind; -class BlockDesc; +class OpDesc; class InferShapeContext; -class BlockDescBind; +class BlockDesc; using VariableNameMap = std::map>; @@ -37,7 +35,7 @@ using VariableNameMap = std::map>; using Attribute = boost::variant, std::vector, std::vector, bool, - std::vector, BlockDescBind*>; + std::vector, BlockDesc*>; using AttributeMap = std::unordered_map; @@ -45,13 +43,13 @@ using OpCreator = std::function; -using GradOpMakerFN = std::function>( - const OpDescBind&, const std::unordered_set& /*no_grad_set*/, +using GradOpMakerFN = std::function>( + const OpDesc&, const std::unordered_set& /*no_grad_set*/, std::unordered_map* /*grad_to_var*/, - const std::vector& grad_block)>; + const std::vector& grad_block)>; -using InferVarTypeFN = std::function; +using InferVarTypeFN = + std::function; using InferShapeFN = std::function; diff --git a/paddle/framework/var_desc.cc b/paddle/framework/var_desc.cc index 0babec29f6..62ab6593ef 100644 --- a/paddle/framework/var_desc.cc +++ b/paddle/framework/var_desc.cc @@ -18,30 +18,32 @@ limitations under the License. */ namespace paddle { namespace framework { -VarDesc::VarType VarDescBind::GetType() const { return desc_.type(); } +proto::VarDesc::VarType VarDesc::GetType() const { return desc_.type(); } -void VarDescBind::SetType(VarDesc::VarType type) { desc_.set_type(type); } +void VarDesc::SetType(proto::VarDesc::VarType type) { desc_.set_type(type); } -void VarDescBind::SetShape(const std::vector &dims) { +void VarDesc::SetShape(const std::vector &dims) { VectorToRepeated(dims, mutable_tensor_desc()->mutable_dims()); } -void VarDescBind::SetDataType(DataType data_type) { +void VarDesc::SetDataType(proto::DataType data_type) { mutable_tensor_desc()->set_data_type(data_type); } -std::vector VarDescBind::Shape() const { +std::vector VarDesc::Shape() const { return RepeatedToVector(tensor_desc().dims()); } -DataType VarDescBind::GetDataType() const { return tensor_desc().data_type(); } +proto::DataType VarDesc::GetDataType() const { + return tensor_desc().data_type(); +} -void VarDescBind::SetLoDLevel(int32_t lod_level) { +void VarDesc::SetLoDLevel(int32_t lod_level) { switch (desc_.type()) { - case VarDesc::LOD_TENSOR: + case proto::VarDesc::LOD_TENSOR: desc_.mutable_lod_tensor()->set_lod_level(lod_level); break; - case VarDesc::LOD_TENSOR_ARRAY: + case proto::VarDesc::LOD_TENSOR_ARRAY: desc_.mutable_tensor_array()->set_lod_level(lod_level); break; default: @@ -50,11 +52,11 @@ void VarDescBind::SetLoDLevel(int32_t lod_level) { } } -int32_t VarDescBind::GetLodLevel() const { +int32_t VarDesc::GetLoDLevel() const { switch (desc_.type()) { - case VarDesc::LOD_TENSOR: + case proto::VarDesc::LOD_TENSOR: return desc_.lod_tensor().lod_level(); - case VarDesc::LOD_TENSOR_ARRAY: + case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.tensor_array().lod_level(); default: PADDLE_THROW("Tensor type=%d does not support LoDLevel", @@ -62,29 +64,29 @@ int32_t VarDescBind::GetLodLevel() const { } } -const TensorDesc &VarDescBind::tensor_desc() const { +const proto::TensorDesc &VarDesc::tensor_desc() const { PADDLE_ENFORCE(desc_.has_type(), "invoke TensorDesc must after set type"); switch (desc_.type()) { - case VarDesc::SELECTED_ROWS: + case proto::VarDesc::SELECTED_ROWS: return desc_.selected_rows(); - case VarDesc::LOD_TENSOR: + case proto::VarDesc::LOD_TENSOR: return desc_.lod_tensor().tensor(); - case VarDesc::LOD_TENSOR_ARRAY: + case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.tensor_array().tensor(); default: - PADDLE_THROW("Unexpected branch."); + PADDLE_THROW("The type of var %s is unsupported.", this->Name()); } } -TensorDesc *VarDescBind::mutable_tensor_desc() { +proto::TensorDesc *VarDesc::mutable_tensor_desc() { PADDLE_ENFORCE(desc_.has_type(), "invoke MutableTensorDesc must after set type"); switch (desc_.type()) { - case VarDesc::SELECTED_ROWS: + case proto::VarDesc::SELECTED_ROWS: return desc_.mutable_selected_rows(); - case VarDesc::LOD_TENSOR: + case proto::VarDesc::LOD_TENSOR: return desc_.mutable_lod_tensor()->mutable_tensor(); - case VarDesc::LOD_TENSOR_ARRAY: + case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.mutable_tensor_array()->mutable_tensor(); default: PADDLE_THROW("Unexpected branch."); diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h index 5cf4608944..fc482c4674 100644 --- a/paddle/framework/var_desc.h +++ b/paddle/framework/var_desc.h @@ -53,44 +53,44 @@ inline void VectorToRepeated(const std::vector &vec, } } -class VarDescBind { +class VarDesc { public: - explicit VarDescBind(const std::string &name) { + explicit VarDesc(const std::string &name) { desc_.set_name(name); - desc_.set_type(VarDesc::LOD_TENSOR); + desc_.set_type(proto::VarDesc::LOD_TENSOR); } - explicit VarDescBind(const VarDesc &desc) : desc_(desc) {} + explicit VarDesc(const proto::VarDesc &desc) : desc_(desc) {} - VarDesc *Proto() { return &desc_; } + proto::VarDesc *Proto() { return &desc_; } std::string Name() const { return desc_.name(); } void SetShape(const std::vector &dims); - void SetDataType(DataType data_type); + void SetDataType(proto::DataType data_type); std::vector Shape() const; - DataType GetDataType() const; + proto::DataType GetDataType() const; void SetLoDLevel(int32_t lod_level); - int32_t GetLodLevel() const; + int32_t GetLoDLevel() const; - VarDesc::VarType GetType() const; + proto::VarDesc::VarType GetType() const; - void SetType(VarDesc::VarType type); + void SetType(proto::VarDesc::VarType type); bool Persistable() const { return desc_.persistable(); } void SetPersistable(bool persistable) { desc_.set_persistable(persistable); } private: - const TensorDesc &tensor_desc() const; - TensorDesc *mutable_tensor_desc(); + const proto::TensorDesc &tensor_desc() const; + proto::TensorDesc *mutable_tensor_desc(); - VarDesc desc_; + proto::VarDesc desc_; }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/var_type.h b/paddle/framework/var_type.h index 0f19870bec..5b7a08a087 100644 --- a/paddle/framework/var_type.h +++ b/paddle/framework/var_type.h @@ -1,52 +1,54 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor_array.h" +#include "paddle/framework/selected_rows.h" +#include "paddle/framework/variable.h" namespace paddle { namespace framework { -inline VarDesc::VarType ToVarType(std::type_index type) { +inline proto::VarDesc::VarType ToVarType(std::type_index type) { if (type.hash_code() == typeid(LoDTensor).hash_code()) { - return VarDesc_VarType_LOD_TENSOR; + return proto::VarDesc_VarType_LOD_TENSOR; } else if (type.hash_code() == typeid(LoDRankTable).hash_code()) { - return VarDesc_VarType_LOD_RANK_TABLE; + return proto::VarDesc_VarType_LOD_RANK_TABLE; } else if (type.hash_code() == typeid(LoDTensorArray).hash_code()) { - return VarDesc_VarType_LOD_TENSOR_ARRAY; + return proto::VarDesc_VarType_LOD_TENSOR_ARRAY; } else if (type.hash_code() == typeid(SelectedRows).hash_code()) { - return VarDesc_VarType_SELECTED_ROWS; + return proto::VarDesc_VarType_SELECTED_ROWS; } else { PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); } } template -inline void VisitVarType(const Variable& var, Visitor visitor) { +inline void VisitVarType(const framework::Variable& var, Visitor visitor) { switch (ToVarType(var.Type())) { - case VarDesc_VarType_LOD_TENSOR: + case proto::VarDesc_VarType_LOD_TENSOR: visitor(var.Get()); return; - case VarDesc_VarType_LOD_RANK_TABLE: + case proto::VarDesc_VarType_LOD_RANK_TABLE: visitor(var.Get()); return; - case VarDesc_VarType_LOD_TENSOR_ARRAY: + case proto::VarDesc_VarType_LOD_TENSOR_ARRAY: visitor(var.Get()); return; - case VarDesc_VarType_SELECTED_ROWS: + case proto::VarDesc_VarType_SELECTED_ROWS: visitor(var.Get()); return; default: diff --git a/paddle/framework/var_type_inference.h b/paddle/framework/var_type_inference.h index 32abbeb334..6c11f2fee7 100644 --- a/paddle/framework/var_type_inference.h +++ b/paddle/framework/var_type_inference.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/type_defs.h" @@ -21,8 +21,7 @@ namespace framework { class VarTypeInference { public: virtual ~VarTypeInference() {} - virtual void operator()(const OpDescBind& op_desc, - BlockDescBind* block) const = 0; + virtual void operator()(const OpDesc& op_desc, BlockDesc* block) const = 0; }; } // namespace framework diff --git a/paddle/framework/var_type_inference_test.cc b/paddle/framework/var_type_inference_test.cc index 9035e63fa4..fa6018b1c5 100644 --- a/paddle/framework/var_type_inference_test.cc +++ b/paddle/framework/var_type_inference_test.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/var_type_inference.h" #include "gtest/gtest.h" @@ -33,17 +33,16 @@ class SumOpMaker : public OpProtoAndCheckerMaker { class SumOpVarTypeInference : public VarTypeInference { public: - void operator()(const OpDescBind &op_desc, - BlockDescBind *block) const override { + void operator()(const OpDesc &op_desc, BlockDesc *block) const override { auto &inputs = op_desc.Input("X"); - auto default_var_type = VarDesc::SELECTED_ROWS; + auto default_var_type = proto::VarDesc::SELECTED_ROWS; bool any_input_is_lod_tensor = std::any_of( inputs.begin(), inputs.end(), [block](const std::string &name) { - return block->Var(name)->GetType() == VarDesc::LOD_TENSOR; + return block->Var(name)->GetType() == proto::VarDesc::LOD_TENSOR; }); if (any_input_is_lod_tensor) { - default_var_type = VarDesc::LOD_TENSOR; + default_var_type = proto::VarDesc::LOD_TENSOR; } auto out_var_name = op_desc.Output("Out").front(); @@ -62,43 +61,43 @@ namespace paddle { namespace framework { TEST(InferVarType, sum_op) { - ProgramDescBind prog; + ProgramDesc prog; auto *op = prog.MutableBlock(0)->AppendOp(); op->SetType("sum"); op->SetInput("X", {"test_a", "test_b", "test_c"}); op->SetOutput("Out", {"test_out"}); - prog.MutableBlock(0)->Var("test_a")->SetType(VarDesc::SELECTED_ROWS); - prog.MutableBlock(0)->Var("test_b")->SetType(VarDesc::SELECTED_ROWS); - prog.MutableBlock(0)->Var("test_c")->SetType(VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarDesc::SELECTED_ROWS); prog.MutableBlock(0)->Var("test_out"); op->InferVarType(prog.MutableBlock(0)); - ASSERT_EQ(VarDesc::SELECTED_ROWS, + ASSERT_EQ(proto::VarDesc::SELECTED_ROWS, prog.MutableBlock(0)->Var("test_out")->GetType()); - prog.MutableBlock(0)->Var("test_b")->SetType(VarDesc::LOD_TENSOR); + prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarDesc::LOD_TENSOR); op->InferVarType(prog.MutableBlock(0)); - ASSERT_EQ(VarDesc::LOD_TENSOR, + ASSERT_EQ(proto::VarDesc::LOD_TENSOR, prog.MutableBlock(0)->Var("test_out")->GetType()); } TEST(InferVarType, sum_op_without_infer_var_type) { - ProgramDescBind prog; + ProgramDesc prog; auto *op = prog.MutableBlock(0)->AppendOp(); op->SetType("sum_without_infer_var_type"); op->SetInput("X", {"test2_a", "test2_b", "test2_c"}); op->SetOutput("Out", {"test2_out"}); - prog.MutableBlock(0)->Var("test2_a")->SetType(VarDesc::SELECTED_ROWS); - prog.MutableBlock(0)->Var("test2_b")->SetType(VarDesc::SELECTED_ROWS); - prog.MutableBlock(0)->Var("test2_c")->SetType(VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test2_a")->SetType(proto::VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test2_b")->SetType(proto::VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test2_c")->SetType(proto::VarDesc::SELECTED_ROWS); prog.MutableBlock(0)->Var("test2_out"); op->InferVarType(prog.MutableBlock(0)); - ASSERT_EQ(VarDesc_VarType_LOD_TENSOR, + ASSERT_EQ(proto::VarDesc_VarType_LOD_TENSOR, prog.MutableBlock(0)->Var("test2_out")->GetType()); } diff --git a/paddle/framework/variable.h b/paddle/framework/variable.h index e5a94759f9..03992c8608 100644 --- a/paddle/framework/variable.h +++ b/paddle/framework/variable.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); @@ -32,6 +45,8 @@ class Variable { return *static_cast(holder_->Ptr()); } + bool IsInitialized() const { return holder_ != nullptr; } + template T* GetMutable() { if (!IsType()) { diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp index 8d34eee886..cbdbf5335d 100644 --- a/paddle/function/GemmConvOp.cpp +++ b/paddle/function/GemmConvOp.cpp @@ -129,6 +129,162 @@ public: } }; +#ifdef PADDLE_MOBILE_INFERENCE + +/* + * \brief Forward calculation of convolution, optimized for mobile. + */ +template +class GemmConvMobileFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void check(const BufferArgs& inputs, const BufferArgs& outputs) override { + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + checkShape(input, filter, output); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + check(inputs, outputs); + // TODO(hedaoyuan): Need to define some index macros, + // to avoid useing 0 and 1. + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + + real beta; + if (outputs[0].getArgType() == ADD_TO) { + beta = 1.0; + } else { + beta = 0.0; + } + + size_t batchSize = input[0]; + size_t inputChannels = input[1]; + size_t inputHeight = input[2]; + size_t inputWidth = input[3]; + size_t filterHeight = getFilterHeight(filter); + size_t filterWidth = getFilterWidth(filter); + size_t outputChannels = output[1]; + size_t outputHeight = output[2]; + size_t outputWidth = output[3]; + + real* inputData = inputs[0].data(); + real* filterData = inputs[1].data(); + real* outputData = outputs[0].data(); + bool needIm2col = isNeedIm2col(filter); + + TensorShape imShape = + TensorShape({inputChannels / groups_, inputHeight, inputWidth}); + + TensorShape colShape; + real* colData = NULL; + + size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth; + size_t colWidth = outputHeight * outputWidth; + // Max col matrix height 256, Max col matrix width 1024 + size_t stepColHeight = std::min(colHeight, static_cast(256)); + size_t stepColWidth = std::min(colWidth, static_cast(2048)); + + if (needIm2col) { + colShape = TensorShape({inputChannels / groups_, + filterHeight, + filterWidth, + outputHeight, + outputWidth}); + + resizeBuffer(stepColHeight * stepColWidth * sizeof(real)); + colData = reinterpret_cast(memory_->getBuf()); + } + + Im2ColMobileFunctor im2col; + size_t inputOffset = imShape.getElements(); + size_t outputOffset = + (outputChannels / groups_) * outputHeight * outputWidth; + size_t filterOffset = filter.getElements() / groups_; + + int nStride = colWidth; + int kStride = colHeight; + for (size_t i = 0; i < batchSize; i++) { + for (size_t g = 0; g < groups_; g++) { + if (needIm2col) { + real beta_ = beta; + for (size_t colHeightStart = 0; colHeightStart < colHeight; + colHeightStart += stepColHeight) { + for (size_t colWidthStart = 0; colWidthStart < colWidth; + colWidthStart += stepColWidth) { + int N = std::min(colWidth - colWidthStart, stepColWidth); + int K = std::min(colHeight - colHeightStart, stepColHeight); + // im2col + im2col(inputData + g * inputOffset, + imShape, + colData, + colShape, + strideH(), + strideW(), + paddingH(), + paddingW(), + dilationH(), + dilationW(), + colHeightStart, + K, + colWidthStart, + N); + + // gemm + int M = outputChannels / groups_; + BlasGemm::compute( + false, + false, + M, + N, + K, + 1.0f, + filterData + g * filterOffset + colHeightStart, + kStride, + colData, + N, + beta_, + outputData + g * outputOffset + colWidthStart, + nStride); + } + beta_ = 1.0; + } + } else { + int M = outputChannels / groups_; + int N = outputHeight * outputWidth; + int K = inputChannels / groups_ * filterHeight * filterWidth; + BlasGemm::compute(false, + false, + M, + N, + K, + 1.0f, + filterData + g * filterOffset, + K, + inputData + g * inputOffset, + N, + beta, + outputData + g * outputOffset, + N); + } + } + inputData += inputChannels * inputHeight * inputWidth; + outputData += outputChannels * outputHeight * outputWidth; + } + + memory_.reset(); + } +}; + +#endif + /* * \brief Backward input calculation of convolution. */ @@ -343,7 +499,11 @@ public: } }; +#ifdef PADDLE_MOBILE_INFERENCE +REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction); +#else REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction); +#endif REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction); #ifdef PADDLE_WITH_CUDA diff --git a/paddle/function/Im2Col.h b/paddle/function/Im2Col.h index 0c37fc9724..36a9bcf84e 100644 --- a/paddle/function/Im2Col.h +++ b/paddle/function/Im2Col.h @@ -98,4 +98,54 @@ public: int dilationWidth = 1); }; +template +class Im2ColMobileFunctor { +public: + void operator()(const T* imData, + const TensorShape& imShape, + T* colData, + const TensorShape& colShape, + int strideHeight, + int strideWidth, + int paddingHeight, + int paddingWidth, + int dilationHeight, + int dilationWidth, + int colHeightStart, + int colHeightSize, + int colWidthStart, + int colWidthSize) { + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[1]; + int filterWidth = colShape[2]; + int outputWidth = colShape[4]; + + for (int colh = 0; colh < colHeightSize; colh++) { + int wOffset = (colHeightStart + colh) % filterWidth; + int hOffset = ((colHeightStart + colh) / filterWidth) % filterHeight; + int c_im = (colHeightStart + colh) / filterWidth / filterHeight; + + for (int colw = 0; colw < colWidthSize; colw++) { + int h = (colWidthStart + colw) / outputWidth; + int w = (colWidthStart + colw) % outputWidth; + + int imRowIdx = h * strideHeight + hOffset * dilationHeight; + int imColIdx = w * strideWidth + wOffset * dilationWidth; + if ((imRowIdx - paddingHeight) < 0 || + (imRowIdx - paddingHeight) >= inputHeight || + (imColIdx - paddingWidth) < 0 || + (imColIdx - paddingWidth) >= inputWidth) { + colData[colh * colWidthSize + colw] = static_cast(0); + } else { + imRowIdx += c_im * inputHeight - paddingHeight; + imColIdx -= paddingWidth; + colData[colh * colWidthSize + colw] = + imData[imRowIdx * inputWidth + imColIdx]; + } + } + } + } +}; + } // namespace paddle diff --git a/paddle/function/Im2ColTest.cpp b/paddle/function/Im2ColTest.cpp index 1f085538d8..3ba866dcdd 100644 --- a/paddle/function/Im2ColTest.cpp +++ b/paddle/function/Im2ColTest.cpp @@ -138,4 +138,86 @@ TEST(Im2ColFunctor, GPU) { TestIm2ColFunctor(); } #endif +template +void TestIm2ColMobileFunctor() { + for (size_t channels : {32}) { + for (size_t inputHeight : {33, 100}) { + for (size_t inputWidth : {32, 96}) { + for (size_t filterHeight : {5}) { + for (size_t filterWidth : {7}) { + for (size_t stride : {2}) { + for (size_t padding : {1}) { + for (size_t dilation : {1, 3}) { + size_t filterSizeH = (filterHeight - 1) * dilation + 1; + size_t filterSizeW = (filterWidth - 1) * dilation + 1; + if (inputHeight + 2 * padding < filterSizeH || + inputWidth + 2 * padding < filterSizeW) + break; + if (padding >= filterSizeH || padding >= filterSizeW) break; + size_t outputHeight = + (inputHeight - filterSizeH + 2 * padding) / stride + 1; + size_t outputWidth = + (inputWidth - filterSizeW + 2 * padding) / stride + 1; + + TensorShape imShape = + TensorShape({channels, inputHeight, inputWidth}); + TensorShape colShape1 = TensorShape({channels, + filterHeight, + filterWidth, + outputHeight, + outputWidth}); + + size_t height = channels * filterHeight * filterWidth; + size_t width = outputHeight * outputWidth; + VectorPtr input1 = + Vector::create(imShape.getElements(), false); + VectorPtr input2 = + Vector::create(imShape.getElements(), false); + MatrixPtr output1 = + Matrix::create(height, width, false, false); + MatrixPtr output2 = + Matrix::create(height, width, false, false); + input1->uniform(0.001, 1); + input2->copyFrom(*input1); + + Im2ColFunctor im2Col1; + Im2ColMobileFunctor im2Col2; + im2Col1(input1->getData(), + imShape, + output1->getData(), + colShape1, + stride, + stride, + padding, + padding, + dilation, + dilation); + im2Col2(input2->getData(), + imShape, + output2->getData(), + colShape1, + stride, + stride, + padding, + padding, + dilation, + dilation, + 0, + height, + 0, + width); + + autotest::TensorCheckEqual(*output1, *output2); + } + } + } + } + } + } + } + } +} + +TEST(Im2ColFunctor, Mobile) { TestIm2ColMobileFunctor(); } + } // namespace paddle diff --git a/paddle/gserver/CMakeLists.txt b/paddle/gserver/CMakeLists.txt index 41ead3c5ec..3d6ced713f 100644 --- a/paddle/gserver/CMakeLists.txt +++ b/paddle/gserver/CMakeLists.txt @@ -34,6 +34,16 @@ else() message(STATUS "Compile with MKLDNNLayers and MKLDNNActivations") endif() +if(NOT WITH_MKLML) + file(GLOB_RECURSE MKL_HEADER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLPacked*.h") + file(GLOB_RECURSE MKL_SOURCES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLPacked*.cpp") + list(REMOVE_ITEM GSERVER_HEADER ${MKL_HEADER}) + list(REMOVE_ITEM GSERVER_SOURCES ${MKL_SOURCES}) + message(STATUS "Skip compiling with MKLPackedLayers") +else() + message(STATUS "Compile with MKLPackedLayers") +endif() + if(NOT WITH_GPU) list(REMOVE_ITEM GSERVER_HEADER layers/CudnnConvBaseLayer.h diff --git a/paddle/gserver/activations/ActivationFunction.cpp b/paddle/gserver/activations/ActivationFunction.cpp index f5a41b66bf..57c890e488 100644 --- a/paddle/gserver/activations/ActivationFunction.cpp +++ b/paddle/gserver/activations/ActivationFunction.cpp @@ -24,7 +24,7 @@ limitations under the License. */ #include "paddle/utils/ClassRegistrar.h" #include "paddle/utils/Logging.h" -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN #include "MKLDNNActivation.h" #endif @@ -490,7 +490,7 @@ Error __must_check backward(Argument& act) { END_DEFINE_ACTIVATION(log) ActivationFunction* ActivationFunction::create(const std::string& type) { -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN if (!type.empty() && type.compare(0, 7, "mkldnn_") == 0) { return MKLDNNActivation::create(type); } diff --git a/paddle/gserver/gradientmachines/GradientMachine.h b/paddle/gserver/gradientmachines/GradientMachine.h index ebfe0573cf..4ab54a5022 100644 --- a/paddle/gserver/gradientmachines/GradientMachine.h +++ b/paddle/gserver/gradientmachines/GradientMachine.h @@ -233,6 +233,13 @@ public: (void)numProcessed; } + /** + * @brief Release the middle layer's output memory. + * + * @note This function is used for memory optimization in inference. + */ + virtual void releaseOutput() {} + protected: virtual void onLoadParameter() {} diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index be112b4123..1f2aa61b6f 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -20,7 +20,7 @@ limitations under the License. */ #include "paddle/utils/Logging.h" #include "paddle/utils/Stat.h" -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN #include "paddle/gserver/layers/MKLDNNLayer.h" #endif @@ -187,6 +187,31 @@ void NeuralNetwork::init(const ModelConfig& config, CHECK(it != layerMap_.end()); outputLayers_.push_back(it->second); } + + for (const auto& layer : layers_) { + const auto& name = layer->getName(); + bool isMiddleLayer = true; + + // if data layer + for (const auto& dataLayer : dataLayers_) { + if (name == dataLayer->getName()) { + isMiddleLayer = false; + break; + } + } + + // if output layer + for (const auto& dataLayer : outputLayers_) { + if (name == dataLayer->getName()) { + isMiddleLayer = false; + break; + } + } + + if (isMiddleLayer) { + middleLayers_.push_back(layer); + } + } } void NeuralNetwork::connect(LayerPtr agentLayer, @@ -307,7 +332,7 @@ void NeuralNetwork::backward(const UpdateCallback& callback) { } void NeuralNetwork::finish() { -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN FOR_EACH_R(layer, layers_) { MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast(*layer); if (dnnLayer) { @@ -327,6 +352,13 @@ void NeuralNetwork::onPassEnd() { } } +void NeuralNetwork::releaseOutput() { + for (auto& layer : middleLayers_) { + Argument& arg = layer->getOutput(); + arg.value.reset(); + } +} + #ifndef PADDLE_MOBILE_INFERENCE class CombinedEvaluator : public Evaluator { diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.h b/paddle/gserver/gradientmachines/NeuralNetwork.h index 6888380290..968e198cf6 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.h +++ b/paddle/gserver/gradientmachines/NeuralNetwork.h @@ -137,6 +137,13 @@ public: /// some finish work, like convert the weight format of MKLDNNLayers void finish(); + /** + * @brief Release the middle layer's output memory. + * + * @note This function is used for memory optimization in inference. + */ + void releaseOutput(); + protected: /** * The constructor of NeuralNetwork. @@ -158,6 +165,7 @@ protected: std::vector dataLayers_; std::vector outputLayers_; + std::vector middleLayers_; static std::map dllInitMap; diff --git a/paddle/gserver/layers/MKLDNNConcatLayer.cpp b/paddle/gserver/layers/MKLDNNConcatLayer.cpp index 44bb0883b8..520ccc1a99 100644 --- a/paddle/gserver/layers/MKLDNNConcatLayer.cpp +++ b/paddle/gserver/layers/MKLDNNConcatLayer.cpp @@ -43,7 +43,7 @@ void MKLDNNConcatLayer::reshape( channels_[0] = ic; oc = ic; for (size_t i = 1; i < inputLayers_.size(); i++) { - int batchsize, height, witdh; + int batchsize = 0, height = 0, witdh = 0; reshapeInput(batchsize, height, witdh, i); CHECK_EQ(bs, batchsize); CHECK_EQ(ih, height); @@ -84,6 +84,7 @@ void MKLDNNConcatLayer::resetFwdBuffers(std::vector& inputs, bool has8c = false, has16c = false, hasnc = false; for (size_t i = 0; i < inputs.size(); i++) { resetInValue(inputs[i], nullptr, i, channels_[i]); + inputs[i]->downSpatial(); CHECK(inputs[i]); auto dm = inputs[i]->getDims(); // inputs format can be different, but ndims must equal diff --git a/paddle/gserver/layers/MKLDNNLRNLayer.cpp b/paddle/gserver/layers/MKLDNNLRNLayer.cpp index 741984bb68..ac217f1363 100644 --- a/paddle/gserver/layers/MKLDNNLRNLayer.cpp +++ b/paddle/gserver/layers/MKLDNNLRNLayer.cpp @@ -29,7 +29,7 @@ bool MKLDNNLRNLayer::init(const LayerMap& layerMap, } /* the size of inputs for norm-layer is 1 */ - CHECK_EQ(config_.inputs_size(), 1UL); + CHECK_EQ(config_.inputs_size(), 1); const NormConfig& conf = config_.inputs(0).norm_conf(); localSize_ = conf.size(); alpha_ = conf.scale(); diff --git a/paddle/gserver/layers/MKLDNNLayer.cpp b/paddle/gserver/layers/MKLDNNLayer.cpp index 6fbf3c7fde..2d0fff608c 100644 --- a/paddle/gserver/layers/MKLDNNLayer.cpp +++ b/paddle/gserver/layers/MKLDNNLayer.cpp @@ -132,6 +132,8 @@ void MKLDNNLayer::reshapeInput(int& batchsize, if (w != 0) { width = w; } + height = height != 0 ? height : 1; + width = width != 0 ? width : 1; } void MKLDNNLayer::reshapeOutput(size_t height, size_t width) { diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index e48b9b5a91..3ba39f18b6 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -98,6 +98,8 @@ protected: public: explicit MKLDNNLayer(const LayerConfig& config) : Layer(config), + ih_(0), + iw_(0), condition_(0), needResetBwd_(true), outputOnlyMKLDNN_(false), diff --git a/paddle/gserver/layers/MKLPackedRecurrentLayer.cpp b/paddle/gserver/layers/MKLPackedRecurrentLayer.cpp new file mode 100644 index 0000000000..dd75555fae --- /dev/null +++ b/paddle/gserver/layers/MKLPackedRecurrentLayer.cpp @@ -0,0 +1,132 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLPackedRecurrentLayer.h" + +namespace paddle { + +REGISTER_LAYER(mkl_packed_recurrent, MKLPackedRecurrentLayer); + +bool MKLPackedRecurrentLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + if (!RecurrentLayer::init(layerMap, parameterMap)) return false; + packed_weight_.reset(new MKLPackedWeight(weight_->getW())); + packed_weight_->pack(); + if (needGradient_) { + packed_weightT_.reset(new MKLPackedWeight(weight_->getW(), true)); + packed_weightT_->pack(); + } + return true; +} + +void MKLPackedRecurrentLayer::backward(const UpdateCallback& callback) { + RecurrentLayer::backward(callback); + packed_weight_->pack(); + if (needGradient_) { + packed_weightT_->pack(); + } +} + +void MKLPackedRecurrentLayer::forwardBatch(int batchSize, + size_t numSequences, + const int* starts) { + if (!batchValue_) { + batchValue_.reset(new SequenceToBatch(useGpu_)); + } + + batchValue_->resizeOrCreateBatch(batchSize, numSequences, starts, reversed_); + + batchValue_->copyFromSeq(*output_.value); + + { + REGISTER_TIMER_INFO("RecurrentFwBatch", getName().c_str()); + /* forward one batch */ + for (size_t n = 0; n < batchValue_->getNumBatch(); n++) { + MatrixPtr batchValue = batchValue_->getBatchValue(n); + + if (n != 0) { + MatrixPtr preBatchValue = + batchValue_->getBatchValue(n - 1, batchValue->getHeight()); + + packed_weight_->gemm_compute(preBatchValue, batchValue); + } + Argument arg; + arg.value = batchValue; + activation_->forward(arg).check(); + } + } + batchValue_->copyBackSeq(*output_.value); +} + +void MKLPackedRecurrentLayer::backwardBatch(int batchSize, + size_t numSequences, + const int* starts) { + if (!batchGrad_) { + batchGrad_.reset(new SequenceToBatch(useGpu_)); + } + batchGrad_->shareIndexWith(*batchValue_); + + size_t numBatch = batchGrad_->getNumBatch(); + bool backwardByBatch = numBatch < numSequences; + + batchGrad_->copyFromSeq(*output_.grad); + { + REGISTER_TIMER_INFO("RecurrentBwData", getName().c_str()); + /* backward one batch */ + for (int n = (int)numBatch - 1; n >= 0; n--) { + MatrixPtr batchGrad = batchGrad_->getBatchValue(n); + MatrixPtr batchValue = + batchValue_->getBatchValue(n, batchGrad->getHeight()); + + Argument arg; + arg.value = batchValue; + arg.grad = batchGrad; + activation_->backward(arg).check(); + + if (n != 0) { + batchValue = batchGrad_->getBatchValue(n - 1, batchGrad->getHeight()); + packed_weightT_->gemm_compute(batchGrad, batchValue); + } + + if (backwardByBatch && weight_->getWGrad()) { + if (n != 0) { + /* backward weight */ + batchValue = + batchValue_->getBatchValue(n - 1, batchGrad->getHeight()); + weight_->getWGrad()->mul( + *batchValue->getTranspose(), *batchGrad, 1, 1); + } + } + } + } + + batchGrad_->copyBackSeq(*output_.grad); + + if (!backwardByBatch && weight_->getWGrad()) { + REGISTER_TIMER_INFO("RecurrentBwWeight", getName().c_str()); + for (size_t seq = 0; seq < numSequences; ++seq) { + int len = starts[seq + 1] - starts[seq]; + weight_->getWGrad()->mul( + *output_.value + ->subMatrix(reversed_ ? starts[seq] + 1 : starts[seq], len - 1) + ->getTranspose(), + *output_.grad->subMatrix(reversed_ ? starts[seq] : starts[seq] + 1, + len - 1), + 1, + 1); + } + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLPackedRecurrentLayer.h b/paddle/gserver/layers/MKLPackedRecurrentLayer.h new file mode 100644 index 0000000000..bded523a8f --- /dev/null +++ b/paddle/gserver/layers/MKLPackedRecurrentLayer.h @@ -0,0 +1,58 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "MKLPackedWeight.h" +#include "RecurrentLayer.h" + +DECLARE_bool(rnn_use_batch); + +namespace paddle { + +/** + * @brief MKLPackedRecurrentLayer is almost the same with RecurrentLayer + * but is optimized with MKL cblas packed gemm. + * More details: + * https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/mkl/mkl_packed.md + */ + +class MKLPackedRecurrentLayer : public RecurrentLayer { +public: + explicit MKLPackedRecurrentLayer(const LayerConfig& config) + : RecurrentLayer(config) {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void backward(const UpdateCallback& callback) override; + +protected: + void forwardBatch(int batchSize, + size_t numSequences, + const int* starts) override; + + void backwardBatch(int batchSize, + size_t numSequences, + const int* starts) override; + +protected: + /// packed_weight_ contains same data with + /// RecurrentLayer::weight_ but is packed + std::unique_ptr packed_weight_; + /// packed_weightT_ is the transposition matrix of packed_weight_ + std::unique_ptr packed_weightT_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLPackedWeight.h b/paddle/gserver/layers/MKLPackedWeight.h new file mode 100644 index 0000000000..15d5093beb --- /dev/null +++ b/paddle/gserver/layers/MKLPackedWeight.h @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/math/MathFunctions.h" +#include "paddle/parameter/Parameter.h" +#include "paddle/parameter/Weight.h" + +namespace paddle { + +class MKLPackedWeight { +protected: + /// The pointer of weight + real *weight_; + /// The pointer of cblas packed gemm to weight + real *packedWeight_; + size_t height_; + size_t width_; + bool transW_; + +public: + explicit MKLPackedWeight(MatrixPtr weight, bool transW = false) { + packedWeight_ = nullptr; + weight_ = weight->getData(); + height_ = weight->getHeight(); + width_ = weight->getWidth(); + transW_ = transW; + } + + ~MKLPackedWeight() { free_(); } + + void pack() { pack_(weight_); } + + void gemm_compute(const MatrixPtr src, MatrixPtr dst) { + cblas_sgemm_compute(CblasRowMajor, + CblasNoTrans, + CblasPacked, + src->getHeight(), + transW_ ? height_ : width_, + transW_ ? width_ : height_, + src->getData(), + src->getWidth(), + packedWeight_, + width_, + 1.0, + dst->getData(), + dst->getWidth()); + } + +protected: + void pack_(real *src) { + if (!packedWeight_) { + packedWeight_ = cblas_sgemm_alloc(CblasBMatrix, 1, width_, height_); + } + cblas_sgemm_pack(CblasRowMajor, + CblasBMatrix, + transW_ ? CblasTrans : CblasNoTrans, + 1, + transW_ ? height_ : width_, + transW_ ? width_ : height_, + 1.0, + src, + width_, + packedWeight_); + } + + void free_() { + if (packedWeight_) { + cblas_sgemm_free(packedWeight_); + } + } +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/ROIPoolLayer.cpp b/paddle/gserver/layers/ROIPoolLayer.cpp index 2c8256b91c..7d7c30b4d8 100644 --- a/paddle/gserver/layers/ROIPoolLayer.cpp +++ b/paddle/gserver/layers/ROIPoolLayer.cpp @@ -84,12 +84,15 @@ void ROIPoolLayer::forward(PassType passType) { size_t poolChannelOffset = pooledHeight_ * pooledWidth_; real* outputData = outputValue->getData(); - Matrix::resizeOrCreate(maxIdxs_, - numROIs, - channels_ * pooledHeight_ * pooledWidth_, - false, - false); - real* argmaxData = maxIdxs_->getData(); + real* argmaxData = nullptr; + if (passType != PASS_TEST) { + Matrix::resizeOrCreate(maxIdxs_, + numROIs, + channels_ * pooledHeight_ * pooledWidth_, + false, + false); + argmaxData = maxIdxs_->getData(); + } for (size_t n = 0; n < numROIs; ++n) { // the first five elememts of each RoI should be: @@ -128,14 +131,18 @@ void ROIPoolLayer::forward(PassType passType) { bool isEmpty = (hend <= hstart) || (wend <= wstart); size_t poolIndex = ph * pooledWidth_ + pw; outputData[poolIndex] = isEmpty ? 0 : -FLT_MAX; - argmaxData[poolIndex] = -1; + if (argmaxData) { + argmaxData[poolIndex] = -1; + } for (size_t h = hstart; h < hend; ++h) { for (size_t w = wstart; w < wend; ++w) { size_t index = h * width_ + w; if (batchData[index] > outputData[poolIndex]) { outputData[poolIndex] = batchData[index]; - argmaxData[poolIndex] = index; + if (argmaxData) { + argmaxData[poolIndex] = index; + } } } } @@ -143,7 +150,9 @@ void ROIPoolLayer::forward(PassType passType) { } batchData += channelOffset; outputData += poolChannelOffset; - argmaxData += poolChannelOffset; + if (argmaxData) { + argmaxData += poolChannelOffset; + } } bottomROIs += roiOffset; } diff --git a/paddle/gserver/layers/RecurrentLayer.cpp b/paddle/gserver/layers/RecurrentLayer.cpp index e4c2b483d2..6bd42c06ca 100644 --- a/paddle/gserver/layers/RecurrentLayer.cpp +++ b/paddle/gserver/layers/RecurrentLayer.cpp @@ -12,119 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include -#include "Layer.h" -#include "SequenceToBatch.h" -#include "paddle/utils/Stat.h" +#include "RecurrentLayer.h" DEFINE_bool(rnn_use_batch, false, "Using the batch method for calculation."); namespace paddle { -/** - * @brief RecurrentLayer takes 1 input layer. The output size is the same with - * input layer. - * For each sequence [start, end] it performs the following computation: - * \f[ - * out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\ - * out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end - * - * \f] - * If reversed is true, the order is reversed: - * \f[ - * out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\ - * out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end - * \f] - * There are two methods to calculate rnn. One way is to compute rnn one - * sequence by one sequence. The other way is to reorganize the input - * into batches, then compute rnn one batch by one batch. Users can select - * them by rnn_use_batch flag. - */ - -class RecurrentLayer : public Layer { -public: - explicit RecurrentLayer(const LayerConfig& config) : Layer(config) {} - - bool init(const LayerMap& layerMap, - const ParameterMap& parameterMap) override; - - void forward(PassType passType) override; - - void backward(const UpdateCallback& callback) override; - - void resetState() override; - - void setState(LayerStatePtr state) override; - - LayerStatePtr getState() override; - -protected: - /** - * @brief If user do not set --rnn_use_batch=true, it will - * compute rnn forward one sequence by one sequence in default. - * @param batchSize Total words number of all samples in this batch. - * @param numSequences The sample number. - * @param starts Each start position of each samples. - */ - void forwardSequence(int batchSize, size_t numSequences, const int* starts); - /** - * @brief Compute rnn forward by one sequence. - * @param start The start position of this sequence (or sample). - * @param length The length of this sequence (or sample), namely the words - * number of this sequence. - */ - void forwardOneSequence(int start, int length); - /** - * @brief Compute rnn backward one sequence by onesequence. - * @param batchSize Total words number of all samples in this batch. - * @param numSequences The sample number. - * @param starts Each start position of each samples. - */ - void backwardSequence(int batchSize, size_t numSequences, const int* starts); - /** - * @brief Compute rnn backward by one sequence. - * @param start The start position of this sequence (or sample). - * @param length The length of this sequence (or sample), namely the words - * number of this sequence. - */ - void backwardOneSequence(int start, int length); - - /** - * @brief Reorganize input into batches and compute rnn forward batch - * by batch. It will convert batch shape to sequence after finishing forward. - * The batch info can refer to SequenceToBatch class. - * @param batchSize Total words number of all samples in this batch. - * @param numSequences The sample number. - * @param starts Each start position of each samples. - */ - void forwardBatch(int batchSize, size_t numSequences, const int* starts); - - /** - * @brief Reorganize input into batches and compute rnn forward batch - * by batch. - * @param batchSize Total words number of all samples in this batch. - * @param numSequences The sample number. - * @param starts Each start position of each samples. - */ - void backwardBatch(int batchSize, size_t numSequences, const int* starts); - -protected: - std::unique_ptr weight_; - std::unique_ptr bias_; - - /// frameOutput_[i] is used to hold the i-th sample of output_ - std::vector frameOutput_; - MatrixPtr prevOutput_; - /// Whether compute rnn by reverse. - bool reversed_; - /// If compute batch by batch, batchValue_ will be used to save the - /// reorganized input value. - std::unique_ptr batchValue_; - /// If compute batch by batch, batchGrad_ will be used to save the - /// gradient with respect to reorganized input value. - std::unique_ptr batchGrad_; -}; - REGISTER_LAYER(recurrent, RecurrentLayer); bool RecurrentLayer::init(const LayerMap& layerMap, @@ -260,7 +153,6 @@ void RecurrentLayer::backward(const UpdateCallback& callback) { bias_->getWGrad()->collectBias(*output_.grad, 1); bias_->getParameterPtr()->incUpdate(callback); } - weight_->getParameterPtr()->incUpdate(callback); } diff --git a/paddle/gserver/layers/RecurrentLayer.h b/paddle/gserver/layers/RecurrentLayer.h new file mode 100644 index 0000000000..f40dbe150f --- /dev/null +++ b/paddle/gserver/layers/RecurrentLayer.h @@ -0,0 +1,130 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#pragma once +#include +#include "Layer.h" +#include "SequenceToBatch.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +/** + * @brief RecurrentLayer takes 1 input layer. The output size is the same with + * input layer. + * For each sequence [start, end] it performs the following computation: + * \f[ + * out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\ + * out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end + * + * \f] + * If reversed is true, the order is reversed: + * \f[ + * out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\ + * out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end + * \f] + * There are two methods to calculate rnn. One way is to compute rnn one + * sequence by one sequence. The other way is to reorganize the input + * into batches, then compute rnn one batch by one batch. Users can select + * them by rnn_use_batch flag. + */ + +class RecurrentLayer : public Layer { +public: + explicit RecurrentLayer(const LayerConfig& config) : Layer(config) {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forward(PassType passType) override; + + void backward(const UpdateCallback& callback) override; + + void resetState() override; + + void setState(LayerStatePtr state) override; + + LayerStatePtr getState() override; + +protected: + /** + * @brief If user do not set --rnn_use_batch=true, it will + * compute rnn forward one sequence by one sequence in default. + * @param batchSize Total words number of all samples in this batch. + * @param numSequences The sample number. + * @param starts Each start position of each samples. + */ + void forwardSequence(int batchSize, size_t numSequences, const int* starts); + /** + * @brief Compute rnn forward by one sequence. + * @param start The start position of this sequence (or sample). + * @param length The length of this sequence (or sample), namely the words + * number of this sequence. + */ + void forwardOneSequence(int start, int length); + /** + * @brief Compute rnn backward one sequence by onesequence. + * @param batchSize Total words number of all samples in this batch. + * @param numSequences The sample number. + * @param starts Each start position of each samples. + */ + void backwardSequence(int batchSize, size_t numSequences, const int* starts); + /** + * @brief Compute rnn backward by one sequence. + * @param start The start position of this sequence (or sample). + * @param length The length of this sequence (or sample), namely the words + * number of this sequence. + */ + void backwardOneSequence(int start, int length); + + /** + * @brief Reorganize input into batches and compute rnn forward batch + * by batch. It will convert batch shape to sequence after finishing forward. + * The batch info can refer to SequenceToBatch class. + * @param batchSize Total words number of all samples in this batch. + * @param numSequences The sample number. + * @param starts Each start position of each samples. + */ + virtual void forwardBatch(int batchSize, + size_t numSequences, + const int* starts); + + /** + * @brief Reorganize input into batches and compute rnn forward batch + * by batch. + * @param batchSize Total words number of all samples in this batch. + * @param numSequences The sample number. + * @param starts Each start position of each samples. + */ + virtual void backwardBatch(int batchSize, + size_t numSequences, + const int* starts); + +protected: + std::unique_ptr weight_; + std::unique_ptr bias_; + + /// frameOutput_[i] is used to hold the i-th sample of output_ + std::vector frameOutput_; + MatrixPtr prevOutput_; + /// Whether compute rnn by reverse. + bool reversed_; + /// If compute batch by batch, batchValue_ will be used to save the + /// reorganized input value. + std::unique_ptr batchValue_; + /// If compute batch by batch, batchGrad_ will be used to save the + /// gradient with respect to reorganized input value. + std::unique_ptr batchGrad_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/SequenceToBatch.cpp b/paddle/gserver/layers/SequenceToBatch.cpp index 5fa7b6f488..6b769378d2 100644 --- a/paddle/gserver/layers/SequenceToBatch.cpp +++ b/paddle/gserver/layers/SequenceToBatch.cpp @@ -171,12 +171,31 @@ void SequenceToBatch::sequence2BatchCopy(Matrix &batch, hl_sequence2batch_copy( batchData, seqData, idxData, seqWidth, batchCount, seq2batch); } else { - for (int i = 0; i < batchCount; ++i) { - if (seq2batch) { + if (seq2batch) { +#ifdef PADDLE_USE_MKLML + const int blockMemSize = 8 * 1024; + const int blockSize = blockMemSize / sizeof(real); +#pragma omp parallel for collapse(2) + for (int i = 0; i < batchCount; ++i) { + for (int j = 0; j < seqWidth; j += blockSize) { + memcpy(batch.rowBuf(i) + j, + sequence.rowBuf(idxData[i]) + j, + (j + blockSize > seqWidth) ? (seqWidth - j) * sizeof(real) + : blockMemSize); + } + } +#else + for (int i = 0; i < batchCount; ++i) { memcpy(batch.rowBuf(i), sequence.rowBuf(idxData[i]), seqWidth * sizeof(real)); - } else { + } +#endif + } else { +#ifdef PADDLE_USE_MKLML +#pragma omp parallel for +#endif + for (int i = 0; i < batchCount; ++i) { memcpy(sequence.rowBuf(idxData[i]), batch.rowBuf(i), seqWidth * sizeof(real)); diff --git a/paddle/gserver/tests/img_conv_cudnn.py b/paddle/gserver/tests/img_conv_cudnn.py index 3934607fa4..0ea6d6bae6 100644 --- a/paddle/gserver/tests/img_conv_cudnn.py +++ b/paddle/gserver/tests/img_conv_cudnn.py @@ -1,17 +1,16 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * diff --git a/paddle/gserver/tests/img_conv_exconv.py b/paddle/gserver/tests/img_conv_exconv.py index ad5a8ba2bd..c618cdab27 100644 --- a/paddle/gserver/tests/img_conv_exconv.py +++ b/paddle/gserver/tests/img_conv_exconv.py @@ -1,17 +1,16 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * diff --git a/paddle/gserver/tests/pyDataProvider.py b/paddle/gserver/tests/pyDataProvider.py index 7235a23943..d2ad5888b5 100644 --- a/paddle/gserver/tests/pyDataProvider.py +++ b/paddle/gserver/tests/pyDataProvider.py @@ -1,17 +1,16 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy import struct import traceback diff --git a/paddle/gserver/tests/rnn_data_provider.py b/paddle/gserver/tests/rnn_data_provider.py index 913365a5a4..063a4127e5 100644 --- a/paddle/gserver/tests/rnn_data_provider.py +++ b/paddle/gserver/tests/rnn_data_provider.py @@ -1,17 +1,16 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer.PyDataProvider2 import * # Note that each config should has an independent provider diff --git a/paddle/gserver/tests/sequenceGen.py b/paddle/gserver/tests/sequenceGen.py index fd725727c0..04a1732d61 100644 --- a/paddle/gserver/tests/sequenceGen.py +++ b/paddle/gserver/tests/sequenceGen.py @@ -1,17 +1,16 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import os import sys diff --git a/paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.py b/paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.py index 7303d08804..aeaaa221f9 100644 --- a/paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.py +++ b/paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.py @@ -1,18 +1,16 @@ -# edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * ######################## data source ################################ diff --git a/paddle/gserver/tests/sequence_recurrent.py b/paddle/gserver/tests/sequence_recurrent.py index 4895df186b..8786a5465d 100644 --- a/paddle/gserver/tests/sequence_recurrent.py +++ b/paddle/gserver/tests/sequence_recurrent.py @@ -1,17 +1,16 @@ -#!/usr/bin/env python -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * diff --git a/paddle/gserver/tests/sequence_recurrent_group.py b/paddle/gserver/tests/sequence_recurrent_group.py index a1d54542e3..8b5a3d4983 100644 --- a/paddle/gserver/tests/sequence_recurrent_group.py +++ b/paddle/gserver/tests/sequence_recurrent_group.py @@ -1,18 +1,16 @@ -#!/usr/bin/env python -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - from paddle.trainer_config_helpers import * ######################## data source ################################ diff --git a/paddle/gserver/tests/sequence_rnn_matched_inputs.py b/paddle/gserver/tests/sequence_rnn_matched_inputs.py index 59e8c91733..0c55f2cf9d 100644 --- a/paddle/gserver/tests/sequence_rnn_matched_inputs.py +++ b/paddle/gserver/tests/sequence_rnn_matched_inputs.py @@ -1,17 +1,16 @@ -# edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * diff --git a/paddle/gserver/tests/sequence_rnn_mixed_inputs.py b/paddle/gserver/tests/sequence_rnn_mixed_inputs.py index 6fe9dca6e2..22b376b91a 100644 --- a/paddle/gserver/tests/sequence_rnn_mixed_inputs.py +++ b/paddle/gserver/tests/sequence_rnn_mixed_inputs.py @@ -1,17 +1,16 @@ -# edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * diff --git a/paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.py b/paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.py index 786a0c6d78..3ce87490bb 100644 --- a/paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.py +++ b/paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.py @@ -1,17 +1,16 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index a2f07937b8..ba83667ebc 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -1472,7 +1472,8 @@ TEST(Layer, RecurrentLayer) { for (auto reversed : {false, true}) { config.layerConfig.set_reversed(reversed); config.testState = !reversed; - testLayerGrad(config, "recurrent", 50, /* trans= */ false, useGpu); + testLayerGrad( + config, "recurrent", 50, /* trans= */ false, useGpu, false, 1.0); } } } @@ -1494,7 +1495,8 @@ TEST(Layer, LstmLayer) { for (auto reversed : {false, true}) { config.layerConfig.set_reversed(reversed); config.testState = !reversed; - testLayerGrad(config, "lstmemory", 100, /* trans= */ false, useGpu); + testLayerGrad( + config, "lstmemory", 100, /* trans= */ false, useGpu, false, 0.02); } } for (auto useGpu : {true}) { diff --git a/paddle/gserver/tests/test_PyDataProvider2.py b/paddle/gserver/tests/test_PyDataProvider2.py index 0d0fe476ff..044aede98e 100644 --- a/paddle/gserver/tests/test_PyDataProvider2.py +++ b/paddle/gserver/tests/test_PyDataProvider2.py @@ -1,17 +1,16 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import random from paddle.trainer.PyDataProvider2 import * diff --git a/paddle/gserver/tests/test_RecurrentLayer.cpp b/paddle/gserver/tests/test_RecurrentLayer.cpp index 16ab0e6aec..0e13084333 100644 --- a/paddle/gserver/tests/test_RecurrentLayer.cpp +++ b/paddle/gserver/tests/test_RecurrentLayer.cpp @@ -222,6 +222,7 @@ TEST(Layer, RecurrentLayer) { #define protected public #include "paddle/gserver/layers/GatedRecurrentLayer.h" #include "paddle/gserver/layers/LstmLayer.h" +#include "paddle/gserver/layers/RecurrentLayer.h" template class TestRecurrentLayer { public: @@ -420,12 +421,151 @@ TEST(Layer, LstmLayer) { } } +#ifdef PADDLE_WITH_MKLML + +#include "paddle/gserver/layers/MKLPackedRecurrentLayer.h" + +LayerPtr initMKLPackedLayer(LayerConfig layerConfig, + bool reversed, + int layerSize, + LayerPtr dataLayer, + ParameterPtr para, + ParameterPtr bias = nullptr) { + LayerMap layerMap; + ParameterMap parameterMap; + layerMap[dataLayer->getName()] = dataLayer; + parameterMap[para->getName()] = para; + if (bias) { + parameterMap[bias->getName()] = bias; + layerConfig.set_bias_parameter_name("bias_0"); + } + + layerConfig.set_size(layerSize); + layerConfig.set_reversed(reversed); + layerConfig.add_inputs(); + LayerInputConfig& input = *(layerConfig.mutable_inputs(0)); + input.set_input_layer_name("layer_0"); + input.set_input_parameter_name("para_0"); + + LayerPtr testLayer = Layer::create(layerConfig); + layerMap[testLayer->getName()] = testLayer; + + testLayer->init(layerMap, parameterMap); + testLayer->setNeedGradient(true); + + return testLayer; +} + +void checkMKLPackedLayer(LayerConfig layerConfig1, + LayerConfig layerConfig2, + bool reversed, + int layerSize, + int batchSize, + bool useBatch1, + bool useBatch2) { + LayerPtr dataLayer; + ParameterPtr para, bias; + + if (layerConfig1.type() == "recurrent") { + dataLayer = creatDataLayer("layer_0", batchSize, layerSize, false); + para = creatParameter("para_0", 0, layerSize * layerSize, false); + bias = nullptr; + } else if (layerConfig1.type() == "gated_recurrent") { + dataLayer = creatDataLayer("layer_0", batchSize, layerSize * 3, false); + para = creatParameter("para_0", 0, layerSize * layerSize * 3, false); + bias = creatParameterBias("bias_0", 1, layerSize * 3, false); + } + + LayerPtr testLayer1 = initMKLPackedLayer( + layerConfig1, reversed, layerSize, dataLayer, para, bias); + LayerPtr testLayer2 = initMKLPackedLayer( + layerConfig2, reversed, layerSize, dataLayer, para, bias); + + const VectorPtr& weightGrad = + (testLayer1->getParameters()[0])->getBuf(PARAMETER_GRADIENT); + const MatrixPtr& inputGrad = testLayer1->getPrev(0)->getOutputGrad(); + CpuVector wgt_grad1(weightGrad->getSize()); + CpuVector wgt_grad2(weightGrad->getSize()); + CpuMatrix input_grad1(inputGrad->getHeight(), inputGrad->getWidth()); + CpuMatrix input_grad2(inputGrad->getHeight(), inputGrad->getWidth()); + + for (int i = 0; i < 2; i++) { + FLAGS_rnn_use_batch = useBatch1; + + testLayer1->forward(PASS_GC); + + FLAGS_rnn_use_batch = useBatch2; + testLayer2->forward(PASS_GC); + + testLayer1->getOutputGrad()->randomizeUniform(); + testLayer2->getOutputGrad()->copyFrom(*testLayer1->getOutputGrad()); + + weightGrad->zero(); + inputGrad->zero(); + FLAGS_rnn_use_batch = useBatch1; + testLayer1->backward(nullptr); + + wgt_grad1.copyFrom(*weightGrad); + input_grad1.copyFrom(*inputGrad); + + weightGrad->zero(); + inputGrad->zero(); + FLAGS_rnn_use_batch = useBatch2; + testLayer2->backward(nullptr); + + wgt_grad2.copyFrom(*weightGrad); + input_grad2.copyFrom(*inputGrad); + + checkError(*testLayer1->getOutputValue(), *testLayer2->getOutputValue()); + checkError(wgt_grad1, wgt_grad2); + checkError(input_grad1, input_grad2); + } +} + +TEST(MKLPackedLayer, RecurrentLayer) { + LayerConfig layerConfig1; + LayerConfig layerConfig2; + + layerConfig1.set_name("paddle-rnn"); + layerConfig1.set_type("recurrent"); + layerConfig1.set_active_type("relu"); + + layerConfig2.set_name("mkl-packed-rnn"); + layerConfig2.set_type("mkl_packed_recurrent"); + layerConfig2.set_active_type("relu"); + + FLAGS_use_gpu = false; + + for (auto layerSize : {32, 64, 128, 256, 512}) { + for (auto batchSize : {1, 5, 100, 500}) { + for (auto reversed : {true, false}) { + for (auto paddle_use_batch : {true, false}) { + for (auto MKLPacked_use_batch : {true, false}) { + LOG(INFO) << " layerSize=" << layerSize + << " batchSize=" << batchSize << " reversed=" << reversed + << " paddle_use_batch=" << paddle_use_batch + << " MKLPacked_use_batch=" << MKLPacked_use_batch; + + checkMKLPackedLayer(layerConfig1, + layerConfig2, + reversed, + layerSize, + batchSize, + paddle_use_batch, + MKLPacked_use_batch); + } + } + } + } + } +} +#endif + int main(int argc, char** argv) { - if (version::isWithGpu()) { - testing::InitGoogleTest(&argc, argv); - initMain(argc, argv); - return RUN_ALL_TESTS(); - } else { - return 0; + testing::InitGoogleTest(&argc, argv); + initMain(argc, argv); + if (!version::isWithGpu()) { + testing::GTEST_FLAG(filter) = "-Layer.*"; } + return RUN_ALL_TESTS(); } diff --git a/paddle/inference/CMakeLists.txt b/paddle/inference/CMakeLists.txt new file mode 100644 index 0000000000..02ca8a45a8 --- /dev/null +++ b/paddle/inference/CMakeLists.txt @@ -0,0 +1,26 @@ +set(FLUID_CORE_MODULES + backward proto_desc paddle_memory executor prune init ${GLOB_OP_LIB}) + +cc_library(paddle_fluid_api + SRCS inference.cc + DEPS ${FLUID_CORE_MODULES}) + +# Merge all modules into a simgle static library +cc_library(paddle_fluid DEPS paddle_fluid_api ${FLUID_CORE_MODULES}) + +add_executable(example example.cc) +if(APPLE) + set(OPTIONAL_LINK_FLAGS) + if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang") + set(OPTIONAL_LINK_FLAGS "-undefined dynamic_lookup") + endif() + target_link_libraries(example + -Wl,-force_load paddle_fluid + ${OPTIONAL_LINK_FLAGS} + ${PTOOLS_LIB}) +else() + target_link_libraries(example + -Wl,--start-group -Wl,--whole-archive paddle_fluid + -Wl,--no-whole-archive -Wl,--end-group + ${PTOOLS_LIB}) +endif() diff --git a/paddle/inference/example.cc b/paddle/inference/example.cc new file mode 100644 index 0000000000..0c18b45624 --- /dev/null +++ b/paddle/inference/example.cc @@ -0,0 +1,67 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include "gflags/gflags.h" +#include "paddle/inference/inference.h" + +DEFINE_string(dirname, "", "Directory of the inference model."); + +int main(int argc, char** argv) { + google::ParseCommandLineFlags(&argc, &argv, true); + if (FLAGS_dirname.empty()) { + // Example: + // ./example --dirname=recognize_digits_mlp.inference.model + std::cout << "Usage: ./example --dirname=path/to/your/model" << std::endl; + exit(1); + } + + std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl; + std::string dirname = FLAGS_dirname; + + paddle::InferenceEngine* engine = new paddle::InferenceEngine(); + engine->LoadInferenceModel(dirname); + + paddle::framework::LoDTensor input; + srand(time(0)); + float* input_ptr = + input.mutable_data({1, 784}, paddle::platform::CPUPlace()); + for (int i = 0; i < 784; ++i) { + input_ptr[i] = rand() / (static_cast(RAND_MAX)); + } + + std::vector feeds; + feeds.push_back(input); + std::vector fetchs; + engine->Execute(feeds, fetchs); + + for (size_t i = 0; i < fetchs.size(); ++i) { + auto dims_i = fetchs[i].dims(); + std::cout << "dims_i:"; + for (int j = 0; j < dims_i.size(); ++j) { + std::cout << " " << dims_i[j]; + } + std::cout << std::endl; + std::cout << "result:"; + float* output_ptr = fetchs[i].data(); + for (int j = 0; j < paddle::framework::product(dims_i); ++j) { + std::cout << " " << output_ptr[j]; + } + std::cout << std::endl; + } + + delete engine; + return 0; +} diff --git a/paddle/inference/inference.cc b/paddle/inference/inference.cc new file mode 100644 index 0000000000..4900177880 --- /dev/null +++ b/paddle/inference/inference.cc @@ -0,0 +1,213 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "inference.h" +#include +#include "paddle/framework/executor.h" +#include "paddle/framework/feed_fetch_method.h" +#include "paddle/framework/init.h" +#include "paddle/framework/scope.h" + +#ifdef PADDLE_USE_PTOOLS +#include "chooseser.h" +#endif + +namespace paddle { + +void InferenceEngine::LoadInferenceModel(const std::string& dirname) { + std::string model_filename = dirname + "/__model__.dat"; + LOG(INFO) << "loading model from " << model_filename; + std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary); + std::string program_desc_str; + inputfs.seekg(0, std::ios::end); + program_desc_str.resize(inputfs.tellg()); + inputfs.seekg(0, std::ios::beg); + LOG(INFO) << "program_desc_str's size: " << program_desc_str.size(); + inputfs.read(&program_desc_str[0], program_desc_str.size()); + inputfs.close(); + + program_ = new framework::ProgramDesc(program_desc_str); + GenerateLoadProgram(dirname); + + framework::BlockDesc* global_block = program_->MutableBlock(0); + feed_var_names_.clear(); + fetch_var_names_.clear(); + for (auto* op : global_block->AllOps()) { + if (op->Type() == "feed") { + feed_var_names_.insert(feed_var_names_.begin(), op->Output("Out")[0]); + } else if (op->Type() == "fetch") { + fetch_var_names_.push_back(op->Input("X")[0]); + } + } +} + +void InferenceEngine::LoadInferenceModel( + const std::string& dirname, + const std::vector& feed_var_names, + const std::vector& fetch_var_names) { + std::string model_filename = dirname + "/__model__.dat"; + LOG(INFO) << "loading model from " << model_filename; + std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary); + std::string program_desc_str; + inputfs.seekg(0, std::ios::end); + program_desc_str.resize(inputfs.tellg()); + inputfs.seekg(0, std::ios::beg); + LOG(INFO) << "program_desc_str's size: " << program_desc_str.size(); + inputfs.read(&program_desc_str[0], program_desc_str.size()); + inputfs.close(); + + program_ = new framework::ProgramDesc(program_desc_str); + GenerateLoadProgram(dirname); + + if (feed_var_names.empty() || fetch_var_names.empty()) { + LOG(FATAL) << "Please specify the feed_var_names and fetch_var_names."; + } + feed_var_names_ = feed_var_names; + fetch_var_names_ = fetch_var_names; + PrependFeedOp(); + AppendFetchOp(); +} + +bool InferenceEngine::IsParameter(const framework::VarDesc* var) { + if (var->Persistable() && var->Name() != "feed" && var->Name() != "fetch") { + // There are many unreachable variables in the program + for (size_t i = 0; i < program_->Size(); ++i) { + const framework::BlockDesc& block = program_->Block(i); + for (auto* op : block.AllOps()) { + for (auto input_argument_name : op->InputArgumentNames()) { + if (input_argument_name == var->Name()) { + return true; + } + } + } + } + } + return false; +} + +void InferenceEngine::GenerateLoadProgram(const std::string& dirname) { + framework::BlockDesc* global_block = program_->MutableBlock(0); + + load_program_ = new framework::ProgramDesc(); + framework::BlockDesc* load_block = load_program_->MutableBlock(0); + for (auto* var : global_block->AllVars()) { + if (IsParameter(var)) { + LOG(INFO) << "parameter's name: " << var->Name(); + + framework::VarDesc* new_var = load_block->Var(var->Name()); + new_var->SetShape(var->Shape()); + new_var->SetDataType(var->GetDataType()); + new_var->SetType(var->GetType()); + new_var->SetLoDLevel(var->GetLoDLevel()); + new_var->SetPersistable(true); + + // append_op + framework::OpDesc* op = load_block->AppendOp(); + op->SetType("load"); + op->SetOutput("Out", {new_var->Name()}); + op->SetAttr("file_path", {dirname + "/" + new_var->Name()}); + op->CheckAttrs(); + } + } +} + +void InferenceEngine::PrependFeedOp() { + if (!program_) { + LOG(FATAL) << "Please initialize the program_ first."; + } + + framework::BlockDesc* global_block = program_->MutableBlock(0); + + // create_var + framework::VarDesc* feed_var = global_block->Var("feed"); + feed_var->SetType(framework::proto::VarDesc::FEED_MINIBATCH); + feed_var->SetPersistable(true); + + // prepend feed_op + for (size_t i = 0; i < feed_var_names_.size(); ++i) { + std::string var_name = feed_var_names_[i]; + LOG(INFO) << "feed var's name: " << var_name; + + // prepend_op + framework::OpDesc* op = global_block->PrependOp(); + op->SetType("feed"); + op->SetInput("X", {"feed"}); + op->SetOutput("Out", {var_name}); + op->SetAttr("col", {static_cast(i)}); + op->CheckAttrs(); + } +} + +void InferenceEngine::AppendFetchOp() { + if (!program_) { + LOG(FATAL) << "Please initialize the program_ first."; + } + + framework::BlockDesc* global_block = program_->MutableBlock(0); + + // create_var + framework::VarDesc* fetch_var = global_block->Var("fetch"); + fetch_var->SetType(framework::proto::VarDesc::FETCH_LIST); + fetch_var->SetPersistable(true); + + // append fetch_op + for (size_t i = 0; i < fetch_var_names_.size(); ++i) { + std::string var_name = fetch_var_names_[i]; + LOG(INFO) << "fetch var's name: " << var_name; + + // append_op + framework::OpDesc* op = global_block->AppendOp(); + op->SetType("fetch"); + op->SetInput("X", {var_name}); + op->SetOutput("Out", {"fetch"}); + op->SetAttr("col", {static_cast(i)}); + op->CheckAttrs(); + } +} + +void InferenceEngine::Execute(const std::vector& feeds, + std::vector& fetchs) { + if (!program_ || !load_program_) { + LOG(FATAL) << "Please initialize the program_ and load_program_ first."; + } + + if (feeds.size() < feed_var_names_.size()) { + LOG(FATAL) << "Please feed " << feed_var_names_.size() << " input Tensors."; + } + + auto* place = new platform::CPUPlace(); + framework::InitDevices(); + framework::Executor* executor = new framework::Executor(*place); + framework::Scope* scope = new framework::Scope(); + + executor->Run(*load_program_, scope, 0, true, true); + + // set_feed_variable + for (size_t i = 0; i < feed_var_names_.size(); ++i) { + framework::SetFeedVariable(scope, feeds[i], "feed", i); + } + + executor->Run(*program_, scope, 0, true, true); + + // get_fetch_variable + fetchs.resize(fetch_var_names_.size()); + for (size_t i = 0; i < fetch_var_names_.size(); ++i) { + fetchs[i] = framework::GetFetchVariable(*scope, "fetch", i); + } + + delete place; + delete scope; + delete executor; +} +} // namespace paddle diff --git a/paddle/inference/inference.h b/paddle/inference/inference.h new file mode 100644 index 0000000000..7fc09cb9e5 --- /dev/null +++ b/paddle/inference/inference.h @@ -0,0 +1,51 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/block_desc.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/program_desc.h" + +namespace paddle { + +class InferenceEngine { +public: + InferenceEngine() : program_(nullptr), load_program_(nullptr) {} + ~InferenceEngine() { + delete program_; + delete load_program_; + } + + void LoadInferenceModel(const std::string& dirname); + void LoadInferenceModel(const std::string& dirname, + const std::vector& feed_var_names, + const std::vector& fetch_var_names); + void Execute(const std::vector& feeds, + std::vector& fetchs); + +private: + bool IsParameter(const framework::VarDesc* var); + void GenerateLoadProgram(const std::string& dirname); + void PrependFeedOp(); + void AppendFetchOp(); + +private: + framework::ProgramDesc* program_; + framework::ProgramDesc* load_program_; + std::vector feed_var_names_; + std::vector fetch_var_names_; +}; + +} // namespace paddle diff --git a/paddle/math/Allocator.h b/paddle/math/Allocator.h index 94ef561f06..17563bf5e1 100644 --- a/paddle/math/Allocator.h +++ b/paddle/math/Allocator.h @@ -48,7 +48,7 @@ public: */ virtual void* alloc(size_t size) { void* ptr; -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN // refer to https://github.com/01org/mkl-dnn/blob/master/include/mkldnn.hpp // memory alignment CHECK_EQ(posix_memalign(&ptr, 4096ul, size), 0); diff --git a/paddle/math/MathFunctions.cpp b/paddle/math/MathFunctions.cpp index ba86eacbb5..28ab54b450 100644 --- a/paddle/math/MathFunctions.cpp +++ b/paddle/math/MathFunctions.cpp @@ -206,7 +206,7 @@ double dotProduct(const int n, const double* x, const double* y) { } #endif -#if defined(PADDLE_USE_MKLML) +#if defined(PADDLE_WITH_MKLML) template <> void vExp(const int n, const float* a, float* r) { diff --git a/paddle/math/MathFunctions.h b/paddle/math/MathFunctions.h index f6e77029bd..29fe36e3a4 100644 --- a/paddle/math/MathFunctions.h +++ b/paddle/math/MathFunctions.h @@ -15,7 +15,7 @@ limitations under the License. */ #ifndef MATHFUNCTIONS_H_ #define MATHFUNCTIONS_H_ -#ifdef PADDLE_USE_MKLML +#ifdef PADDLE_WITH_MKLML #include #include #include diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp index ebbbdfab1d..1ec4336cab 100644 --- a/paddle/math/Matrix.cpp +++ b/paddle/math/Matrix.cpp @@ -28,6 +28,7 @@ limitations under the License. */ #include "hl_top_k.h" #include "paddle/utils/Logging.h" +#include "NEONFunctions.h" #include "paddle/function/GemmFunctor.h" #include "paddle/utils/ThreadLocal.h" @@ -4165,16 +4166,36 @@ void CpuMatrix::print(std::ostream& os) const { void CpuMatrix::paramReluForward(Matrix& data, Matrix& W) { real* input = data.getData(); real* w = W.getData(); + real* output = data_; size_t numElements = data.getWidth(); size_t numSamples = data.getHeight(); size_t paraSize = W.getHeight() * W.getWidth(); CHECK(!(numElements % paraSize)); // this check from ParameterReluLayer::init + size_t partial_sum = numElements / paraSize; + if (paraSize == numElements) { + for (size_t n = 0; n < numSamples * numElements; ++n) { + output[n] = input[n] > 0 ? input[n] : input[n] * w[n % numElements]; + } + return; + } + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + for (size_t n = 0; n < numSamples; ++n) { + for (size_t i = 0; i < paraSize; i++) { + neon::prelu( + input + i * partial_sum, w[i], output + i * partial_sum, partial_sum); + } + input = input + numElements; + output = output + numElements; + } +#else for (size_t n = 0, k = 0; n < numSamples; ++n) { for (size_t i = 0; i < numElements; ++i, ++k) { - data_[k] = input[k] > 0 ? input[k] : input[k] * w[i / partial_sum]; + output[k] = input[k] > 0 ? input[k] : input[k] * w[i / partial_sum]; } } +#endif } void CpuMatrix::paramReluBackwardW(Matrix& oGrad, Matrix& data) { diff --git a/paddle/math/NEONFunctions.cpp b/paddle/math/NEONFunctions.cpp index 3bf47901f1..0f83149422 100644 --- a/paddle/math/NEONFunctions.cpp +++ b/paddle/math/NEONFunctions.cpp @@ -49,6 +49,46 @@ void relu(const float* a, float* b, int len) { } } +// b[i] = a[i] > 0.0f ? a[i] : a[i] * w +void prelu(const float* a, float w, float* b, int len) { + int offset = len % 16; + float32x4_t ma0, ma1, ma2, ma3; + + float32x4_t zero = vdupq_n_f32(0.f); + float32x4_t vw = vdupq_n_f32(w); + + for (int k = 0; k < len / 16; k++, a += 16, b += 16) { + ma0 = vld1q_f32(a); + ma1 = vld1q_f32(a + 4); + ma2 = vld1q_f32(a + 8); + ma3 = vld1q_f32(a + 12); + + uint32x4_t flag0 = vcgtq_f32(ma0, zero); + uint32x4_t flag1 = vcgtq_f32(ma1, zero); + uint32x4_t flag2 = vcgtq_f32(ma2, zero); + uint32x4_t flag3 = vcgtq_f32(ma3, zero); + + float32x4_t mul0 = vmulq_f32(ma0, vw); + float32x4_t mul1 = vmulq_f32(ma1, vw); + float32x4_t mul2 = vmulq_f32(ma2, vw); + float32x4_t mul3 = vmulq_f32(ma3, vw); + + ma0 = vbslq_f32(flag0, ma0, mul0); + ma1 = vbslq_f32(flag1, ma1, mul1); + ma2 = vbslq_f32(flag2, ma2, mul2); + ma3 = vbslq_f32(flag3, ma3, mul3); + + vst1q_f32(b, ma0); + vst1q_f32(b + 4, ma1); + vst1q_f32(b + 8, ma2); + vst1q_f32(b + 12, ma3); + } + + for (int i = 0; i < offset; i++) { + b[i] = a[i] > 0.0f ? a[i] : a[i] * w; + } +} + } // namespace neon } // namespace paddle diff --git a/paddle/math/NEONFunctions.h b/paddle/math/NEONFunctions.h index 69085e3335..d67b2f47a8 100644 --- a/paddle/math/NEONFunctions.h +++ b/paddle/math/NEONFunctions.h @@ -18,6 +18,7 @@ namespace paddle { namespace neon { void relu(const float* a, float* b, int len); +void prelu(const float* a, float w, float* b, int len); } // namespace neon } // namespace paddle diff --git a/paddle/math/float16.h b/paddle/math/float16.h index f805cad08b..efebbce504 100644 --- a/paddle/math/float16.h +++ b/paddle/math/float16.h @@ -79,7 +79,7 @@ public: #ifdef PADDLE_CUDA_FP16 HOSTDEVICE inline explicit float16(const half& h) { #if CUDA_VERSION >= 9000 - x = reinterpret_cast<__half_raw*>(&h)->x; + x = reinterpret_cast<__half_raw*>(const_cast(&h))->x; #else x = h.x; #endif // CUDA_VERSION >= 9000 @@ -101,7 +101,7 @@ public: half tmp = __float2half(val); x = *reinterpret_cast(&tmp); -#elif defined(PADDLE_NEON) +#elif defined(PADDLE_WITH_NATIVE_FP16) float32x4_t tmp = vld1q_dup_f32(&val); float16_t res = vget_lane_f16(vcvt_f16_f32(tmp), 0); x = *reinterpret_cast(&res); @@ -145,7 +145,7 @@ public: #ifdef PADDLE_CUDA_FP16 HOSTDEVICE inline float16& operator=(const half& rhs) { #if CUDA_VERSION >= 9000 - x = reinterpret_cast<__half_raw*>(&rhs)->x; + x = reinterpret_cast<__half_raw*>(const_cast(&rhs))->x; #else x = rhs.x; #endif @@ -252,7 +252,7 @@ public: half tmp = *reinterpret_cast(this); return __half2float(tmp); -#elif defined(PADDLE_NEON) +#elif defined(PADDLE_WITH_NATIVE_FP16) float16x4_t res = vld1_dup_f16(reinterpret_cast(this)); return vgetq_lane_f32(vcvt_f32_f16(res), 0); diff --git a/paddle/math/tests/CMakeLists.txt b/paddle/math/tests/CMakeLists.txt index 215bac1271..dcd2a34583 100644 --- a/paddle/math/tests/CMakeLists.txt +++ b/paddle/math/tests/CMakeLists.txt @@ -34,4 +34,4 @@ add_simple_unittest(test_FPException) add_simple_unittest(test_GpuProfiler) add_simple_unittest(test_BaseMatrix) add_simple_unittest(test_Matrix) -cc_test(test_float16 SRCS test_float16.cpp) +add_simple_unittest(test_float16) diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp index 7e5a1db44a..afb8d9d599 100644 --- a/paddle/math/tests/test_matrixCompare.cpp +++ b/paddle/math/tests/test_matrixCompare.cpp @@ -244,7 +244,7 @@ TEST(Matrix, unary) { LOG(WARNING) << "This version of PaddlePaddle was not built with LAPACK" << "support so we cannot test matrix inverse. To test " << "matrix inverse, please install LAPACKE " - << "and MKL/Openblas/ATLAS, and re-build PaddlePaddle."; + << "and MKL/Openblas, and re-build PaddlePaddle."; #endif } } diff --git a/paddle/memory/README.md b/paddle/memory/README.md index 6cb003c50b..7cf61d089b 100644 --- a/paddle/memory/README.md +++ b/paddle/memory/README.md @@ -12,13 +12,13 @@ p = memory::Alloc(platform::CPUPlace(), 4*1024); To allocate 4KB memory on the 3rd GPU: ```cpp -p = memory::Alloc(platform::GPUPlace(2), 4*1024); +p = memory::Alloc(platform::CUDAPlace(2), 4*1024); ``` To free memory and check the so-far used amount of memory on a place: ```cpp -auto pl = platform::GPUPlace(0); +auto pl = platform::CUDAPlace(0); p = memory::Alloc(pl, 4*1024); cout << memory::Used(pl); memory::Free(pl, p); @@ -36,7 +36,7 @@ template size_t Used(Place); } // namespace memory ``` -These function templates have specializations on either `platform::CPUPlace` or `platform::GPUPlace`: +These function templates have specializations on either `platform::CPUPlace` or `platform::CUDAPlace`: ```cpp template<> @@ -49,7 +49,7 @@ and ```cpp template<> -void Alloc(GPUPlace p, size_t size) { +void Alloc(CUDAPlace p, size_t size) { return GetGPUBuddyAllocator(p.id)->Alloc(size); } ``` @@ -122,7 +122,7 @@ There are two implementations of `Context`: 1. [`CPUContext`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.h#L105), whose [`New` method](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.h#L131) calls [`g_cpu_allocator.get()->New(size_t)`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.cc#L15) to allocate the memory. -1. [`CUDAContext`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.h#L99), which has a data member [`int gpu_id_`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.h#L202). This looks very similar to class `majel::GPUPlace`, who also has an `int id_` data member. `CUDAContext::New(size_t)` calls [`g_cub_allocator->DeviceAllocate(&ptr, nbytes)`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.cu#L355) to allocate the memory. +1. [`CUDAContext`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.h#L99), which has a data member [`int gpu_id_`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.h#L202). This looks very similar to class `majel::CUDAPlace`, who also has an `int id_` data member. `CUDAContext::New(size_t)` calls [`g_cub_allocator->DeviceAllocate(&ptr, nbytes)`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.cu#L355) to allocate the memory. ### Majel diff --git a/paddle/memory/detail/buddy_allocator.cc b/paddle/memory/detail/buddy_allocator.cc index 64ee538038..2bc2c06a15 100644 --- a/paddle/memory/detail/buddy_allocator.cc +++ b/paddle/memory/detail/buddy_allocator.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/memory/detail/buddy_allocator.h" #include "glog/logging.h" diff --git a/paddle/memory/detail/buddy_allocator.h b/paddle/memory/detail/buddy_allocator.h index 9c41378483..4e0135dd65 100644 --- a/paddle/memory/detail/buddy_allocator.h +++ b/paddle/memory/detail/buddy_allocator.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/memory/detail/memory_block.cc b/paddle/memory/detail/memory_block.cc index fc40993208..f50eceba09 100644 --- a/paddle/memory/detail/memory_block.cc +++ b/paddle/memory/detail/memory_block.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/memory/detail/memory_block.h" #include "paddle/memory/detail/meta_cache.h" diff --git a/paddle/memory/detail/memory_block.h b/paddle/memory/detail/memory_block.h index a5168b519f..a4ca51b31b 100644 --- a/paddle/memory/detail/memory_block.h +++ b/paddle/memory/detail/memory_block.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/memory/detail/meta_cache.cc b/paddle/memory/detail/meta_cache.cc index 7e2f92b00c..2bacca7510 100644 --- a/paddle/memory/detail/meta_cache.cc +++ b/paddle/memory/detail/meta_cache.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/memory/detail/meta_cache.h" #include "glog/logging.h" diff --git a/paddle/memory/detail/meta_cache.h b/paddle/memory/detail/meta_cache.h index cf58156442..db8ffd49ae 100644 --- a/paddle/memory/detail/meta_cache.h +++ b/paddle/memory/detail/meta_cache.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/memory/detail/meta_data.cc b/paddle/memory/detail/meta_data.cc index 70c5c1f439..dc57d4d237 100644 --- a/paddle/memory/detail/meta_data.cc +++ b/paddle/memory/detail/meta_data.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/memory/detail/meta_data.h" diff --git a/paddle/memory/detail/meta_data.h b/paddle/memory/detail/meta_data.h index 628cf1f2e3..6b83c42eb8 100644 --- a/paddle/memory/detail/meta_data.h +++ b/paddle/memory/detail/meta_data.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/memory/detail/system_allocator.cc b/paddle/memory/detail/system_allocator.cc index 6b4e46f56a..509250debc 100644 --- a/paddle/memory/detail/system_allocator.cc +++ b/paddle/memory/detail/system_allocator.cc @@ -19,6 +19,7 @@ limitations under the License. */ #include // for malloc and free #include // for mlock and munlock +#include // for std::max #include "gflags/gflags.h" @@ -28,7 +29,7 @@ limitations under the License. */ // of memory available to the system for paging. So, by default, we // should set false to use_pinned_memory. DEFINE_bool(use_pinned_memory, true, "If set, allocate cpu pinned memory."); - +DECLARE_double(fraction_of_gpu_memory_to_use); namespace paddle { namespace memory { namespace detail { @@ -43,7 +44,7 @@ void* CPUAllocator::Alloc(size_t& index, size_t size) { void* p; -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN // refer to https://github.com/01org/mkl-dnn/blob/master/include/mkldnn.hpp // memory alignment PADDLE_ENFORCE_EQ(posix_memalign(&p, 4096ul, size), 0); @@ -77,45 +78,20 @@ void* GPUAllocator::Alloc(size_t& index, size_t size) { // CUDA documentation doesn't explain if cudaMalloc returns nullptr // if size is 0. We just make sure it does. if (size <= 0) return nullptr; - - size_t available = 0; - size_t capacity = 0; - paddle::platform::GpuMemoryUsage(available, capacity); - - // Reserve memory for page tables, etc. - size_t reserving = capacity - paddle::platform::GpuMaxAllocSize(); - size_t usable = available > reserving ? available - reserving : 0; - - // If remaining size no less than expected size, using general - // cudaMalloc to allocate GPU memory. - void* p = 0; - if (size <= usable) { - cudaError_t result = cudaMalloc(&p, size); - if (result == cudaSuccess) { - index = 0; - gpu_alloc_size_ += size; - return p; - } - } - - // If remaining size less than expected size or cudaMalloc failed, - // cudaMallocHost will be considered as a fallback allocator. - // - // NOTE: here, we use GpuMaxAllocSize() as the maximum memory size - // of host fallback allocation. Allocates too much would reduce - // the amount of memory available to the underlying system for paging. - usable = paddle::platform::GpuMaxAllocSize() - fallback_alloc_size_; - - if (size > usable) return nullptr; - - cudaError_t result = cudaMallocHost(&p, size); + void* p; + cudaError_t result = cudaMalloc(&p, size); if (result == cudaSuccess) { - index = 1; - fallback_alloc_size_ += size; + index = 0; + gpu_alloc_size_ += size; return p; + } else { + LOG(WARNING) + << "Cannot malloc " << size / 1024.0 / 1024.0 + << " MB GPU memory. Please shrink FLAGS_fraction_of_gpu_memory_to_use " + "environment variable to a lower value. Current value is " + << FLAGS_fraction_of_gpu_memory_to_use; + return nullptr; } - - return nullptr; } void GPUAllocator::Free(void* p, size_t size, size_t index) { diff --git a/paddle/memory/memcpy.cc b/paddle/memory/memcpy.cc index 1df88a6da9..b46141aafd 100644 --- a/paddle/memory/memcpy.cc +++ b/paddle/memory/memcpy.cc @@ -28,31 +28,25 @@ void Copy(platform::CPUPlace, void* dst, #ifdef PADDLE_WITH_CUDA template <> -void Copy(platform::CPUPlace dst_place, - void* dst, - platform::GPUPlace src_place, - const void* src, size_t num, - cudaStream_t stream) { +void Copy( + platform::CPUPlace dst_place, void* dst, platform::CUDAPlace src_place, + const void* src, size_t num, cudaStream_t stream) { platform::SetDeviceId(src_place.device); platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream); } template <> -void Copy(platform::GPUPlace dst_place, - void* dst, - platform::CPUPlace src_place, - const void* src, size_t num, - cudaStream_t stream) { +void Copy( + platform::CUDAPlace dst_place, void* dst, platform::CPUPlace src_place, + const void* src, size_t num, cudaStream_t stream) { platform::SetDeviceId(dst_place.device); platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream); } template <> -void Copy(platform::GPUPlace dst_place, - void* dst, - platform::GPUPlace src_place, - const void* src, size_t num, - cudaStream_t stream) { +void Copy( + platform::CUDAPlace dst_place, void* dst, platform::CUDAPlace src_place, + const void* src, size_t num, cudaStream_t stream) { if (dst_place == src_place) { platform::SetDeviceId(src_place.device); platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToDevice, stream); @@ -62,33 +56,6 @@ void Copy(platform::GPUPlace dst_place, } } -template <> -void Copy(platform::CPUPlace dst_place, - void* dst, - platform::GPUPlace src_place, - const void* src, size_t num) { - platform::SetDeviceId(src_place.device); - platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost); -} - -template <> -void Copy(platform::GPUPlace dst_place, - void* dst, - platform::CPUPlace src_place, - const void* src, size_t num) { - platform::SetDeviceId(dst_place.device); - platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice); -} - -template <> -void Copy(platform::GPUPlace dst_place, - void* dst, - platform::GPUPlace src_place, - const void* src, size_t num) { - platform::SetDeviceId(dst_place.device); - platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToDevice); -} - #endif } // namespace memory diff --git a/paddle/memory/memory.cc b/paddle/memory/memory.cc index 95cfe2525e..1a73a94567 100644 --- a/paddle/memory/memory.cc +++ b/paddle/memory/memory.cc @@ -64,29 +64,31 @@ BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { int gpu_num = platform::GetCUDADeviceCount(); as = new BuddyAllocator*[gpu_num]; for (int gpu = 0; gpu < gpu_num; gpu++) { - platform::SetDeviceId(gpu); - as[gpu] = new BuddyAllocator(new detail::GPUAllocator, - platform::GpuMinChunkSize(), - platform::GpuMaxChunkSize()); + as[gpu] = nullptr; } + } + platform::SetDeviceId(gpu_id); + if (!as[gpu_id]) { + as[gpu_id] = new BuddyAllocator(new detail::GPUAllocator, + platform::GpuMinChunkSize(), + platform::GpuMaxChunkSize()); VLOG(10) << "\n\nNOTE: each GPU device use " << FLAGS_fraction_of_gpu_memory_to_use * 100 << "% of GPU memory.\n" - << "You can set environment variable '" - << platform::kEnvFractionGpuMemoryToUse + << "You can set GFlags environment variable '" + << "FLAGS_fraction_of_gpu_memory_to_use" << "' to change the fraction of GPU usage.\n\n"; } - platform::SetDeviceId(gpu_id); return as[gpu_id]; } template <> -size_t Used(platform::GPUPlace place) { +size_t Used(platform::CUDAPlace place) { return GetGPUBuddyAllocator(place.device)->Used(); } template <> -void* Alloc(platform::GPUPlace place, size_t size) { +void* Alloc(platform::CUDAPlace place, size_t size) { auto* buddy_allocator = GetGPUBuddyAllocator(place.device); auto* ptr = buddy_allocator->Alloc(size); if (ptr == nullptr) { @@ -99,18 +101,34 @@ void* Alloc(platform::GPUPlace place, size_t size) { LOG(WARNING) << "total " << total; LOG(WARNING) << "GpuMinChunkSize " << platform::GpuMinChunkSize(); LOG(WARNING) << "GpuMaxChunkSize " << platform::GpuMaxChunkSize(); - LOG(WARNING) << "GPU memory used: " << Used(place); + LOG(WARNING) << "GPU memory used: " << Used(place); platform::SetDeviceId(cur_dev); } return ptr; } template <> -void Free(platform::GPUPlace place, void* p) { +void Free(platform::CUDAPlace place, void* p) { GetGPUBuddyAllocator(place.device)->Free(p); } #endif +size_t Usage::operator()(const platform::CPUPlace& cpu) const { + return Used(cpu); +} + +size_t Usage::operator()(const platform::CUDAPlace& gpu) const { +#ifdef PADDLE_WITH_CUDA + return Used(gpu); +#else + PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); +#endif +} + +size_t memory_usage(const platform::Place& p) { + return boost::apply_visitor(Usage(), p); +} + } // namespace memory } // namespace paddle diff --git a/paddle/memory/memory.h b/paddle/memory/memory.h index 11bbb88187..7012b6d331 100644 --- a/paddle/memory/memory.h +++ b/paddle/memory/memory.h @@ -54,6 +54,13 @@ void Free(Place place, void* ptr); template size_t Used(Place place); +struct Usage : public boost::static_visitor { + size_t operator()(const platform::CPUPlace& cpu) const; + size_t operator()(const platform::CUDAPlace& gpu) const; +}; + +size_t memory_usage(const platform::Place& p); + /** * \brief Free memory block in one place. * diff --git a/paddle/memory/memory_test.cc b/paddle/memory/memory_test.cc index 2444931e26..b3f699f9b7 100644 --- a/paddle/memory/memory_test.cc +++ b/paddle/memory/memory_test.cc @@ -44,6 +44,9 @@ TEST(BuddyAllocator, CPUAllocation) { EXPECT_NE(p, nullptr); + paddle::platform::Place place = cpu; + EXPECT_EQ(paddle::memory::Used(cpu), paddle::memory::memory_usage(place)); + paddle::memory::Free(cpu, p); } @@ -82,7 +85,7 @@ TEST(BuddyAllocator, CPUMultAlloc) { #ifdef PADDLE_WITH_CUDA -size_t align(size_t size, paddle::platform::GPUPlace place) { +size_t align(size_t size, paddle::platform::CUDAPlace place) { size += sizeof(paddle::memory::detail::Metadata); size_t alignment = paddle::platform::GpuMinChunkSize(); size_t remaining = size % alignment; @@ -94,16 +97,19 @@ TEST(BuddyAllocator, GPUAllocation) { EXPECT_EQ(p, nullptr); - paddle::platform::GPUPlace gpu(0); + paddle::platform::CUDAPlace gpu(0); p = paddle::memory::Alloc(gpu, 4096); EXPECT_NE(p, nullptr); + paddle::platform::Place place = gpu; + EXPECT_EQ(paddle::memory::Used(gpu), paddle::memory::memory_usage(place)); + paddle::memory::Free(gpu, p); } TEST(BuddyAllocator, GPUMultAlloc) { - paddle::platform::GPUPlace gpu; + paddle::platform::CUDAPlace gpu; std::unordered_map ps; diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 38b89b9eb1..6745a8da17 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -1,5 +1,6 @@ file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc") string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}") +set(DEPS_OPS "") set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/pybind/pybind.h) file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n") function(op_library TARGET) @@ -48,6 +49,10 @@ function(op_library TARGET) message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file") endif() + list(LENGTH op_library_DEPS op_library_DEPS_len) + if (${op_library_DEPS_len} GREATER 0) + set(DEPS_OPS ${TARGET} ${DEPS_OPS} PARENT_SCOPE) + endif() if (WITH_GPU) nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS} ${op_common_deps}) @@ -56,106 +61,28 @@ function(op_library TARGET) ${op_common_deps}) endif() - # net_op doesn't need pybind - if ("${TARGET}" STREQUAL "net_op") - set(pybind_flag 1) - endif() - - if ("${TARGET}" STREQUAL "compare_op") - set(pybind_flag 1) - file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(equal);\n") - endif() - - # conv_op contains several operators - if ("${TARGET}" STREQUAL "conv_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d);\n") - endif() - - # conv_cudnn_op contains several operators - if ("${TARGET}" STREQUAL "conv_cudnn_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d_cudnn);\n") - endif() - - # pool_op contains several operators - if ("${TARGET}" STREQUAL "pool_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(pool2d);\n") - endif() - - # pool_cudnn_op contains several operators - if ("${TARGET}" STREQUAL "pool_cudnn_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(pool2d_cudnn);\n") - endif() - - if ("${TARGET}" STREQUAL "logical_op") - set(pybind_flag 1) - file(APPEND ${pybind_file} "USE_OP(logical_and);\n") - endif() - - # pool_with_index_op contains several operators - if ("${TARGET}" STREQUAL "pool_with_index_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n") - endif() - - # conv_transpose_op contains several operators - if ("${TARGET}" STREQUAL "conv_transpose_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d_transpose);\n") - endif() - - # conv_transpose_cudnn_op contains two operators - if ("${TARGET}" STREQUAL "conv_transpose_cudnn_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d_transpose_cudnn);\n") - endif() - - # save_restore_op contains several operators - if ("${TARGET}" STREQUAL "save_restore_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(save);\n") - endif() - - # activation_op contains several operators - if ("${TARGET}" STREQUAL "activation_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(sigmoid);\n") - endif() - - # nccl_op contains several operators - if ("${TARGET}" STREQUAL "nccl_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_GPU_ONLY_OP(ncclAllReduce);\n") - endif() - - # reduce_op contains several operators - if ("${TARGET}" STREQUAL "reduce_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(reduce_sum);\n") - endif() + # Define operators that don't need pybind here. + foreach(manual_pybind_op "net_op" "compare_op" "logical_op" "nccl_op" "tensor_array_read_write_op") + if ("${TARGET}" STREQUAL "${manual_pybind_op}") + set(pybind_flag 1) + endif() + endforeach() - if ("${TARGET}" STREQUAL "tensor_array_read_write_op") - set(pybind_flag 1) - file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(read_from_array);\nUSE_NO_KERNEL_OP(write_to_array);\n") + # The registration of USE_OP, please refer to paddle/framework/op_registry.h. + # Note that it's enough to just adding one operator to pybind in a *_op.cc file. + # And for detail pybind information, please see generated paddle/pybind/pybind.h. + file(READ ${TARGET}.cc TARGET_CONTENT) + string(REGEX MATCH "REGISTER_OP\\(.*REGISTER_OP\\(" multi_register "${TARGET_CONTENT}") + string(REGEX MATCH "REGISTER_OP\\([a-z0-9_]*," one_register "${multi_register}") + if (one_register STREQUAL "") + string(REPLACE "_op" "" TARGET "${TARGET}") + else () + string(REPLACE "REGISTER_OP(" "" TARGET "${one_register}") + string(REPLACE "," "" TARGET "${TARGET}") endif() # pybind USE_NO_KERNEL_OP # HACK: if REGISTER_OP_CPU_KERNEL presents the operator must have kernel - file(READ ${TARGET}.cc TARGET_CONTENT) string(REGEX MATCH "REGISTER_OP_CPU_KERNEL" regex_result "${TARGET_CONTENT}") string(REPLACE "_op" "" TARGET "${TARGET}") if (${pybind_flag} EQUAL 0 AND regex_result STREQUAL "") @@ -166,7 +93,6 @@ function(op_library TARGET) # pybind USE_CPU_ONLY_OP list(LENGTH cu_srcs cu_srcs_len) list(LENGTH cu_cc_srcs cu_cc_srcs_len) - if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0) file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n") set(pybind_flag 1) @@ -181,81 +107,66 @@ endfunction() add_subdirectory(math) add_subdirectory(nccl) -set(DEPS_OPS - cond_op - cross_entropy_op - recurrent_op - softmax_with_cross_entropy_op - softmax_op - sequence_softmax_op - sum_op - pool_op - maxout_op - unpool_op - pool_with_index_op - conv_op - conv_transpose_op - nccl_op - sequence_conv_op - sequence_pool_op - lod_rank_table_op - lod_tensor_to_array_op - array_to_lod_tensor_op - max_sequence_len_op - lstm_op - tensor_array_read_write_op - gru_op - adagrad_op - sgd_op - save_op - load_op - send_op - recv_op) +if(WITH_GPU) + op_library(nccl_op DEPS nccl_common) + file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(ncclAllReduce);\n") +else() + set(DEPS_OPS ${DEPS_OPS} nccl_op) +endif() if(WITH_DISTRIBUTE) -add_subdirectory(detail) -op_library(send_op SRCS send_op.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib_target protobuf) -set_source_files_properties( - send_op.cc - PROPERTIES - COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") - -op_library(recv_op SRCS recv_op.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib_target protobuf) -set_source_files_properties( - recv_op.cc - PROPERTIES - COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") - -cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS send_op recv_op sum_op executor) + add_subdirectory(detail) + set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib_target protobuf) + set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") + op_library(send_op DEPS ${DISTRIBUTE_DEPS}) + set_source_files_properties(send_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) + op_library(recv_op DEPS ${DISTRIBUTE_DEPS}) + set_source_files_properties(recv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) + cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS send_op recv_op sum_op executor) +else() + set(DEPS_OPS ${DEPS_OPS} send_op recv_op) endif() -op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op) +op_library(cond_op DEPS framework_proto tensor net_op) op_library(cross_entropy_op DEPS cross_entropy) op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax) op_library(softmax_op DEPS softmax) +op_library(detection_output_op DEPS softmax) op_library(sequence_softmax_op DEPS softmax) op_library(sum_op DEPS selected_rows_functor) op_library(sgd_op DEPS selected_rows_functor) +op_library(print_op DEPS lod_tensor) op_library(adagrad_op DEPS selected_rows_functor) -op_library(conv_op DEPS vol2col) -op_library(pool_op DEPS pooling) op_library(maxout_op DEPS maxouting) op_library(unpool_op DEPS unpooling) op_library(pool_with_index_op DEPS pooling) -op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table) -op_library(lod_tensor_to_array_op SRCS lod_tensor_to_array_op.cc DEPS lod_rank_table_op) -op_library(array_to_lod_tensor_op SRCS array_to_lod_tensor_op.cc DEPS lod_rank_table_op) -op_library(max_sequence_len_op SRCS max_sequence_len_op.cc DEPS lod_rank_table) -op_library(tensor_array_read_write_op SRCS tensor_array_read_write_op.cc) -if(WITH_GPU) -op_library(nccl_op DEPS nccl_common) -endif() +op_library(lod_rank_table_op DEPS lod_rank_table) +op_library(lod_tensor_to_array_op DEPS lod_rank_table_op) +op_library(array_to_lod_tensor_op DEPS lod_rank_table_op) +op_library(max_sequence_len_op DEPS lod_rank_table) op_library(sequence_conv_op DEPS context_project) op_library(sequence_pool_op DEPS sequence_pooling) op_library(lstm_op DEPS sequence2batch lstm_compute) -op_library(conv_transpose_op DEPS vol2col) op_library(gru_op DEPS sequence2batch gru_compute) -op_library(recurrent_op SRCS recurrent_op.cc DEPS executor) +op_library(recurrent_op DEPS executor) +op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale math_function) +op_library(cos_sim_op DEPS cos_sim_functor) +op_library(parallel_do_op DEPS executor) + +# Regist multiple Kernel to pybind +if (WITH_GPU) +op_library(conv_op SRCS conv_op.cc conv_op.cu.cc conv_cudnn_op.cu.cc DEPS vol2col) +op_library(pool_op SRCS pool_op.cc pool_op.cu.cc pool_cudnn_op.cu.cc DEPS pooling) +op_library(conv_transpose_op SRCS conv_transpose_op.cc conv_transpose_op.cu.cc + conv_transpose_cudnn_op.cu.cc DEPS vol2col) +file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(conv2d, CUDNN);\n") +file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(pool2d, CUDNN);\n") +file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(conv2d_transpose, CUDNN);\n") +else() +op_library(conv_op SRCS conv_op.cc DEPS vol2col) +op_library(pool_op SRCS pool_op.cc DEPS pooling) +op_library(conv_transpose_op SRCS conv_transpose_op.cc DEPS vol2col) +endif() # FIXME(typhoonzero): save/load depends lodtensor serialization functions op_library(save_op DEPS lod_tensor) @@ -265,17 +176,17 @@ list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) foreach(src ${GENERAL_OPS}) op_library(${src}) endforeach() +file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n") set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") - - cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor) +cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_search_op) cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory) if(WITH_GPU) - cc_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) + cc_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) endif() cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op) diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc index 2785a8c6fb..8e8a3c7dd3 100644 --- a/paddle/operators/accuracy_op.cc +++ b/paddle/operators/accuracy_op.cc @@ -53,18 +53,17 @@ class AccuracyOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Out")->type()), - ctx.device_context()); + ctx.GetPlace()); } }; class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker { public: - AccuracyOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + AccuracyOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { // TODO(typhoonzero): support both inference value and indices. AddInput("Out", "The network output of topk (inferences)"); diff --git a/paddle/operators/accuracy_op.cu b/paddle/operators/accuracy_op.cu index d2dcab4e54..0aadd5af41 100644 --- a/paddle/operators/accuracy_op.cu +++ b/paddle/operators/accuracy_op.cu @@ -26,7 +26,7 @@ template __global__ void AccuracyCudaKernel(const int N, const int D, const int64_t* Xdata, const int64_t* labeldata, int* correct_data, - float* accuracy) { + float* accuracy, int* total_data) { int count = 0; __shared__ int total[BlockSize]; @@ -47,6 +47,7 @@ __global__ void AccuracyCudaKernel(const int N, const int D, if (threadIdx.x == 0) { *correct_data = result; *accuracy = static_cast(result) / static_cast(N); + *total_data = N; } } @@ -55,7 +56,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); auto* inference = ctx.Input("Out"); auto* indices = ctx.Input("Indices"); auto* label = ctx.Input("Label"); @@ -80,22 +81,11 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { if (num_samples == 0) { return; } - platform::GpuMemcpyAsync(total_data, &num_samples, sizeof(int), - cudaMemcpyHostToDevice, stream); AccuracyCudaKernel< PADDLE_CUDA_NUM_THREADS><<<1, PADDLE_CUDA_NUM_THREADS, 0, stream>>>( num_samples, infer_width, indices_data, label_data, correct_data, - accuracy_data); - - int d_num_samples, d_num_correct; - float d_accuracy; - platform::GpuMemcpyAsync(&d_num_correct, correct_data, sizeof(int), - cudaMemcpyDeviceToHost, stream); - platform::GpuMemcpyAsync(&d_num_samples, total_data, sizeof(int), - cudaMemcpyDeviceToHost, stream); - platform::GpuMemcpyAsync(&d_accuracy, accuracy_data, sizeof(float), - cudaMemcpyDeviceToHost, stream); + accuracy_data, total_data); } }; @@ -104,5 +94,6 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { // FIXME(typhoonzero): types of T is for inference data. // label data is always int64 -REGISTER_OP_GPU_KERNEL(accuracy, paddle::operators::AccuracyOpCUDAKernel, - paddle::operators::AccuracyOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(accuracy, + paddle::operators::AccuracyOpCUDAKernel, + paddle::operators::AccuracyOpCUDAKernel); diff --git a/paddle/operators/accuracy_op.h b/paddle/operators/accuracy_op.h index d060e6eddd..04104a695f 100644 --- a/paddle/operators/accuracy_op.h +++ b/paddle/operators/accuracy_op.h @@ -21,7 +21,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class AccuracyKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/activation_op.cc b/paddle/operators/activation_op.cc index 83262f950e..4188858a90 100644 --- a/paddle/operators/activation_op.cc +++ b/paddle/operators/activation_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/activation_op.h" @@ -22,8 +22,8 @@ class ActivationOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - ctx->SetOutputDim("Y", ctx->GetInputDim("X")); - ctx->ShareLoD("X", /*->*/ "Y"); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Out"); } }; @@ -32,21 +32,20 @@ class ActivationOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y")); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Out")); } }; class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker { public: - SigmoidOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Sigmoid operator"); - AddOutput("Y", "Output of Sigmoid operator"); + AddOutput("Out", "Output of Sigmoid operator"); AddComment(R"DOC( Sigmoid Activation Operator -$$y = \frac{1}{1 + e^{-x}}$$ +$$out = \frac{1}{1 + e^{-x}}$$ )DOC"); } @@ -54,15 +53,14 @@ $$y = \frac{1}{1 + e^{-x}}$$ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { public: - LogSigmoidOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + LogSigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of LogSigmoid operator"); - AddOutput("Y", "Output of LogSigmoid operator"); + AddOutput("Out", "Output of LogSigmoid operator"); AddComment(R"DOC( Logsigmoid Activation Operator -$$y = \log \frac{1}{1 + e^{-x}}$$ +$$out = \log \frac{1}{1 + e^{-x}}$$ )DOC"); } @@ -70,14 +68,14 @@ $$y = \log \frac{1}{1 + e^{-x}}$$ class ExpOpMaker : public framework::OpProtoAndCheckerMaker { public: - ExpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ExpOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Exp operator"); - AddOutput("Y", "Output of Exp operator"); + AddOutput("Out", "Output of Exp operator"); AddComment(R"DOC( Exp Activation Operator. -$y = e^x$ +$out = e^x$ )DOC"); } @@ -85,14 +83,14 @@ $y = e^x$ class ReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - ReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Relu operator"); - AddOutput("Y", "Output of Relu operator"); + AddOutput("Out", "Output of Relu operator"); AddComment(R"DOC( Relu Activation Operator. -$y = \max(x, 0)$ +$out = \max(x, 0)$ )DOC"); } @@ -100,16 +98,15 @@ $y = \max(x, 0)$ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - LeakyReluOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + LeakyReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of LeakyRelu operator"); - AddOutput("Y", "Output of LeakyRelu operator"); + AddOutput("Out", "Output of LeakyRelu operator"); AddAttr("alpha", "The small negative slope").SetDefault(0.02f); AddComment(R"DOC( LeakyRelu Activation Operator. -$y = \max(x, \alpha * x)$ +$out = \max(x, \alpha * x)$ )DOC"); } @@ -117,17 +114,16 @@ $y = \max(x, \alpha * x)$ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftShrinkOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SoftShrinkOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Softshrink operator"); - AddOutput("Y", "Output of Softshrink operator"); + AddOutput("Out", "Output of Softshrink operator"); AddAttr("lambda", "non-negative offset").SetDefault(0.5f); AddComment(R"DOC( Softshrink Activation Operator. $$ -y = \begin{cases} +out = \begin{cases} x - \lambda, \text{if } x > \lambda \\ x + \lambda, \text{if } x < -\lambda \\ 0, \text{otherwise} @@ -140,14 +136,14 @@ $$ class TanhOpMaker : public framework::OpProtoAndCheckerMaker { public: - TanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + TanhOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Tanh operator"); - AddOutput("Y", "Output of Tanh operator"); + AddOutput("Out", "Output of Tanh operator"); AddComment(R"DOC( Tanh Activation Operator. -$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ +$$out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ )DOC"); } @@ -155,15 +151,14 @@ $$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: - TanhShrinkOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + TanhShrinkOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of TanhShrink operator"); - AddOutput("Y", "Output of TanhShrink operator"); + AddOutput("Out", "Output of TanhShrink operator"); AddComment(R"DOC( TanhShrink Activation Operator. -$$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ +$$out = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ )DOC"); } @@ -171,18 +166,17 @@ $$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: - HardShrinkOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + HardShrinkOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of HardShrink operator"); - AddOutput("Y", "Output of HardShrink operator"); + AddOutput("Out", "Output of HardShrink operator"); AddAttr("threshold", "The value of threshold for HardShrink") .SetDefault(0.5f); AddComment(R"DOC( HardShrink Activation Operator. $$ -y = \begin{cases} +out = \begin{cases} x, \text{if } x > \lambda \\ x, \text{if } x < -\lambda \\ 0, \text{otherwise} @@ -195,14 +189,14 @@ $$ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker { public: - SqrtOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SqrtOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Sqrt operator"); - AddOutput("Y", "Output of Sqrt operator"); + AddOutput("Out", "Output of Sqrt operator"); AddComment(R"DOC( Sqrt Activation Operator. -$y = \sqrt{x}$ +$out = \sqrt{x}$ )DOC"); } @@ -210,14 +204,14 @@ $y = \sqrt{x}$ class AbsOpMaker : public framework::OpProtoAndCheckerMaker { public: - AbsOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + AbsOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Abs operator"); - AddOutput("Y", "Output of Abs operator"); + AddOutput("Out", "Output of Abs operator"); AddComment(R"DOC( Abs Activation Operator. -$y = |x|$ +$out = |x|$ )DOC"); } @@ -225,14 +219,14 @@ $y = |x|$ class CeilOpMaker : public framework::OpProtoAndCheckerMaker { public: - CeilOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + CeilOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Ceil operator"); - AddOutput("Y", "Output of Ceil operator"); + AddOutput("Out", "Output of Ceil operator"); AddComment(R"DOC( Ceil Activation Operator. -$y = ceil(x)$ +$out = ceil(x)$ )DOC"); } @@ -240,14 +234,14 @@ $y = ceil(x)$ class FloorOpMaker : public framework::OpProtoAndCheckerMaker { public: - FloorOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + FloorOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Floor operator"); - AddOutput("Y", "Output of Floor operator"); + AddOutput("Out", "Output of Floor operator"); AddComment(R"DOC( Floor Activation Operator. -$y = floor(x)$ +$out = floor(x)$ )DOC"); } @@ -255,14 +249,14 @@ $y = floor(x)$ class RoundOpMaker : public framework::OpProtoAndCheckerMaker { public: - RoundOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + RoundOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Round operator"); - AddOutput("Y", "Output of Round operator"); + AddOutput("Out", "Output of Round operator"); AddComment(R"DOC( Round Activation Operator. -$y = [x]$ +$out = [x]$ )DOC"); } @@ -270,15 +264,14 @@ $y = [x]$ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker { public: - ReciprocalOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ReciprocalOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Reciprocal operator"); - AddOutput("Y", "Output of Reciprocal operator"); + AddOutput("Out", "Output of Reciprocal operator"); AddComment(R"DOC( Reciprocal Activation Operator. -$$y = \frac{1}{x}$$ +$$out = \frac{1}{x}$$ )DOC"); } @@ -286,14 +279,14 @@ $$y = \frac{1}{x}$$ class LogOpMaker : public framework::OpProtoAndCheckerMaker { public: - LogOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + LogOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Log operator"); - AddOutput("Y", "Output of Log operator"); + AddOutput("Out", "Output of Log operator"); AddComment(R"DOC( Log Activation Operator. -$y = \ln(x)$ +$out = \ln(x)$ Natural logarithm of x. @@ -303,14 +296,14 @@ Natural logarithm of x. class SquareOpMaker : public framework::OpProtoAndCheckerMaker { public: - SquareOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SquareOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Square operator"); - AddOutput("Y", "Output of Square operator"); + AddOutput("Out", "Output of Square operator"); AddComment(R"DOC( Square Activation Operator. -$y = x^2$ +$out = x^2$ )DOC"); } @@ -318,15 +311,14 @@ $y = x^2$ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftplusOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SoftplusOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Softplus operator"); - AddOutput("Y", "Output of Softplus operator"); + AddOutput("Out", "Output of Softplus operator"); AddComment(R"DOC( Softplus Activation Operator. -$y = \ln(1 + e^{x})$ +$out = \ln(1 + e^{x})$ )DOC"); } @@ -334,15 +326,14 @@ $y = \ln(1 + e^{x})$ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftsignOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SoftsignOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Softsign operator"); - AddOutput("Y", "Output of Softsign operator"); + AddOutput("Out", "Output of Softsign operator"); AddComment(R"DOC( Softsign Activation Operator. -$$y = \frac{x}{1 + |x|}$$ +$$out = \frac{x}{1 + |x|}$$ )DOC"); } @@ -350,10 +341,10 @@ $$y = \frac{x}{1 + |x|}$$ class BReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - BReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + BReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of BRelu operator"); - AddOutput("Y", "Output of BRelu operator"); + AddOutput("Out", "Output of BRelu operator"); AddAttr("t_min", "The min marginal value of BRelu") .SetDefault(static_cast(0)); AddAttr("t_max", "The max marginal value of BRelu") @@ -361,7 +352,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( BRelu Activation Operator. -$y = \max(\min(x, t_{min}), t_{max})$ +$out = \max(\min(x, t_{min}), t_{max})$ )DOC"); } @@ -369,17 +360,16 @@ $y = \max(\min(x, t_{min}), t_{max})$ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftReluOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SoftReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of SoftRelu operator"); - AddOutput("Y", "Output of SoftRelu operator"); + AddOutput("Out", "Output of SoftRelu operator"); AddAttr("threshold", "The threshold value of SoftRelu") .SetDefault(40.0f); AddComment(R"DOC( SoftRelu Activation Operator. -$y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$ +$out = \ln(1 + \exp(\max(\min(x, threshold), threshold))$ )DOC"); } @@ -387,10 +377,10 @@ $y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$ class ELUOpMaker : public framework::OpProtoAndCheckerMaker { public: - ELUOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ELUOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of ELU operator"); - AddOutput("Y", "Output of ELU operator"); + AddOutput("Out", "Output of ELU operator"); AddAttr("alpha", "The alpha value of ELU").SetDefault(1.0f); AddComment(R"DOC( ELU Activation Operator. @@ -398,7 +388,7 @@ ELU Activation Operator. Applies the following element-wise computation on the input according to https://arxiv.org/abs/1511.07289. -$y = \max(0, x) + \min(0, \alpha * (e^x - 1))$ +$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$ )DOC"); } @@ -406,16 +396,16 @@ $y = \max(0, x) + \min(0, \alpha * (e^x - 1))$ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker { public: - Relu6OpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + Relu6OpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Relu6 operator"); - AddOutput("Y", "Output of Relu6 operator"); + AddOutput("Out", "Output of Relu6 operator"); AddAttr("threshold", "The threshold value of Relu6") .SetDefault(6.0f); AddComment(R"DOC( Relu6 Activation Operator. -$y = \min(\max(0, x), 6)$ +$out = \min(\max(0, x), 6)$ )DOC"); } @@ -423,15 +413,15 @@ $y = \min(\max(0, x), 6)$ class PowOpMaker : public framework::OpProtoAndCheckerMaker { public: - PowOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + PowOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Pow operator"); - AddOutput("Y", "Output of Pow operator"); + AddOutput("Out", "Output of Pow operator"); AddAttr("factor", "The exponential factor of Pow").SetDefault(1.0f); AddComment(R"DOC( Pow Activation Operator. -$y = x^{factor}$ +$out = x^{factor}$ )DOC"); } @@ -439,10 +429,10 @@ $y = x^{factor}$ class STanhOpMaker : public framework::OpProtoAndCheckerMaker { public: - STanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + STanhOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of STanh operator"); - AddOutput("Y", "Output of STanh operator"); + AddOutput("Out", "Output of STanh operator"); AddAttr("scale_a", "The scale parameter of a for the input") .SetDefault(2.0f / 3.0f); AddAttr("scale_b", "The scale parameter of b for the input") @@ -450,7 +440,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( STanh Activation Operator. -$$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$ +$$out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$ )DOC"); } @@ -458,18 +448,17 @@ $$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - ThresholdedReluOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ThresholdedReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of ThresholdedRelu operator"); - AddOutput("Y", "Output of ThresholdedRelu operator"); + AddOutput("Out", "Output of ThresholdedRelu operator"); AddAttr("threshold", "The threshold location of activation") .SetDefault(1.0f); AddComment(R"DOC( ThresholdedRelu Activation Operator. $$ -y = \begin{cases} +out = \begin{cases} x, \text{if } x > threshold \\ 0, \text{otherwise} \end{cases} @@ -481,11 +470,10 @@ $$ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { public: - HardSigmoidOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + HardSigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of HardSigmoid operator"); - AddOutput("Y", "Output of HardSigmoid operator"); + AddOutput("Out", "Output of HardSigmoid operator"); AddAttr("slope", "Slope for linear approximation of sigmoid") .SetDefault(0.2f); AddAttr("offset", "Offset for linear approximation of sigmoid") @@ -496,7 +484,7 @@ HardSigmoid Activation Operator. Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391), which is much faster than sigmoid. -$y = \max(0, \min(1, slope * x + shift))$ +$out = \max(0, \min(1, slope * x + shift))$ The slope should be positive. The offset can be either positive or negative. The default slope and shift are set according to the above reference. @@ -506,6 +494,22 @@ It is recommended to use the defaults for this activation. } }; +class SwishOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SwishOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Swish operator"); + AddOutput("Out", "Output of Swish operator"); + AddAttr("beta", "Constant beta of swish operator").SetDefault(1.0f); + AddComment(R"DOC( +Swish Activation Operator. + +$$out = \frac{x}{1 + e^{- \beta x}}$$ + +)DOC"); + } +}; + } // namespace operators } // namespace paddle @@ -592,16 +596,20 @@ REGISTER_OP(thresholded_relu, ops::ActivationOp, ops::ThresholdedReluOpMaker, REGISTER_OP(hard_sigmoid, ops::ActivationOp, ops::HardSigmoidOpMaker, hard_sigmoid_grad, ops::ActivationOpGrad); -#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \ - REGISTER_OP_CPU_KERNEL( \ - act_type, \ - ops::ActivationKernel>, \ - ops::ActivationKernel>); \ - REGISTER_OP_CPU_KERNEL( \ - act_type##_grad, ops::ActivationGradKernel>, \ - ops::ActivationGradKernel>, \ + ops::ActivationKernel>); \ + REGISTER_OP_CPU_KERNEL( \ + act_type##_grad, \ + ops::ActivationGradKernel>, \ + ops::ActivationGradKernel>); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL); diff --git a/paddle/operators/activation_op.cu b/paddle/operators/activation_op.cu index 97737857ab..b9ccdf639c 100644 --- a/paddle/operators/activation_op.cu +++ b/paddle/operators/activation_op.cu @@ -1,32 +1,33 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/activation_op.h" namespace ops = paddle::operators; -#define REGISTER_ACTIVATION_GPU_KERNEL(act_type, functor, grad_functor) \ - REGISTER_OP_GPU_KERNEL( \ - act_type, \ - ops::ActivationKernel>, \ - ops::ActivationKernel>); \ - REGISTER_OP_GPU_KERNEL( \ - act_type##_grad, ops::ActivationGradKernel>, \ - ops::ActivationGradKernel>, \ + ops::ActivationKernel>); \ + REGISTER_OP_CUDA_KERNEL( \ + act_type##_grad, \ + ops::ActivationGradKernel>, \ + ops::ActivationGradKernel>); -FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_GPU_KERNEL); +FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL); diff --git a/paddle/operators/activation_op.h b/paddle/operators/activation_op.h index 8cd3bfbbd3..88c3d1c597 100644 --- a/paddle/operators/activation_op.h +++ b/paddle/operators/activation_op.h @@ -1,71 +1,79 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" namespace paddle { namespace operators { -template +template class ActivationKernel : public framework::OpKernel { public: using T = typename Functor::ELEMENT_TYPE; void Compute(const framework::ExecutionContext& context) const override { - auto* X = context.Input("X"); - auto* Y = context.Output("Y"); - Y->mutable_data(context.GetPlace()); - - auto x = framework::EigenVector::Flatten(*X); - auto y = framework::EigenVector::Flatten(*Y); - auto place = context.GetEigenDevice(); + auto& X = detail::Ref(context.Input("X"), + "Cannot get input tensor X, variable name = %s", + context.op().Input("X")); + + auto& Out = detail::Ref(context.Output("Out"), + "Cannot get output tensor Out, variable name = %s", + context.op().Output("Out")); + Out.mutable_data(context.GetPlace()); + auto x = framework::EigenVector::Flatten(X); + auto out = framework::EigenVector::Flatten(Out); + auto* place = + context.template device_context().eigen_device(); Functor functor; auto attrs = functor.GetAttrs(); for (auto& attr : attrs) { *attr.second = context.Attr(attr.first); } - functor(place, x, y); + functor(*place, x, out); } }; -template +template class ActivationGradKernel : public framework::OpKernel { public: using T = typename Functor::ELEMENT_TYPE; void Compute(const framework::ExecutionContext& context) const override { auto* X = context.Input("X"); - auto* Y = context.Input("Y"); - auto* dY = context.Input(framework::GradVarName("Y")); + auto* Out = context.Input("Out"); + auto* dOut = + context.Input(framework::GradVarName("Out")); auto* dX = context.Output(framework::GradVarName("X")); dX->mutable_data(context.GetPlace()); - auto dy = framework::EigenVector::Flatten(*dY); + auto dout = framework::EigenVector::Flatten(*dOut); auto x = framework::EigenVector::Flatten(*X); - auto y = framework::EigenVector::Flatten(*Y); + auto out = framework::EigenVector::Flatten(*Out); auto dx = framework::EigenVector::Flatten(*dX); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); Functor functor; auto attrs = functor.GetAttrs(); for (auto& attr : attrs) { *attr.second = context.Attr(attr.first); } - functor(place, x, y, dy, dx); + functor(*place, x, out, dout, dx); } }; @@ -81,17 +89,18 @@ struct BaseActivationFunctor { // sigmoid(x) = 1 / (1 + exp(-x)) template struct SigmoidFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = static_cast(1) / (static_cast(1) + (-x).exp()); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = static_cast(1) / (static_cast(1) + (-x).exp()); } }; template struct SigmoidGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * y * (static_cast(1) - y); + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * out * (static_cast(1) - out); } }; @@ -99,7 +108,7 @@ struct SigmoidGradFunctor : public BaseActivationFunctor { // For numerical stability, we can use the log-sum-exp trick: // https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/ // We can rewrite the above equation as: -// y = -log( exp(0) + exp(-x)) [since exp(0) = 1] +// out = -log( exp(0) + exp(-x)) [since exp(0) = 1] // = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0))) // = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x - // max(-x, 0))) @@ -110,10 +119,10 @@ struct SigmoidGradFunctor : public BaseActivationFunctor { // + exp(-x - max(-x, 0)))) template struct LogSigmoidFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { + template + void operator()(Device d, X x, Out out) const { auto temp = (-x).cwiseMax(static_cast(0)); // temp = max(-x, 0) - y.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log()); + out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log()); } }; @@ -122,62 +131,66 @@ struct LogSigmoidFunctor : public BaseActivationFunctor { // exp(-x - max(-x, 0))) template struct LogSigmoidGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { auto temp = (-x).cwiseMax(static_cast(0)); // temp = max(-x, 0) dx.device(d) = - dy * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp())); + dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp())); } }; // exp(x) = e^x template struct ExpFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.exp(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.exp(); } }; template struct ExpGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * y; + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * out; } }; // relu(x) = max(x, 0) template struct ReluFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.cwiseMax(static_cast(0)); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.cwiseMax(static_cast(0)); } }; template struct ReluGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * (x > static_cast(0)).template cast(); + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * (x > static_cast(0)).template cast(); } }; // tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x)) template struct TanhFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.tanh(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.tanh(); } }; template struct TanhGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * (static_cast(1) - y * y); + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * (static_cast(1) - out * out); } }; @@ -185,17 +198,18 @@ struct TanhGradFunctor : public BaseActivationFunctor { // where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x)) template struct TanhShrinkFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x - x.tanh(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x - x.tanh(); } }; template struct TanhShrinkGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * (x.tanh() * x.tanh()); + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * (x.tanh() * x.tanh()); } }; @@ -208,11 +222,11 @@ struct HardShrinkFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } - template - void operator()(Device d, X x, Y y) const { + template + void operator()(Device d, X x, Out out) const { auto temp1 = (x < static_cast(threshold * -1)).template cast().eval(); auto temp2 = (x > static_cast(threshold)).template cast().eval(); - y.device(d) = x * (temp1 + temp2); + out.device(d) = x * (temp1 + temp2); } }; @@ -224,11 +238,12 @@ struct HardShrinkGradFunctor : public BaseActivationFunctor { return {{"threshold", &threshold}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { auto temp1 = (x < static_cast(threshold * -1)).template cast().eval(); auto temp2 = (x > static_cast(threshold)).template cast().eval(); - dx.device(d) = dy * (temp1 + temp2).template cast(); + dx.device(d) = dout * (temp1 + temp2).template cast(); } }; @@ -241,12 +256,12 @@ struct SoftShrinkFunctor : public BaseActivationFunctor { return {{"lambda", &lambda}}; } - template - void operator()(Device d, X x, Y y) const { + template + void operator()(Device d, X x, Out out) const { auto lambdaT = static_cast(lambda); auto temp1 = (x > lambdaT).template cast().eval(); auto temp2 = (x < -lambdaT).template cast().eval(); - y.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT); + out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT); } }; @@ -256,46 +271,49 @@ struct SoftShrinkGradFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"lambda", &lambda}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { auto lambdaT = static_cast(lambda); auto temp1 = (x > lambdaT).template cast().eval(); auto temp2 = (x < -lambdaT).template cast().eval(); - dx.device(d) = dy * (temp1 + temp2).template cast(); + dx.device(d) = dout * (temp1 + temp2).template cast(); } }; // sqrt(x) = x^(1/2) template struct SqrtFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.sqrt(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.sqrt(); } }; template struct SqrtGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - const Y y_conj = Eigen::numext::conj(y); - dx.device(d) = static_cast(0.5) * dy / y_conj; + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + const Out out_conj = Eigen::numext::conj(out); + dx.device(d) = static_cast(0.5) * dout / out_conj; } }; // ceil(x) = ceiling(x) template struct CeilFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.ceil(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.ceil(); } }; template struct ZeroGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { dx.device(d) = static_cast(0) / x; } }; @@ -303,86 +321,90 @@ struct ZeroGradFunctor : public BaseActivationFunctor { // floor(x) = flooring(x) template struct FloorFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.ceil(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.ceil(); } }; // round(x) = [x] template struct RoundFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.round(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.round(); } }; // abs(x) = |x| template struct AbsFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.abs(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.abs(); } }; template struct AbsGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * x.sign(); + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * x.sign(); } }; // reciprocal(x) = 1 / x template struct ReciprocalFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = static_cast(1) / x; + template + void operator()(Device d, X x, Out out) const { + out.device(d) = static_cast(1) / x; } }; template struct ReciprocalGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * static_cast(-1) * y * y; + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * static_cast(-1) * out * out; } }; // log(x) = natural logarithm of x template struct LogFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.log(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.log(); } }; template struct LogGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * (static_cast(1) / x); + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * (static_cast(1) / x); } }; // square(x) = x^2 template struct SquareFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.square(); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.square(); } }; template struct SquareGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * static_cast(2) * x; + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * static_cast(2) * x; } }; @@ -397,9 +419,9 @@ struct BReluFunctor : public BaseActivationFunctor { return {{"t_min", &t_min}, {"t_max", &t_max}}; } - template - void operator()(Device d, X x, Y y) const { - y.device(d) = + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.cwiseMax(static_cast(t_min)).cwiseMin(static_cast(t_max)); } }; @@ -411,9 +433,10 @@ struct BReluGradFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"t_min", &t_min}, {"t_max", &t_max}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * ((x > static_cast(t_min)) * (x < static_cast(t_max))) .template cast(); } @@ -428,9 +451,9 @@ struct Relu6Functor : public BaseActivationFunctor { return {{"threshold", &threshold}}; } - template - void operator()(Device d, X x, Y y) const { - y.device(d) = + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.cwiseMax(static_cast(0)).cwiseMin(static_cast(threshold)); } }; @@ -441,9 +464,10 @@ struct Relu6GradFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * ((x > static_cast(0)) * (x < static_cast(threshold))) .template cast(); } @@ -456,10 +480,10 @@ struct Relu6GradFunctor : public BaseActivationFunctor { // Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0))) template struct SoftplusFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) { + template + void operator()(Device d, X x, Out out) { auto temp = x.cwiseMax(static_cast(0)); // temp = max(x, 0) - y.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log()); + out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log()); } }; @@ -469,19 +493,21 @@ struct SoftplusFunctor : public BaseActivationFunctor { // exp(x - max(x, 0))) template struct SoftplusGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) { auto temp = x.cwiseMax(static_cast(0)); // temp = max(x, 0) - dx.device(d) = dy * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp())); + dx.device(d) = + dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp())); } }; // softsign(x) = x / (1 + |x|) template struct SoftsignFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y) { - y.device(d) = x / (static_cast(1) + x.abs()); + template + void operator()(Device d, X x, Out out) { + out.device(d) = x / (static_cast(1) + x.abs()); } }; @@ -489,10 +515,11 @@ struct SoftsignFunctor : public BaseActivationFunctor { // Taken from https://en.wikipedia.org/wiki/Activation_function template struct SoftsignGradFunctor : public BaseActivationFunctor { - template - void operator()(Device d, X x, Y y, dY dy, dX dx) { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) { dx.device(d) = - dy * (static_cast(1) / (static_cast(1) + x.abs()).square()); + dout * (static_cast(1) / (static_cast(1) + x.abs()).square()); } }; @@ -503,11 +530,11 @@ struct SoftReluFunctor : public BaseActivationFunctor { return {{"threshold", &threshold}}; } - template - void operator()(Device d, X x, Y y) const { + template + void operator()(Device d, X x, Out out) const { auto tmp = static_cast(threshold); auto temp = x.cwiseMax(-tmp).cwiseMin(tmp); - y.device(d) = (static_cast(1) + temp.exp()).log(); + out.device(d) = (static_cast(1) + temp.exp()).log(); } }; @@ -517,11 +544,12 @@ struct SoftReluGradFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { auto tmp = static_cast(threshold); auto temp = ((x > -tmp) * (x < tmp)).template cast().eval(); - dx.device(d) = dy * (static_cast(1) - (-y).exp()) * temp; + dx.device(d) = dout * (static_cast(1) - (-out).exp()) * temp; } }; @@ -532,9 +560,9 @@ struct LeakyReluFunctor : public BaseActivationFunctor { return {{"alpha", &alpha}}; } - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.cwiseMax(static_cast(alpha) * x); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.cwiseMax(static_cast(alpha) * x); } }; @@ -544,12 +572,13 @@ struct LeakyReluGradFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"alpha", &alpha}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { auto temp1 = static_cast(alpha) * (x < static_cast(0)).template cast().eval(); auto temp2 = (x >= static_cast(0)).template cast().eval(); - dx.device(d) = dy * (temp1 + temp2).template cast(); + dx.device(d) = dout * (temp1 + temp2).template cast(); } }; @@ -560,11 +589,11 @@ struct ELUFunctor : public BaseActivationFunctor { return {{"alpha", &alpha}}; } - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.cwiseMax(static_cast(0)) + - (static_cast(alpha) * (x.exp() - static_cast(1))) - .cwiseMin(static_cast(0)); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.cwiseMax(static_cast(0)) + + (static_cast(alpha) * (x.exp() - static_cast(1))) + .cwiseMin(static_cast(0)); } }; @@ -574,10 +603,11 @@ struct ELUGradFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"alpha", &alpha}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * (x > static_cast(0)).template cast() + - dy * (y + static_cast(alpha)) * + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * (x > static_cast(0)).template cast() + + dout * (out + static_cast(alpha)) * (x < static_cast(0)).template cast(); } }; @@ -589,9 +619,9 @@ struct PowFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"factor", &factor}}; } - template - void operator()(Device d, X x, Y y) const { - y.device(d) = x.pow(static_cast(factor)); + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.pow(static_cast(factor)); } }; @@ -601,9 +631,10 @@ struct PowGradFunctor : public BaseActivationFunctor { typename BaseActivationFunctor::AttrPair GetAttrs() { return {{"factor", &factor}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = dy * static_cast(factor) * + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * static_cast(factor) * x.pow(static_cast(factor - static_cast(1))); } }; @@ -616,9 +647,9 @@ struct STanhFunctor : public BaseActivationFunctor { return {{"scale_a", &scale_a}, {"scale_b", &scale_b}}; } - template - void operator()(Device d, X x, Y y) const { - y.device(d) = + template + void operator()(Device d, X x, Out out) const { + out.device(d) = static_cast(scale_b) * (static_cast(scale_a) * x).tanh(); } }; @@ -631,12 +662,13 @@ struct STanhGradFunctor : public BaseActivationFunctor { return {{"scale_a", &scale_a}, {"scale_b", &scale_b}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { auto a = static_cast(scale_a); auto b = static_cast(scale_b); auto temp = (a * x).tanh() * (a * x).tanh(); - dx.device(d) = dy * a * b * (static_cast(1) - temp); + dx.device(d) = dout * a * b * (static_cast(1) - temp); } }; @@ -647,10 +679,10 @@ struct ThresholdedReluFunctor : public BaseActivationFunctor { return {{"threshold", &threshold}}; } - template - void operator()(Device d, X x, Y y) const { + template + void operator()(Device d, X x, Out out) const { auto th = static_cast(threshold); - y.device(d) = (x > th).template cast() * x; + out.device(d) = (x > th).template cast() * x; } }; @@ -661,10 +693,11 @@ struct ThresholdedReluGradFunctor : public BaseActivationFunctor { return {{"threshold", &threshold}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { auto th = static_cast(threshold); - dx.device(d) = dy * (x > th).template cast(); + dx.device(d) = dout * (x > th).template cast(); } }; @@ -676,10 +709,11 @@ struct HardSigmoidFunctor : public BaseActivationFunctor { return {{"slope", &slope}, {"offset", &offset}}; } - template - void operator()(Device d, X x, Y y) const { + template + void operator()(Device d, X x, Out out) const { auto temp = x * static_cast(slope) + static_cast(offset); - y.device(d) = temp.cwiseMax(static_cast(0)).cwiseMin(static_cast(1)); + out.device(d) = + temp.cwiseMax(static_cast(0)).cwiseMin(static_cast(1)); } }; @@ -691,12 +725,43 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor { return {{"slope", &slope}, {"offset", &offset}}; } - template - void operator()(Device d, X x, Y y, dY dy, dX dx) const { - dx.device(d) = - dy * - ((y > static_cast(0)) * (y < static_cast(1))).template cast() * - static_cast(slope); + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * + ((out > static_cast(0)) * (out < static_cast(1))) + .template cast() * + static_cast(slope); + } +}; + +template +struct SwishFunctor : public BaseActivationFunctor { + float beta; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"beta", &beta}}; + } + + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x / (static_cast(1) + (static_cast(-beta) * x).exp()); + } +}; + +template +struct SwishGradFunctor : public BaseActivationFunctor { + float beta; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"beta", &beta}}; + } + + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + auto temp1 = static_cast(1) / + (static_cast(1) + (static_cast(-beta) * x).exp()); + auto temp2 = temp1 * (static_cast(1) - (beta * out)); + dx.device(d) = dout * ((beta * out) + temp2); } }; @@ -730,4 +795,5 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor { __macro(elu, ELUFunctor, ELUGradFunctor); \ __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor); \ __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \ + __macro(swish, SwishFunctor, SwishGradFunctor); \ __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor); diff --git a/paddle/operators/adadelta_op.cc b/paddle/operators/adadelta_op.cc index 16a7794d5b..d8a9491c82 100644 --- a/paddle/operators/adadelta_op.cc +++ b/paddle/operators/adadelta_op.cc @@ -59,8 +59,7 @@ class AdadeltaOp : public framework::OperatorWithKernel { class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker { public: - AdadeltaOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + AdadeltaOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -92,12 +91,12 @@ for gradient descent. Adadelta updates are as follows: -$$avgSquaredGradOut = \rho * avgSquaredGrad + (1 - \rho) * grad * grad \break -paramUpdate = - $\sqrt{((avgSquaredUpdate + \epsilon) / - (avgSquaredGrad_out + \epsilon))}$ * grad \break -avgSquaredUpdateOut = \rho * avgSquaredUpdate + (1 - \rho) * - {(paramUpdate)}^2 \break -paramOut = param + paramUpdate$$ +$$ +avg\_squared\_grad\_out = \rho * avg\_squared\_grad + (1 - \rho) * grad * grad \\ +param\_update = - \sqrt{\frac{avg\_squared\_update + \epsilon}{avg\_squared\_grad\_out + \epsilon}} * grad \\ +avg\_squared\_update\_out = \rho * avg\_squared\_update + (1 - \rho) * {param\_update}^2 \\ +param\_out = param + param\_update +$$ )DOC"); } @@ -109,5 +108,5 @@ paramOut = param + paramUpdate$$ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker); REGISTER_OP_CPU_KERNEL( - adadelta, ops::AdadeltaOpKernel, - ops::AdadeltaOpKernel); + adadelta, ops::AdadeltaOpKernel, + ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.cu b/paddle/operators/adadelta_op.cu index 9fb6185207..91294a0d5d 100644 --- a/paddle/operators/adadelta_op.cu +++ b/paddle/operators/adadelta_op.cu @@ -1,21 +1,21 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/adadelta_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - adadelta, ops::AdadeltaOpKernel, - ops::AdadeltaOpKernel); +REGISTER_OP_CUDA_KERNEL( + adadelta, ops::AdadeltaOpKernel, + ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.h b/paddle/operators/adadelta_op.h index a8c5f0c8aa..819d0845db 100644 --- a/paddle/operators/adadelta_op.h +++ b/paddle/operators/adadelta_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class AdadeltaOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -51,7 +51,7 @@ class AdadeltaOpKernel : public framework::OpKernel { framework::EigenVector::Flatten(*avg_squared_grad_out_tensor); auto avg_squared_update_out = framework::EigenVector::Flatten(*avg_squared_update_out_tensor); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); avg_squared_grad_out.device(place) = rho * avg_squared_grad + (1 - rho) * grad.square(); diff --git a/paddle/operators/adagrad_op.cc b/paddle/operators/adagrad_op.cc index d6686e3ef3..c83318a272 100644 --- a/paddle/operators/adagrad_op.cc +++ b/paddle/operators/adagrad_op.cc @@ -59,8 +59,7 @@ class AdagradOp : public framework::OperatorWithKernel { class AdagradOpMaker : public framework::OpProtoAndCheckerMaker { public: - AdagradOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + AdagradOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -80,8 +79,8 @@ Adaptive Gradient Algorithm (Adagrad). The update is done as follows: -$$momentOut = moment + grad * grad \break -paramOut = param - learningRate * grad / ($\sqrt{momentOut}$ + \epsilon) \break +$$moment\_out = moment + grad * grad \\ +param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon} $$ The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) @@ -100,54 +99,24 @@ size_t FindPos(const std::vector& rows, int64_t value) { } // namespace template -struct SparseAdagradFunctor { - void operator()(const platform::DeviceContext& context, +struct SparseAdagradFunctor { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& grad, const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param) { // 1. g_m.rows = set(g.rows) - auto grad_rows = grad.rows(); - std::set row_set(grad_rows.begin(), grad_rows.end()); - std::vector merge_rows(row_set.begin(), row_set.end()); - auto grad_width = grad.value().dims()[1]; - std::unique_ptr grad_merge{ - new framework::SelectedRows()}; - grad_merge->set_rows(merge_rows); - grad_merge->set_height(grad.height()); - grad_merge->mutable_value()->mutable_data( - framework::make_ddim( - {static_cast(merge_rows.size()), grad_width}), - context.GetPlace()); - - math::SetConstant constant_functor; - constant_functor(context, grad_merge->mutable_value(), 0.0); - - auto* grad_merge_data = grad_merge->mutable_value()->data(); - auto* grad_data = grad.value().data(); - - for (size_t i = 0; i < grad_rows.size(); i++) { - size_t grad_merge_i = FindPos(merge_rows, grad_rows[i]); - for (int64_t j = 0; j < grad_width; j++) { - grad_merge_data[grad_merge_i * grad_width + j] += - grad_data[i * grad_width + j]; - } - } + math::scatter::MergeAdd merge_func; + auto grad_merge = merge_func(context, grad); + auto& merge_rows = grad_merge.rows(); + auto* grad_merge_data = grad_merge.mutable_value()->template data(); // 2. m += g_m * g_m - std::unique_ptr grad_square{ - new framework::SelectedRows()}; - grad_square->set_rows(grad_merge->rows()); - grad_square->set_height(grad_merge->height()); - grad_square->mutable_value()->mutable_data(grad_merge->value().dims(), - context.GetPlace()); - auto gs = - framework::EigenVector::Flatten(*(grad_square->mutable_value())); - auto gm = framework::EigenVector::Flatten(grad_merge->value()); - gs.device(*context.GetEigenDevice()) = gm * gm; - - math::SelectedRowsAddToTensor functor; - functor(context, *grad_square, moment); + math::scatter::Mul sqare_func; + auto grad_square = sqare_func(context, grad_merge, grad_merge); + + math::SelectedRowsAddToTensor functor; + functor(context, grad_square, moment); // 3. update parameter auto* lr = learning_rate.data(); @@ -164,13 +133,13 @@ struct SparseAdagradFunctor { } }; -template struct SparseAdagradFunctor; -template struct SparseAdagradFunctor; +template struct SparseAdagradFunctor; +template struct SparseAdagradFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker); REGISTER_OP_CPU_KERNEL( - adagrad, ops::AdagradOpKernel, - ops::AdagradOpKernel); + adagrad, ops::AdagradOpKernel, + ops::AdagradOpKernel); diff --git a/paddle/operators/adagrad_op.cu b/paddle/operators/adagrad_op.cu index 1c870214b2..4e57938792 100644 --- a/paddle/operators/adagrad_op.cu +++ b/paddle/operators/adagrad_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/adagrad_op.h" @@ -72,80 +72,48 @@ __global__ void SparseAdagradFunctorKernel(const T* grad, const int64_t* rows, } // namespace template -struct SparseAdagradFunctor { - void operator()(const platform::DeviceContext& context, +struct SparseAdagradFunctor { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& grad, const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param) { // 1. g_m.rows = set(g.rows) - auto grad_rows = grad.rows(); - std::set row_set(grad_rows.begin(), grad_rows.end()); - std::vector merge_rows(row_set.begin(), row_set.end()); - auto grad_width = grad.value().dims()[1]; - std::unique_ptr grad_merge{ - new framework::SelectedRows()}; - grad_merge->set_rows(merge_rows); - grad_merge->set_height(grad.height()); - grad_merge->mutable_value()->mutable_data( - framework::make_ddim( - {static_cast(merge_rows.size()), grad_width}), - context.GetPlace()); - - math::SetConstant constant_functor; - constant_functor(context, grad_merge->mutable_value(), 0.0); - - auto* grad_merge_data = grad_merge->mutable_value()->data(); - auto* grad_data = grad.value().data(); - - const int block_size = 256; - dim3 threads(block_size, 1); - dim3 grid1(1, grad_rows.size()); - - MergeGradKernel< - T, 256><<(context) - .stream()>>>(grad_data, grad.rows().data(), - grad_merge_data, grad_merge->rows().data(), - grad_merge->rows().size(), grad_width); - + math::scatter::MergeAdd merge_func; + auto grad_merge = merge_func(context, grad); + auto* grad_merge_data = grad_merge.mutable_value()->template data(); + auto& merge_rows = grad_merge.rows(); // 2. m += g_m * g_m - std::unique_ptr grad_square{ - new framework::SelectedRows()}; - grad_square->set_rows(grad_merge->rows()); - grad_square->set_height(grad_merge->height()); - grad_square->mutable_value()->mutable_data(grad_merge->value().dims(), - context.GetPlace()); - auto gs = - framework::EigenVector::Flatten(*(grad_square->mutable_value())); - auto gm = framework::EigenVector::Flatten(grad_merge->value()); - gs.device(*context.GetEigenDevice()) = gm * gm; - - math::SelectedRowsAddToTensor functor; - functor(context, *grad_square, moment); + math::scatter::Mul sqare_func; + auto grad_square = sqare_func(context, grad_merge, grad_merge); + + math::SelectedRowsAddToTensor functor; + functor(context, grad_square, moment); // 3. update parameter auto* lr = learning_rate.data(); auto* param_data = param->data(); auto* moment_data = moment->data(); + const int block_size = 256; + dim3 threads(block_size, 1); dim3 grid2(1, merge_rows.size()); SparseAdagradFunctorKernel< T, 256><<(context) - .stream()>>>(grad_merge_data, grad_merge->rows().data(), + .stream()>>>(grad_merge_data, grad_merge.rows().data(), lr, param_data, moment_data, grad_width, epsilon); } }; -template struct SparseAdagradFunctor; -template struct SparseAdagradFunctor; +template struct SparseAdagradFunctor; +template struct SparseAdagradFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - adagrad, ops::AdagradOpKernel, - ops::AdagradOpKernel); +REGISTER_OP_CUDA_KERNEL( + adagrad, ops::AdagradOpKernel, + ops::AdagradOpKernel); diff --git a/paddle/operators/adagrad_op.h b/paddle/operators/adagrad_op.h index 4d4a6434c7..66f5b0f449 100644 --- a/paddle/operators/adagrad_op.h +++ b/paddle/operators/adagrad_op.h @@ -19,15 +19,15 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template struct SparseAdagradFunctor { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& grad, const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param); }; -template +template class AdagradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -47,17 +47,24 @@ class AdagradOpKernel : public framework::OpKernel { *ctx.Input("Grad")); auto moment = framework::EigenVector::Flatten( *ctx.Input("Moment")); - auto lr = framework::EigenVector::Flatten( - *ctx.Input("LearningRate")); + auto* learning_rate = ctx.Input("LearningRate"); auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); - auto place = ctx.GetEigenDevice(); + auto* place = ctx.template device_context().eigen_device(); - moment_out.device(place) = moment + grad * grad; + moment_out.device(*place) = moment + grad * grad; Eigen::DSizes m_dsize(moment_out_tensor->numel()); - param_out.device(place) = - param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); + if (platform::is_cpu_place(ctx.GetPlace())) { + auto* lr = learning_rate->data(); + param_out.device(*place) = + param - lr[0] * grad / (moment_out.sqrt() + epsilon); + } else { + auto lr = framework::EigenVector::Flatten(*learning_rate); + param_out.device(*place) = + param - + lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); + } } else if (grad_var->IsType()) { auto* param_tensor = ctx.Input("Param"); PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor); @@ -65,8 +72,9 @@ class AdagradOpKernel : public framework::OpKernel { auto* moment_tensor = ctx.Input("Moment"); PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor); - SparseAdagradFunctor functor; - functor(ctx.device_context(), *ctx.Input("Grad"), + SparseAdagradFunctor functor; + functor(ctx.template device_context(), + *ctx.Input("Grad"), *ctx.Input("LearningRate"), epsilon, moment_out_tensor, param_out_tensor); } else { diff --git a/paddle/operators/adam_op.cc b/paddle/operators/adam_op.cc index 03faa2a7c5..03527de936 100644 --- a/paddle/operators/adam_op.cc +++ b/paddle/operators/adam_op.cc @@ -73,7 +73,7 @@ class AdamOp : public framework::OperatorWithKernel { class AdamOpMaker : public framework::OpProtoAndCheckerMaker { public: - AdamOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + AdamOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -112,11 +112,13 @@ adaptive estimates of lower-order moments. Adam updates: -$$moment_1_{out} = \beta_1 * moment_1 + (1 - \beta_1) * grad \break -moment_2_{out} = \beta_2 * moment_2 + (1 - \beta_2) * grad * grad \break -learningRate = learningRate * - $\sqrt{(1 - \beta_2_{pow})}$ / (1 - \beta_1_{pow}) \break -paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$ +$$ +moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\ +moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\ +learning\_rate = learning\_rate * + \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\ +param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon} +$$ )DOC"); } @@ -126,6 +128,6 @@ paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker); -REGISTER_OP_CPU_KERNEL(adam, - ops::AdamOpKernel, - ops::AdamOpKernel); +REGISTER_OP_CPU_KERNEL( + adam, ops::AdamOpKernel, + ops::AdamOpKernel); diff --git a/paddle/operators/adam_op.cu b/paddle/operators/adam_op.cu index 6e34f7818c..94f840c188 100644 --- a/paddle/operators/adam_op.cu +++ b/paddle/operators/adam_op.cu @@ -1,21 +1,21 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/adam_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(adam, - ops::AdamOpKernel, - ops::AdamOpKernel); +REGISTER_OP_CUDA_KERNEL( + adam, ops::AdamOpKernel, + ops::AdamOpKernel); diff --git a/paddle/operators/adam_op.h b/paddle/operators/adam_op.h index 7f7fa1da1c..9cc34bdded 100644 --- a/paddle/operators/adam_op.h +++ b/paddle/operators/adam_op.h @@ -13,59 +13,210 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once -#include "paddle/framework/eigen.h" +#include // for sqrt in CPU and CUDA #include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" +#include "paddle/operators/math/selected_rows_functor.h" +#include "paddle/platform/for_range.h" namespace paddle { namespace operators { -template +namespace scatter = paddle::operators::math::scatter; + +template +struct AdamFunctor { + T beta1_; + T beta2_; + T epsilon_; + + const T* beta1_pow_; + const T* beta2_pow_; + const T* moment1_; + T* moment1_out_; + const T* moment2_; + T* moment2_out_; + const T* lr_; + const T* grad_; + const T* param_; + T* param_out_; + + AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow, + const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2, + T* mom2_out, const T* lr, const T* grad, const T* param, + T* param_out) + : beta1_(beta1), + beta2_(beta2), + epsilon_(epsilon), + beta1_pow_(beta1_pow), + beta2_pow_(beta2_pow), + moment1_(mom1), + moment1_out_(mom1_out), + moment2_(mom2), + moment2_out_(mom2_out), + lr_(lr), + grad_(grad), + param_(param), + param_out_(param_out) {} + + inline HOSTDEVICE void operator()(size_t i) const { + // Merge all memory access together. + T g = grad_[i]; + T mom1 = moment1_[i]; + T mom2 = moment2_[i]; + T lr = *lr_; + T beta1_pow = *beta1_pow_; + T beta2_pow = *beta2_pow_; + T p = param_[i]; + + // Calculation + lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow); + mom1 = beta1_ * mom1 + (1 - beta1_) * g; + mom2 = beta2_ * mom2 + (1 - beta2_) * g * g; + p -= lr * (mom1 / (sqrt(mom2) + epsilon_)); + + // Write back to global memory + moment1_out_[i] = mom1; + moment2_out_[i] = mom2; + param_out_[i] = p; + } +}; + +template +struct SparseAdamFunctor { + T beta1_; + T beta2_; + T epsilon_; + + const T* beta1_pow_; + const T* beta2_pow_; + const T* moment1_; + T* moment1_out_; + const T* moment2_; + T* moment2_out_; + const T* lr_; + const T* grad_; + const T* param_; + T* param_out_; + + const int64_t* rows_; + int64_t row_numel_; + + SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow, + const T* beta2_pow, const T* mom1, T* mom1_out, + const T* mom2, T* mom2_out, const T* lr, const T* grad, + const T* param, T* param_out, const int64_t* rows, + int64_t row_numel) + : beta1_(beta1), + beta2_(beta2), + epsilon_(epsilon), + beta1_pow_(beta1_pow), + beta2_pow_(beta2_pow), + moment1_(mom1), + moment1_out_(mom1_out), + moment2_(mom2), + moment2_out_(mom2_out), + lr_(lr), + grad_(grad), + param_(param), + param_out_(param_out), + rows_(rows), + row_numel_(row_numel) {} + + inline HOSTDEVICE void operator()(size_t i) const { + T beta1_pow = *beta1_pow_; + T beta2_pow = *beta2_pow_; + for (int64_t j = 0; j < row_numel_; ++j) { + T g = grad_[i * row_numel_ + j]; + T mom1 = moment1_[rows_[i] * row_numel_ + j]; + T mom2 = moment2_[rows_[i] * row_numel_ + j]; + T lr = *lr_; + T p = param_[rows_[i] * row_numel_ + j]; + + lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow); + mom1 = beta1_ * mom1 + (1 - beta1_) * g; + mom2 = beta2_ * mom2 + (1 - beta2_) * g * g; + p -= lr * (mom1 / (sqrt(mom2) + epsilon_)); + + moment1_out_[rows_[i] * row_numel_ + j] = mom1; + moment2_out_[rows_[i] * row_numel_ + j] = mom2; + param_out_[rows_[i] * row_numel_ + j] = p; + } // for col id + } +}; + +template class AdamOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto param_out_tensor = ctx.Output("ParamOut"); - auto moment1_out_tensor = ctx.Output("Moment1Out"); - auto moment2_out_tensor = ctx.Output("Moment2Out"); - - param_out_tensor->mutable_data(ctx.GetPlace()); - moment1_out_tensor->mutable_data(ctx.GetPlace()); - moment2_out_tensor->mutable_data(ctx.GetPlace()); + using paddle::framework::LoDTensor; + using paddle::operators::detail::Ref; T beta1 = static_cast(ctx.Attr("beta1")); T beta2 = static_cast(ctx.Attr("beta2")); T epsilon = static_cast(ctx.Attr("epsilon")); + auto& param = Ref(ctx.Input("Param"), "Must set Param"); + // auto& grad = Ref(ctx.Input("Grad"), "Must set Grad"); + auto* grad_var = ctx.InputVar("Grad"); + auto& mom1 = Ref(ctx.Input("Moment1"), "Must set Moment1"); + auto& mom2 = Ref(ctx.Input("Moment2"), "Must set Moment2"); + auto& lr = + Ref(ctx.Input("LearningRate"), "Must set LearningRate"); + + auto& beta1_pow = + Ref(ctx.Input("Beta1Pow"), "Must set Beta1Pow"); + auto& beta2_pow = + Ref(ctx.Input("Beta2Pow"), "Must set Beta2Pow"); + + auto& param_out = + Ref(ctx.Output("ParamOut"), "Must set ParamOut"); + auto& mom1_out = + Ref(ctx.Output("Moment1Out"), "Must set Moment1Out"); + auto& mom2_out = + Ref(ctx.Output("Moment2Out"), "Must set Moment1Out"); + + if (grad_var->IsType()) { + auto& grad = Ref(ctx.Input("Grad"), "Must set Grad"); + AdamFunctor functor( + beta1, beta2, epsilon, beta1_pow.template data(), + beta2_pow.template data(), mom1.template data(), + mom1_out.template mutable_data(ctx.GetPlace()), + mom2.template data(), + mom2_out.template mutable_data(ctx.GetPlace()), + lr.template data(), grad.template data(), + param.template data(), + param_out.template mutable_data(ctx.GetPlace())); + platform::ForRange for_range( + static_cast(ctx.device_context()), + param.numel()); + for_range(functor); + } else if (grad_var->IsType()) { + auto& grad = + Ref(ctx.Input("Grad"), "Must set Grad"); + // merge duplicated rows if any. + scatter::MergeAdd merge_func; + auto grad_merge = + merge_func(ctx.template device_context(), grad); + auto& grad_tensor = grad_merge.value(); + const T* grad_data = grad_tensor.template data(); + auto* rows = grad_merge.rows().data(); + auto row_numel = grad_tensor.numel() / grad_merge.rows().size(); - auto param = framework::EigenVector::Flatten( - *ctx.Input("Param")); - auto grad = framework::EigenVector::Flatten( - *ctx.Input("Grad")); - auto moment1 = framework::EigenVector::Flatten( - *ctx.Input("Moment1")); - auto moment2 = framework::EigenVector::Flatten( - *ctx.Input("Moment2")); - auto lr = framework::EigenVector::Flatten( - *ctx.Input("LearningRate")); - auto beta1_pow = framework::EigenVector::Flatten( - *ctx.Input("Beta1Pow")); - auto beta2_pow = framework::EigenVector::Flatten( - *ctx.Input("Beta2Pow")); - auto param_out = framework::EigenVector::Flatten(*param_out_tensor); - auto moment1_out = framework::EigenVector::Flatten(*moment1_out_tensor); - auto moment2_out = framework::EigenVector::Flatten(*moment2_out_tensor); - auto place = ctx.GetEigenDevice(); - - moment1_out.device(place) = beta1 * moment1 + (1 - beta1) * grad; - moment2_out.device(place) = beta2 * moment2 + (1 - beta2) * grad.square(); - - // All of these are tensors of 1 element - auto lr_t = lr * (1 - beta2_pow).sqrt() / (1 - beta1_pow); - // Eigen does not support automatic broadcast - // Get dimensions of moment vector to broadcast lr_t - Eigen::DSizes m_dsize(moment1_out_tensor->numel()); - param_out.device(place) = - param - - lr_t.broadcast(m_dsize) * - (moment1_out / (moment2_out.sqrt() + epsilon)); + SparseAdamFunctor functor( + beta1, beta2, epsilon, beta1_pow.template data(), + beta2_pow.template data(), mom1.template data(), + mom1_out.template mutable_data(ctx.GetPlace()), + mom2.template data(), + mom2_out.template mutable_data(ctx.GetPlace()), + lr.template data(), grad_data, param.template data(), + param_out.template mutable_data(ctx.GetPlace()), rows, row_numel); + platform::ForRange for_range( + static_cast(ctx.device_context()), + grad_merge.rows().size()); + for_range(functor); + } else { + PADDLE_THROW("Variable type not supported by adam_op"); + } } }; diff --git a/paddle/operators/adamax_op.cc b/paddle/operators/adamax_op.cc index 867ddd9790..3b0b714184 100644 --- a/paddle/operators/adamax_op.cc +++ b/paddle/operators/adamax_op.cc @@ -67,7 +67,7 @@ class AdamaxOp : public framework::OperatorWithKernel { class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker { public: - AdamaxOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + AdamaxOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -108,10 +108,10 @@ Adam algorithm based on the infinity norm. Adamax updates: $$ - momentOut = \beta_{1} * moment + (1 - \beta_{1}) * grad \\ - infNormOut = max(\beta_{2} * infNorm + \epsilon, |grad|) \\ - learningRate = \frac{learningRate}{1 - \beta_{1}^{Beta1Pow}} \\ - paramOut = param - learningRate * \frac{momentOut}{infNormOut} +moment\_out = \beta_1 * moment + (1 - \beta_1) * grad \\ +inf\_norm\_out = max(\beta_2 * inf\_norm + \epsilon, |grad|) \\ +learning\_rate = \frac{learning\_rate}{1 - \beta_{1\_pow}} \\ +param\_out = param - learning\_rate * \frac{moment\_out}{inf\_norm\_out} $$ The original paper does not have an epsilon attribute. @@ -127,6 +127,6 @@ division by 0 error. namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adamax, ops::AdamaxOp, ops::AdamaxOpMaker); -REGISTER_OP_CPU_KERNEL(adamax, - ops::AdamaxOpKernel, - ops::AdamaxOpKernel); +REGISTER_OP_CPU_KERNEL( + adamax, ops::AdamaxOpKernel, + ops::AdamaxOpKernel); diff --git a/paddle/operators/adamax_op.cu b/paddle/operators/adamax_op.cu index 057ef39025..8f87bb2867 100644 --- a/paddle/operators/adamax_op.cu +++ b/paddle/operators/adamax_op.cu @@ -1,21 +1,21 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/adamax_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(adamax, - ops::AdamaxOpKernel, - ops::AdamaxOpKernel); +REGISTER_OP_CUDA_KERNEL( + adamax, ops::AdamaxOpKernel, + ops::AdamaxOpKernel); diff --git a/paddle/operators/adamax_op.h b/paddle/operators/adamax_op.h index bf36ed7860..172c179c5f 100644 --- a/paddle/operators/adamax_op.h +++ b/paddle/operators/adamax_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class AdamaxOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -51,14 +51,14 @@ class AdamaxOpKernel : public framework::OpKernel { auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); auto inf_norm_out = framework::EigenVector::Flatten(*inf_norm_out_tensor); - auto place = ctx.GetEigenDevice(); + auto* place = ctx.template device_context().eigen_device(); - moment_out.device(place) = beta1 * moment + (1 - beta1) * grad; - inf_norm_out.device(place) = + moment_out.device(*place) = beta1 * moment + (1 - beta1) * grad; + inf_norm_out.device(*place) = grad.abs().cwiseMax((beta2 * inf_norm) + epsilon); auto lr_t = lr / (1 - beta1_pow); Eigen::DSizes m_dsize(moment_out_tensor->numel()); - param_out.device(place) = + param_out.device(*place) = param - lr_t.broadcast(m_dsize) * (moment_out / inf_norm_out); } }; diff --git a/paddle/operators/array_operator.h b/paddle/operators/array_operator.h index 1f2b4fdb4b..3fdad5ad9b 100644 --- a/paddle/operators/array_operator.h +++ b/paddle/operators/array_operator.h @@ -1,20 +1,21 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/op_registry.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -27,16 +28,21 @@ class ArrayOp : public framework::OperatorBase { protected: size_t GetOffset(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const { + const platform::Place &place) const { auto *i = scope.FindVar(Input("I")); PADDLE_ENFORCE(i != nullptr, "I must be set"); auto &i_tensor = i->Get(); PADDLE_ENFORCE_EQ(i_tensor.numel(), 1); + + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + size_t offset; if (platform::is_gpu_place(i_tensor.place())) { // FIXME: Avoid copy from GPU to CPU framework::Tensor t; - framework::CopyFrom(i_tensor, platform::CPUPlace(), dev_ctx, &t); + framework::Copy(i_tensor, platform::CPUPlace(), dev_ctx, &t); dev_ctx.Wait(); offset = static_cast(*t.data()); } else { diff --git a/paddle/operators/array_to_lod_tensor_op.cc b/paddle/operators/array_to_lod_tensor_op.cc index faeba7f3ed..ba5c6bd3c6 100644 --- a/paddle/operators/array_to_lod_tensor_op.cc +++ b/paddle/operators/array_to_lod_tensor_op.cc @@ -1,21 +1,23 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include + #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/op_registry.h" #include "paddle/memory/memcpy.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -30,7 +32,7 @@ class ArrayToLoDTensorOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { auto &x = scope.FindVar(Input("X"))->Get(); auto &rank_table = scope.FindVar(Input("RankTable"))->Get(); @@ -103,8 +105,13 @@ class ArrayToLoDTensorOp : public framework::OperatorBase { continue; } auto slice = out->Slice(out_offset, out_offset + len); - framework::CopyFrom(x[x_idx].Slice(start_offset, end_offset), place, - dev_ctx, &slice); + + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + + framework::Copy(x[x_idx].Slice(start_offset, end_offset), place, + dev_ctx, &slice); out_offset += len; } } @@ -114,8 +121,7 @@ class ArrayToLoDTensorOp : public framework::OperatorBase { class ArrayToLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - ArrayToLoDTensorOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ArrayToLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(std::vector) A vector of tensors that is going to " @@ -150,14 +156,14 @@ class ArrayToLoDTensorGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("lod_tensor_to_array"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetInput("RankTable", Input("RankTable")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/assign_op.cc b/paddle/operators/assign_op.cc index 0a37f18729..e04aa2d28c 100644 --- a/paddle/operators/assign_op.cc +++ b/paddle/operators/assign_op.cc @@ -1,20 +1,21 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/data_type.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/var_type.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -44,7 +45,7 @@ class AssignFunctor { out_rows.set_height(rows.height()); auto &t = rows.value(); auto *m = out_rows.mutable_value(); - framework::CopyFrom(t, t.place(), dev_ctx_, m); + framework::Copy(t, t.place(), dev_ctx_, m); } template @@ -56,7 +57,7 @@ class AssignFunctor { void copy_tensor(const framework::LoDTensor &lod_tensor, framework::LoDTensor *out) const { auto &out_tensor = *out; - CopyFrom(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor); + Copy(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor); out_tensor.set_lod(lod_tensor.lod()); } @@ -71,7 +72,7 @@ class AssignOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto *x = scope.FindVar(Input("X")); if (x == nullptr) { return; @@ -80,14 +81,17 @@ class AssignOp : public framework::OperatorBase { PADDLE_ENFORCE( out != nullptr, "The Output(Out) should not be null if the Input(X) is set."); + + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + framework::VisitVarType(*x, AssignFunctor(out, dev_ctx)); } }; class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - AssignOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + AssignOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor, SelectedRows or LoDTensorArray) The input variable " @@ -109,8 +113,8 @@ class AssignInferShape : public framework::InferShapeBase { void operator()(framework::InferShapeContext *context) const override { if (context->HasInput("X")) { auto type = context->GetInputsVarType("X")[0]; - if (type == framework::VarDesc_VarType_SELECTED_ROWS || - type == framework::VarDesc_VarType_LOD_TENSOR) { + if (type == framework::proto::VarDesc_VarType_SELECTED_ROWS || + type == framework::proto::VarDesc_VarType_LOD_TENSOR) { context->SetOutputDim("Out", context->GetInputDim("X")); } } @@ -122,12 +126,12 @@ class AssignGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *op = new framework::OpDesc(); op->SetType("assign"); op->SetInput("X", OutputGrad("Out")); op->SetOutput("Out", InputGrad("X")); - return std::unique_ptr(op); + return std::unique_ptr(op); } }; diff --git a/paddle/operators/assign_value_op.cc b/paddle/operators/assign_value_op.cc new file mode 100644 index 0000000000..d5671c1183 --- /dev/null +++ b/paddle/operators/assign_value_op.cc @@ -0,0 +1,73 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/assign_value_op.h" + +namespace paddle { +namespace operators { + +class AssignValueOp : public framework::OperatorWithKernel { + public: + AssignValueOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of AssignValueOp should not be null."); + auto shape = ctx->Attrs().Get>("shape"); + ctx->SetOutputDim("Out", framework::make_ddim(shape)); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::proto::DataType(ctx.Attr("dtype")), ctx.GetPlace()); + } +}; + +class AssignValueOpMaker : public framework::OpProtoAndCheckerMaker { + public: + AssignValueOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddOutput("Out", "(Tensor) Output tensor of assign_value operator."); + AddAttr>("shape", + "(vector) " + "Shape of values."); + AddAttr("dtype", "data type of values") + .InEnum({framework::proto::DataType::INT32, + framework::proto::DataType::FP32}); + AddAttr>("fp32_values", "store the float values") + .SetDefault({}); + AddAttr>("int32_values", "store the int values") + .SetDefault({}); + AddComment(R"DOC( +AssignValue operator + +$$Out = values$$ +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(assign_value, ops::AssignValueOp, ops::AssignValueOpMaker); +REGISTER_OP_CPU_KERNEL(assign_value, ops::AssignValueKernel, + ops::AssignValueKernel); diff --git a/paddle/operators/assign_value_op.cu.cc b/paddle/operators/assign_value_op.cu.cc new file mode 100644 index 0000000000..b17e201500 --- /dev/null +++ b/paddle/operators/assign_value_op.cu.cc @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/assign_value_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL(assign_value, ops::AssignValueKernel, + ops::AssignValueKernel); diff --git a/paddle/operators/assign_value_op.h b/paddle/operators/assign_value_op.h new file mode 100644 index 0000000000..db2e430779 --- /dev/null +++ b/paddle/operators/assign_value_op.h @@ -0,0 +1,50 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/platform/enforce.h" + +namespace paddle { +namespace operators { + +template +class AssignValueKernel : public framework::OpKernel { + public: + virtual void Compute(const framework::ExecutionContext& ctx) const { + auto shape = ctx.Attr>("shape"); + auto* out = ctx.Output("Out"); + int dtype = ctx.Attr("dtype"); + const char* value_name = nullptr; + switch (dtype) { + case framework::proto::DataType::INT32: + value_name = "int32_values"; + break; + case framework::proto::DataType::FP32: + value_name = "fp32_values"; + break; + default: + PADDLE_THROW("Unsupported dtype for assign_value_op: %d", dtype); + break; + } + auto values = ctx.Attr>(value_name); + framework::CopyFromVector(values, ctx.device_context(), out); + out->Resize(framework::make_ddim(shape)); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/auc_op.cc b/paddle/operators/auc_op.cc index 6c3f67ec32..b6494f9509 100644 --- a/paddle/operators/auc_op.cc +++ b/paddle/operators/auc_op.cc @@ -39,7 +39,7 @@ class AucOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Out")->type()), @@ -49,7 +49,7 @@ class AucOp : public framework::OperatorWithKernel { class AucOpMaker : public framework::OpProtoAndCheckerMaker { public: - AucOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + AucOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Out", "A floating point 2D tensor, values are in the range [0, 1]." diff --git a/paddle/operators/auc_op.h b/paddle/operators/auc_op.h index e5ac57b038..b80509e2a9 100644 --- a/paddle/operators/auc_op.h +++ b/paddle/operators/auc_op.h @@ -25,7 +25,7 @@ template using EigenVector = framework::EigenVector; -template +template class AucKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/batch_norm_op.cc b/paddle/operators/batch_norm_op.cc index ac97bd83ab..0e984c38ba 100644 --- a/paddle/operators/batch_norm_op.cc +++ b/paddle/operators/batch_norm_op.cc @@ -13,12 +13,14 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/batch_norm_op.h" +#include "paddle/framework/data_layout.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; +using DataLayout = framework::DataLayout; template using EigenArrayMap = @@ -48,10 +50,6 @@ class BatchNormOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), ""); PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), ""); - const float epsilon = ctx->Attrs().Get("epsilon"); - PADDLE_ENFORCE_GE(epsilon, 0.0, "epsilon should be larger than 0"); - PADDLE_ENFORCE_LE(epsilon, 0.001, "epsilon should not be too large"); - // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0], "Mean and MeanOut should share the same memory"); @@ -60,15 +58,15 @@ class BatchNormOp : public framework::OperatorWithKernel { "Variance and VarianceOut should share the same memory"); const auto x_dims = ctx->GetInputDim("X"); - const TensorFormat tensor_format = - StringToTensorFormat(ctx->Attrs().Get("tensor_format")); + const DataLayout data_layout = framework::StringToDataLayout( + ctx->Attrs().Get("data_layout")); PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "Input X must have 2 to 5 dimensions."); - const int C = - (tensor_format == TensorFormat::NCHW ? x_dims[1] - : x_dims[x_dims.size() - 1]); + const int64_t C = + (data_layout == DataLayout::kNCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C); @@ -80,18 +78,23 @@ class BatchNormOp : public framework::OperatorWithKernel { ctx->SetOutputDim("VarianceOut", {C}); ctx->SetOutputDim("SavedMean", {C}); ctx->SetOutputDim("SavedVariance", {C}); + ctx->ShareLoD("X", "Y"); } }; class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { public: - BatchNormOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + BatchNormOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("is_test", "").SetDefault(false); AddAttr("momentum", "").SetDefault(0.9); - AddAttr("epsilon", "").SetDefault(1e-5); - AddAttr("tensor_format", "").SetDefault("NCHW"); + AddAttr("epsilon", "") + .SetDefault(1e-5) + .AddCustomChecker([](const float &epsilon) { + PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f, + "'epsilon' should be between 0.0 and 0.001."); + }); + AddAttr("data_layout", "").SetDefault("NCHW"); AddInput("X", "The input tensor"); AddInput("Scale", "Scale is a 1-dimensional tensor of size C " @@ -135,15 +138,16 @@ The required data format for this layer is one of the following: }; template -class BatchNormKernel : public framework::OpKernel { +class BatchNormKernel + : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const float epsilon = ctx.Attr("epsilon"); const float momentum = ctx.Attr("momentum"); const bool is_test = ctx.Attr("is_test"); - const std::string tensor_format_str = - ctx.Attr("tensor_format"); - const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const std::string data_layout_str = ctx.Attr("data_layout"); + const DataLayout data_layout = + framework::StringToDataLayout(data_layout_str); const auto *x = ctx.Input("X"); const auto &x_dims = x->dims(); @@ -151,8 +155,8 @@ class BatchNormKernel : public framework::OpKernel { "The Input dim size should be between 2 and 5"); const int N = x_dims[0]; const int C = - (tensor_format == TensorFormat::NCHW ? x_dims[1] - : x_dims[x_dims.size() - 1]); + (data_layout == DataLayout::kNCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); const int sample_size = x->numel() / N / C; auto *y = ctx.Output("Y"); @@ -177,8 +181,8 @@ class BatchNormKernel : public framework::OpKernel { saved_mean_e.setZero(); saved_variance_e.setZero(); - switch (tensor_format) { - case TensorFormat::NCHW: { + switch (data_layout) { + case DataLayout::kNCHW: { ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); for (int nc = 0; nc < N * C; ++nc) { saved_mean_e(nc % C) += x_arr.col(nc).sum(); @@ -191,7 +195,7 @@ class BatchNormKernel : public framework::OpKernel { saved_variance_e /= N * sample_size; break; } - case TensorFormat::NHWC: { + case DataLayout::kNHWC: { ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); for (int i = 0; i < N * sample_size; ++i) { saved_mean_e += x_arr.col(i); @@ -205,7 +209,7 @@ class BatchNormKernel : public framework::OpKernel { break; } default: - PADDLE_THROW("Unknown storage order: %s", tensor_format_str); + PADDLE_THROW("Unknown storage order: %s", data_layout_str); } EigenVectorArrayMap running_mean_arr( @@ -247,8 +251,8 @@ class BatchNormKernel : public framework::OpKernel { Eigen::Array new_bias = bias_arr - mean_arr * inv_std * scale_arr; - switch (tensor_format) { - case TensorFormat::NCHW: { + switch (data_layout) { + case DataLayout::kNCHW: { EigenArrayMap y_arr(y->mutable_data(ctx.GetPlace()), sample_size, N * C); ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); @@ -257,7 +261,7 @@ class BatchNormKernel : public framework::OpKernel { } break; } - case TensorFormat::NHWC: { + case DataLayout::kNHWC: { EigenArrayMap(y->mutable_data(ctx.GetPlace()), C, N * sample_size) = (ConstEigenArrayMap(x->data(), C, N * sample_size).colwise() * @@ -267,7 +271,7 @@ class BatchNormKernel : public framework::OpKernel { break; } default: - PADDLE_THROW("Unknown storage order: %d", tensor_format); + PADDLE_THROW("Unknown storage order: %d", data_layout); } } }; @@ -290,11 +294,11 @@ class BatchNormGradOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), ""); const auto x_dims = ctx->GetInputDim("X"); - const TensorFormat tensor_format = - StringToTensorFormat(ctx->Attrs().Get("tensor_format")); + const DataLayout data_layout = framework::StringToDataLayout( + ctx->Attrs().Get("data_layout")); const int C = - (tensor_format == TensorFormat::NCHW ? x_dims[1] - : x_dims[x_dims.size() - 1]); + (data_layout == DataLayout::kNCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); ctx->SetOutputDim(framework::GradVarName("X"), x_dims); ctx->SetOutputDim(framework::GradVarName("Scale"), {C}); @@ -302,7 +306,7 @@ class BatchNormGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { const auto *var = ctx.InputVar(framework::GradVarName("Y")); if (var == nullptr) { @@ -318,12 +322,12 @@ class BatchNormGradOp : public framework::OperatorWithKernel { PADDLE_THROW("can't find Y@GRAD"); } return framework::OpKernelType(framework::ToDataType(t->type()), - ctx.device_context()); + ctx.GetPlace()); } }; template -class BatchNormGradKernel +class BatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { @@ -333,9 +337,9 @@ class BatchNormGradKernel const auto *saved_mean = ctx.Input("SavedMean"); // SavedVariance have been reverted in forward operator const auto *saved_inv_variance = ctx.Input("SavedVariance"); - const std::string tensor_format_str = - ctx.Attr("tensor_format"); - const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const std::string data_layout_str = ctx.Attr("data_layout"); + const DataLayout data_layout = + framework::StringToDataLayout(data_layout_str); // Get the size for each dimension. // NCHW [batch_size, in_channels, in_height, in_width] @@ -344,8 +348,8 @@ class BatchNormGradKernel "The Input dim size should be between 2 and 5"); const int N = x_dims[0]; const int C = - (tensor_format == TensorFormat::NCHW ? x_dims[1] - : x_dims[x_dims.size() - 1]); + (data_layout == DataLayout::kNCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); const int sample_size = x->numel() / N / C; ConstEigenVectorArrayMap scale_arr(scale->data(), C); @@ -376,8 +380,8 @@ class BatchNormGradKernel const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size); - switch (tensor_format) { - case TensorFormat::NCHW: { + switch (data_layout) { + case DataLayout::kNCHW: { ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); ConstEigenArrayMap d_y_arr(d_y->data(), sample_size, N * C); EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), @@ -400,7 +404,7 @@ class BatchNormGradKernel } break; } - case TensorFormat::NHWC: { + case DataLayout::kNHWC: { ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); ConstEigenArrayMap d_y_arr(d_y->data(), C, N * sample_size); EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), C, @@ -425,7 +429,7 @@ class BatchNormGradKernel break; } default: - PADDLE_THROW("Unknown storage order: %s", tensor_format_str); + PADDLE_THROW("Unknown storage order: %s", data_layout_str); } } }; @@ -436,8 +440,9 @@ class BatchNormGradKernel namespace ops = paddle::operators; REGISTER_OP(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker, batch_norm_grad, ops::BatchNormGradOp); -REGISTER_OP_CPU_KERNEL(batch_norm, - ops::BatchNormKernel); +REGISTER_OP_CPU_KERNEL( + batch_norm, + ops::BatchNormKernel); REGISTER_OP_CPU_KERNEL( batch_norm_grad, - ops::BatchNormGradKernel); + ops::BatchNormGradKernel); diff --git a/paddle/operators/batch_norm_op.cu.cc b/paddle/operators/batch_norm_op.cu.cc index 7b2f318700..3d17725ab4 100644 --- a/paddle/operators/batch_norm_op.cu.cc +++ b/paddle/operators/batch_norm_op.cu.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/batch_norm_op.h" +#include "paddle/framework/data_layout.h" #include #include "paddle/operators/math/math_function.h" @@ -22,12 +23,12 @@ namespace paddle { namespace operators { using Tensor = framework::Tensor; +using DataLayout = framework::DataLayout; template using CudnnDataType = platform::CudnnDataType; -void ExtractNCWHD(const framework::DDim &dims, - const TensorFormat &tensor_format, int *N, int *C, int *H, - int *W, int *D) { +void ExtractNCWHD(const framework::DDim &dims, const DataLayout &data_layout, + int *N, int *C, int *H, int *W, int *D) { *N = dims[0]; if (dims.size() == 2) { *C = dims[1]; @@ -35,29 +36,30 @@ void ExtractNCWHD(const framework::DDim &dims, *W = 1; *D = 1; } else { - *C = tensor_format == TensorFormat::NCHW ? dims[1] : dims[dims.size() - 1]; - *H = tensor_format == TensorFormat::NCHW ? dims[2] : dims[1]; + *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; + *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1]; *W = dims.size() > 3 - ? (tensor_format == TensorFormat::NCHW ? dims[3] : dims[2]) + ? (data_layout == DataLayout::kNCHW ? dims[3] : dims[2]) : 1; *D = dims.size() > 4 - ? (tensor_format == TensorFormat::NCHW ? dims[4] : dims[3]) + ? (data_layout == DataLayout::kNCHW ? dims[4] : dims[3]) : 1; } } template -class BatchNormKernel : public framework::OpKernel { +class BatchNormKernel + : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); double epsilon = static_cast(ctx.Attr("epsilon")); const float momentum = ctx.Attr("momentum"); const bool is_test = ctx.Attr("is_test"); - const std::string tensor_format_str = - ctx.Attr("tensor_format"); - const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const std::string data_layout_str = ctx.Attr("data_layout"); + const DataLayout data_layout = + framework::StringToDataLayout(data_layout_str); // Get the size for each dimension. // NCHW [batch_size, in_channels, in_height, in_width] @@ -66,7 +68,7 @@ class BatchNormKernel : public framework::OpKernel { PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "The Input dim size should be between 2 and 5"); int N, C, H, W, D; - ExtractNCWHD(x_dims, tensor_format, &N, &C, &H, &W, &D); + ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D); // ------------------- cudnn descriptors --------------------- cudnnTensorDescriptor_t data_desc_; @@ -92,7 +94,7 @@ class BatchNormKernel : public framework::OpKernel { VLOG(1) << "Setting descriptors."; std::vector dims; std::vector strides; - if (tensor_format == TensorFormat::NCHW) { + if (data_layout == DataLayout::kNCHW) { dims = {N, C, H, W, D}; strides = {C * H * W * D, H * W * D, W * D, D, 1}; } else { @@ -121,11 +123,12 @@ class BatchNormKernel : public framework::OpKernel { saved_mean->mutable_data(ctx.GetPlace()); saved_variance->mutable_data(ctx.GetPlace()); - math::SetConstant functor; - functor(ctx.device_context(), saved_mean, 0); - functor(ctx.device_context(), saved_variance, 0); + auto &dev_ctx = ctx.template device_context(); + math::SetConstant functor; + functor(dev_ctx, saved_mean, 0); + functor(dev_ctx, saved_variance, 0); - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto handle = dev_ctx.cudnn_handle(); // Now, depending on whether we are running test or not, we have two paths. if (is_test) { @@ -171,16 +174,16 @@ class BatchNormKernel : public framework::OpKernel { }; template -class BatchNormGradKernel +class BatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); double epsilon = static_cast(ctx.Attr("epsilon")); - const std::string tensor_format_str = - ctx.Attr("tensor_format"); - const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const std::string data_layout_str = ctx.Attr("data_layout"); + const DataLayout data_layout = + framework::StringToDataLayout(data_layout_str); const auto *x = ctx.Input("X"); const auto *d_y = ctx.Input(framework::GradVarName("Y")); const auto *scale = ctx.Input("Scale"); @@ -190,7 +193,7 @@ class BatchNormGradKernel PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "The Input dim size should be between 2 and 5"); int N, C, H, W, D; - ExtractNCWHD(x_dims, tensor_format, &N, &C, &H, &W, &D); + ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D); PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL); PADDLE_ENFORCE_EQ(scale->dims()[0], C); @@ -217,7 +220,7 @@ class BatchNormGradKernel std::vector dims; std::vector strides; - if (tensor_format == TensorFormat::NCHW) { + if (data_layout == DataLayout::kNCHW) { dims = {N, C, H, W, D}; strides = {C * H * W * D, H * W * D, W * D, D, 1}; } else { @@ -244,11 +247,12 @@ class BatchNormGradKernel const void *saved_mean_data = saved_mean->template data(); const void *saved_var_data = saved_var->template data(); + auto &dev_ctx = ctx.template device_context(); CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward( - ctx.cuda_device_context().cudnn_handle(), mode_, - CudnnDataType::kOne(), CudnnDataType::kZero(), - CudnnDataType::kOne(), CudnnDataType::kZero(), data_desc_, - x->template data(), data_desc_, d_y->template data(), data_desc_, + dev_ctx.cudnn_handle(), mode_, CudnnDataType::kOne(), + CudnnDataType::kZero(), CudnnDataType::kOne(), + CudnnDataType::kZero(), data_desc_, x->template data(), + data_desc_, d_y->template data(), data_desc_, d_x->template mutable_data(ctx.GetPlace()), bn_param_desc_, scale->template data(), d_scale->template mutable_data(ctx.GetPlace()), @@ -266,8 +270,9 @@ class BatchNormGradKernel } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(batch_norm, - ops::BatchNormKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + batch_norm, + ops::BatchNormKernel); +REGISTER_OP_CUDA_KERNEL( batch_norm_grad, - ops::BatchNormGradKernel); + ops::BatchNormGradKernel); diff --git a/paddle/operators/batch_norm_op.h b/paddle/operators/batch_norm_op.h index 4e80134a1a..a817ef41fc 100644 --- a/paddle/operators/batch_norm_op.h +++ b/paddle/operators/batch_norm_op.h @@ -19,28 +19,13 @@ limitations under the License. */ namespace paddle { namespace operators { -enum TensorFormat { - NHWC = 0, - NCHW = 1, -}; - -inline TensorFormat StringToTensorFormat(const std::string& str) { - if (str == "NHWC" || str == "nhwc") { - return TensorFormat::NHWC; - } else if (str == "NCHW" || str == "nchw") { - return TensorFormat::NCHW; - } else { - PADDLE_THROW("Unknown storage order string: %s", str); - } -} - -template +template class BatchNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override; }; -template +template class BatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override; diff --git a/paddle/operators/beam_search_decode_op.cc b/paddle/operators/beam_search_decode_op.cc index c796a0c5d0..72e05607b0 100644 --- a/paddle/operators/beam_search_decode_op.cc +++ b/paddle/operators/beam_search_decode_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/beam_search_decode_op.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -55,7 +56,10 @@ class BeamSearchDecodeOp : public framework::OperatorBase { const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override { + const platform::Place& dev_place) const override { + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto& dev_ctx = *pool.Get(dev_place); + framework::ExecutionContext ctx(*this, scope, dev_ctx); const LoDTensorArray* ids = ctx.Input("Ids"); @@ -83,9 +87,8 @@ class BeamSearchDecodeOp : public framework::OperatorBase { class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - BeamSearchDecodeOpProtoMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + BeamSearchDecodeOpProtoMaker(OpProto* proto, OpAttrChecker* op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Ids", "(LodTensorArray)" "score of the candidate words in each step"); @@ -120,13 +123,13 @@ class BeamSearchDecodeInferShape : public framework::InferShapeBase { class BeamSearchDecodeInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind& op_desc, - framework::BlockDescBind* block) const override { + void operator()(const framework::OpDesc& op_desc, + framework::BlockDesc* block) const override { for (auto& o : op_desc.Output("SentenceIds")) { - block->Var(o)->SetType(framework::VarDesc::LOD_TENSOR); + block->Var(o)->SetType(framework::proto::VarDesc::LOD_TENSOR); } for (auto& o : op_desc.Output("SentenceScores")) { - block->Var(o)->SetType(framework::VarDesc::LOD_TENSOR); + block->Var(o)->SetType(framework::proto::VarDesc::LOD_TENSOR); } } }; diff --git a/paddle/operators/beam_search_op.cc b/paddle/operators/beam_search_op.cc index 8c3e2a303f..4c71d66d22 100644 --- a/paddle/operators/beam_search_op.cc +++ b/paddle/operators/beam_search_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/beam_search_op.h" @@ -29,7 +29,7 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, PruneEndidCandidates(pre_ids, &selected_items); // calculate the output tensor's height size_t num_instances = std::accumulate( - std::begin(items), std::end(items), 0, + std::begin(selected_items), std::end(selected_items), 0, [](size_t a, std::vector &b) { return a + b.size(); }); // the output tensor shape should be [num_instances, 1] auto dims = framework::make_ddim( @@ -39,7 +39,7 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, std::map> hash; framework::LoD new_lod; - auto *ids_data = selected_ids->mutable_data(platform::CPUPlace()); + auto *ids_data = selected_ids->mutable_data(platform::CPUPlace()); auto *scores_data = selected_scores->mutable_data(platform::CPUPlace()); @@ -48,12 +48,20 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, size_t low_offset = 0; for (auto &items : selected_items) { low_level.push_back(low_offset); + sort(items.begin(), items.end(), [](const Item &a, const Item &b) { + if (a.offset < b.offset) { + return true; + } + return a.id < b.id; + }); for (auto &item : items) { ids_data[low_offset] = item.id; scores_data[low_offset] = item.score; low_offset++; } } + low_level.push_back(low_offset); + // fill lod auto abs_lod = framework::ToAbsOffset(ids_->lod()); auto &high_level = abs_lod[lod_level_]; @@ -64,16 +72,21 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, selected_scores->set_lod(lod); } -void BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids, - std::vector> *items) { - auto *pre_ids_data = pre_ids.data(); +int BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids, + std::vector> *items) { + auto *pre_ids_data = pre_ids.data(); + int res = 0; for (size_t offset = 0; offset < items->size(); offset++) { auto prefix_id = pre_ids_data[offset]; if (prefix_id == end_id_) { items->at(offset).clear(); + } else { + res++; } } + + return res; } std::vector> BeamSearch::ToMap( @@ -121,13 +134,9 @@ bool BeamSearch::NextItemSet(std::vector *items) { auto ids = *ids_; auto scores = *scores_; - auto source_abs_two_level_lod = framework::SliceInLevel( - ids.lod(), lod_level_, sent_offset_, sent_offset_ + 1); - source_abs_two_level_lod = framework::ToAbsOffset(source_abs_two_level_lod); auto abs_lod = framework::ToAbsOffset(ids.lod()); - PADDLE_ENFORCE_GE(source_abs_two_level_lod.size(), 2UL); - auto *ids_data = ids.data(); + auto *ids_data = ids.data(); auto *scores_data = scores.data(); size_t instance_dim = 1; @@ -153,8 +162,7 @@ bool BeamSearch::NextItemSet(std::vector *items) { class BeamSearchProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker { public: - BeamSearchProtoAndCheckerMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + BeamSearchProtoAndCheckerMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { // inputs and outputs stored in proto AddInput("pre_ids", "ids in previous step"); diff --git a/paddle/operators/beam_search_op.h b/paddle/operators/beam_search_op.h index cc556bfe42..45d14d68fe 100644 --- a/paddle/operators/beam_search_op.h +++ b/paddle/operators/beam_search_op.h @@ -73,7 +73,15 @@ namespace operators { * second level: * [0, 2, 4] * - * tensor's data + * id tensor's data + * [[ + * 4, + * 1, + * 3, + * 8, + * ]] + * + * score tensor's data * [[ * 0.5, * 0.3, @@ -137,16 +145,21 @@ class BeamSearch { Item() {} Item(size_t offset, size_t id, float score) : offset(offset), id(id), score(score) {} - // offset in the lod_level_+1 + // offset in the higher lod level. size_t offset; + // // prefix id in the lower lod level. + // size_t prefix; // the candidate id id_t id; // the corresponding score score_t score; }; - void PruneEndidCandidates(const framework::LoDTensor& pre_ids, - std::vector>* items); + /* + * Delete all the records that follows the end token. + */ + int PruneEndidCandidates(const framework::LoDTensor& pre_ids, + std::vector>* items); /* * Transform the items into a map whose key is offset, value is the items. @@ -189,7 +202,7 @@ class BeamSearchOp : public framework::OperatorBase { } void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override { + const platform::Place& dev_place) const override { LOG(INFO) << "run beam search op"; auto ids_var = scope.FindVar(Input("ids")); auto scores_var = scope.FindVar(Input("scores")); diff --git a/paddle/operators/beam_search_op_test.cc b/paddle/operators/beam_search_op_test.cc new file mode 100644 index 0000000000..d4beb64a85 --- /dev/null +++ b/paddle/operators/beam_search_op_test.cc @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/beam_search_op.h" + +#include +#include + +namespace paddle { +namespace test { + +using std::vector; +using framework::LoDTensor; +using framework::LoD; +using operators::BeamSearch; +using paddle::platform::CPUPlace; +using std::cout; +using std::endl; + +void CreateInput(LoDTensor* ids, LoDTensor* scores) { + LoD lod; + vector level0({0, 1, 4}); + vector level1({0, 1, 2, 3, 4}); + lod.push_back(level0); + lod.push_back(level1); + ids->set_lod(lod); + scores->set_lod(lod); + + auto dims = framework::make_ddim(vector({4, 3})); + ids->Resize(dims); + scores->Resize(dims); + CPUPlace place; + + auto* ids_data = ids->mutable_data(place); + auto* scores_data = scores->mutable_data(place); + vector _ids({4, 2, 5, 2, 1, 3, 3, 5, 2, 8, 2, 1}); + vector _scores( + {0.5, 0.3, 0.2, 0.6, 0.3, 0.1, 0.9, 0.5, 0.1, 0.7, 0.5, 0.1}); + + for (int i = 0; i < 12; i++) { + ids_data[i] = _ids[i]; + scores_data[i] = _scores[i]; + } +} + +TEST(beam_search_op, run) { + CPUPlace place; + LoDTensor ids, scores; + CreateInput(&ids, &scores); + + LoDTensor pre_ids; + pre_ids.Resize(framework::make_ddim(vector(4, 1))); + for (int i = 0; i < 4; i++) { + pre_ids.mutable_data(place)[i] = i + 1; + } + + BeamSearch beamsearch(ids, scores, (int64_t)0, (int64_t)2, 0); + LoDTensor sids, sscores; + beamsearch(pre_ids, &sids, &sscores); + + LOG(INFO) << "score: " << sscores << endl; + + ASSERT_EQ(sids.lod(), sscores.lod()); + + vector tids({2, 4, 3, 8}); + vector tscores({0.3, 0.5, 0.9, 0.7}); + + for (int i = 0; i < 4; i++) { + ASSERT_EQ(tids[i], sids.data()[i]); + ASSERT_EQ(tscores[i], sscores.data()[i]); + } +} + +} // namespace test +} // namespace paddle diff --git a/paddle/operators/bilinear_tensor_product_op.cc b/paddle/operators/bilinear_tensor_product_op.cc index c88b2c9beb..7640147a12 100644 --- a/paddle/operators/bilinear_tensor_product_op.cc +++ b/paddle/operators/bilinear_tensor_product_op.cc @@ -65,8 +65,7 @@ class BilinearTensorProductOp : public framework::OperatorWithKernel { class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker { public: - BilinearTensorProductOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + BilinearTensorProductOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The first input of bilinear_tensor_product operator."); AddInput("Y", "The second input of bilinear_tensor_product operator."); @@ -159,9 +158,12 @@ REGISTER_OP(bilinear_tensor_product, ops::BilinearTensorProductOp, ops::BilinearTensorProductOpGrad); REGISTER_OP_CPU_KERNEL( bilinear_tensor_product, - ops::BilinearTensorProductKernel, - ops::BilinearTensorProductKernel); + ops::BilinearTensorProductKernel, + ops::BilinearTensorProductKernel); REGISTER_OP_CPU_KERNEL( bilinear_tensor_product_grad, - ops::BilinearTensorProductGradKernel, - ops::BilinearTensorProductGradKernel); + ops::BilinearTensorProductGradKernel, + ops::BilinearTensorProductGradKernel); diff --git a/paddle/operators/bilinear_tensor_product_op.cu b/paddle/operators/bilinear_tensor_product_op.cu index 858d2668d0..0f48010716 100644 --- a/paddle/operators/bilinear_tensor_product_op.cu +++ b/paddle/operators/bilinear_tensor_product_op.cu @@ -16,11 +16,15 @@ limitations under the License. */ #include "paddle/operators/bilinear_tensor_product_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( bilinear_tensor_product, - ops::BilinearTensorProductKernel, - ops::BilinearTensorProductKernel); -REGISTER_OP_GPU_KERNEL( + ops::BilinearTensorProductKernel, + ops::BilinearTensorProductKernel); +REGISTER_OP_CUDA_KERNEL( bilinear_tensor_product_grad, - ops::BilinearTensorProductGradKernel, - ops::BilinearTensorProductGradKernel); + ops::BilinearTensorProductGradKernel, + ops::BilinearTensorProductGradKernel); diff --git a/paddle/operators/bilinear_tensor_product_op.h b/paddle/operators/bilinear_tensor_product_op.h index 1113a4c6f3..ba9a2c5ce3 100644 --- a/paddle/operators/bilinear_tensor_product_op.h +++ b/paddle/operators/bilinear_tensor_product_op.h @@ -27,7 +27,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class BilinearTensorProductKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -46,7 +46,8 @@ class BilinearTensorProductKernel : public framework::OpKernel { int out_dim = weight_dims[0]; auto x_dim = weight_dims[1]; auto y_dim = weight_dims[2]; - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); + auto& dev_ctx = ctx.template device_context(); // Create the intermediate variable to caculate the result of // Input(X) multiplied by Input(Weight_i), the formula is: @@ -60,9 +61,9 @@ class BilinearTensorProductKernel : public framework::OpKernel { auto output_col_vec = output_mat.chip(i, 1); Tensor weight_mat = weight->Slice(i, i + 1).Resize(framework::make_ddim({x_dim, y_dim})); - math::gemm(ctx.device_context(), CblasNoTrans, CblasNoTrans, - batch_size, y_dim, x_dim, 1, x->data(), - weight_mat.data(), 0, left_mul.data()); + math::gemm(dev_ctx, CblasNoTrans, CblasNoTrans, + batch_size, y_dim, x_dim, 1, x->data(), + weight_mat.data(), 0, left_mul.data()); output_col_vec.device(place) = (left_mul_mat * y_mat).sum(Eigen::DSizes(1)); } @@ -74,7 +75,7 @@ class BilinearTensorProductKernel : public framework::OpKernel { } }; -template +template class BilinearTensorProductGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -96,8 +97,8 @@ class BilinearTensorProductGradKernel : public framework::OpKernel { auto x_mat = EigenMatrix::From(*x); auto y_mat = EigenMatrix::From(*y); auto d_out_mat = EigenMatrix::From(*d_out); - auto place = ctx.GetEigenDevice(); - + auto& place = *ctx.template device_context().eigen_device(); + auto& dev_ctx = ctx.template device_context(); // Create the intermediate variable to caculate the Output(Y@Grad). Tensor x_scale; x_scale.mutable_data(framework::make_ddim({batch_size, x_dim}), @@ -110,18 +111,18 @@ class BilinearTensorProductGradKernel : public framework::OpKernel { ctx.GetPlace()); auto y_scale_mat = EigenMatrix::From(y_scale); - math::SetConstant set_zero; + math::SetConstant set_zero; // Set Output(X@Grad) be zero. if (d_x) { d_x->mutable_data(ctx.GetPlace()); - set_zero(ctx.device_context(), d_x, static_cast(0)); + set_zero(dev_ctx, d_x, static_cast(0)); } // Set Output(Y@Grad) be zero. if (d_y) { d_y->mutable_data(ctx.GetPlace()); - set_zero(ctx.device_context(), d_y, static_cast(0)); + set_zero(dev_ctx, d_y, static_cast(0)); } // Caculate the Output(X@Grad) and Output(Y@Grad). @@ -137,18 +138,18 @@ class BilinearTensorProductGradKernel : public framework::OpKernel { output_vec.reshape(Eigen::DSizes(batch_size, 1)) .broadcast(bcast_for_x) * y_mat; - math::gemm(ctx.device_context(), CblasNoTrans, CblasTrans, - batch_size, x_dim, y_dim, 1, y_scale.data(), - weight_i.data(), 1, d_x->data()); + math::gemm( + dev_ctx, CblasNoTrans, CblasTrans, batch_size, x_dim, y_dim, 1, + y_scale.data(), weight_i.data(), 1, d_x->data()); } if (d_y) { x_scale_mat.device(place) = output_vec.reshape(Eigen::DSizes(batch_size, 1)) .broadcast(bcast_for_y) * x_mat; - math::gemm(ctx.device_context(), CblasNoTrans, CblasNoTrans, - batch_size, y_dim, x_dim, 1, x_scale.data(), - weight_i.data(), 1, d_y->data()); + math::gemm( + dev_ctx, CblasNoTrans, CblasNoTrans, batch_size, y_dim, x_dim, 1, + x_scale.data(), weight_i.data(), 1, d_y->data()); } } } @@ -165,9 +166,9 @@ class BilinearTensorProductGradKernel : public framework::OpKernel { output_vec.reshape(Eigen::DSizes(batch_size, 1)) .broadcast(bcast_for_weight) * x_mat; - math::gemm(ctx.device_context(), CblasTrans, CblasNoTrans, - x_dim, y_dim, batch_size, 1, x_scale.data(), - y->data(), 0, d_weight_i.data()); + math::gemm(dev_ctx, CblasTrans, CblasNoTrans, x_dim, + y_dim, batch_size, 1, x_scale.data(), + y->data(), 0, d_weight_i.data()); } } diff --git a/paddle/operators/cast_op.cc b/paddle/operators/cast_op.cc index 3082a53ccf..446976edaf 100644 --- a/paddle/operators/cast_op.cc +++ b/paddle/operators/cast_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/cast_op.h" #include "paddle/framework/op_registry.h" @@ -20,8 +20,7 @@ namespace operators { class CastOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - CastOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + CastOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of cast op"); AddOutput("Out", "The output tensor of cast op"); @@ -53,14 +52,14 @@ class CastOpGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto grad = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto grad = new framework::OpDesc(); grad->SetType("cast"); grad->SetInput("X", OutputGrad("Out")); grad->SetOutput("Out", InputGrad("X")); grad->SetAttr("out_dtype", GetAttr("in_dtype")); grad->SetAttr("in_dtype", GetAttr("out_dtype")); - return std::unique_ptr(grad); + return std::unique_ptr(grad); } }; @@ -68,10 +67,11 @@ class CastOpGradMaker : public framework::SingleGradOpDescMaker { } // namespace paddle namespace ops = paddle::operators; -using CPU = paddle::platform::CPUPlace; +using CPU = paddle::platform::CPUDeviceContext; REGISTER_OP_WITH_KERNEL(cast, ops::CastOpGradMaker, ops::CastOpInferShape, ops::CastOpProtoMaker); REGISTER_OP_CPU_KERNEL(cast, ops::CastOpKernel, ops::CastOpKernel, ops::CastOpKernel, - ops::CastOpKernel); + ops::CastOpKernel, + ops::CastOpKernel); diff --git a/paddle/operators/cast_op.cu b/paddle/operators/cast_op.cu index fb75ddbabf..d68bbe6e39 100644 --- a/paddle/operators/cast_op.cu +++ b/paddle/operators/cast_op.cu @@ -1,22 +1,23 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/cast_op.h" template using CastOpKernel = - paddle::operators::CastOpKernel; + paddle::operators::CastOpKernel; -REGISTER_OP_GPU_KERNEL(cast, CastOpKernel, CastOpKernel, - CastOpKernel, CastOpKernel); +REGISTER_OP_CUDA_KERNEL(cast, CastOpKernel, CastOpKernel, + CastOpKernel, CastOpKernel, + CastOpKernel); diff --git a/paddle/operators/cast_op.h b/paddle/operators/cast_op.h index 850dc8e349..9f39d91edd 100644 --- a/paddle/operators/cast_op.h +++ b/paddle/operators/cast_op.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -27,13 +27,13 @@ struct CastOpTransformFunctor { HOSTDEVICE OutT operator()(InT in) const { return static_cast(in); } }; -template +template struct CastOpFunctor { const framework::Tensor* in_; framework::Tensor* out_; - const platform::DeviceContext& ctx_; + const DeviceContext& ctx_; CastOpFunctor(const framework::Tensor* in, framework::Tensor* out, - const platform::DeviceContext& ctx) + const DeviceContext& ctx) : in_(in), out_(out), ctx_(ctx) {} template @@ -42,21 +42,22 @@ struct CastOpFunctor { auto numel = in_->numel(); auto* in_end = in_begin + numel; auto* out_begin = out_->mutable_data(ctx_.GetPlace()); - platform::Transform trans; + platform::Transform trans; trans(ctx_, in_begin, in_end, out_begin, CastOpTransformFunctor()); } }; -template +template class CastOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Input("X"); auto* out = context.Output("Out"); framework::VisitDataType( - static_cast(context.Attr("out_dtype")), - CastOpFunctor(in, out, context.device_context())); + static_cast(context.Attr("out_dtype")), + CastOpFunctor( + in, out, context.template device_context())); } }; diff --git a/paddle/operators/chunk_eval_op.cc b/paddle/operators/chunk_eval_op.cc index 94127ab33e..44f667aead 100644 --- a/paddle/operators/chunk_eval_op.cc +++ b/paddle/operators/chunk_eval_op.cc @@ -32,6 +32,13 @@ class ChunkEvalOp : public framework::OperatorWithKernel { "Output(Recall) of ChunkEvalOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("F1-Score"), "Output(F1-Score) of ChunkEvalOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("NumInferChunks"), + "Output(NumInferChunks) of ChunkEvalOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("NumLabelChunks"), + "Output(NumLabelChunks) of ChunkEvalOp should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("NumCorrectChunks"), + "Output(NumCorrectChunks) of ChunkEvalOp should not be null."); auto inference_dim = ctx->GetInputDim("Inference"); auto label_dim = ctx->GetInputDim("Label"); @@ -42,20 +49,22 @@ class ChunkEvalOp : public framework::OperatorWithKernel { ctx->SetOutputDim("Precision", {1}); ctx->SetOutputDim("Recall", {1}); ctx->SetOutputDim("F1-Score", {1}); + ctx->SetOutputDim("NumInferChunks", {1}); + ctx->SetOutputDim("NumLabelChunks", {1}); + ctx->SetOutputDim("NumCorrectChunks", {1}); } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { - return framework::OpKernelType(framework::DataType::FP32, - ctx.device_context()); + return framework::OpKernelType(framework::proto::DataType::FP32, + platform::CPUPlace()); } }; class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker { public: - ChunkEvalOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ChunkEvalOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Inference", "(Tensor, default: Tensor). " @@ -70,6 +79,16 @@ class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker { "sensitivity) of chunks on the given mini-batch."); AddOutput("F1-Score", "(float). The evaluated F1-Score on the given mini-batch."); + AddOutput("NumInferChunks", + "(int64_t). The number of chunks in Inference on the given " + "mini-batch."); + AddOutput( + "NumLabelChunks", + "(int64_t). The number of chunks in Label on the given mini-batch."); + AddOutput( + "NumCorrectChunks", + "(int64_t). The number of chunks both in Inference and Label on the " + "given mini-batch."); AddAttr("num_chunk_types", "(int). The number of chunk type. See below for details."); AddAttr( diff --git a/paddle/operators/chunk_eval_op.h b/paddle/operators/chunk_eval_op.h index dd88f2553b..300aff90c0 100644 --- a/paddle/operators/chunk_eval_op.h +++ b/paddle/operators/chunk_eval_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template +template class ChunkEvalKernel : public framework::OpKernel { public: struct Segment { @@ -111,9 +111,7 @@ class ChunkEvalKernel : public framework::OpKernel { std::vector label_segments; std::vector output_segments; std::set excluded_chunk_types; - int64_t num_output_segments = 0; - int64_t num_label_segments = 0; - int64_t num_correct = 0; + if (context.Attr("chunk_scheme") == "IOB") { num_tag_types = 2; tag_begin = 0; @@ -147,16 +145,29 @@ class ChunkEvalKernel : public framework::OpKernel { context.Attr>("excluded_chunk_types").end()); auto* inference = context.Input("Inference"); + auto place = inference->place(); auto* label = context.Input("Label"); auto* precision = context.Output("Precision"); auto* recall = context.Output("Recall"); auto* f1 = context.Output("F1-Score"); + auto* num_infer_chunks = context.Output("NumInferChunks"); + auto* num_label_chunks = context.Output("NumLabelChunks"); + auto* num_correct_chunks = context.Output("NumCorrectChunks"); const int64_t* inference_data = inference->data(); const int64_t* label_data = label->data(); - T* precision_data = precision->mutable_data(context.GetPlace()); - T* racall_data = recall->mutable_data(context.GetPlace()); - T* f1_data = f1->mutable_data(context.GetPlace()); + T* precision_data = precision->mutable_data(place); + T* racall_data = recall->mutable_data(place); + T* f1_data = f1->mutable_data(place); + int64_t* num_infer_chunks_data = + num_infer_chunks->mutable_data(place); + int64_t* num_label_chunks_data = + num_label_chunks->mutable_data(place); + int64_t* num_correct_chunks_data = + num_correct_chunks->mutable_data(place); + *num_infer_chunks_data = 0; + *num_label_chunks_data = 0; + *num_correct_chunks_data = 0; auto lod = label->lod(); PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); @@ -166,17 +177,23 @@ class ChunkEvalKernel : public framework::OpKernel { for (int i = 0; i < num_sequences; ++i) { int seq_length = lod[0][i + 1] - lod[0][i]; EvalOneSeq(inference_data + lod[0][i], label_data + lod[0][i], seq_length, - output_segments, label_segments, num_output_segments, - num_label_segments, num_correct, num_chunk_types, - num_tag_types, other_chunk_type, tag_begin, tag_inside, - tag_end, tag_single, excluded_chunk_types); + output_segments, label_segments, *num_infer_chunks_data, + *num_label_chunks_data, *num_correct_chunks_data, + num_chunk_types, num_tag_types, other_chunk_type, tag_begin, + tag_inside, tag_end, tag_single, excluded_chunk_types); } - *precision_data = !num_output_segments ? 0 : static_cast(num_correct) / - num_output_segments; - *racall_data = !num_label_segments ? 0 : static_cast(num_correct) / - num_label_segments; - *f1_data = !num_correct ? 0 : 2 * (*precision_data) * (*racall_data) / - ((*precision_data) + (*racall_data)); + *precision_data = !(*num_infer_chunks_data) + ? 0 + : static_cast(*num_correct_chunks_data) / + (*num_infer_chunks_data); + *racall_data = !(*num_label_chunks_data) + ? 0 + : static_cast(*num_correct_chunks_data) / + (*num_label_chunks_data); + *f1_data = !(*num_correct_chunks_data) + ? 0 + : 2 * (*precision_data) * (*racall_data) / + ((*precision_data) + (*racall_data)); } void EvalOneSeq(const int64_t* output, const int64_t* label, int length, diff --git a/paddle/operators/clip_by_norm_op.cc b/paddle/operators/clip_by_norm_op.cc index f73d55bbe3..b90921d79b 100644 --- a/paddle/operators/clip_by_norm_op.cc +++ b/paddle/operators/clip_by_norm_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/clip_by_norm_op.h" @@ -37,8 +37,7 @@ class ClipByNormOp : public framework::OperatorWithKernel { class ClipByNormOpMaker : public framework::OpProtoAndCheckerMaker { public: - ClipByNormOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ClipByNormOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of clip_by_norm op." @@ -71,4 +70,5 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(clip_by_norm, ops::ClipByNormOp, ops::ClipByNormOpMaker); REGISTER_OP_CPU_KERNEL( - clip_by_norm, ops::ClipByNormKernel); + clip_by_norm, + ops::ClipByNormKernel); diff --git a/paddle/operators/clip_by_norm_op.cu b/paddle/operators/clip_by_norm_op.cu index 2593a24ebb..cbf8fa4413 100644 --- a/paddle/operators/clip_by_norm_op.cu +++ b/paddle/operators/clip_by_norm_op.cu @@ -1,19 +1,20 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/clip_by_norm_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - clip_by_norm, ops::ClipByNormKernel); +REGISTER_OP_CUDA_KERNEL( + clip_by_norm, + ops::ClipByNormKernel); diff --git a/paddle/operators/clip_by_norm_op.h b/paddle/operators/clip_by_norm_op.h index b26476cae9..87956a707c 100644 --- a/paddle/operators/clip_by_norm_op.h +++ b/paddle/operators/clip_by_norm_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -26,7 +26,7 @@ template using EigenVector = framework::EigenVector; -template +template class ClipByNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -38,7 +38,8 @@ class ClipByNormKernel : public framework::OpKernel { auto x = EigenVector::Flatten(*input); auto out = EigenVector::Flatten(*output); auto x_norm = x.square().sum().sqrt(); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto temp = (x_norm <= max_norm).template cast().eval(); auto scaling = temp + (static_cast(1) - temp) * max_norm / x_norm; diff --git a/paddle/operators/clip_op.cc b/paddle/operators/clip_op.cc index 4ddf24dea3..7adb74eab7 100644 --- a/paddle/operators/clip_op.cc +++ b/paddle/operators/clip_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/clip_op.h" @@ -38,7 +38,7 @@ class ClipOp : public framework::OperatorWithKernel { template class ClipOpMaker : public framework::OpProtoAndCheckerMaker { public: - ClipOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + ClipOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor)The input of clip op." @@ -51,8 +51,8 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( Clip Operator. -The clip operator limits the value of given input within an interval. The interval is -specified with arguments 'min' and 'max': +The clip operator limits the value of given input within an interval. The +interval is specified with arguments 'min' and 'max': $$ Out = \min(\max(X, min), max) @@ -83,7 +83,7 @@ class ClipOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(clip, ops::ClipOp, ops::ClipOpMaker, clip_grad, ops::ClipOpGrad); -REGISTER_OP_CPU_KERNEL(clip, - ops::ClipKernel); -REGISTER_OP_CPU_KERNEL(clip_grad, - ops::ClipGradKernel); +REGISTER_OP_CPU_KERNEL( + clip, ops::ClipKernel); +REGISTER_OP_CPU_KERNEL( + clip_grad, ops::ClipGradKernel); diff --git a/paddle/operators/clip_op.cu b/paddle/operators/clip_op.cu index ca9701298f..5ccbc96434 100644 --- a/paddle/operators/clip_op.cu +++ b/paddle/operators/clip_op.cu @@ -1,21 +1,21 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/clip_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(clip, - ops::ClipKernel); -REGISTER_OP_GPU_KERNEL(clip_grad, - ops::ClipGradKernel); +REGISTER_OP_CUDA_KERNEL( + clip, ops::ClipKernel); +REGISTER_OP_CUDA_KERNEL( + clip_grad, ops::ClipGradKernel); diff --git a/paddle/operators/clip_op.h b/paddle/operators/clip_op.h index ac702e9935..51db185dff 100644 --- a/paddle/operators/clip_op.h +++ b/paddle/operators/clip_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -55,7 +55,7 @@ class ClipGradFunctor { T max_; }; -template +template class ClipKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -66,13 +66,13 @@ class ClipKernel : public framework::OpKernel { T* out_data = out->mutable_data(context.GetPlace()); const T* x_data = x->data(); int64_t numel = x->numel(); - Transform trans; - trans(context.device_context(), x_data, x_data + numel, out_data, - ClipFunctor(min, max)); + Transform trans; + trans(context.template device_context(), x_data, + x_data + numel, out_data, ClipFunctor(min, max)); } }; -template +template class ClipGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -86,9 +86,9 @@ class ClipGradKernel : public framework::OpKernel { auto* d_x_data = d_x->mutable_data(context.GetPlace()); const T* d_out_data = d_out->data(); const T* x_data = x->data(); - Transform trans; - trans(context.device_context(), d_out_data, d_out_data + numel, x_data, - d_x_data, ClipGradFunctor(min, max)); + Transform trans; + trans(context.template device_context(), d_out_data, + d_out_data + numel, x_data, d_x_data, ClipGradFunctor(min, max)); } } }; diff --git a/paddle/operators/compare_op.cc b/paddle/operators/compare_op.cc index bf7e883681..daa2c193b4 100644 --- a/paddle/operators/compare_op.cc +++ b/paddle/operators/compare_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/compare_op.h" #include "paddle/framework/op_registry.h" @@ -20,8 +20,7 @@ namespace operators { template class CompareOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - CompareOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + CompareOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { OpComment comment; AddInput("X", @@ -67,9 +66,9 @@ class CompareOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { - framework::OpKernelType kt = OperatorWithKernel::GetKernelType(ctx); + framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); // CompareOp kernel's device type is decided by input tensor place kt.place_ = ctx.Input("X")->place(); return kt; diff --git a/paddle/operators/compare_op.cu b/paddle/operators/compare_op.cu index 6ac8c124b9..26049271be 100644 --- a/paddle/operators/compare_op.cu +++ b/paddle/operators/compare_op.cu @@ -1,23 +1,23 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/compare_op.h" -REGISTER_LOGICAL_KERNEL(less_than, GPU, paddle::operators::LessThanFunctor); -REGISTER_LOGICAL_KERNEL(less_equal, GPU, paddle::operators::LessEqualFunctor); -REGISTER_LOGICAL_KERNEL(greater_than, GPU, +REGISTER_LOGICAL_KERNEL(less_than, CUDA, paddle::operators::LessThanFunctor); +REGISTER_LOGICAL_KERNEL(less_equal, CUDA, paddle::operators::LessEqualFunctor); +REGISTER_LOGICAL_KERNEL(greater_than, CUDA, paddle::operators::GreaterThanFunctor); -REGISTER_LOGICAL_KERNEL(greater_equal, GPU, +REGISTER_LOGICAL_KERNEL(greater_equal, CUDA, paddle::operators::GreaterEqualFunctor); -REGISTER_LOGICAL_KERNEL(equal, GPU, paddle::operators::EqualFunctor); +REGISTER_LOGICAL_KERNEL(equal, CUDA, paddle::operators::EqualFunctor); diff --git a/paddle/operators/compare_op.h b/paddle/operators/compare_op.h index afdf3ab3e0..567e89c0a7 100644 --- a/paddle/operators/compare_op.h +++ b/paddle/operators/compare_op.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include @@ -59,7 +59,7 @@ struct EqualFunctor { } }; -template +template class CompareOpKernel : public framework::OpKernel { public: @@ -69,24 +69,23 @@ class CompareOpKernel auto* y = context.Input("Y"); auto* out = context.Output("Out"); Functor binary_func; - platform::Transform trans; - trans(context.device_context(), x->data(), x->data() + x->numel(), - y->data(), out->mutable_data(context.GetPlace()), - binary_func); + platform::Transform trans; + trans(context.template device_context(), x->data(), + x->data() + x->numel(), y->data(), + out->mutable_data(context.GetPlace()), binary_func); } }; } // namespace operators } // namespace paddle -#define REGISTER_LOGICAL_KERNEL(op_type, dev, functor) \ - REGISTER_OP_##dev##_KERNEL( \ - op_type, \ - ::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \ - functor>, \ - ::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \ - functor>, \ - ::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \ - functor>, \ - ::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \ - functor>); +#define REGISTER_LOGICAL_KERNEL(op_type, dev, functor) \ + REGISTER_OP_##dev##_KERNEL( \ + op_type, ::paddle::operators::CompareOpKernel< \ + ::paddle::platform::dev##DeviceContext, functor>, \ + ::paddle::operators::CompareOpKernel< \ + ::paddle::platform::dev##DeviceContext, functor>, \ + ::paddle::operators::CompareOpKernel< \ + ::paddle::platform::dev##DeviceContext, functor>, \ + ::paddle::operators::CompareOpKernel< \ + ::paddle::platform::dev##DeviceContext, functor>); diff --git a/paddle/operators/concat_op.cc b/paddle/operators/concat_op.cc index 6134ac78b1..32b61edfd0 100644 --- a/paddle/operators/concat_op.cc +++ b/paddle/operators/concat_op.cc @@ -41,20 +41,24 @@ class ConcatOp : public framework::OperatorWithKernel { for (size_t j = 0; j < in_zero_dims_size; j++) { if (j == axis) { out_dims[axis] += ins[i][j]; - continue; + } else { + PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], + "Input tensors should have the same " + "elements except the specify axis."); } - PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], - "Input tensors should have the same " - "elements except the specify axis."); } } + if (out_dims[axis] < 0) { + out_dims[axis] = -1; + } ctx->SetOutputDim("Out", out_dims); + ctx->ShareLoD("X", /*->*/ "Out"); } }; class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { public: - ConcatOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ConcatOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input tensors of concat operator.").AsDuplicable(); AddOutput("Out", "Output tensor of concat operator."); @@ -94,8 +98,8 @@ class ConcatOpGrad : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(concat, ops::ConcatOp, ops::ConcatOpMaker, concat_grad, - ops::ConcatOpGrad) +REGISTER_OP_EX(concat, ops::ConcatOp, ops::ConcatOpMaker, concat_grad, + ops::ConcatOpGrad, false) REGISTER_OP_CPU_KERNEL(concat, ops::ConcatKernel) REGISTER_OP_CPU_KERNEL(concat_grad, diff --git a/paddle/operators/concat_op.cu.cc b/paddle/operators/concat_op.cu.cc index ede832ddcd..7b46452d3d 100644 --- a/paddle/operators/concat_op.cu.cc +++ b/paddle/operators/concat_op.cu.cc @@ -14,7 +14,8 @@ limitations under the License. */ #include "paddle/operators/concat_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(concat, - ops::ConcatKernel); -REGISTER_OP_GPU_KERNEL( - concat_grad, ops::ConcatGradKernel); +REGISTER_OP_CUDA_KERNEL( + concat, ops::ConcatKernel); +REGISTER_OP_CUDA_KERNEL( + concat_grad, + ops::ConcatGradKernel); diff --git a/paddle/operators/concat_op.h b/paddle/operators/concat_op.h index c113f19fb5..de4011585a 100644 --- a/paddle/operators/concat_op.h +++ b/paddle/operators/concat_op.h @@ -21,7 +21,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class ConcatKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -43,7 +43,7 @@ class ConcatKernel : public framework::OpKernel { } }; -template +template class ConcatGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { diff --git a/paddle/operators/cond_op.cc b/paddle/operators/cond_op.cc index b809bdc3a0..e333002bfd 100644 --- a/paddle/operators/cond_op.cc +++ b/paddle/operators/cond_op.cc @@ -13,9 +13,9 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/cond_op.h" - #include "paddle/operators/gather.h" #include "paddle/operators/scatter.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -193,20 +193,22 @@ void CondOp::MergeDataFromSubnet(const framework::Scope& scope, } } -void CondOp::Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const { +void CondOp::Run(const Scope& scope, const platform::Place& place) const { + // get device context from pool + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto& dev_ctx = *pool.Get(place); + PrepareDataForSubnet(scope, dev_ctx); std::vector& sub_scopes = GetSubScopes(scope); for (int i = 0; i < BRANCH_NUM; ++i) { - sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx); + sub_net_op_[i]->Run(*sub_scopes[i], place); } MergeDataFromSubnet(scope, dev_ctx); } class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker { public: - CondOpProtoAndCheckerMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CondOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Cond", "The condition, which is a bool vector"); AddInput("Xs", "Inputs of Subnets").AsDuplicable(); diff --git a/paddle/operators/cond_op.h b/paddle/operators/cond_op.h index 93121fb31b..7dcdc47e0b 100644 --- a/paddle/operators/cond_op.h +++ b/paddle/operators/cond_op.h @@ -78,7 +78,7 @@ class CondOp : public framework::OperatorBase { } void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override; + const platform::Place& place) const override; private: const int TRUE_BRANCH = 0; diff --git a/paddle/operators/conditional_block_op.cc b/paddle/operators/conditional_block_op.cc index d5b124682d..3cae61a438 100644 --- a/paddle/operators/conditional_block_op.cc +++ b/paddle/operators/conditional_block_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include "paddle/framework/executor.h" #include "paddle/framework/op_registry.h" @@ -51,7 +51,7 @@ class ConditionalBlockOp : public ConditionalOp { const framework::AttributeMap &attrs) : ConditionalOp(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { auto xs = InputTensors(scope); bool need_run = std::all_of( xs.begin(), xs.end(), @@ -65,8 +65,8 @@ class ConditionalBlockOp : public ConditionalOp { scopes->front() = &scope.NewScope(); auto &cur_scope = *scopes->front(); - auto *block = Attr("block"); - framework::Executor exec(dev_ctx); + framework::Executor exec(dev_place); + auto *block = Attr("sub_block"); exec.Run(*block->Program(), &cur_scope, block->ID(), false); } } @@ -74,8 +74,7 @@ class ConditionalBlockOp : public ConditionalOp { class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - ConditionalBlockOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ConditionalBlockOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The conditional variable of this operator. If X is empty, the " @@ -87,8 +86,8 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker { "(std::vector) The step scope of conditional block. To " "unify the conditional block, rnn and while op, the type of " "scope is std::vector"); - AddAttr( - "block", "The step block of conditional block operator"); + AddAttr( + "sub_block", "The step block of conditional block operator"); AddComment(R"DOC(Conditional block operator Run the sub-block if X is not empty. Params is the other inputs and Out is the @@ -105,7 +104,7 @@ class ConditionalBlockGradOp : public ConditionalOp { const framework::AttributeMap &attrs) : ConditionalOp(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { auto xs = this->InputTensors(scope); bool need_run = std::all_of( xs.begin(), xs.end(), @@ -117,21 +116,21 @@ class ConditionalBlockGradOp : public ConditionalOp { auto &scopes = scope_var->Get>(); framework::Scope &cur_scope = *scopes[0]; - auto *block = Attr("block"); - framework::Executor exec(dev_ctx); + framework::Executor exec(dev_place); + auto *block = Attr("sub_block"); exec.Run(*block->Program(), &cur_scope, block->ID(), false); - AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("Params"), + AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("Params"), Outputs(framework::GradVarName("Params"))); - AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("X"), + AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("X"), Outputs(framework::GradVarName("X"))); } } private: void AssignLocalGradientToGlobal( - const platform::DeviceContext &dev_ctx, const framework::Scope &cur_scope, + const platform::Place &place, const framework::Scope &cur_scope, const std::vector &p_names, const std::vector &pg_names) const { for (size_t i = 0; i < p_names.size(); ++i) { @@ -142,10 +141,10 @@ class ConditionalBlockGradOp : public ConditionalOp { continue; } auto new_in_grad_name = cur_scope.Rename(in_grad_name); - auto assign = - framework::OpRegistry::CreateOp("assign", {{"X", {new_in_grad_name}}}, - {{"Out", {out_grad_name}}}, {}); - assign->Run(cur_scope, dev_ctx); + auto assign = framework::OpRegistry::CreateOp( + "assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}}, + framework::AttributeMap{}); + assign->Run(cur_scope, place); cur_scope.Rename(new_in_grad_name, in_grad_name); } } @@ -171,18 +170,19 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto grad_op = new framework::OpDesc(); grad_op->SetType("conditional_block_grad"); grad_op->SetInput("X", Input("X")); grad_op->SetInput("Params", Input("Params")); grad_op->SetInput("Out", Output("Out")); grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); grad_op->SetInput("Scope", Output("Scope")); - grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); - grad_op->SetOutput(framework::GradVarName("Params"), InputGrad("Params")); - grad_op->SetBlockAttr("block", *this->grad_block_[0]); - return std::unique_ptr(grad_op); + grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X", false)); + grad_op->SetOutput(framework::GradVarName("Params"), + InputGrad("Params", false)); + grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/conv_cudnn_op.cc b/paddle/operators/conv_cudnn_op.cc deleted file mode 100644 index 0dd8c13b2a..0000000000 --- a/paddle/operators/conv_cudnn_op.cc +++ /dev/null @@ -1,74 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/operators/conv_op.h" - -namespace paddle { -namespace operators { - -class CudnnConv2DOpMaker : public Conv2DOpMaker { - public: - CudnnConv2DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) - : Conv2DOpMaker(proto, op_checker) { - AddAttr("workspace_size_MB", - "workspace size for cudnn, in MB, " - "workspace is a section of GPU memory which will be " - "allocated/freed each time the operator runs, larger " - "workspace size can increase performance but also requires " - "better hardware. This size should be chosen carefully.") - .SetDefault(4096); - } -}; - -class CudnnConv3DOpMaker : public Conv3DOpMaker { - public: - CudnnConv3DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) - : Conv3DOpMaker(proto, op_checker) { - AddAttr("workspace_size_MB", - "workspace size for cudnn, in MB, " - "workspace is a section of GPU memory which will be " - "allocated/freed each time the operator runs, larger " - "workspace size can increase performance but also requires " - "better hardware. This size should be chosen carefully.") - .SetDefault(4096); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP(conv2d_cudnn, ops::ConvOp, ops::CudnnConv2DOpMaker, - conv2d_cudnn_grad, ops::ConvOpGrad); - -REGISTER_OP(conv3d_cudnn, ops::ConvOp, ops::CudnnConv3DOpMaker, - conv3d_cudnn_grad, ops::ConvOpGrad); - -REGISTER_OP_CPU_KERNEL(conv2d_cudnn, - ops::GemmConvKernel, - ops::GemmConvKernel); -REGISTER_OP_CPU_KERNEL( - conv2d_cudnn_grad, - ops::GemmConvGradKernel, - ops::GemmConvGradKernel); - -REGISTER_OP_CPU_KERNEL(conv3d_cudnn, - ops::GemmConvKernel, - ops::GemmConvKernel); -REGISTER_OP_CPU_KERNEL( - conv3d_cudnn_grad, - ops::GemmConvGradKernel, - ops::GemmConvGradKernel); diff --git a/paddle/operators/conv_cudnn_op.cu.cc b/paddle/operators/conv_cudnn_op.cu.cc index bc265dcc4f..3a5409a7e3 100644 --- a/paddle/operators/conv_cudnn_op.cu.cc +++ b/paddle/operators/conv_cudnn_op.cu.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" @@ -32,11 +32,11 @@ static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = static_cast(1024) * 1024 * 1024; template -class CudnnConvOpKernel : public framework::OpKernel { +class CUDNNConvOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); auto* input = ctx.Input("Input"); auto* filter = ctx.Input("Filter"); auto* output = ctx.Output("Output"); @@ -118,7 +118,8 @@ class CudnnConvOpKernel : public framework::OpKernel { } // ------------------- cudnn conv algorithm --------------------- cudnnConvolutionFwdAlgo_t algo; - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm( handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, @@ -129,7 +130,7 @@ class CudnnConvOpKernel : public framework::OpKernel { handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, cudnn_output_desc, algo, &workspace_size_in_bytes)); // Allocate on GPU memory - platform::GPUPlace gpu = boost::get(ctx.GetPlace()); + platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); // ------------------- cudnn conv forward --------------------- T alpha = 1.0f, beta = 0.0f; @@ -146,11 +147,11 @@ class CudnnConvOpKernel : public framework::OpKernel { }; template -class CudnnConvGradOpKernel : public framework::OpKernel { +class CUDNNConvGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); auto input = ctx.Input("Input"); auto filter = ctx.Input("Filter"); auto output_grad = ctx.Input(framework::GradVarName("Output")); @@ -238,7 +239,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel { workspace_size_limit = user_workspace_size * 1024 * 1024; } - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); if (input_grad) { PADDLE_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm( @@ -275,7 +277,7 @@ class CudnnConvGradOpKernel : public framework::OpKernel { // ------------------- cudnn conv workspace --------------------- // Already on GPU void* cudnn_workspace = nullptr; - platform::GPUPlace gpu = boost::get(ctx.GetPlace()); + platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); // ------------------- cudnn conv backward data --------------------- T alpha = 1.0f, beta = 0.0f; @@ -313,16 +315,16 @@ class CudnnConvGradOpKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(conv2d_cudnn, - paddle::operators::CudnnConvOpKernel, - paddle::operators::CudnnConvOpKernel); -REGISTER_OP_GPU_KERNEL(conv2d_cudnn_grad, - paddle::operators::CudnnConvGradOpKernel, - paddle::operators::CudnnConvGradOpKernel); - -REGISTER_OP_GPU_KERNEL(conv3d_cudnn, - paddle::operators::CudnnConvOpKernel, - paddle::operators::CudnnConvOpKernel); -REGISTER_OP_GPU_KERNEL(conv3d_cudnn_grad, - paddle::operators::CudnnConvGradOpKernel, - paddle::operators::CudnnConvGradOpKernel); +REGISTER_OP_KERNEL(conv2d, CUDNN, ::paddle::platform::CUDAPlace, + paddle::operators::CUDNNConvOpKernel, + paddle::operators::CUDNNConvOpKernel); +REGISTER_OP_KERNEL(conv2d_grad, CUDNN, ::paddle::platform::CUDAPlace, + paddle::operators::CUDNNConvGradOpKernel, + paddle::operators::CUDNNConvGradOpKernel); + +REGISTER_OP_KERNEL(conv3d, CUDNN, ::paddle::platform::CUDAPlace, + paddle::operators::CUDNNConvOpKernel, + paddle::operators::CUDNNConvOpKernel); +REGISTER_OP_KERNEL(conv3d_grad, CUDNN, ::paddle::platform::CUDAPlace, + paddle::operators::CUDNNConvGradOpKernel, + paddle::operators::CUDNNConvGradOpKernel); diff --git a/paddle/operators/conv_op.cc b/paddle/operators/conv_op.cc index 462e6d9cbc..d6882b275b 100644 --- a/paddle/operators/conv_op.cc +++ b/paddle/operators/conv_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/conv_op.h" @@ -31,8 +31,6 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { std::vector paddings = ctx->Attrs().Get>("paddings"); int groups = ctx->Attrs().Get("groups"); std::vector dilations = ctx->Attrs().Get>("dilations"); - int input_channels = in_dims[1]; - int output_channels = filter_dims[0]; PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5, "Conv intput should be 4-D or 5-D tensor."); @@ -45,11 +43,13 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE_EQ( paddings.size(), strides.size(), "Conv paddings dimension and Conv strides dimension should be the same."); - PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups, + + PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups, "The number of input channels should be equal to filter " "channels * groups."); + PADDLE_ENFORCE_EQ( - output_channels % groups, 0, + filter_dims[0] % groups, 0, "The number of output channels should be divided by groups."); std::vector output_shape({in_dims[0], filter_dims[0]}); @@ -64,10 +64,34 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { dilations[i], paddings[i], strides[i])); } ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); + ctx->ShareLoD("Input", "Output"); +} + +framework::OpKernelType ConvOp::GetExpectedKernelType( + const framework::ExecutionContext& ctx) const { + bool use_cudnn = ctx.Attr("use_cudnn"); + use_cudnn &= platform::is_gpu_place(ctx.GetPlace()); +#ifdef PADDLE_WITH_CUDA + if (platform::is_gpu_place(ctx.GetPlace())) { + auto& dev_ctx = ctx.template device_context(); + use_cudnn &= dev_ctx.cudnn_handle() != nullptr; + } +#endif + framework::LibraryType library_; + if (use_cudnn) { + library_ = framework::LibraryType::kCUDNN; + } else { + library_ = framework::LibraryType::kPlain; + } + + std::string data_format = ctx.Attr("data_format"); + framework::DataLayout layout_ = framework::StringToDataLayout(data_format); + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Input")->type()), ctx.GetPlace(), + layout_, library_); } -Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) +Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "Input", @@ -108,6 +132,26 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto, "dilations(h_dilation, w_dilation) of " "convolution operator.") .SetDefault({1, 1}); + AddAttr( + "use_cudnn", + "(bool, default false) Only used in cudnn kernel, need install cudnn") + .SetDefault(false); + AddAttr( + "data_format", + "(string, default NCHW) Only used in " + "An optional string from: \"NHWC\", \"NCHW\". " + "Defaults to \"NHWC\". Specify the data format of the output data, " + "the input will be transformed automatically. ") + .SetDefault("AnyLayout"); + // TODO(dzhwinter): need to registered layout transform function + AddAttr("workspace_size_MB", + "Only used in cudnn kernel. Need set use_cudnn to true." + "workspace size for cudnn, in MB, " + "workspace is a section of GPU memory which will be " + "allocated/freed each time the operator runs, larger " + "workspace size can increase performance but also requires " + "better hardware. This size should be chosen carefully.") + .SetDefault(4096); AddComment(R"DOC( Convolution Operator. @@ -138,8 +182,7 @@ $$ )DOC"); } -Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) +Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "Input", @@ -182,6 +225,25 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto, "dilations(d_dilation, h_dilation, w_dilation) of " "convolution operator.") .SetDefault({1, 1, 1}); + AddAttr( + "use_cudnn", + "(bool, default false) Only used in cudnn kernel, need install cudnn") + .SetDefault(false); + AddAttr( + "data_format", + "(string, default NCHW) Only used in " + "An optional string from: \"NHWC\", \"NCHW\". " + "Defaults to \"NHWC\". Specify the data format of the output data, " + "the input will be transformed automatically. ") + .SetDefault("AnyLayout"); + // TODO(dzhwinter): need to registered layout transform function + AddAttr("workspace_size_MB", + "Only used in cudnn kernel. workspace size for cudnn, in MB, " + "workspace is a section of GPU memory which will be " + "allocated/freed each time the operator runs, larger " + "workspace size can increase performance but also requires " + "better hardware. This size should be chosen carefully.") + .SetDefault(4096); AddComment(R"DOC( Convolution3D Operator. @@ -225,26 +287,52 @@ void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const { } } +framework::OpKernelType ConvOpGrad::GetExpectedKernelType( + const framework::ExecutionContext& ctx) const { + bool use_cudnn = ctx.Attr("use_cudnn"); + use_cudnn &= platform::is_gpu_place(ctx.GetPlace()); +#ifdef PADDLE_WITH_CUDA + if (platform::is_gpu_place(ctx.GetPlace())) { + auto& dev_ctx = ctx.template device_context(); + use_cudnn &= dev_ctx.cudnn_handle() != nullptr; + } +#endif + + framework::LibraryType library_; + if (use_cudnn) { + library_ = framework::LibraryType::kCUDNN; + } else { + library_ = framework::LibraryType::kPlain; + } + + std::string data_format = ctx.Attr("data_format"); + framework::DataLayout layout_ = framework::StringToDataLayout(data_format); + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Input")->type()), ctx.GetPlace(), + layout_, library_); +} + } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad, ops::ConvOpGrad); -namespace ops = paddle::operators; REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad, ops::ConvOpGrad); -REGISTER_OP_CPU_KERNEL(conv2d, - ops::GemmConvKernel, - ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( - conv2d_grad, ops::GemmConvGradKernel, - ops::GemmConvGradKernel); + conv2d, ops::GemmConvKernel, + ops::GemmConvKernel); +REGISTER_OP_CPU_KERNEL( + conv2d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); -REGISTER_OP_CPU_KERNEL(conv3d, - ops::GemmConvKernel, - ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( - conv3d_grad, ops::GemmConvGradKernel, - ops::GemmConvGradKernel); + conv3d, ops::GemmConvKernel, + ops::GemmConvKernel); +REGISTER_OP_CPU_KERNEL( + conv3d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); diff --git a/paddle/operators/conv_op.cu.cc b/paddle/operators/conv_op.cu.cc index 546451234a..4f942444f3 100644 --- a/paddle/operators/conv_op.cu.cc +++ b/paddle/operators/conv_op.cu.cc @@ -1,31 +1,33 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/conv_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(conv2d, - ops::GemmConvKernel, - ops::GemmConvKernel); -REGISTER_OP_GPU_KERNEL( - conv2d_grad, ops::GemmConvGradKernel, - ops::GemmConvGradKernel); +REGISTER_OP_CUDA_KERNEL( + conv2d, ops::GemmConvKernel, + ops::GemmConvKernel); +REGISTER_OP_CUDA_KERNEL( + conv2d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); -REGISTER_OP_GPU_KERNEL(conv3d, - ops::GemmConvKernel, - ops::GemmConvKernel); -REGISTER_OP_GPU_KERNEL( - conv3d_grad, ops::GemmConvGradKernel, - ops::GemmConvGradKernel); +REGISTER_OP_CUDA_KERNEL( + conv3d, ops::GemmConvKernel, + ops::GemmConvKernel); +REGISTER_OP_CUDA_KERNEL( + conv3d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); diff --git a/paddle/operators/conv_op.h b/paddle/operators/conv_op.h index 09bff0a68d..5a8933e791 100644 --- a/paddle/operators/conv_op.h +++ b/paddle/operators/conv_op.h @@ -50,29 +50,35 @@ inline bool IsExpand(std::vector& filter_dim, // operator implementations can reuse the code. class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker { public: - Conv2DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker { public: - Conv3DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class ConvOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override; }; class ConvOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override; }; -template +template class GemmConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -141,9 +147,10 @@ class GemmConvKernel : public framework::OpKernel { int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output->dims()[1]) / groups; - math::Vol2ColFunctor vol2col; - math::Im2ColFunctor im2col; + math::Vol2ColFunctor vol2col; + math::Im2ColFunctor im2col; + auto& dev_ctx = context.template device_context(); for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); @@ -157,27 +164,26 @@ class GemmConvKernel : public framework::OpKernel { col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { // im2col - im2col(context.device_context(), in_slice, dilations, strides, + im2col(dev_ctx, in_slice, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); } else if (data_dim == 3U) { // vol2col - vol2col(context.device_context(), in_slice, dilations, strides, - paddings, &col); + vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col); } // gemm Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); - math::matmul(context.device_context(), filter_slice, false, - col_matrix, false, T(1.0), &out_slice, T(0.0)); + math::matmul(dev_ctx, filter_slice, false, col_matrix, + false, T(1.0), &out_slice, T(0.0)); } } } }; -template +template class GemmConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -256,14 +262,19 @@ class GemmConvGradKernel : public framework::OpKernel { col_matrix.Resize(col_matrix_shape); } - math::SetConstant set_zero; + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); if (input_grad) { input_grad->mutable_data(context.GetPlace()); - set_zero(context.device_context(), input_grad, static_cast(0)); - math::Col2VolFunctor col2vol; - math::Col2ImFunctor col2im; + // if is_expand is false, the operation of set_zero is unnecessary, + // because math::matmul will reset input_grad. + if (is_expand) { + set_zero(dev_ctx, input_grad, static_cast(0)); + } + math::Col2VolFunctor col2vol; + math::Col2ImFunctor col2im; for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = @@ -282,18 +293,17 @@ class GemmConvGradKernel : public framework::OpKernel { col_matrix.ShareDataWith(in_grad_slice); col_matrix.Resize(col_matrix_shape); } - math::matmul(context.device_context(), filter_slice, true, - out_grad_slice, false, T(1.0), &col_matrix, - T(0.0)); + math::matmul(dev_ctx, filter_slice, true, + out_grad_slice, false, T(1.0), + &col_matrix, T(0.0)); if (is_expand && data_dim == 2U) { - col2im(context.device_context(), col, dilations, strides, + col2im(dev_ctx, col, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &in_grad_slice); } else if (is_expand && data_dim == 3U) { - col2vol(context.device_context(), col, dilations, strides, paddings, - &in_grad_slice); + col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice); } } } @@ -303,9 +313,9 @@ class GemmConvGradKernel : public framework::OpKernel { filter_grad->mutable_data(context.GetPlace()); Tensor filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); - set_zero(context.device_context(), filter_grad, static_cast(0)); - math::Im2ColFunctor im2col; - math::Vol2ColFunctor vol2col; + set_zero(dev_ctx, filter_grad, static_cast(0)); + math::Im2ColFunctor im2col; + math::Vol2ColFunctor vol2col; for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = output_grad->Slice(i, i + 1).Resize(output_matrix_shape); @@ -321,21 +331,20 @@ class GemmConvGradKernel : public framework::OpKernel { col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { - im2col(context.device_context(), in_slice, dilations, strides, + im2col(dev_ctx, in_slice, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); } else if (data_dim == 3U) { - vol2col(context.device_context(), in_slice, dilations, strides, - paddings, &col); + vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col); } // gemm Tensor filter_grad_slice = filter_grad_.Slice(g * out_step, (g + 1) * out_step); - math::matmul(context.device_context(), out_grad_slice, - false, col_matrix, true, T(1.0), - &filter_grad_slice, T(1.0)); + math::matmul(dev_ctx, out_grad_slice, false, + col_matrix, true, T(1.0), + &filter_grad_slice, T(1.0)); } } } diff --git a/paddle/operators/conv_shift_op.cc b/paddle/operators/conv_shift_op.cc index a4150a5664..106b68a0a0 100644 --- a/paddle/operators/conv_shift_op.cc +++ b/paddle/operators/conv_shift_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/conv_shift_op.h" #include "paddle/framework/eigen.h" @@ -75,8 +75,7 @@ class ConvShiftGradOp : public framework::OperatorWithKernel { class ConvShiftOpMaker : public framework::OpProtoAndCheckerMaker { public: - ConvShiftOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ConvShiftOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor, default Tensor), a 2-D tensor with shape B x M, " diff --git a/paddle/operators/conv_shift_op.cu b/paddle/operators/conv_shift_op.cu index 95e13c38a8..cf7abc196e 100644 --- a/paddle/operators/conv_shift_op.cu +++ b/paddle/operators/conv_shift_op.cu @@ -1,16 +1,16 @@ -/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/conv_shift_op.h" #include "paddle/operators/math/math_function.h" @@ -111,7 +111,8 @@ __global__ void ConvShiftDy(const T *x, const T *dout, int x_width, int y_width, } // namespace template -class ConvShiftKernel : public framework::OpKernel { +class ConvShiftKernel + : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { const Tensor *X = context.Input("X"); @@ -132,7 +133,8 @@ class ConvShiftKernel : public framework::OpKernel { dim3 grid_dim(num_x_blocks, batch_size); - auto stream = context.cuda_device_context().stream(); + auto stream = + context.template device_context().stream(); ConvShiftForward<<>>( x_data, y_data, x_width, y_width, y_half_width, batch_size, out_data); @@ -140,7 +142,7 @@ class ConvShiftKernel : public framework::OpKernel { }; template -class ConvShiftGradKernel +class ConvShiftGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -159,8 +161,9 @@ class ConvShiftGradKernel int y_width = Y->dims()[1]; int y_half_width = (y_width - 1) / 2; - auto &device_ctx = context.cuda_device_context(); - math::SetConstant zero; + auto &device_ctx = + context.template device_context(); + math::SetConstant zero; const int x_per_block = 256; int num_x_blocks = DivUp(x_width, x_per_block); @@ -186,8 +189,9 @@ class ConvShiftGradKernel } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(conv_shift, - ops::ConvShiftKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + conv_shift, + ops::ConvShiftKernel); +REGISTER_OP_CUDA_KERNEL( conv_shift_grad, - ops::ConvShiftGradKernel); + ops::ConvShiftGradKernel); diff --git a/paddle/operators/conv_shift_op.h b/paddle/operators/conv_shift_op.h index 5a160b0f16..6781d87ef0 100644 --- a/paddle/operators/conv_shift_op.h +++ b/paddle/operators/conv_shift_op.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/op_registry.h" @@ -18,13 +18,13 @@ namespace paddle { namespace operators { -template +template class ConvShiftKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override; }; -template +template class ConvShiftGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override; diff --git a/paddle/operators/conv_transpose_cudnn_op.cc b/paddle/operators/conv_transpose_cudnn_op.cc deleted file mode 100644 index 0192178ce3..0000000000 --- a/paddle/operators/conv_transpose_cudnn_op.cc +++ /dev/null @@ -1,82 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/operators/conv_transpose_op.h" - -namespace paddle { -namespace operators { - -class CudnnConv2DTransposeOpMaker : public Conv2DTransposeOpMaker { - public: - CudnnConv2DTransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) - : Conv2DTransposeOpMaker(proto, op_checker) { - AddAttr>("dilations", "dilations of convolution operator.") - .SetDefault({1, 1}); - AddAttr("workspace_size_MB", - "workspace size for cudnn, in MB, " - "workspace is a section of GPU memory which will be " - "allocated/freed each time the operator runs, larger " - "workspace size can increase performance but also requires " - "better hardward. This size should be carefully setted.") - .SetDefault(4096); - } -}; - -class CudnnConv3DTransposeOpMaker : public Conv3DTransposeOpMaker { - public: - CudnnConv3DTransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) - : Conv3DTransposeOpMaker(proto, op_checker) { - AddAttr>("dilations", "dilations of convolution operator.") - .SetDefault({1, 1, 1}); - AddAttr("workspace_size_MB", - "workspace size for cudnn, in MB, " - "workspace is a section of GPU memory which will be " - "allocated/freed each time the operator runs, larger " - "workspace size can increase performance but also requires " - "better hardward. This size should be carefully setted.") - .SetDefault(4096); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP(conv2d_transpose_cudnn, ops::ConvTransposeOp, - ops::CudnnConv2DTransposeOpMaker, conv2d_transpose_cudnn_grad, - ops::ConvTransposeOpGrad); - -REGISTER_OP_CPU_KERNEL( - conv2d_transpose_cudnn, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); -REGISTER_OP_CPU_KERNEL( - conv2d_transpose_cudnn_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); - -REGISTER_OP(conv3d_transpose_cudnn, ops::ConvTransposeOp, - ops::CudnnConv3DTransposeOpMaker, conv3d_transpose_cudnn_grad, - ops::ConvTransposeOpGrad); - -REGISTER_OP_CPU_KERNEL( - conv3d_transpose_cudnn, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); -REGISTER_OP_CPU_KERNEL( - conv3d_transpose_cudnn_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv_transpose_cudnn_op.cu.cc b/paddle/operators/conv_transpose_cudnn_op.cu.cc index 494904fe52..23bc97e13c 100644 --- a/paddle/operators/conv_transpose_cudnn_op.cu.cc +++ b/paddle/operators/conv_transpose_cudnn_op.cu.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" @@ -28,14 +28,14 @@ using ScopedFilterDescriptor = platform::ScopedFilterDescriptor; using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor; using DataLayout = platform::DataLayout; -static constexpr size_t kConvCudnnWorkspaceLimitBytes = 1024 * 1024 * 1024; +static constexpr size_t kConvCUDNNWorkspaceLimitBytes = 1024 * 1024 * 1024; template -class CudnnConvTransposeOpKernel : public framework::OpKernel { +class CUDNNConvTransposeOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); auto* input = ctx.Input("Input"); auto* filter = ctx.Input("Filter"); auto* output = ctx.Output("Output"); @@ -77,13 +77,14 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel { // ------------------- cudnn conv workspace --------------------- void* cudnn_workspace = nullptr; size_t workspace_size_in_bytes; // final workspace to allocate. - size_t workspace_size_limit = kConvCudnnWorkspaceLimitBytes; + size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes; if (user_workspace_size > 0) { workspace_size_limit = user_workspace_size * 1024 * 1024; } // ------------------- cudnn conv algorithm --------------------- cudnnConvolutionBwdDataAlgo_t algo; - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); // Get the algorithm PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm( handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc, @@ -99,7 +100,7 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel { cudnn_output_desc, algo, &workspace_size_in_bytes)); // Allocate on GPU memory - platform::GPUPlace gpu = boost::get(ctx.GetPlace()); + platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); // ------------------- cudnn conv transpose forward --------------------- @@ -115,11 +116,11 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel { }; template -class CudnnConvTransposeGradOpKernel : public framework::OpKernel { +class CUDNNConvTransposeGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); auto input = ctx.Input("Input"); auto filter = ctx.Input("Filter"); auto output_grad = ctx.Input(framework::GradVarName("Output")); @@ -160,12 +161,13 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { cudnnConvolutionBwdFilterAlgo_t filter_algo; size_t bwd_filter_ws_size, fwd_ws_size; size_t workspace_size_in_bytes = 0; - size_t workspace_size_limit = kConvCudnnWorkspaceLimitBytes; + size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes; if (user_workspace_size > 0) { workspace_size_limit = user_workspace_size * 1024 * 1024; } - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); if (input_grad) { // choose backward algorithm for data PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm( @@ -199,7 +201,7 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { // ------------------- cudnn conv workspace --------------------- // Already on GPU void* cudnn_workspace = nullptr; - platform::GPUPlace gpu = boost::get(ctx.GetPlace()); + platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); // ------------------- cudnn conv backward data --------------------- // FIXME(typhoonzero): template type T may not be the same as cudnn call. @@ -234,16 +236,16 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn, - ops::CudnnConvTransposeOpKernel, - ops::CudnnConvTransposeOpKernel); -REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn_grad, - ops::CudnnConvTransposeGradOpKernel, - ops::CudnnConvTransposeGradOpKernel); - -REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn, - ops::CudnnConvTransposeOpKernel, - ops::CudnnConvTransposeOpKernel); -REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn_grad, - ops::CudnnConvTransposeGradOpKernel, - ops::CudnnConvTransposeGradOpKernel); +REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace, + ops::CUDNNConvTransposeOpKernel, + ops::CUDNNConvTransposeOpKernel); +REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace, + ops::CUDNNConvTransposeGradOpKernel, + ops::CUDNNConvTransposeGradOpKernel); + +REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace, + ops::CUDNNConvTransposeOpKernel, + ops::CUDNNConvTransposeOpKernel); +REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace, + ops::CUDNNConvTransposeGradOpKernel, + ops::CUDNNConvTransposeGradOpKernel); diff --git a/paddle/operators/conv_transpose_op.cc b/paddle/operators/conv_transpose_op.cc index 678b192dea..a2382a7e42 100644 --- a/paddle/operators/conv_transpose_op.cc +++ b/paddle/operators/conv_transpose_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/conv_transpose_op.h" @@ -29,6 +29,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { auto filter_dims = ctx->GetInputDim("Filter"); std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); + std::vector dilations = ctx->Attrs().Get>("dilations"); PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5, "ConvTransposeOp intput should be 4-D or 5-D tensor."); @@ -41,20 +42,48 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE_EQ(paddings.size(), strides.size(), "ConvTransposeOp paddings dimension and strides " "dimension should be the same."); + PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(), + "ConvTransposeOp paddings dimension and dilations " + "dimension should be the same."); PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0], "In ConvTransposeOp, The input channel should be the same " "as the number of filters."); std::vector output_shape({in_dims[0], filter_dims[1]}); for (size_t i = 0; i < strides.size(); ++i) { + auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1; output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + - filter_dims[i + 2]); + filter_extent); } ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); } -Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( - framework::OpProto* proto, framework::OpAttrChecker* op_checker) +framework::OpKernelType ConvTransposeOp::GetExpectedKernelType( + const framework::ExecutionContext& ctx) const { + bool use_cudnn = ctx.Attr("use_cudnn"); + use_cudnn &= platform::is_gpu_place(ctx.GetPlace()); +#ifdef PADDLE_WITH_CUDA + if (platform::is_gpu_place(ctx.GetPlace())) { + auto& dev_ctx = ctx.template device_context(); + use_cudnn &= dev_ctx.cudnn_handle() != nullptr; + } +#endif + framework::LibraryType library_; + if (use_cudnn) { + library_ = framework::LibraryType::kCUDNN; + } else { + library_ = framework::LibraryType::kPlain; + } + + std::string data_format = ctx.Attr("data_format"); + framework::DataLayout layout_ = framework::StringToDataLayout(data_format); + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Input")->type()), ctx.GetPlace(), + layout_, library_); +} + +Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(OpProto* proto, + OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "Input", @@ -73,6 +102,12 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( AddOutput("Output", "(Tensor) The output tensor of convolution transpose operator. " "The format of output tensor is also NCHW."); + + AddAttr>("dilations", + "(vector default:{1, 1}), the " + "dilations(h_dilation, w_dilation) of convolution " + "transpose operator.") + .SetDefault({1, 1}); AddAttr>( "strides", "(vector default:{1, 1}), the strides(h_stride, w_stride) of " @@ -83,11 +118,30 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( "(vector default:{0, 0}), the paddings(h_pad, w_pad) of convolution " "transpose operator.") .SetDefault({0, 0}); + AddAttr( + "use_cudnn", + "(bool, default false) Only used in cudnn kernel, need install cudnn") + .SetDefault(false); + AddAttr( + "data_format", + "(string, default NCHW) Only used in " + "An optional string from: \"NHWC\", \"NCHW\". " + "Defaults to \"NHWC\". Specify the data format of the output data, " + "the input will be transformed automatically. ") + .SetDefault("AnyLayout"); + // TODO(dzhwinter): need to registered layout transform function + AddAttr("workspace_size_MB", + "Used in cudnn kernel only. workspace size for cudnn, in MB, " + "workspace is a section of GPU memory which will be " + "allocated/freed each time the operator runs, larger " + "workspace size can increase performance but also requires " + "better hardward. This size should be carefully setted.") + .SetDefault(4096); AddComment(R"DOC( Convolution2D Transpose Operator. The convolution transpose operation calculates the output based on the input, filter -and strides, paddings, groups parameters. The size of each dimension of the +and dilations, strides, paddings, groups parameters. The size of each dimension of the parameters is checked in the infer-shape. Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the number of channels, H is the height of the feature, and W is the width of the feature. @@ -112,8 +166,8 @@ Example: )DOC"); } -Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( - framework::OpProto* proto, framework::OpAttrChecker* op_checker) +Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(OpProto* proto, + OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(Tensor) The input tensor of convolution transpose operator." @@ -136,6 +190,13 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( "Where N is batch size, C is " "the number of channels, D is the depth of the feature, H is the " "height of the feature, and W is the width of the feature."); + + AddAttr>( + "dilations", + "(vector default:{1, 1, 1}), the " + "dilations(d_dilation,h_dilation, w_dilation) of convolution " + "transpose operator.") + .SetDefault({1, 1, 1}); AddAttr>("strides", "(vector default:{1, 1, 1}), the " "strides{d_stride, h_stride, w_stride} of " @@ -145,11 +206,30 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( "(vector default:{0, 0, 0}), paddings(d_pad, " "h_pad, w_pad) of convolution transpose operator.") .SetDefault({0, 0, 0}); + AddAttr( + "use_cudnn", + "(bool, default false) Only used in cudnn kernel, need install cudnn") + .SetDefault(false); + AddAttr( + "data_format", + "(string, default NCHW) Only used in " + "An optional string from: \"NHWC\", \"NCHW\". " + "Defaults to \"NHWC\". Specify the data format of the output data, " + "the input will be transformed automatically. ") + .SetDefault("AnyLayout"); + // TODO(dzhwinter): need to registered layout transform function + AddAttr("workspace_size_MB", + "Used in cudnn kernel only. workspace size for cudnn, in MB, " + "workspace is a section of GPU memory which will be " + "allocated/freed each time the operator runs, larger " + "workspace size can increase performance but also requires " + "better hardward. This size should be carefully setted.") + .SetDefault(4096); AddComment(R"DOC( Convolution3D Transpose Operator. The convolution transpose operation calculates the output based on the input, filter -and strides, paddings, groups parameters. The size of each dimension of the +and dilations, strides, paddings, groups parameters. The size of each dimension of the parameters is checked in the infer-shape. Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of the feature, @@ -187,6 +267,30 @@ void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const { } } +framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType( + const framework::ExecutionContext& ctx) const { + bool use_cudnn = ctx.Attr("use_cudnn"); + use_cudnn &= platform::is_gpu_place(ctx.GetPlace()); +#ifdef PADDLE_WITH_CUDA + if (platform::is_gpu_place(ctx.GetPlace())) { + auto& dev_ctx = ctx.template device_context(); + use_cudnn &= dev_ctx.cudnn_handle() != nullptr; + } +#endif + framework::LibraryType library_; + if (use_cudnn) { + library_ = framework::LibraryType::kCUDNN; + } else { + library_ = framework::LibraryType::kPlain; + } + + std::string data_format = ctx.Attr("data_format"); + framework::DataLayout layout_ = framework::StringToDataLayout(data_format); + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Input")->type()), ctx.GetPlace(), + layout_, library_); +} + } // namespace operators } // namespace paddle @@ -197,21 +301,23 @@ REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker, REGISTER_OP_CPU_KERNEL( conv2d_transpose, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv2d_transpose_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker, conv3d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OP_CPU_KERNEL( conv3d_transpose, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv3d_transpose_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv_transpose_op.cu.cc b/paddle/operators/conv_transpose_op.cu.cc index 4165eb0c7b..f1d827c606 100644 --- a/paddle/operators/conv_transpose_op.cu.cc +++ b/paddle/operators/conv_transpose_op.cu.cc @@ -1,35 +1,39 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/conv_transpose_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( conv2d_transpose, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); -REGISTER_OP_GPU_KERNEL( + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); +REGISTER_OP_CUDA_KERNEL( conv2d_transpose_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( conv3d_transpose, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); -REGISTER_OP_GPU_KERNEL( + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); +REGISTER_OP_CUDA_KERNEL( conv3d_transpose_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv_transpose_op.h b/paddle/operators/conv_transpose_op.h index 1cacb770e6..a42ade41b1 100644 --- a/paddle/operators/conv_transpose_op.h +++ b/paddle/operators/conv_transpose_op.h @@ -30,29 +30,35 @@ using DDim = framework::DDim; // operator implementations can reuse the code. class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: - Conv2DTransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Conv2DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: - Conv3DTransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Conv3DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class ConvTransposeOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override; }; class ConvTransposeOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override; }; -template +template class GemmConvTransposeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -63,6 +69,7 @@ class GemmConvTransposeKernel : public framework::OpKernel { std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); + std::vector dilations = context.Attr>("dilations"); // groups will alway be disabled in conv2dtranspose. const int batch_size = static_cast(input->dims()[0]); @@ -109,12 +116,12 @@ class GemmConvTransposeKernel : public framework::OpKernel { filter.Resize(filter_matrix_shape); output->mutable_data(context.GetPlace()); - math::SetConstant set_zero; - set_zero(context.device_context(), output, static_cast(0)); + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); + set_zero(dev_ctx, output, static_cast(0)); - math::Col2ImFunctor col2im; - math::Col2VolFunctor col2vol; - std::vector dilations({1, 1, 1}); + math::Col2ImFunctor col2im; + math::Col2VolFunctor col2vol; // convolution transpose: gemm + col2im or col2vol (similar to conv-backward // on input) @@ -127,29 +134,27 @@ class GemmConvTransposeKernel : public framework::OpKernel { // col_matrix = filter * input_batch // of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w) - math::matmul(context.device_context(), filter, true, - input_batch, false, static_cast(1.0), - &col_matrix, static_cast(0.0)); + math::matmul(dev_ctx, filter, true, input_batch, false, + static_cast(1.0), &col_matrix, + static_cast(0.0)); if (data_dim == 2U) { // col2im: col_matrix -> dy // from (c * k_h * k_w, h * w) to (c, o_h, o_w) - col2im(context.device_context(), col, - std::vector{dilations[0], dilations[1]}, strides, - std::vector{paddings[0], paddings[1], paddings[0], - paddings[1]}, + col2im(dev_ctx, col, std::vector{dilations[0], dilations[1]}, + strides, std::vector{paddings[0], paddings[1], paddings[0], + paddings[1]}, &output_batch); } else if (data_dim == 3U) { // col2vol: col_matrix -> dy // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w) - col2vol(context.device_context(), col, dilations, strides, paddings, - &output_batch); + col2vol(dev_ctx, col, dilations, strides, paddings, &output_batch); } } } }; -template +template class GemmConvTransposeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -168,6 +173,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); + std::vector dilations = context.Attr>("dilations"); const int batch_size = static_cast(input->dims()[0]); @@ -206,6 +212,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { // convolution transpose grad on input: // im2col + gemm (similar to conv-forward) // input need to compute gradient + auto& dev_ctx = context.template device_context(); if (input_grad || filter_grad) { Tensor col; col.mutable_data(col_shape, context.GetPlace()); @@ -217,19 +224,17 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { col_matrix.Resize(col_matrix_shape); Tensor filter_grad_; - math::SetConstant set_zero; + math::SetConstant set_zero; - math::Im2ColFunctor im2col; - math::Vol2ColFunctor vol2col; - std::vector dilations({1, 1, 1}); + math::Im2ColFunctor im2col; + math::Vol2ColFunctor vol2col; if (input_grad) { input_grad->mutable_data(context.GetPlace()); - set_zero(context.device_context(), input_grad, static_cast(0)); } if (filter_grad) { // filter size (m, c, k_h, k_w) filter_grad->mutable_data(context.GetPlace()); - set_zero(context.device_context(), filter_grad, static_cast(0)); + set_zero(dev_ctx, filter_grad, static_cast(0)); filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); } @@ -242,7 +247,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { if (data_dim == 2U) { // im2col: dy -> col matrix // from (c, o_h, o_w) to (c * k_h * k_w, h * w) - im2col(context.device_context(), output_grad_batch, + im2col(dev_ctx, output_grad_batch, std::vector{dilations[0], dilations[1]}, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, @@ -250,8 +255,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { } else if (data_dim == 3U) { // vol2col: dy -> col_matrix // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w) - vol2col(context.device_context(), output_grad_batch, dilations, - strides, paddings, &col); + vol2col(dev_ctx, output_grad_batch, dilations, strides, paddings, + &col); } if (input_grad) { @@ -263,9 +268,9 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { // or // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m, // d, h, w) - math::matmul(context.device_context(), filter, false, - col_matrix, false, static_cast(1.0), - &input_grad_batch, static_cast(0.0)); + math::matmul( + dev_ctx, filter, false, col_matrix, false, static_cast(1.0), + &input_grad_batch, static_cast(0.0)); } if (filter_grad) { // input batch @@ -275,9 +280,9 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { // or // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d * // k_h * k_w) - math::matmul(context.device_context(), in_batch, false, - col_matrix, true, static_cast(1.0), - &filter_grad_, static_cast(1.0)); + math::matmul(dev_ctx, in_batch, false, col_matrix, + true, static_cast(1.0), + &filter_grad_, static_cast(1.0)); } } } diff --git a/paddle/operators/cos_sim_op.cc b/paddle/operators/cos_sim_op.cc index 312264ccd4..9019a1edb3 100644 --- a/paddle/operators/cos_sim_op.cc +++ b/paddle/operators/cos_sim_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/cos_sim_op.h" @@ -62,7 +62,7 @@ class CosSimOp : public framework::OperatorWithKernel { class CosSimOpMaker : public framework::OpProtoAndCheckerMaker { public: - CosSimOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + CosSimOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The 1st input of cos_sim op."); AddInput("Y", "The 2nd input of cos_sim op."); @@ -155,7 +155,8 @@ class CosSimOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad, ops::CosSimOpGrad); -REGISTER_OP_CPU_KERNEL(cos_sim, - ops::CosSimKernel); REGISTER_OP_CPU_KERNEL( - cos_sim_grad, ops::CosSimGradKernel); + cos_sim, ops::CosSimKernel); +REGISTER_OP_CPU_KERNEL( + cos_sim_grad, + ops::CosSimGradKernel); diff --git a/paddle/operators/cos_sim_op.cu b/paddle/operators/cos_sim_op.cu index 0cb8fd26de..9e5d1b6e4f 100644 --- a/paddle/operators/cos_sim_op.cu +++ b/paddle/operators/cos_sim_op.cu @@ -1,22 +1,23 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/cos_sim_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(cos_sim, - ops::CosSimKernel); -REGISTER_OP_GPU_KERNEL( - cos_sim_grad, ops::CosSimGradKernel); +REGISTER_OP_CUDA_KERNEL( + cos_sim, ops::CosSimKernel); +REGISTER_OP_CUDA_KERNEL( + cos_sim_grad, + ops::CosSimGradKernel); diff --git a/paddle/operators/cos_sim_op.h b/paddle/operators/cos_sim_op.h index 62a4e484ec..eadcca55f9 100644 --- a/paddle/operators/cos_sim_op.h +++ b/paddle/operators/cos_sim_op.h @@ -1,33 +1,29 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once -#include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/math/cos_sim_functor.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/platform/for_range.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; -template -using EigenMatrix = framework::EigenMatrix; -template -using EigenVector = framework::EigenVector; -template +template class CosSimKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -41,32 +37,30 @@ class CosSimKernel : public framework::OpKernel { out_x_norm->mutable_data(context.GetPlace()); out_y_norm->mutable_data(context.GetPlace()); - // convert Tensor to Eigen Tensor int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; - auto x = EigenMatrix::Reshape(*in_x, 1); - auto y = EigenMatrix::Reshape(*in_y, 1); - auto z = EigenVector::Flatten(*out_z); - auto x_norm = EigenVector::Flatten(*out_x_norm); - auto y_norm = EigenVector::Flatten(*out_y_norm); - // compute - auto place = context.GetEigenDevice(); - auto row_along = Eigen::array({{1}}); - x_norm.device(place) = x.square().sum(row_along).sqrt(); - y_norm.device(place) = y.square().sum(row_along).sqrt(); + int cols = framework::product(in_x->dims()) / rows_x; + if (rows_x == rows_y) { - auto xy = (x * y).sum(Eigen::array({{1}})); - z.device(place) = xy / x_norm / y_norm; + math::CosSimFunctor functor( + in_x->data(), in_y->data(), out_x_norm->data(), + out_y_norm->data(), out_z->data(), cols); + platform::ForRange for_range( + static_cast(context.device_context()), rows_x); + for_range(functor); } else { - Eigen::DSizes bcast(rows_x, 1); - auto xy = (x * y.broadcast(bcast)).sum(row_along); - z.device(place) = xy / x_norm / y_norm.broadcast(bcast); + math::CosSimFunctor functor( + in_x->data(), in_y->data(), out_x_norm->data(), + out_y_norm->data(), out_z->data(), cols); + platform::ForRange for_range( + static_cast(context.device_context()), rows_x); + for_range(functor); } } }; -template +template class CosSimGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -80,61 +74,54 @@ class CosSimGradKernel : public framework::OpKernel { auto* out_grad_y = context.Output(framework::GradVarName("Y")); auto* in_grad_z = context.Input(framework::GradVarName("Out")); - // convert Tensor to Eigen Tensor - auto x = EigenMatrix::Reshape(*in_x, 1); - auto y = EigenMatrix::Reshape(*in_y, 1); - auto z = EigenMatrix::Reshape(*in_z, 1); - auto x_norm = EigenMatrix::Reshape(*in_x_norm, 1); - auto y_norm = EigenMatrix::Reshape(*in_y_norm, 1); - auto dz = EigenMatrix::Reshape(*in_grad_z, 1); - // compute gradident int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; int cols = framework::product(in_x->dims()) / rows_x; - Eigen::DSizes bcast_cols(1, cols); - auto z_bcast = z.broadcast(bcast_cols); - auto dz_bcast = dz.broadcast(bcast_cols); - auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols); - auto place = context.GetEigenDevice(); + if (rows_x == rows_y) { - auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols); - auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols); - // compute dx if (out_grad_x) { - out_grad_x->mutable_data(context.GetPlace()); - auto dx = EigenMatrix::Reshape(*out_grad_x, 1); - auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast; - dx.device(place) = dz_bcast * grad; + math::CosSimGradFunctor functor( + in_x_norm->data(), in_y_norm->data(), in_x->data(), + in_y->data(), in_z->data(), in_grad_z->data(), + out_grad_x->mutable_data(context.GetPlace()), cols); + platform::ForRange for_range( + static_cast(context.device_context()), + rows_x); + for_range(functor); } - // compute dy if (out_grad_y) { - out_grad_y->mutable_data(context.GetPlace()); - auto dy = EigenMatrix::Reshape(*out_grad_y, 1); - auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast; - dy.device(place) = dz_bcast * grad; + math::CosSimGradFunctor functor( + in_y_norm->data(), in_x_norm->data(), in_y->data(), + in_x->data(), in_z->data(), in_grad_z->data(), + out_grad_y->mutable_data(context.GetPlace()), cols); + platform::ForRange for_range( + static_cast(context.device_context()), + rows_x); + for_range(functor); } } else { - Eigen::DSizes bcast_rows(rows_x, 1); - Eigen::DSizes bcast_rows_cols(rows_x, cols); - auto y_bcast = y.broadcast(bcast_rows); - auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols); - auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows)) - .eval() - .broadcast(bcast_cols); - // compute dx if (out_grad_x) { - out_grad_x->mutable_data(context.GetPlace()); - auto dx = EigenMatrix::Reshape(*out_grad_x, 1); - auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast; - dx.device(place) = dz_bcast * grad; + math::CosSimDxFunctor functor( + in_x_norm->data(), in_y_norm->data(), in_x->data(), + in_y->data(), in_z->data(), in_grad_z->data(), + out_grad_x->mutable_data(context.GetPlace()), cols); + platform::ForRange for_range( + static_cast(context.device_context()), + rows_x); + for_range(functor); } - // compute dy if (out_grad_y) { out_grad_y->mutable_data(context.GetPlace()); - auto dy = EigenVector::Flatten(*out_grad_y); - auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast; - dy.device(place) = (dz_bcast * grad).sum(Eigen::array({{0}})); + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); + set_zero(dev_ctx, out_grad_y, static_cast(0)); + + math::CosSimDyFunctor functor; + functor(dev_ctx, in_x_norm->data(), in_y_norm->data(), + in_x->data(), in_y->data(), in_z->data(), + in_grad_z->data(), static_cast(rows_x), + static_cast(cols), out_grad_y->data()); } } } diff --git a/paddle/operators/crf_decoding_op.cc b/paddle/operators/crf_decoding_op.cc index 291b23ed1b..30626028c1 100644 --- a/paddle/operators/crf_decoding_op.cc +++ b/paddle/operators/crf_decoding_op.cc @@ -18,8 +18,7 @@ namespace paddle { namespace operators { class CRFDecodingOpMaker : public framework::OpProtoAndCheckerMaker { public: - CRFDecodingOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CRFDecodingOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Emission", "(LoDTensor, default: LoDTensor). A LoDTensor with shape " @@ -121,11 +120,11 @@ class CRFDecodingOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Emission")->type()), - ctx.device_context()); + platform::CPUPlace()); } }; } // namespace operators @@ -135,5 +134,6 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(crf_decoding, ops::CRFDecodingOp, ops::CRFDecodingOpMaker); REGISTER_OP_CPU_KERNEL( - crf_decoding, ops::CRFDecodingOpKernel, - ops::CRFDecodingOpKernel); + crf_decoding, + ops::CRFDecodingOpKernel, + ops::CRFDecodingOpKernel); diff --git a/paddle/operators/crf_decoding_op.h b/paddle/operators/crf_decoding_op.h index 57b5e21b3a..ce2f4e6622 100644 --- a/paddle/operators/crf_decoding_op.h +++ b/paddle/operators/crf_decoding_op.h @@ -24,13 +24,10 @@ using framework::LoDTensor; using framework::LoD; using framework::Tensor; -template +template class CRFDecodingOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), - "The crf_decoding operator can only run on CPU."); - auto* emission_weights = ctx.Input("Emission"); auto* transition_weights = ctx.Input("Transition"); auto* label = ctx.Input("Label"); @@ -44,8 +41,8 @@ class CRFDecodingOpKernel : public framework::OpKernel { const size_t seq_num = lod[level].size() - 1; int64_t* path = decoded_path->mutable_data(platform::CPUPlace()); - math::SetConstant()(ctx.device_context(), - decoded_path, 0); + math::SetConstant()( + ctx.template device_context(), decoded_path, 0); for (size_t i = 0; i < seq_num; ++i) { int start_pos = static_cast(lod[level][i]); int end_pos = static_cast(lod[level][i + 1]); diff --git a/paddle/operators/crop_op.cc b/paddle/operators/crop_op.cc index 6752eb8c1c..310e351443 100644 --- a/paddle/operators/crop_op.cc +++ b/paddle/operators/crop_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/crop_op.h" #include @@ -52,7 +52,7 @@ class CropOp : public framework::OperatorWithKernel { class CropOpMaker : public framework::OpProtoAndCheckerMaker { public: - CropOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + CropOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of pad op. " @@ -88,7 +88,8 @@ There are two ways to set shape: The input should be a k-D tensor(k > 0 and k < 7). As an example: -Given: +Case 1: +Given X = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] @@ -107,6 +108,27 @@ we get: Out = [[1, 2], [3, 4]]. + +Case 2: +Given + + X = [[0, 1, 2, 5, 0] + [0, 3, 4, 6, 0] + [0, 0, 0, 0, 0]], + +and + + offsets = [0, 1], + +and + + Y = [[0, 0, 0] + [0, 0, 0]], + +we get: + + Out = [[1, 2, 5], + [3, 4, 6]]. )DOC"); } }; @@ -133,5 +155,5 @@ class CropOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad); REGISTER_OP_CPU_KERNEL(crop, ops::CropKernel); -REGISTER_OP_CPU_KERNEL(crop_grad, - ops::CropGradKernel); +REGISTER_OP_CPU_KERNEL( + crop_grad, ops::CropGradKernel); diff --git a/paddle/operators/crop_op.cu b/paddle/operators/crop_op.cu index f8ee18a1d6..bba5db4c6c 100644 --- a/paddle/operators/crop_op.cu +++ b/paddle/operators/crop_op.cu @@ -1,21 +1,21 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/crop_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(crop, ops::CropKernel); -REGISTER_OP_GPU_KERNEL(crop_grad, - ops::CropGradKernel); +REGISTER_OP_CUDA_KERNEL(crop, ops::CropKernel); +REGISTER_OP_CUDA_KERNEL( + crop_grad, ops::CropGradKernel); diff --git a/paddle/operators/crop_op.h b/paddle/operators/crop_op.h index 2e72583d68..69d1a92977 100644 --- a/paddle/operators/crop_op.h +++ b/paddle/operators/crop_op.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 CropdleCropdle Authors. All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -49,7 +49,7 @@ class CropKernel : public framework::OpKernel { } }; -template +template void CropGradFunction(const framework::ExecutionContext& context) { auto* d_x = context.Output(framework::GradVarName("X")); if (d_x != nullptr) { @@ -63,12 +63,13 @@ void CropGradFunction(const framework::ExecutionContext& context) { } auto d_x_tensor = EigenTensor::From(*d_x); auto d_out_tensor = EigenTensor::From(*d_out); - d_x_tensor.device(context.GetEigenDevice()) = + d_x_tensor.device( + *context.template device_context().eigen_device()) = d_out_tensor.pad(paddings, 0); } } -template +template class CropGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -76,22 +77,22 @@ class CropGradKernel : public framework::OpKernel { context.Input(framework::GradVarName("Out"))->dims().size(); switch (rank) { case 1: - CropGradFunction(context); + CropGradFunction(context); break; case 2: - CropGradFunction(context); + CropGradFunction(context); break; case 3: - CropGradFunction(context); + CropGradFunction(context); break; case 4: - CropGradFunction(context); + CropGradFunction(context); break; case 5: - CropGradFunction(context); + CropGradFunction(context); break; case 6: - CropGradFunction(context); + CropGradFunction(context); break; default: PADDLE_THROW( diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index 1e82742eaf..7abd5b1c61 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -51,7 +51,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of computation kernel of cross_entropy // is determined by its input "X". - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -95,12 +95,13 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { "Input(Label) should be 1."); } ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + ctx->ShareLoD("X", framework::GradVarName("X")); } protected: // Explicitly set that the data type of computation kernel of cross_entropy // is determined by its input "X". - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -110,19 +111,18 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { public: - CrossEntropyOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CrossEntropyOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", - "(Tensor, default Tensor), a 2-D tensor with shape N x D, " - "where N is the batch size and D is the number of classes. " + "(Tensor, default Tensor), a 2-D tensor with shape [N x D]," + " where N is the batch size and D is the number of classes. " "This input is a probability computed by the previous operator, " "which is almost always the result of a softmax operator."); AddInput("Label", "(Tensor), the ground truth which is a 2-D tensor. When " "soft_label is set to false, Label is a Tensor with shape " "[N x 1]. When soft_label is set to true, Label is a " - "Tensor with shape [N x K]."); + "Tensor with shape [N x D]."); AddOutput("Y", "(Tensor, default Tensor), a 2-D tensor with shape " "[N x 1]. The cross entropy loss."); diff --git a/paddle/operators/cross_entropy_op.cu b/paddle/operators/cross_entropy_op.cu index 6212e39dfd..3b04894e6c 100644 --- a/paddle/operators/cross_entropy_op.cu +++ b/paddle/operators/cross_entropy_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/cross_entropy_op.h" @@ -53,8 +53,9 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel { Tensor* y = ctx.Output("Y"); y->mutable_data(ctx.GetPlace()); - math::CrossEntropyFunctor()( - ctx.device_context(), y, x, label, ctx.Attr("soft_label")); + math::CrossEntropyFunctor()( + ctx.template device_context(), y, x, label, + ctx.Attr("soft_label")); } }; @@ -80,15 +81,17 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel { int block = 512; int grid = (batch_size * class_num + block - 1) / block; - auto stream = ctx.cuda_device_context().stream(); + + auto& dev_ctx = ctx.template device_context(); + auto stream = dev_ctx.stream(); if (ctx.Attr("soft_label")) { auto* label_data = label->data(); SoftCrossEntropyGradientKernel<<>>( dx_data, dy_data, x_data, label_data, batch_size, class_num); } else { - math::SetConstant functor; - functor(ctx.device_context(), dx, 0); + math::SetConstant functor; + functor(dev_ctx, dx, 0); auto* label_data = label->data(); grid = (batch_size + block - 1) / block; CrossEntropyGradientKernel<<>>( @@ -101,8 +104,8 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel, - ops::CrossEntropyOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(cross_entropy_grad, - ops::CrossEntropyGradientOpCUDAKernel, - ops::CrossEntropyGradientOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel, + ops::CrossEntropyOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(cross_entropy_grad, + ops::CrossEntropyGradientOpCUDAKernel, + ops::CrossEntropyGradientOpCUDAKernel); diff --git a/paddle/operators/cross_entropy_op.h b/paddle/operators/cross_entropy_op.h index 37db0a930a..5623d2ded1 100644 --- a/paddle/operators/cross_entropy_op.h +++ b/paddle/operators/cross_entropy_op.h @@ -37,8 +37,9 @@ class CrossEntropyOpKernel : public framework::OpKernel { Tensor* y = ctx.Output("Y"); y->mutable_data(ctx.GetPlace()); - math::CrossEntropyFunctor()( - ctx.device_context(), y, x, labels, ctx.Attr("soft_label")); + math::CrossEntropyFunctor()( + ctx.template device_context(), y, x, labels, + ctx.Attr("soft_label")); } }; @@ -61,7 +62,8 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel { auto lbl_mat = EigenMatrix::From(*label); auto dx_mat = EigenMatrix::From(*dx); - dx_mat.device(ctx.GetEigenDevice()) = + dx_mat.device(*ctx.template device_context() + .eigen_device()) = -(lbl_mat * dy_mat.broadcast(Eigen::DSizes(1, class_num)) / x_mat); } else { @@ -70,8 +72,8 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel { const T* x_data = x->data(); const int64_t* label_data = label->data(); - math::SetConstant functor; - functor(ctx.device_context(), dx, 0); + math::SetConstant functor; + functor(ctx.template device_context(), dx, 0); for (int64_t i = 0; i < batch_size; ++i) { PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num); diff --git a/paddle/operators/ctc_align_op.cc b/paddle/operators/ctc_align_op.cc new file mode 100644 index 0000000000..eeecbd3212 --- /dev/null +++ b/paddle/operators/ctc_align_op.cc @@ -0,0 +1,93 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/ctc_align_op.h" + +namespace paddle { +namespace operators { + +class CTCAlignOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Input"), + "Input of CTCAlignOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Output"), + "Output of CTCAlignOp should not be null."); + + auto input_dims = ctx->GetInputDim("Input"); + + // TODO(wanghaoshuang): it is tricky to set the wrong dimension here. + ctx->SetOutputDim("Output", input_dims); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Input")->type()), + ctx.device_context()); + } +}; + +class CTCAlignOpMaker : public framework::OpProtoAndCheckerMaker { + public: + CTCAlignOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Input", + "(LodTensor, default: LoDTensor), Its shape is " + "[Lp, 1], where Lp is the sum of all input sequences' length."); + AddOutput("Output", "(Tensor, default: Tensor), The align result."); + AddAttr("blank", + "(int, default: 0), the blank label setted in Connectionist " + "Temporal Classification (CTC) op.") + .SetDefault(0); + AddAttr("merge_repeated", + "(bool, default: true), whether to " + "merge repeated elements between two blanks. ") + .SetDefault(true); + AddComment(R"DOC( +CTCAlign op is used to merge repeated elements between two blanks +and then delete all blanks in sequence. + +Given: + Input.data = [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, + 6, 0, 0, 7, 7, 7, 0] + Input.dims = {18, 1} + Input.LoD = [[0, 11, 18]] + +And: + blank = 0 + merge_repeated = True + +Then: + Output.data = [1, 2, 4, 4, 5, 6, + 6, 7] + Output.dims = {8, 1} + Output.LoD = [[0, 6, 8]] + +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(ctc_align, ops::CTCAlignOp, ops::CTCAlignOpMaker, + paddle::framework::EmptyGradOpMaker); +REGISTER_OP_CPU_KERNEL( + ctc_align, ops::CTCAlignKernel, + ops::CTCAlignKernel); diff --git a/paddle/operators/ctc_align_op.cu b/paddle/operators/ctc_align_op.cu new file mode 100644 index 0000000000..45635f1674 --- /dev/null +++ b/paddle/operators/ctc_align_op.cu @@ -0,0 +1,91 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include +#include "paddle/operators/ctc_align_op.h" + +namespace paddle { +namespace operators { + +template +__global__ void MergeAndDelCudaKernel(const int64_t num_token, const T* tokens, + const size_t num_seq, size_t* lod0, + const int blank, const int merge_repeated, + size_t* out_lod0, T* output) { + int ouput_idx = 0; + out_lod0[0] = 0; + + for (int i = 0; i < num_seq; ++i) { + T pre_token = -1; + for (int j = lod0[i]; j < lod0[i + 1]; ++j) { + if (tokens[j] != blank && !(merge_repeated && tokens[j] == pre_token)) { + output[ouput_idx] = tokens[j]; + ++ouput_idx; + } + pre_token = tokens[j]; + } + out_lod0[i + 1] = ouput_idx; + } +} + +template +class CTCAlignOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use CUDAPlace."); + const size_t level = 0; + auto* input = ctx.Input("Input"); + auto* output = ctx.Output("Output"); + auto input_lod = framework::ToAbsOffset(input->lod()); + + const T* tokens = input->data(); + const int64_t num_tokens = input->dims()[0]; + const size_t num_seq = input_lod[level].size() - 1; + + const int blank = ctx.Attr("blank"); + const int merge_repeated = + static_cast(ctx.Attr("merge_repeated")); + + // prepare a lod to record lod information while merging elements + thrust::device_vector dev_out_lod0(input_lod[level].size()); + size_t* dev_out_lod0_ptr = thrust::raw_pointer_cast(dev_out_lod0.data()); + + // merge elements and delete blank + T* output_data = output->mutable_data({num_tokens, 1}, ctx.GetPlace()); + + auto stream = ctx.cuda_device_context().stream(); + MergeAndDelCudaKernel<<<1, 1, 0, stream>>>( + num_tokens, tokens, num_seq, input_lod[level].data(), blank, + merge_repeated, dev_out_lod0_ptr, output_data); + + // set output lod + thrust::host_vector host_out_lod0(dev_out_lod0.begin(), + dev_out_lod0.end()); + framework::LoD out_lod; + out_lod.push_back(host_out_lod0); + output->set_lod(out_lod); + + // resize output dims + output->Resize({static_cast(host_out_lod0.back()), 1}); + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OP_CUDA_KERNEL(ctc_align, paddle::operators::CTCAlignOpCUDAKernel, + paddle::operators::CTCAlignOpCUDAKernel); diff --git a/paddle/operators/ctc_align_op.h b/paddle/operators/ctc_align_op.h new file mode 100644 index 0000000000..589413feb3 --- /dev/null +++ b/paddle/operators/ctc_align_op.h @@ -0,0 +1,75 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/framework/op_registry.h" +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; + +template +class CTCAlignKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* input = ctx.Input("Input"); + auto* output = ctx.Output("Output"); + const size_t level = 0; + auto input_lod = framework::ToAbsOffset(input->lod()); + + // check input dims and lod + auto input_dims = input->dims(); + PADDLE_ENFORCE_EQ(input_dims[0], + static_cast(input_lod[level].back()), + "The first dimension of Input(Input) should be equal to " + "the sum of all sequences' lengths."); + + const size_t num_sequences = input_lod[level].size() - 1; + size_t blank = static_cast(ctx.Attr("blank")); + bool merge_repeated = ctx.Attr("merge_repeated"); + + // merge repeated tokens and delete blank + T* output_data = output->mutable_data(ctx.GetPlace()); + size_t output_idx = 0; + std::vector output_lod0(1, 0); + const T* input_data = input->data(); + for (size_t seq_idx = 0; seq_idx < num_sequences; ++seq_idx) { + T prev_token = -1; + for (size_t i = input_lod[level][seq_idx]; + i < input_lod[level][seq_idx + 1]; ++i) { + if (input_data[i] != blank && + !(merge_repeated && input_data[i] == prev_token)) { + output_data[output_idx] = input_data[i]; + ++output_idx; + } + prev_token = input_data[i]; + } + output_lod0.push_back(output_idx); + } + + // set output lod + framework::LoD output_lod; + output_lod.push_back(output_lod0); + output->set_lod(output_lod); + + // resize output dims + output->Resize({static_cast(output_lod0.back()), 1}); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/decayed_adagrad_op.cc b/paddle/operators/decayed_adagrad_op.cc index 640b4e7744..739a8d881c 100644 --- a/paddle/operators/decayed_adagrad_op.cc +++ b/paddle/operators/decayed_adagrad_op.cc @@ -55,8 +55,7 @@ class DecayedAdagradOp : public framework::OperatorWithKernel { class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker { public: - DecayedAdagradOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + DecayedAdagradOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -99,4 +98,4 @@ REGISTER_OP_WITHOUT_GRADIENT(decayed_adagrad, ops::DecayedAdagradOp, ops::DecayedAdagradOpMaker); REGISTER_OP_CPU_KERNEL( decayed_adagrad, - ops::DecayedAdagradOpKernel); + ops::DecayedAdagradOpKernel); diff --git a/paddle/operators/decayed_adagrad_op.cu b/paddle/operators/decayed_adagrad_op.cu index 6fce77fe4e..7bc8161f23 100644 --- a/paddle/operators/decayed_adagrad_op.cu +++ b/paddle/operators/decayed_adagrad_op.cu @@ -1,21 +1,21 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/decayed_adagrad_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( decayed_adagrad, - ops::DecayedAdagradOpKernel); + ops::DecayedAdagradOpKernel); diff --git a/paddle/operators/decayed_adagrad_op.h b/paddle/operators/decayed_adagrad_op.h index 0fe0fc5acd..fec9705cfc 100644 --- a/paddle/operators/decayed_adagrad_op.h +++ b/paddle/operators/decayed_adagrad_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class DecayedAdagradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -43,7 +43,7 @@ class DecayedAdagradOpKernel : public framework::OpKernel { auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); moment_out.device(place) = decay * moment + (1 - decay) * grad * grad; Eigen::DSizes m_dsize(moment_out_tensor->numel()); diff --git a/paddle/operators/detail/CMakeLists.txt b/paddle/operators/detail/CMakeLists.txt index f6bdc63cc2..571a75c9dc 100644 --- a/paddle/operators/detail/CMakeLists.txt +++ b/paddle/operators/detail/CMakeLists.txt @@ -1 +1 @@ -grpc_library(sendrecvop_grpc SRCS recv_impl.cc send_impl.cc PROTO send_recv.proto DEPS lod_tensor selected_rows) +grpc_library(sendrecvop_grpc SRCS sendrecvop_utils.cc grpc_client.cc grpc_server.cc PROTO send_recv.proto DEPS lod_tensor selected_rows) diff --git a/paddle/operators/detail/grpc_client.cc b/paddle/operators/detail/grpc_client.cc new file mode 100644 index 0000000000..1e41587c41 --- /dev/null +++ b/paddle/operators/detail/grpc_client.cc @@ -0,0 +1,150 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "grpc_client.h" +namespace paddle { +namespace operators { +namespace detail { + +bool RPCClient::AsyncSendVariable(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out) { + sendrecv::VariableMessage req; + auto* var = scope.FindVar(var_name); + SerializeToMessage(var_name, var, ctx, &req); + + // varhandle + VarHandle var_h; + var_h.ep = ep; + var_h.scope = &scope; + var_h.name = var_name; + var_h.ctx = &ctx; + + // stub context + auto ch = GetChannel(ep); + SendProcessor* s = new SendProcessor(ch); + s->Prepare(var_h, time_out); + s->response_call_back_ = NULL; + + auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_); + rpc->Finish(&s->reply_, &s->status_, (void*)s); + + req_count_++; + + return true; +} + +void ProcGetResponse(const VarHandle& var_h, + const sendrecv::VariableMessage& ret_msg) { + auto* outvar = var_h.scope->FindVar(var_h.name); + + std::istringstream iss(ret_msg.serialized()); + DeserializeFromMessage(ret_msg, *var_h.ctx, outvar); +} + +bool RPCClient::AsyncGetVariable(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out) { + sendrecv::VariableMessage req; + req.set_varname(var_name); + + // varhandle + VarHandle var_h; + var_h.ep = ep; + var_h.scope = &scope; + var_h.name = var_name; + var_h.ctx = &ctx; + + // stub context + auto ch = GetChannel(ep); + GetProcessor* s = new GetProcessor(ch); + s->Prepare(var_h, time_out); + s->response_call_back_ = ProcGetResponse; + + auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_); + rpc->Finish(&s->reply_, &s->status_, (void*)s); + + req_count_++; + + return true; +} + +bool RPCClient::Wait() { + bool ok = true; + + while (true) { + if (req_count_ <= 0) { + break; + } + + if (!Proceed()) { + return false; + } + } + + return ok; +} + +bool RPCClient::Proceed() { + void* tag = NULL; + bool ok = false; + + // request counts. + if (!cq_.Next(&tag, &ok)) { + LOG(ERROR) << "Get meets CompletionQueue error"; + return false; + } + + GPR_ASSERT(ok); + PADDLE_ENFORCE(tag); + + // TODO(gongwb): add more retries. + ClientBase* c = static_cast(tag); + if (!c->status_.ok()) { + LOG(ERROR) << "proc param error:" << c->var_h_.String() + << " grpc error:" << c->status_.error_message(); + delete c; + return false; + } + + c->Process(); + delete c; + req_count_--; + return true; +} + +std::shared_ptr RPCClient::GetChannel(const std::string& ep) { + auto it = channels_.find(ep); + if (it != channels_.end()) { + return it->second; + } + + grpc::ChannelArguments args; + args.SetMaxSendMessageSize(std::numeric_limits::max()); + args.SetMaxReceiveMessageSize(std::numeric_limits::max()); + + auto ch = std::shared_ptr( + grpc::CreateCustomChannel(ep, grpc::InsecureChannelCredentials(), args)); + + channels_[ep] = ch; + return ch; +} + +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/detail/grpc_client.h b/paddle/operators/detail/grpc_client.h new file mode 100644 index 0000000000..a62e70a253 --- /dev/null +++ b/paddle/operators/detail/grpc_client.h @@ -0,0 +1,147 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "paddle/framework/data_type.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/scope.h" +#include "paddle/framework/selected_rows.h" +#include "paddle/operators/detail/sendrecvop_utils.h" +#include "paddle/operators/detail/simple_block_queue.h" + +namespace paddle { +namespace operators { +namespace detail { + +struct VarHandle { + std::string ep; + const platform::DeviceContext* ctx; + const framework::Scope* scope; + std::string name; + + std::string String() const { + std::ostringstream s; + s << "name:[" << name << "] ep:[" << ep << "]"; + return s.str(); + } +}; + +void ProcGetResponse(const VarHandle& var_h, + const sendrecv::VariableMessage& msg); + +class ClientBase { + public: + explicit ClientBase(std::shared_ptr ch) { + stub_ = sendrecv::SendRecvService::NewStub(ch); + context_ = NULL; + } + + virtual ~ClientBase() {} + + virtual void Prepare(const VarHandle& var_info, int64_t time_out) { + context_.reset(new grpc::ClientContext()); + var_h_ = var_info; + + std::chrono::system_clock::time_point deadline = + std::chrono::system_clock::now() + std::chrono::milliseconds(time_out); + + context_->set_deadline(deadline); + } + + virtual void Process() = 0; + + std::unique_ptr stub_; + std::unique_ptr context_; + grpc::Status status_; + VarHandle var_h_; +}; + +typedef std::function + RequestSendCallBack; + +class SendProcessor : public ClientBase { + public: + explicit SendProcessor(std::shared_ptr ch) : ClientBase(ch) {} + + virtual ~SendProcessor() {} + + virtual void Process() { + if (response_call_back_) { + response_call_back_(var_h_, reply_); + } + } + + sendrecv::VoidMessage reply_; + RequestSendCallBack response_call_back_ = NULL; +}; + +typedef std::function + RequestGetCallBack; + +class GetProcessor : public ClientBase { + public: + explicit GetProcessor(std::shared_ptr ch) : ClientBase(ch) {} + + virtual ~GetProcessor() {} + + virtual void Process() { + if (response_call_back_) { + response_call_back_(var_h_, reply_); + } + } + + sendrecv::VariableMessage reply_; + RequestGetCallBack response_call_back_ = ProcGetResponse; +}; + +class RPCClient { + public: + bool AsyncSendVariable(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out = 600 * 1000); + + bool AsyncGetVariable(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out = 600 * 1000); + bool Wait(); + + private: + bool Proceed(); + std::shared_ptr GetChannel(const std::string& ep); + + private: + grpc::CompletionQueue cq_; + std::map> channels_; + int64_t req_count_ = 0; +}; + +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/detail/grpc_server.cc b/paddle/operators/detail/grpc_server.cc new file mode 100644 index 0000000000..3ddcd839bd --- /dev/null +++ b/paddle/operators/detail/grpc_server.cc @@ -0,0 +1,255 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/detail/grpc_server.h" + +using grpc::ServerAsyncResponseWriter; + +namespace paddle { +namespace operators { +namespace detail { + +enum CallStatus { PROCESS = 0, FINISH }; + +// reference: +// https://stackoverflow.com/questions/41732884/grpc-multiple-services-in-cpp-async-server +class RequestBase { + public: + explicit RequestBase(sendrecv::SendRecvService::AsyncService* service, + grpc::ServerCompletionQueue* cq) + : service_(service), cq_(cq), status_(PROCESS) { + PADDLE_ENFORCE(cq_); + } + virtual ~RequestBase() {} + virtual void Process() { assert(false); } + + CallStatus Status() { return status_; } + void SetStatus(CallStatus status) { status_ = status; } + virtual std::string GetReqName() { + assert(false); + return ""; + } + + protected: + grpc::ServerContext ctx_; + sendrecv::SendRecvService::AsyncService* service_; + grpc::ServerCompletionQueue* cq_; + CallStatus status_; +}; + +typedef std::pair MessageWithName; + +class RequestSend final : public RequestBase { + public: + explicit RequestSend(sendrecv::SendRecvService::AsyncService* service, + grpc::ServerCompletionQueue* cq, + SimpleBlockQueue* queue) + : RequestBase(service, cq), queue_(queue), responder_(&ctx_) { + service_->RequestSendVariable(&ctx_, &request_, &responder_, cq_, cq_, + this); + } + + virtual ~RequestSend() {} + + virtual std::string GetReqName() { return request_.varname(); } + + virtual void Process() { + MessageWithName msg_with_name = + std::make_pair(request_.varname(), std::move(request_)); + queue_->Push(std::move(msg_with_name)); + responder_.Finish(reply_, grpc::Status::OK, this); + status_ = FINISH; + } + + protected: + sendrecv::VariableMessage request_; + sendrecv::VoidMessage reply_; + SimpleBlockQueue* queue_; + ServerAsyncResponseWriter responder_; +}; + +class RequestGet final : public RequestBase { + public: + explicit RequestGet(sendrecv::SendRecvService::AsyncService* service, + grpc::ServerCompletionQueue* cq, framework::Scope* scope, + const platform::DeviceContext* dev_ctx, + SimpleBlockQueue* queue) + : RequestBase(service, cq), + responder_(&ctx_), + scope_(scope), + dev_ctx_(dev_ctx), + queue_(queue) { + service_->RequestGetVariable(&ctx_, &request_, &responder_, cq_, cq_, this); + } + + virtual ~RequestGet() {} + + virtual std::string GetReqName() { return request_.varname(); } + + virtual void Process() { + // proc request. + std::string var_name = request_.varname(); + auto* var = scope_->FindVar(var_name); + SerializeToMessage(var_name, var, *dev_ctx_, &reply_); + // TODO(gongwb): check var's info. + responder_.Finish(reply_, grpc::Status::OK, this); + status_ = FINISH; + queue_->Push('c'); + } + + protected: + sendrecv::VariableMessage request_; + sendrecv::VariableMessage reply_; + ServerAsyncResponseWriter responder_; + framework::Scope* scope_; + const platform::DeviceContext* dev_ctx_; + SimpleBlockQueue* queue_; +}; + +void AsyncGRPCServer::WaitClientGet(int count) { + for (int i = 0; i < count; ++i) { + var_get_queue_.Pop(); + } +} + +void AsyncGRPCServer::RunSyncUpdate() { + grpc::ServerBuilder builder; + builder.AddListeningPort(address_, grpc::InsecureServerCredentials()); + builder.SetMaxSendMessageSize(std::numeric_limits::max()); + builder.SetMaxReceiveMessageSize(std::numeric_limits::max()); + builder.RegisterService(&service_); + + cq_send_ = builder.AddCompletionQueue(); + cq_get_ = builder.AddCompletionQueue(); + server_ = builder.BuildAndStart(); + LOG(INFO) << "Server listening on " << address_ << std::endl; + + std::function send_register = + std::bind(&AsyncGRPCServer::TryToRegisterNewSendOne, this); + std::function get_register = + std::bind(&AsyncGRPCServer::TryToRegisterNewGetOne, this); + + t_send_.reset( + new std::thread(std::bind(&AsyncGRPCServer::HandleRequest, this, false, + cq_send_.get(), "cq_send", send_register))); + + t_get_.reset( + new std::thread(std::bind(&AsyncGRPCServer::HandleRequest, this, true, + cq_get_.get(), "cq_get", get_register))); + + // wait server + server_->Wait(); + t_send_->join(); + t_get_->join(); +} + +void AsyncGRPCServer::ShutdownQueue() { + std::unique_lock lock(cq_mutex_); + cq_send_->Shutdown(); + cq_get_->Shutdown(); + is_shut_down_ = true; +} + +// This URL explains why shutdown is complicate: +void AsyncGRPCServer::ShutDown() { + server_->Shutdown(); + ShutdownQueue(); +} + +void AsyncGRPCServer::TryToRegisterNewSendOne() { + std::unique_lock lock(cq_mutex_); + if (is_shut_down_) { + return; + } + RequestSend* send = + new RequestSend(&service_, cq_send_.get(), &var_recv_queue_); + VLOG(4) << "create RequestSend status:" << send->Status(); +} + +void AsyncGRPCServer::TryToRegisterNewGetOne() { + std::unique_lock lock(cq_mutex_); + if (is_shut_down_) { + return; + } + RequestGet* get = new RequestGet(&service_, cq_get_.get(), scope_, dev_ctx_, + &var_get_queue_); + VLOG(4) << "create Requestget status:" << get->Status(); +} + +// FIXME(typhoonzero): remove wait argument and change cq_name to enum. +void AsyncGRPCServer::HandleRequest(bool wait, grpc::ServerCompletionQueue* cq, + std::string cq_name, + std::function TryToRegisterNewOne) { + TryToRegisterNewOne(); + + void* tag = NULL; + bool ok = false; + while (true) { + if (!cq->Next(&tag, &ok)) { + LOG(INFO) << cq_name << " get CompletionQueue shutdown!"; + break; + } + + PADDLE_ENFORCE(tag); + // FIXME(typhoonzero): de-couple the barriers with recv_op + if (cq_name == "cq_get") WaitCond(1); + if (cq_name == "cq_send") WaitCond(0); + + RequestBase* base = (RequestBase*)tag; + // reference: + // https://github.com/tensorflow/tensorflow/issues/5596 + // https://groups.google.com/forum/#!topic/grpc-io/xftlRy-IQwM + // https://groups.google.com/forum/#!topic/grpc-io/ywATt88Ef_I + if (!ok) { + LOG(WARNING) << cq_name << " recv no regular event:argument name" + << base->GetReqName(); + TryToRegisterNewOne(); + delete base; + continue; + } + + switch (base->Status()) { + case PROCESS: { + VLOG(4) << cq_name << " status:" << base->Status(); + TryToRegisterNewOne(); + base->Process(); + break; + } + case FINISH: { + VLOG(4) << cq_name << " status:" << base->Status(); + delete base; + break; + } + default: { assert(false); } + } + } +} + +void AsyncGRPCServer::WaitCond(int cond) { + std::unique_lock lock(this->barrier_mutex_); + barrier_condition_.wait(lock, + [=] { return this->barrier_cond_step_ == cond; }); +} + +void AsyncGRPCServer::SetCond(int cond) { + { + std::lock_guard lock(this->barrier_mutex_); + barrier_cond_step_ = cond; + } + barrier_condition_.notify_all(); +} + +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/detail/grpc_server.h b/paddle/operators/detail/grpc_server.h new file mode 100644 index 0000000000..1ca9086c74 --- /dev/null +++ b/paddle/operators/detail/grpc_server.h @@ -0,0 +1,94 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/scope.h" +#include "paddle/framework/selected_rows.h" +#include "paddle/framework/var_type.h" +#include "paddle/operators/detail/simple_block_queue.h" + +#include "paddle/operators/detail/send_recv.grpc.pb.h" +#include "paddle/operators/detail/send_recv.pb.h" + +#include +#include +#include +#include "paddle/operators/detail/sendrecvop_utils.h" + +namespace paddle { +namespace operators { +namespace detail { + +typedef std::pair MessageWithName; +class RequestBase; + +class AsyncGRPCServer final : public sendrecv::SendRecvService::Service { + public: + explicit AsyncGRPCServer(const std::string &address) : address_(address) {} + + void RunSyncUpdate(); + + // functions to sync server barrier status. + void WaitCond(int cond); + void SetCond(int cond); + void WaitClientGet(int count); + + void SetScope(framework::Scope *scope) { scope_ = scope; } + + void SetDevCtx(const platform::DeviceContext *dev_ctx) { dev_ctx_ = dev_ctx; } + + const MessageWithName Get() { return this->var_recv_queue_.Pop(); } + + void Push(const MessageWithName &msg) { this->var_recv_queue_.Push(msg); } + + void ShutDown(); + + protected: + void HandleRequest(bool wait, grpc::ServerCompletionQueue *cq, + std::string cq_name, + std::function TryToRegisterNewOne); + void TryToRegisterNewSendOne(); + void TryToRegisterNewGetOne(); + void ShutdownQueue(); + + private: + std::mutex cq_mutex_; + volatile bool is_shut_down_ = false; + std::unique_ptr cq_send_; + std::unique_ptr cq_get_; + + sendrecv::SendRecvService::AsyncService service_; + std::unique_ptr server_; + + std::string address_; + framework::Scope *scope_; + const platform::DeviceContext *dev_ctx_; + // received variable from RPC, operators fetch variable from this queue. + SimpleBlockQueue var_recv_queue_; + SimpleBlockQueue var_get_queue_; + + // condition of the sub program + std::mutex barrier_mutex_; + mutable int barrier_cond_step_; + std::condition_variable barrier_condition_; + + std::unique_ptr t_send_; + std::unique_ptr t_get_; +}; + +}; // namespace detail +}; // namespace operators +}; // namespace paddle diff --git a/paddle/operators/detail/recv_impl.cc b/paddle/operators/detail/recv_impl.cc deleted file mode 100644 index 89dc504522..0000000000 --- a/paddle/operators/detail/recv_impl.cc +++ /dev/null @@ -1,44 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "send_recv_impl.h" - -namespace paddle { -namespace operators { -namespace detail { - -Status SendRecvServerImpl::SendVariable(ServerContext *context, - const VariableMessage *in_var, - VariableMessage *out_var) { - framework::LoDTensor t; - // TODO(typhoonzero): desirealize in_tensor and run pserver network. - std::istringstream iss(in_var->serialized()); - framework::DeserializeFromStream(iss, &t); - lodtensor_queue_.Push(std::move(t)); - // Block util the sub graph is done. - t = lodtensor_return_queue_.Pop(); - std::ostringstream oss; - // FIXME(typhoonzero): get context from op. - framework::SerializeToStream(oss, t, platform::CPUDeviceContext()); - std::string *varname = out_var->mutable_varname(); - *varname = in_var->varname(); - std::string *serialized = out_var->mutable_serialized(); - *serialized = oss.str(); - - return Status::OK; -} - -} // namespace detail -} // namespace operators -} // namespace paddle diff --git a/paddle/operators/detail/safe_ref.h b/paddle/operators/detail/safe_ref.h index b71af17309..ff2a156f3d 100644 --- a/paddle/operators/detail/safe_ref.h +++ b/paddle/operators/detail/safe_ref.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/operators/detail/send_impl.cc b/paddle/operators/detail/send_impl.cc deleted file mode 100644 index da1ddf75d2..0000000000 --- a/paddle/operators/detail/send_impl.cc +++ /dev/null @@ -1,54 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "send_recv_impl.h" - -namespace paddle { -namespace operators { -namespace detail { - -bool RPCClient::SendVariable(const framework::Scope& scope, - const std::string& inname, - const std::string& outname) { - ClientContext context; - VariableMessage msg, out_msg; - // FIXME(typhoonzero): pass device context to here. - auto ctx = platform::CPUDeviceContext(); - auto* var = scope.FindVar(inname); - PADDLE_ENFORCE(var); - // TODO(typhoonzero): support SelectedRows - PADDLE_ENFORCE(var->IsType(), - "Only support LoDTensor, %s has wrong type", inname); - const framework::LoDTensor& tensor = var->Get(); - std::ostringstream oss; - framework::SerializeToStream(oss, tensor, ctx); - msg.set_varname(inname); - msg.set_serialized(oss.str()); - Status status = stub_->SendVariable(&context, msg, &out_msg); - if (!status.ok()) { - return false; - } - std::istringstream iss(out_msg.serialized()); - framework::LoDTensor ret_tensor; - framework::DeserializeFromStream(iss, &ret_tensor); - auto* outvar = scope.FindVar(outname); - framework::LoDTensor* out_tensor = outvar->GetMutable(); - // FIXME(typhoonzero): do not copy. - framework::CopyFrom(ret_tensor, ctx.GetPlace(), ctx, out_tensor); - return true; -} - -} // namespace detail -} // namespace operators -} // namespace paddle diff --git a/paddle/operators/detail/send_recv.proto b/paddle/operators/detail/send_recv.proto index 07ff9d2c62..8f962b4c69 100644 --- a/paddle/operators/detail/send_recv.proto +++ b/paddle/operators/detail/send_recv.proto @@ -1,35 +1,42 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under +the Apache License, Version 2.0 (the "License"); you may not use this file +except in compliance with the License. +You may obtain a copy of the License at - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ syntax = "proto3"; - package sendrecv; service SendRecvService { // For parameter server round-robin like hashing, do not split tensors. // Send and recv only one tensor - rpc SendVariable(VariableMessage) returns (VariableMessage) {} + // TODO(typhoonzero): add streaming API + rpc SendVariable(VariableMessage) returns (VoidMessage) {} + // Argument VariableMessage for GetVariable should only contain varname. + rpc GetVariable(VariableMessage) returns (VariableMessage) {} } // VariableMessage is serialized paddle variable message. // It can be: -// Tensor // LoDTensor // SelectedRows +enum VarType { + LOD_TENSOR = 0; + SELECTED_ROWS = 1; +} + message VariableMessage { string varname = 1; - bytes serialized = 2; + // TODO(Yancey1989): reference framework::proto::VarDesc::VarType + VarType type = 2; + bytes serialized = 3; } message VoidMessage {} diff --git a/paddle/operators/detail/send_recv_impl.h b/paddle/operators/detail/send_recv_impl.h deleted file mode 100644 index b9a5340a86..0000000000 --- a/paddle/operators/detail/send_recv_impl.h +++ /dev/null @@ -1,87 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#pragma once - -#include "paddle/framework/data_type.h" -#include "paddle/framework/lod_tensor.h" -#include "paddle/framework/scope.h" -#include "paddle/framework/selected_rows.h" -#include "paddle/operators/detail/simple_block_queue.h" - -// #include -// #include -// #include -// #include -#include "paddle/operators/detail/send_recv.grpc.pb.h" -#include "paddle/operators/detail/send_recv.pb.h" - -#include - -using grpc::Channel; -using grpc::Server; -using grpc::ServerContext; -using grpc::ServerReader; -using grpc::ServerBuilder; - -using grpc::ClientContext; -using grpc::ClientReader; -using grpc::ClientReaderWriter; -using grpc::ClientWriter; -using grpc::Status; -using sendrecv::SendRecvService; -using sendrecv::VariableMessage; -using sendrecv::VoidMessage; - -namespace paddle { -namespace operators { -namespace detail { - -class SendRecvServerImpl final : public SendRecvService::Service { - public: - explicit SendRecvServerImpl() {} - - Status SendVariable(ServerContext *context, const VariableMessage *in_var, - VariableMessage *out_var) override; - - const framework::LoDTensor Get() { return this->lodtensor_queue_.Pop(); } - - void Push(const framework::LoDTensor &tensor) { - this->lodtensor_return_queue_.Push(tensor); - } - - private: - SimpleBlockQueue lodtensor_queue_; - SimpleBlockQueue lodtensor_return_queue_; - SimpleBlockQueue selected_rows_queue_; - SimpleBlockQueue selected_rows_return_queue_; -}; - -// RPCClient is a class to send tensors to pserver sub-network -// using different hashing methods. -class RPCClient { - public: - RPCClient(std::shared_ptr channel) - : stub_(SendRecvService::NewStub(channel)) {} - - bool SendVariable(const framework::Scope &scope, const std::string &inname, - const std::string &outname); - - private: - std::unique_ptr stub_; -}; - -} // namespace detail -} // namespace operators -} // namespace paddle diff --git a/paddle/operators/detail/sendrecvop_utils.cc b/paddle/operators/detail/sendrecvop_utils.cc new file mode 100644 index 0000000000..7635b9e8db --- /dev/null +++ b/paddle/operators/detail/sendrecvop_utils.cc @@ -0,0 +1,68 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/detail/sendrecvop_utils.h" + +namespace paddle { +namespace operators { +namespace detail { + +void SerializeToMessage(const std::string& name, const framework::Variable* var, + const platform::DeviceContext& ctx, + sendrecv::VariableMessage* msg) { + msg->set_varname(name); + std::ostringstream oss; + switch (framework::ToVarType(var->Type())) { + case framework::proto::VarDesc_VarType_LOD_TENSOR: + msg->set_type(sendrecv::VarType::LOD_TENSOR); + framework::SerializeToStream(oss, var->Get(), ctx); + break; + case framework::proto::VarDesc_VarType_SELECTED_ROWS: + msg->set_type(sendrecv::VarType::SELECTED_ROWS); + framework::SerializeToStream(oss, var->Get(), + ctx); + break; + default: { + PADDLE_THROW("Serialize does not support type: %s", + typeid(var->Type()).name()); + break; + } + } + msg->set_serialized(oss.str()); +} + +void DeserializeFromMessage(const sendrecv::VariableMessage& msg, + const platform::DeviceContext& ctx, + framework::Variable* var) { + std::istringstream iss(msg.serialized()); + switch (msg.type()) { + case sendrecv::VarType::LOD_TENSOR: + DeserializeFromStream(iss, var->GetMutable(), ctx); + break; + case sendrecv::VarType::SELECTED_ROWS: { + DeserializeFromStream(iss, var->GetMutable(), + ctx); + break; + } + default: { + PADDLE_THROW("Deserialize does not support type: %s", + typeid(var->Type()).name()); + break; + } + } +} + +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/detail/sendrecvop_utils.h b/paddle/operators/detail/sendrecvop_utils.h new file mode 100644 index 0000000000..bc6581afab --- /dev/null +++ b/paddle/operators/detail/sendrecvop_utils.h @@ -0,0 +1,42 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include + +#include "paddle/framework/data_type.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/scope.h" +#include "paddle/framework/selected_rows.h" +#include "paddle/framework/var_type.h" + +#include "paddle/operators/detail/send_recv.grpc.pb.h" +#include "paddle/operators/detail/send_recv.pb.h" + +namespace paddle { +namespace operators { +namespace detail { + +void SerializeToMessage(const std::string& name, const framework::Variable* var, + const platform::DeviceContext& ctx, + sendrecv::VariableMessage* msg); + +void DeserializeFromMessage(const sendrecv::VariableMessage& msg, + const platform::DeviceContext& ctx, + framework::Variable* var); +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/detail/simple_block_queue.h b/paddle/operators/detail/simple_block_queue.h index 4489921757..c7f5ff4b5f 100644 --- a/paddle/operators/detail/simple_block_queue.h +++ b/paddle/operators/detail/simple_block_queue.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/operators/detail/strided_memcpy.h b/paddle/operators/detail/strided_memcpy.h index 068c82f399..9ed524d4dc 100644 --- a/paddle/operators/detail/strided_memcpy.h +++ b/paddle/operators/detail/strided_memcpy.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/ddim.h" @@ -35,7 +35,7 @@ struct StridedMemcpyFunctor { memory::Copy(cpu_place, dst, cpu_place, src, sizeof(T) * dst_dim.head); } else { #ifdef PADDLE_WITH_CUDA - auto& gpu_place = boost::get(place); + auto& gpu_place = boost::get(place); auto& cuda_ctx = reinterpret_cast(dev_ctx); memory::Copy(gpu_place, dst, gpu_place, src, sizeof(T) * dst_dim.head, diff --git a/paddle/operators/detection_output_op.cc b/paddle/operators/detection_output_op.cc new file mode 100644 index 0000000000..ea44cd3267 --- /dev/null +++ b/paddle/operators/detection_output_op.cc @@ -0,0 +1,89 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/detection_output_op.h" +namespace paddle { +namespace operators { + +class DetectionOutputOpMaker : public framework::OpProtoAndCheckerMaker { + public: + DetectionOutputOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Loc", + "(Tensor) The input tensor of detection_output operator." + "The input predict locations" + "The format of input tensor is kNCHW. Where K is priorbox point " + "numbers," + "N is How many boxes are there on each point, " + "C is 4, H and W both are 1."); + AddInput("Conf", + "(Tensor) The input tensor of detection_output operator." + "The input priorbox confidence." + "The format of input tensor is kNCHW. Where K is priorbox point " + "numbers," + "N is How many boxes are there on each point, " + "C is the number of classes, H and W both are 1."); + AddInput("PriorBox", + "(Tensor) The input tensor of detection_output operator." + "The format of input tensor is the position and variance " + "of the boxes"); + AddOutput("Out", + "(Tensor) The output tensor of detection_output operator."); + AddAttr("background_label_id", "(int), The background class index."); + AddAttr("num_classes", "(int), The number of the classification."); + AddAttr("nms_threshold", + "(float), The Non-maximum suppression threshold."); + AddAttr("confidence_threshold", + "(float), The classification confidence threshold."); + AddAttr("top_k", "(int), The bbox number kept of the layer’s output."); + AddAttr("nms_top_k", + "(int), The bbox number kept of the NMS’s output."); + AddComment(R"DOC( + detection output for SSD(single shot multibox detector) + Apply the NMS to the output of network and compute the predict + bounding box location. The output’s shape of this layer could + be zero if there is no valid bounding box. + )DOC"); + } +}; + +class DetectionOutputOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Loc"), + "Input(X) of DetectionOutputOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Conf"), + "Input(X) of DetectionOutputOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasInput("PriorBox"), + "Input(X) of DetectionOutputOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of DetectionOutputOp should not be null."); + std::vector output_shape({1, 7}); + ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(detection_output, ops::DetectionOutputOp, + ops::DetectionOutputOpMaker); +REGISTER_OP_CPU_KERNEL( + detection_output, + ops::DetectionOutputKernel, + ops::DetectionOutputKernel); diff --git a/paddle/operators/detection_output_op.cu.cc b/paddle/operators/detection_output_op.cu.cc new file mode 100644 index 0000000000..4a6560e049 --- /dev/null +++ b/paddle/operators/detection_output_op.cu.cc @@ -0,0 +1,21 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/detection_output_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + detection_output, + ops::DetectionOutputKernel, + ops::DetectionOutputKernel); diff --git a/paddle/operators/detection_output_op.h b/paddle/operators/detection_output_op.h new file mode 100644 index 0000000000..86285b748a --- /dev/null +++ b/paddle/operators/detection_output_op.h @@ -0,0 +1,167 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/framework/tensor.h" +#include "paddle/operators/math/detection_util.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/softmax.h" +#include "paddle/operators/strided_memcpy.h" +namespace paddle { +namespace operators { +template +inline void transpose_fun(const framework::ExecutionContext& context, + const framework::Tensor& src, + framework::Tensor* dst) { + int input_nums = src.dims()[0]; + int offset = 0; + for (int j = 0; j < input_nums; ++j) { + framework::Tensor in_p_tensor = src.Slice(j, j + 1); + std::vector shape_vec( + {in_p_tensor.dims()[0], in_p_tensor.dims()[1], in_p_tensor.dims()[3], + in_p_tensor.dims()[4], in_p_tensor.dims()[2]}); + framework::DDim shape(framework::make_ddim(shape_vec)); + framework::Tensor in_p_tensor_transpose; + in_p_tensor_transpose.mutable_data(shape, context.GetPlace()); + std::vector shape_axis({0, 1, 3, 4, 2}); + math::Transpose trans5; + trans5(context.template device_context(), in_p_tensor, + &in_p_tensor_transpose, shape_axis); + auto dst_stride = framework::stride(dst->dims()); + auto src_stride = framework::stride(in_p_tensor_transpose.dims()); + StridedMemcpy(context.device_context(), in_p_tensor_transpose.data(), + src_stride, in_p_tensor_transpose.dims(), dst_stride, + dst->data() + offset); + offset += in_p_tensor_transpose.dims()[4] * src_stride[4]; + } +} +template +class DetectionOutputKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_loc = context.Input("Loc"); + const framework::Tensor* in_conf = context.Input("Conf"); + const framework::Tensor* in_priorbox = + context.Input("PriorBox"); + auto* out = context.Output("Out"); + int num_classes = context.template Attr("num_classes"); + int top_k = context.template Attr("top_k"); + int nms_top_k = context.template Attr("nms_top_k"); + int background_label_id = context.template Attr("background_label_id"); + float nms_threshold = context.template Attr("nms_threshold"); + float confidence_threshold = + context.template Attr("confidence_threshold"); + size_t batch_size = in_conf->dims()[1]; + int conf_sum_size = in_conf->numel(); + // for softmax + std::vector conf_shape_softmax_vec( + {conf_sum_size / num_classes, num_classes}); + framework::DDim conf_shape_softmax( + framework::make_ddim(conf_shape_softmax_vec)); + // for knchw => nhwc + std::vector loc_shape_vec({1, in_loc->dims()[1], in_loc->dims()[3], + in_loc->dims()[4], + in_loc->dims()[2] * in_loc->dims()[0]}); + std::vector conf_shape_vec( + {1, in_conf->dims()[1], in_conf->dims()[3], in_conf->dims()[4], + in_conf->dims()[2] * in_conf->dims()[0]}); + framework::DDim loc_shape(framework::make_ddim(loc_shape_vec)); + framework::DDim conf_shape(framework::make_ddim(conf_shape_vec)); + framework::Tensor loc_tensor; + framework::Tensor conf_tensor; + loc_tensor.mutable_data(loc_shape, context.GetPlace()); + conf_tensor.mutable_data(conf_shape, context.GetPlace()); + // for cpu + framework::Tensor loc_cpu; + framework::Tensor conf_cpu; + framework::Tensor priorbox_cpu; + const T* priorbox_data = in_priorbox->data(); + transpose_fun(context, *in_loc, &loc_tensor); + transpose_fun(context, *in_conf, &conf_tensor); + conf_tensor.Resize(conf_shape_softmax); + math::SoftmaxFunctor()( + context.template device_context(), &conf_tensor, + &conf_tensor); + T* loc_data = loc_tensor.data(); + T* conf_data = conf_tensor.data(); + if (platform::is_gpu_place(context.GetPlace())) { + loc_cpu.mutable_data(loc_tensor.dims(), platform::CPUPlace()); + framework::Copy(loc_tensor, platform::CPUPlace(), + context.device_context(), &loc_cpu); + loc_data = loc_cpu.data(); + conf_cpu.mutable_data(conf_tensor.dims(), platform::CPUPlace()); + framework::Copy(conf_tensor, platform::CPUPlace(), + context.device_context(), &conf_cpu); + conf_data = conf_cpu.data(); + priorbox_cpu.mutable_data(in_priorbox->dims(), platform::CPUPlace()); + framework::Copy(*in_priorbox, platform::CPUPlace(), + context.device_context(), &priorbox_cpu); + priorbox_data = priorbox_cpu.data(); + } + // get decode bboxes + size_t num_priors = in_priorbox->numel() / 8; + std::vector>> all_decoded_bboxes; + for (size_t n = 0; n < batch_size; ++n) { + std::vector> decoded_bboxes; + for (size_t i = 0; i < num_priors; ++i) { + size_t prior_offset = i * 8; + size_t loc_pred_offset = n * num_priors * 4 + i * 4; + std::vector> prior_bbox_vec; + math::GetBBoxFromPriorData(priorbox_data + prior_offset, 1, + prior_bbox_vec); + std::vector> prior_bbox_var; + math::GetBBoxVarFromPriorData(priorbox_data + prior_offset, 1, + prior_bbox_var); + std::vector loc_pred_data; + for (size_t j = 0; j < 4; ++j) + loc_pred_data.push_back(*(loc_data + loc_pred_offset + j)); + math::BBox bbox = math::DecodeBBoxWithVar( + prior_bbox_vec[0], prior_bbox_var[0], loc_pred_data); + decoded_bboxes.push_back(bbox); + } + all_decoded_bboxes.push_back(decoded_bboxes); + } + std::vector>> all_indices; + int num_kept = math::GetDetectionIndices( + conf_data, num_priors, num_classes, background_label_id, batch_size, + confidence_threshold, nms_top_k, nms_threshold, top_k, + all_decoded_bboxes, &all_indices); + + if (num_kept <= 0) { + std::vector out_shape_vec({0, 0}); + framework::DDim out_shape(framework::make_ddim(out_shape_vec)); + out->Resize(out_shape); + return; + } + std::vector out_shape_vec({num_kept, 7}); + framework::DDim out_shape(framework::make_ddim(out_shape_vec)); + out->mutable_data(out_shape, context.GetPlace()); + framework::Tensor out_cpu; + T* out_data = out->data(); + if (platform::is_gpu_place(context.GetPlace())) { + out_cpu.mutable_data(out->dims(), platform::CPUPlace()); + out_data = out_cpu.data(); + } + math::GetDetectionOutput(conf_data, num_kept, num_priors, num_classes, + batch_size, all_indices, all_decoded_bboxes, + out_data); + if (platform::is_gpu_place(context.GetPlace())) { + framework::Copy(out_cpu, platform::CUDAPlace(), context.device_context(), + out); + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/dropout_op.cc b/paddle/operators/dropout_op.cc index 932c0bf8fb..35cb18797f 100644 --- a/paddle/operators/dropout_op.cc +++ b/paddle/operators/dropout_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/dropout_op.h" @@ -25,8 +25,6 @@ class DropoutOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); - PADDLE_ENFORCE_GE(ctx->Attrs().Get("dropout_prob"), 0); - PADDLE_ENFORCE_LE(ctx->Attrs().Get("dropout_prob"), 1); auto x_dims = ctx->GetInputDim("X"); ctx->SetOutputDim("Out", x_dims); @@ -40,15 +38,18 @@ class DropoutOp : public framework::OperatorWithKernel { template class DropoutOpMaker : public framework::OpProtoAndCheckerMaker { public: - DropoutOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + DropoutOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of dropout op."); AddOutput("Out", "The output of dropout op."); AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate(); AddAttr("dropout_prob", "Probability of setting units to zero.") - .SetDefault(.5f); + .SetDefault(.5f) + .AddCustomChecker([](const float& drop_p) { + PADDLE_ENFORCE(drop_p >= 0.0f && drop_p <= 1.0f, + "'dropout_prob' must be between 0.0 and 1.0."); + }); AddAttr("is_test", "True if in test phase.").SetDefault(false); AddAttr("seed", "Dropout random seed.").SetDefault(0); @@ -79,8 +80,6 @@ class DropoutOpGrad : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) must not be null."); - PADDLE_ENFORCE_GE(ctx->Attrs().Get("dropout_prob"), 0); - PADDLE_ENFORCE_LE(ctx->Attrs().Get("dropout_prob"), 1); auto x_dims = ctx->GetInputDim("X"); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); PADDLE_ENFORCE_EQ(x_dims, out_dims, @@ -100,6 +99,8 @@ namespace ops = paddle::operators; REGISTER_OP(dropout, ops::DropoutOp, ops::DropoutOpMaker, dropout_grad, ops::DropoutOpGrad); REGISTER_OP_CPU_KERNEL( - dropout, ops::CPUDropoutKernel); + dropout, + ops::CPUDropoutKernel); REGISTER_OP_CPU_KERNEL( - dropout_grad, ops::DropoutGradKernel); + dropout_grad, + ops::DropoutGradKernel); diff --git a/paddle/operators/dropout_op.cu b/paddle/operators/dropout_op.cu index db3578b9bf..c56930336e 100644 --- a/paddle/operators/dropout_op.cu +++ b/paddle/operators/dropout_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include @@ -30,16 +30,15 @@ struct MaskGenerator { __host__ __device__ MaskGenerator(AttrType dropout_prob, int seed) : dropout_prob(dropout_prob), seed(seed) {} - __host__ __device__ T operator()(const unsigned int n) const { + inline __host__ __device__ T operator()(const unsigned int n) const { thrust::minstd_rand rng; rng.seed(seed); thrust::uniform_real_distribution dist(0, 1); rng.discard(n); if (dist(rng) < dropout_prob) { return static_cast(0); - } else { - return static_cast(1); } + return static_cast(1); } }; @@ -58,7 +57,7 @@ class GPUDropoutKernel : public framework::OpKernel { auto X = EigenMatrix::Reshape(*x, 1); auto Y = EigenMatrix::Reshape(*y, 1); - auto place = context.GetEigenDevice(); + auto& place = *context.template device_context().eigen_device(); if (!context.Attr("is_test")) { auto* mask = context.Output("Mask"); auto* mask_data = mask->mutable_data(context.GetPlace()); @@ -71,7 +70,7 @@ class GPUDropoutKernel : public framework::OpKernel { auto M = EigenMatrix::Reshape(*mask, 1); Y.device(place) = X * M; } else { - Y.device(place) = X * dropout_prob; + Y.device(place) = X * (1.0f - dropout_prob); } } }; @@ -80,7 +79,9 @@ class GPUDropoutKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - dropout, ops::GPUDropoutKernel); -REGISTER_OP_GPU_KERNEL( - dropout_grad, ops::DropoutGradKernel); +REGISTER_OP_CUDA_KERNEL( + dropout, + ops::GPUDropoutKernel); +REGISTER_OP_CUDA_KERNEL( + dropout_grad, + ops::DropoutGradKernel); diff --git a/paddle/operators/dropout_op.h b/paddle/operators/dropout_op.h index d9a130fdc0..c90b8d277e 100644 --- a/paddle/operators/dropout_op.h +++ b/paddle/operators/dropout_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include @@ -25,7 +25,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class CPUDropoutKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -55,13 +55,14 @@ class CPUDropoutKernel : public framework::OpKernel { } else { auto X = EigenMatrix::Reshape(*x, 1); auto Y = EigenMatrix::Reshape(*y, 1); - auto place = context.GetEigenDevice(); - Y.device(place) = X * dropout_prob; + auto& place = + *context.template device_context().eigen_device(); + Y.device(place) = X * (1.0f - dropout_prob); } } }; -template +template class DropoutGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -77,7 +78,8 @@ class DropoutGradKernel : public framework::OpKernel { auto dX = EigenMatrix::Reshape(*grad_x, 1); auto dY = EigenMatrix::Reshape(*grad_y, 1); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); dX.device(place) = dY * M; } }; diff --git a/paddle/operators/edit_distance_op.cc b/paddle/operators/edit_distance_op.cc new file mode 100644 index 0000000000..62a1fcebe7 --- /dev/null +++ b/paddle/operators/edit_distance_op.cc @@ -0,0 +1,98 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/edit_distance_op.h" + +namespace paddle { +namespace operators { + +class EditDistanceOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Hyps"), "Input(Hyps) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasInput("Refs"), "Input(Refs) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null."); + auto hyp_dims = ctx->GetInputDim("Hyps"); + auto ref_dims = ctx->GetInputDim("Refs"); + PADDLE_ENFORCE(hyp_dims.size() == 2 && hyp_dims[1] == 1, + "Input(Hyps) must be a 2-D LoDTensor with the 2nd dimension " + "equal to 1."); + PADDLE_ENFORCE(ref_dims.size() == 2 && ref_dims[1] == 1, + "Input(Refs) must be a 2-D LoDTensor with the 2nd dimension " + "equal to 1."); + ctx->SetOutputDim("Out", ctx->GetInputDim("Refs")); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType(framework::proto::DataType::FP32, + ctx.device_context()); + } +}; + +class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker { + public: + EditDistanceOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Hyps", + "(2-D LoDTensor, 2nd dim. equal to 1) " + "The indices for hypothesis strings."); + AddInput("Refs", + "(2-D LoDTensor, 2nd dim. equal to 1) " + "The indices for reference strings."); + AddAttr("normalized", + "(bool, default false) Indicated whether to normalize " + "the edit distance by the length of reference string.") + .SetDefault(false); + AddOutput("Out", + "(2-D Tensor with shape [`batch_size` x 1]) " + "The output edit distances of EditDistance operator."); + AddComment(R"DOC( + +EditDistance operator computes the edit distances between a batch of hypothesis +strings and their references. + +Edit distance, also called Levenshtein distance, measures how dissimilar two strings +are by counting the minimum number of operations to transform one string into anthor. +Here the operations include insertion, deletion, and substitution. For example, +given hypothesis string A = "kitten" and reference B = "sitting", the edit distance +is 3 for A will be transformed into B at least after two substitutions and one +insertion: + + "kitten" -> "sitten" -> "sittin" -> "sitting" + +Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total +number denoted by `batch_size`, and the separation is specified by the LoD information. +And the `batch_size` reference strings are arranged in order in the same way in the +LoDTensor Input(Refs). + +Output(Out) contains the `batch_size` results and each stands for the edit stance +for a pair of strings respectively. If Attr(normalized) is true, the edit distance +will be divided by the length of reference string. +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(edit_distance, ops::EditDistanceOp, ops::EditDistanceOpMaker, + paddle::framework::EmptyGradOpMaker); +REGISTER_OP_CPU_KERNEL( + edit_distance, ops::EditDistanceKernel); diff --git a/paddle/operators/edit_distance_op.cu b/paddle/operators/edit_distance_op.cu new file mode 100644 index 0000000000..338fd79bcc --- /dev/null +++ b/paddle/operators/edit_distance_op.cu @@ -0,0 +1,149 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "paddle/framework/op_registry.h" +#include "paddle/platform/cuda_helper.h" +#include "paddle/platform/gpu_info.h" + +namespace paddle { +namespace operators { + +using platform::PADDLE_CUDA_NUM_THREADS; + +template +__global__ void FillFirstRow(T* dist, const int N) { + int idx = blockDim.x * blockIdx.x + threadIdx.x; + if (idx < N + 1) { + dist[idx] = idx; + } +} + +template +__global__ void FillFirstColumn(T* dist, const int M, const int N) { + int idx = blockDim.x * blockIdx.x + threadIdx.x; + if (idx < M + 1) { + dist[idx * (N + 1)] = idx; + } +} + +template +__global__ void Levenshtein(T* dist, const int64_t* x1, const int64_t* x2, + const int M, const int N, const int start) { + int idx = blockDim.x * blockIdx.x + threadIdx.x; + int offset = N; + int index = start + idx * offset; + int row = index / (N + 1); + int col = index % (N + 1); + if (row > 0 && col > 0 && row < M + 1 && col < N + 1) { + int cost = x1[row - 1] == x2[col - 1] ? 0 : 1; + int dels = dist[(row - 1) * (N + 1) + col] + 1; + int ins = dist[row * (N + 1) + col - 1] + 1; + int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost; + dist[index] = min(dels, min(ins, subs)); + } +} + +template +__global__ void SetOutput(T* out, const T* dist, const int M, const int N, + bool normalized) { + int idx = blockDim.x * blockIdx.x + threadIdx.x; + if (idx == 0) { + out[0] = normalized ? dist[M * (N + 1) + N] / N : dist[M * (N + 1) + N]; + } +} + +template +class EditDistanceGPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* out_t = ctx.Output("Out"); + + auto* x1_t = ctx.Input("Hyps"); + auto* x2_t = ctx.Input("Refs"); + + auto normalized = ctx.Attr("normalized"); + auto stream = reinterpret_cast( + ctx.device_context()) + .stream(); + + auto hyp_lod = x1_t->lod()[0]; + auto ref_lod = x2_t->lod()[0]; + PADDLE_ENFORCE( + hyp_lod.size() == ref_lod.size(), + "Input(Hyps) and Input(Refs) must have the same batch size."); + for (size_t i = 1; i < ref_lod.size(); ++i) { + PADDLE_ENFORCE(ref_lod[i] > ref_lod[i - 1], + "Reference string %d is empty.", i); + } + + auto num_strs = hyp_lod.size() - 1; + out_t->Resize({static_cast(num_strs), 1}); + out_t->mutable_data(ctx.GetPlace()); + auto out = out_t->data(); + + T distance = 0.0; + for (size_t num = 0; num < num_strs; num++) { + auto m = static_cast(hyp_lod[num + 1] - hyp_lod[num]); + auto n = static_cast(ref_lod[num + 1] - ref_lod[num]); + if (m == 0 || n == 0) { + distance = std::max(m, n); + if (normalized) { + PADDLE_ENFORCE(n > 0, + "The reference string (#%d) cannot be empty " + "when Attr(normalized) is enabled.", + n); + distance = distance / n; + } + memory::Copy(boost::get(ctx.GetPlace()), out + num, + platform::CPUPlace(), &distance, sizeof(T), stream); + } else { + framework::Tensor dist_t; + dist_t.Resize({m + 1, n + 1}); + dist_t.mutable_data(ctx.GetPlace()); + auto dist = dist_t.data(); + auto x1 = x1_t->data() + hyp_lod[num]; + auto x2 = x2_t->data() + ref_lod[num]; + + FillFirstColumn<<<1 + m / PADDLE_CUDA_NUM_THREADS, + PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n); + + FillFirstRow<<<1 + n / PADDLE_CUDA_NUM_THREADS, + PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n); + // Compute the elements of distance matrix in the anti-diagonal diretion + for (int64_t slice = 2; slice < m + n + 1; ++slice) { + int z_m = slice < m + 1 ? 0 : slice - m; + int z_n = slice < n + 1 ? 0 : slice - n; + int size = slice - (z_m + z_n) + 1; // number of elments in the same + // anti-diagonal line to update + // the start index at which computes from + int start = slice < n + 1 ? slice : (z_n + 1) * (n + 1) - 1; + Levenshtein<<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS, + PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2, + m, n, start); + } + SetOutput<<<1, 1, 0, stream>>>(out + num, dist, m, n, normalized); + } + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_CUDA_KERNEL( + edit_distance, + ops::EditDistanceGPUKernel); diff --git a/paddle/operators/edit_distance_op.h b/paddle/operators/edit_distance_op.h new file mode 100644 index 0000000000..4c5a29813c --- /dev/null +++ b/paddle/operators/edit_distance_op.h @@ -0,0 +1,96 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class EditDistanceKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* out_t = ctx.Output("Out"); + + auto* x1_t = ctx.Input("Hyps"); + auto* x2_t = ctx.Input("Refs"); + + auto normalized = ctx.Attr("normalized"); + + auto hyp_lod = x1_t->lod()[0]; + auto ref_lod = x2_t->lod()[0]; + PADDLE_ENFORCE( + hyp_lod.size() == ref_lod.size(), + "Input(Hyps) and Input(Refs) must have the same batch size."); + for (size_t i = 1; i < ref_lod.size(); ++i) { + PADDLE_ENFORCE(ref_lod[i] > ref_lod[i - 1], + "Reference string %d is empty.", i); + } + auto num_strs = hyp_lod.size() - 1; + + out_t->Resize({static_cast(num_strs), 1}); + out_t->mutable_data(ctx.GetPlace()); + auto out = out_t->data(); + + T distance = 0.0; + for (size_t num = 0; num < num_strs; ++num) { + auto m = static_cast(hyp_lod[num + 1] - hyp_lod[num]); + auto n = static_cast(ref_lod[num + 1] - ref_lod[num]); + + if (m == 0) { + distance = n; + } else if (n == 0) { + distance = m; + } else { + framework::Tensor dist_t; + dist_t.Resize({m + 1, n + 1}); + dist_t.mutable_data(ctx.GetPlace()); + auto dist = dist_t.data(); + auto x1 = x1_t->data() + hyp_lod[num]; + auto x2 = x2_t->data() + ref_lod[num]; + for (int64_t i = 0; i < m + 1; ++i) { + dist[i * (n + 1)] = i; + } + for (int64_t j = 0; j < n + 1; ++j) { + dist[j] = j; + } + for (int64_t i = 1; i < m + 1; ++i) { + for (int64_t j = 1; j < n + 1; ++j) { + int cost = x1[i - 1] == x2[j - 1] ? 0 : 1; + int dels = dist[(i - 1) * (n + 1) + j] + 1; + int ins = dist[i * (n + 1) + (j - 1)] + 1; + int subs = dist[(i - 1) * (n + 1) + (j - 1)] + cost; + dist[i * (n + 1) + j] = std::min(dels, std::min(ins, subs)); + } + } + distance = dist[m * (n + 1) + n]; + } + + if (normalized) { + PADDLE_ENFORCE(n > 0, + "The reference string (#%d) cannot be empty " + "when Attr(normalized) is enabled.", + n); + distance = distance / n; + } + out[num] = distance; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/elementwise_add_op.cc b/paddle/operators/elementwise_add_op.cc index 432b9ba6f7..37951fa758 100644 --- a/paddle/operators/elementwise_add_op.cc +++ b/paddle/operators/elementwise_add_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/elementwise_add_op.h" #include "paddle/operators/elementwise_op.h" @@ -19,10 +19,9 @@ namespace paddle { namespace operators { class ElementwiseAddOpMaker : public ElementwiseOpMaker { public: - ElementwiseAddOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseAddOpMaker(OpProto* proto, OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { - SetComment("Add", "$Out = X + Y$"); + SetComment("Add", "Out = X + Y"); AddComment(comment_); } }; @@ -34,13 +33,13 @@ REGISTER_OP(elementwise_add, ops::ElementwiseOp, ops::ElementwiseAddOpMaker, elementwise_add_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_add, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel); + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel); REGISTER_OP_CPU_KERNEL( elementwise_add_grad, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel); + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel); diff --git a/paddle/operators/elementwise_add_op.cu b/paddle/operators/elementwise_add_op.cu index 7591428ac7..641cea323a 100644 --- a/paddle/operators/elementwise_add_op.cu +++ b/paddle/operators/elementwise_add_op.cu @@ -1,31 +1,32 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/elementwise_add_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( elementwise_add, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel); -REGISTER_OP_GPU_KERNEL( + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel); +REGISTER_OP_CUDA_KERNEL( elementwise_add_grad, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel); + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel); diff --git a/paddle/operators/elementwise_add_op.h b/paddle/operators/elementwise_add_op.h index 921dc5f6a6..a8389429f2 100644 --- a/paddle/operators/elementwise_add_op.h +++ b/paddle/operators/elementwise_add_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -24,43 +24,11 @@ struct AddFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a + b; } }; -template +template class ElementwiseAddKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - using Tensor = framework::Tensor; - - auto* x = ctx.Input("X"); - auto* y = ctx.Input("Y"); - auto* z = ctx.Output("Out"); - z->mutable_data(ctx.GetPlace()); - TransformFunctor, T, Place> functor( - x, y, z, ctx.device_context(), AddFunctor()); - - auto x_dims = x->dims(); - auto y_dims = y->dims(); - PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), - "Rank of first input must >= rank of second input."); - - if (x_dims == y_dims) { - functor.Run(); - return; - } - - int axis = ctx.Attr("axis"); - axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); - PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), - "Axis should be in range [0, x_dims)"); - - int pre, n, post; - get_mid_dims(x_dims, y_dims, axis, pre, n, post); - if (post == 1) { - functor.RunRowWise(n, pre); - return; - } else { - functor.RunMidWise(n, pre, post); - return; - } + ElementwiseComputeEx, DeviceContext, T>(ctx); } }; @@ -81,23 +49,6 @@ struct ElementwiseAddGradFunctor { } }; -template -struct ElementwiseAddOneGradFunctor { - template - void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { - auto dz_e = framework::EigenVector::Flatten(*dz); - if (dx) { - auto dx_e = framework::EigenVector::Flatten(*dx); - dx_e.device(d) = dz_e; - } - if (dy) { - auto dy_e = framework::EigenVector::Flatten(*dy); - dy_e.device(d) = dz_e.sum(); - } - } -}; - template struct ElementwiseAddBroadCastGradFunctor { template +template class ElementwiseAddGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseGradCompute, - ElementwiseAddOneGradFunctor, + ElementwiseGradCompute, ElementwiseAddBroadCastGradFunctor, ElementwiseAddBroadCast2GradFunctor>(ctx); } diff --git a/paddle/operators/elementwise_div_op.cc b/paddle/operators/elementwise_div_op.cc index 7a325199bd..6ebd58b1b3 100644 --- a/paddle/operators/elementwise_div_op.cc +++ b/paddle/operators/elementwise_div_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/elementwise_div_op.h" #include "paddle/operators/elementwise_op.h" @@ -19,10 +19,9 @@ namespace paddle { namespace operators { class ElementwiseDivOpMaker : public ElementwiseOpMaker { public: - ElementwiseDivOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseDivOpMaker(OpProto* proto, OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { - SetComment("Div", "$Out = X / Y$"); + SetComment("Div", "Out = X / Y"); AddComment(comment_); } }; @@ -35,13 +34,13 @@ REGISTER_OP(elementwise_div, ops::ElementwiseOp, ops::ElementwiseDivOpMaker, elementwise_div_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_div, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel); + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel); REGISTER_OP_CPU_KERNEL( elementwise_div_grad, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel); + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel); diff --git a/paddle/operators/elementwise_div_op.cu b/paddle/operators/elementwise_div_op.cu index de4d0c3344..a0372123d6 100644 --- a/paddle/operators/elementwise_div_op.cu +++ b/paddle/operators/elementwise_div_op.cu @@ -1,31 +1,32 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/elementwise_div_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( elementwise_div, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel); -REGISTER_OP_GPU_KERNEL( + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel); +REGISTER_OP_CUDA_KERNEL( elementwise_div_grad, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel); + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel); diff --git a/paddle/operators/elementwise_div_op.h b/paddle/operators/elementwise_div_op.h index 8946ff3d25..ef26cb6c91 100644 --- a/paddle/operators/elementwise_div_op.h +++ b/paddle/operators/elementwise_div_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -19,11 +19,16 @@ namespace paddle { namespace operators { -template +template +struct DivFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a / b; } +}; + +template class ElementwiseDivKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseCompute(ctx); + ElementwiseComputeEx, DeviceContext, T>(ctx); } }; @@ -102,12 +107,11 @@ struct ElementwiseDivBroadCast2GradFunctor { } }; -template +template class ElementwiseDivGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseGradCompute, - ElementwiseDivGradFunctor, + ElementwiseGradCompute, ElementwiseDivBroadCastGradFunctor, ElementwiseDivBroadCast2GradFunctor>(ctx); } diff --git a/paddle/operators/elementwise_max_op.cc b/paddle/operators/elementwise_max_op.cc new file mode 100644 index 0000000000..53c27ae5be --- /dev/null +++ b/paddle/operators/elementwise_max_op.cc @@ -0,0 +1,45 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/elementwise_max_op.h" +#include "paddle/operators/elementwise_op.h" + +namespace paddle { +namespace operators { +class ElementwiseMaxOpMaker : public ElementwiseOpMaker { + public: + ElementwiseMaxOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : ElementwiseOpMaker(proto, op_checker) { + SetComment("Max", "Out = max(X, Y)"); + AddComment(comment_); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(elementwise_max, ops::ElementwiseOp, ops::ElementwiseMaxOpMaker, + elementwise_max_grad, ops::ElementwiseOpGrad); +REGISTER_OP_CPU_KERNEL( + elementwise_max, + ops::ElementwiseMaxKernel, + ops::ElementwiseMaxKernel, + ops::ElementwiseMaxKernel, + ops::ElementwiseMaxKernel); +REGISTER_OP_CPU_KERNEL( + elementwise_max_grad, + ops::ElementwiseMaxGradKernel, + ops::ElementwiseMaxGradKernel, + ops::ElementwiseMaxGradKernel, + ops::ElementwiseMaxGradKernel); diff --git a/paddle/operators/elementwise_max_op.cu b/paddle/operators/elementwise_max_op.cu new file mode 100644 index 0000000000..5ff4af1747 --- /dev/null +++ b/paddle/operators/elementwise_max_op.cu @@ -0,0 +1,32 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/elementwise_max_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_CUDA_KERNEL( + elementwise_max, + ops::ElementwiseMaxKernel, + ops::ElementwiseMaxKernel, + ops::ElementwiseMaxKernel, + ops::ElementwiseMaxKernel); +REGISTER_OP_CUDA_KERNEL( + elementwise_max_grad, + ops::ElementwiseMaxGradKernel, + ops::ElementwiseMaxGradKernel, + ops::ElementwiseMaxGradKernel, + ops::ElementwiseMaxGradKernel); diff --git a/paddle/operators/elementwise_max_op.h b/paddle/operators/elementwise_max_op.h new file mode 100644 index 0000000000..255728e8e6 --- /dev/null +++ b/paddle/operators/elementwise_max_op.h @@ -0,0 +1,120 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/operators/elementwise_op_function.h" + +namespace paddle { +namespace operators { + +template +struct MaxFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a > b ? a : b; } +}; + +template +class ElementwiseMaxKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseComputeEx, DeviceContext, T>(ctx); + } +}; + +template +struct ElementwiseMaxGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = (x_e > y_e).template cast() * dz_e; + } + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (x_e <= y_e).template cast() * dz_e; + } + } +}; + +template +struct ElementwiseMaxBroadCastGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n)) + .broadcast(Eigen::DSizes(pre, 1)) + .reshape(Eigen::DSizes(x_e.size())); + + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = (x_e > y_e_bcast).template cast() * dz_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = ((x_e <= y_e_bcast).template cast() * dz_e) + .reshape(Eigen::DSizes(pre, n)) + .sum(Eigen::array{{0}}); + } + } +}; + +template +struct ElementwiseMaxBroadCast2GradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n, + Post post) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) + .broadcast(Eigen::DSizes(pre, 1, post)) + .reshape(Eigen::DSizes(x_e.size())); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = (x_e > y_e_bcast).template cast() * dz_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = ((x_e <= y_e_bcast).template cast() * dz_e) + .reshape(Eigen::DSizes(pre, n, post)) + .sum(Eigen::array{{0, 2}}); + } + } +}; + +template +class ElementwiseMaxGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseGradCompute, + ElementwiseMaxBroadCastGradFunctor, + ElementwiseMaxBroadCast2GradFunctor>(ctx); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/elementwise_min_op.cc b/paddle/operators/elementwise_min_op.cc new file mode 100644 index 0000000000..99482e1bf6 --- /dev/null +++ b/paddle/operators/elementwise_min_op.cc @@ -0,0 +1,45 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/elementwise_min_op.h" +#include "paddle/operators/elementwise_op.h" + +namespace paddle { +namespace operators { +class ElementwiseMinOpMaker : public ElementwiseOpMaker { + public: + ElementwiseMinOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : ElementwiseOpMaker(proto, op_checker) { + SetComment("Max", "Out = min(X, Y)"); + AddComment(comment_); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(elementwise_min, ops::ElementwiseOp, ops::ElementwiseMinOpMaker, + elementwise_min_grad, ops::ElementwiseOpGrad); +REGISTER_OP_CPU_KERNEL( + elementwise_min, + ops::ElementwiseMinKernel, + ops::ElementwiseMinKernel, + ops::ElementwiseMinKernel, + ops::ElementwiseMinKernel); +REGISTER_OP_CPU_KERNEL( + elementwise_min_grad, + ops::ElementwiseMinGradKernel, + ops::ElementwiseMinGradKernel, + ops::ElementwiseMinGradKernel, + ops::ElementwiseMinGradKernel); diff --git a/paddle/operators/elementwise_min_op.cu b/paddle/operators/elementwise_min_op.cu new file mode 100644 index 0000000000..3547e6ccb7 --- /dev/null +++ b/paddle/operators/elementwise_min_op.cu @@ -0,0 +1,32 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/elementwise_min_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_CUDA_KERNEL( + elementwise_min, + ops::ElementwiseMinKernel, + ops::ElementwiseMinKernel, + ops::ElementwiseMinKernel, + ops::ElementwiseMinKernel); +REGISTER_OP_CUDA_KERNEL( + elementwise_min_grad, + ops::ElementwiseMinGradKernel, + ops::ElementwiseMinGradKernel, + ops::ElementwiseMinGradKernel, + ops::ElementwiseMinGradKernel); diff --git a/paddle/operators/elementwise_min_op.h b/paddle/operators/elementwise_min_op.h new file mode 100644 index 0000000000..e6627a0f1b --- /dev/null +++ b/paddle/operators/elementwise_min_op.h @@ -0,0 +1,120 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/operators/elementwise_op_function.h" + +namespace paddle { +namespace operators { + +template +struct MinFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? a : b; } +}; + +template +class ElementwiseMinKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseComputeEx, DeviceContext, T>(ctx); + } +}; + +template +struct ElementwiseMinGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = (x_e < y_e).template cast() * dz_e; + } + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (x_e >= y_e).template cast() * dz_e; + } + } +}; + +template +struct ElementwiseMinBroadCastGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n)) + .broadcast(Eigen::DSizes(pre, 1)) + .reshape(Eigen::DSizes(x_e.size())); + + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = (x_e < y_e_bcast).template cast() * dz_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = ((x_e >= y_e_bcast).template cast() * dz_e) + .reshape(Eigen::DSizes(pre, n)) + .sum(Eigen::array{{0}}); + } + } +}; + +template +struct ElementwiseMinBroadCast2GradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n, + Post post) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) + .broadcast(Eigen::DSizes(pre, 1, post)) + .reshape(Eigen::DSizes(x_e.size())); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = (x_e < y_e_bcast).template cast() * dz_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = ((x_e >= y_e_bcast).template cast() * dz_e) + .reshape(Eigen::DSizes(pre, n, post)) + .sum(Eigen::array{{0, 2}}); + } + } +}; + +template +class ElementwiseMinGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseGradCompute, + ElementwiseMinBroadCastGradFunctor, + ElementwiseMinBroadCast2GradFunctor>(ctx); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/elementwise_mul_op.cc b/paddle/operators/elementwise_mul_op.cc index 8851267a52..450dd05c79 100644 --- a/paddle/operators/elementwise_mul_op.cc +++ b/paddle/operators/elementwise_mul_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/elementwise_mul_op.h" #include "paddle/operators/elementwise_op.h" @@ -20,10 +20,9 @@ namespace operators { class ElementwiseMulOpMaker : public ElementwiseOpMaker { public: - ElementwiseMulOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseMulOpMaker(OpProto* proto, OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { - SetComment("Mul", "$Out = X \\odot\\ Y$"); + SetComment("Mul", "Out = X \\odot\\ Y"); AddComment(comment_); } }; @@ -36,13 +35,13 @@ REGISTER_OP(elementwise_mul, ops::ElementwiseOp, ops::ElementwiseMulOpMaker, elementwise_mul_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_mul, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel); + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel); REGISTER_OP_CPU_KERNEL( elementwise_mul_grad, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel); + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel); diff --git a/paddle/operators/elementwise_mul_op.cu b/paddle/operators/elementwise_mul_op.cu index b0dfdee1cc..f73e8afda9 100644 --- a/paddle/operators/elementwise_mul_op.cu +++ b/paddle/operators/elementwise_mul_op.cu @@ -1,31 +1,32 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/elementwise_mul_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( elementwise_mul, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel); -REGISTER_OP_GPU_KERNEL( + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel); +REGISTER_OP_CUDA_KERNEL( elementwise_mul_grad, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel); + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel); diff --git a/paddle/operators/elementwise_mul_op.h b/paddle/operators/elementwise_mul_op.h index 4469b07eaa..4b86b00b5a 100644 --- a/paddle/operators/elementwise_mul_op.h +++ b/paddle/operators/elementwise_mul_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/operators/elementwise_op_function.h" @@ -18,11 +18,16 @@ namespace paddle { namespace operators { -template +template +struct MulFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a * b; } +}; + +template class ElementwiseMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseCompute(ctx); + ElementwiseComputeEx, DeviceContext, T>(ctx); } }; @@ -101,12 +106,11 @@ struct ElementwiseMulBroadCast2GradFunctor { } }; -template +template class ElementwiseMulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseGradCompute, - ElementwiseMulGradFunctor, + ElementwiseGradCompute, ElementwiseMulBroadCastGradFunctor, ElementwiseMulBroadCast2GradFunctor>(ctx); } diff --git a/paddle/operators/elementwise_op.h b/paddle/operators/elementwise_op.h index ea533503e4..1a0131d8b9 100644 --- a/paddle/operators/elementwise_op.h +++ b/paddle/operators/elementwise_op.h @@ -26,9 +26,9 @@ class ElementwiseOp : public framework::OperatorWithKernel { using Tensor = framework::Tensor; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of elementwise op should not be null"); + "Input(X) of elementwise op should not be null."); PADDLE_ENFORCE(ctx->HasInput("Y"), - "Input(Y) of elementwise op should not be null"); + "Input(Y) of elementwise op should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of elementwise op should not be null."); @@ -43,15 +43,14 @@ class ElementwiseOp : public framework::OperatorWithKernel { class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker { public: - ElementwiseOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "(Tensor) The first input tensor of elementwise op"); - AddInput("Y", "(Tensor) The second input tensor of elementwise op"); - AddOutput("Out", "The output of elementwise op"); + AddInput("X", "(Tensor), The first input tensor of elementwise op."); + AddInput("Y", "(Tensor), The second input tensor of elementwise op."); + AddOutput("Out", "The output of elementwise op."); AddAttr("axis", - "(int, default -1) The starting dimension index " - "for broadcasting Y onto X") + "(int, default -1). The start dimension index " + "for broadcasting Y onto X.") .SetDefault(-1) .EqualGreaterThan(-1); comment_ = R"DOC( @@ -59,28 +58,30 @@ Limited Elementwise {name} Operator. The equation is: -{equation} +$${equation}$$ -X is a tensor of any dimension and the dimensions of tensor Y must be smaller than -or equal to the dimensions of X. +$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$. There are two cases for this operator: -1. The shape of Y is same with X; -2. The shape of Y is a subset of X. +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$. For case 2: -Y will be broadcasted to match the shape of X and axis should be -the starting dimension index for broadcasting Y onto X. - -example: - shape(X) = (2, 3, 4, 5), shape(Y) = (,) - shape(X) = (2, 3, 4, 5), shape(Y) = (5,) - shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) - shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 - shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 - -Both the input X and Y can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD information with input X. +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$. + +For example + .. code-block:: python + + shape(X) = (2, 3, 4, 5), shape(Y) = (,) + shape(X) = (2, 3, 4, 5), shape(Y) = (5,) + shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) + shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 + shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 + +Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$. )DOC"; AddComment(comment_); diff --git a/paddle/operators/elementwise_op_function.h b/paddle/operators/elementwise_op_function.h index ca3542e783..db5d30c1af 100644 --- a/paddle/operators/elementwise_op_function.h +++ b/paddle/operators/elementwise_op_function.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" @@ -59,17 +59,17 @@ inline void get_mid_dims(const framework::DDim& x_dims, } } -template +template class RowwiseTransformIterator; -template +template class MidWiseTransformIterator; template -class RowwiseTransformIterator { +class RowwiseTransformIterator { public: RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {} - RowwiseTransformIterator& operator++() { + RowwiseTransformIterator& operator++() { ++i_; if (UNLIKELY(i_ == n_)) { i_ = 0; @@ -77,13 +77,13 @@ class RowwiseTransformIterator { return *this; } - bool operator==( - const RowwiseTransformIterator& rhs) const { + bool operator==(const RowwiseTransformIterator& + rhs) const { return (ptr_ + i_) == &(*rhs); } - bool operator!=( - const RowwiseTransformIterator& rhs) const { + bool operator!=(const RowwiseTransformIterator& + rhs) const { return (ptr_ + i_) != &(*rhs); } @@ -96,28 +96,30 @@ class RowwiseTransformIterator { }; template -class MidWiseTransformIterator { +class MidWiseTransformIterator { public: MidWiseTransformIterator(const T* ptr, int n, int post) : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {} - MidWiseTransformIterator& operator++() { + MidWiseTransformIterator& operator++() { ++j_; - i_ = j_ / post_; - if (UNLIKELY(i_ == n_)) { + if (UNLIKELY(j_ == post_)) { + ++i_; j_ = 0; - i_ = 0; + if (UNLIKELY(i_ == n_)) { + i_ = 0; + } } return *this; } - bool operator==( - const MidWiseTransformIterator& rhs) const { + bool operator==(const MidWiseTransformIterator& + rhs) const { return (ptr_ + i_) == &(*rhs); } - bool operator!=( - const MidWiseTransformIterator& rhs) const { + bool operator!=(const MidWiseTransformIterator& + rhs) const { return (ptr_ + i_) != &(*rhs); } @@ -125,20 +127,20 @@ class MidWiseTransformIterator { private: const T* ptr_; - int i_; + int64_t i_; int64_t j_; int64_t n_; - int post_; + int64_t post_; }; #ifdef __NVCC__ template -class RowwiseTransformIterator +class RowwiseTransformIterator : public thrust::iterator_adaptor< - RowwiseTransformIterator, const T*> { + RowwiseTransformIterator, const T*> { public: typedef thrust::iterator_adaptor< - RowwiseTransformIterator, const T*> + RowwiseTransformIterator, const T*> super_t; HOSTDEVICE RowwiseTransformIterator(const T* x, int n) : super_t(x), begin_(x), n_(n){}; @@ -153,12 +155,12 @@ class RowwiseTransformIterator }; template -class MidWiseTransformIterator +class MidWiseTransformIterator : public thrust::iterator_adaptor< - MidWiseTransformIterator, const T*> { + MidWiseTransformIterator, const T*> { public: typedef thrust::iterator_adaptor< - MidWiseTransformIterator, const T*> + MidWiseTransformIterator, const T*> super_t; HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post) : super_t(x), begin_(x), n_(n), post_(post){}; @@ -174,12 +176,11 @@ class MidWiseTransformIterator }; #endif -template +template class TransformFunctor { public: TransformFunctor(const framework::Tensor* x, const framework::Tensor* y, - framework::Tensor* z, const platform::DeviceContext& ctx, - Functor func) + framework::Tensor* z, const DeviceContext& ctx, Functor func) : x_(x->data()), y_(y->data()), z_(z->mutable_data(ctx.GetPlace())), @@ -188,20 +189,20 @@ class TransformFunctor { func_(func) {} inline void Run() const { - platform::Transform trans; + platform::Transform trans; trans(ctx_, x_, x_ + nx_, y_, z_, func_); } inline void RunRowWise(int n, int pre) const { - platform::Transform trans; - trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator(y_, n), z_, - func_); + platform::Transform trans; + trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator(y_, n), + z_, func_); } inline void RunMidWise(int n, int pre, int post) const { - platform::Transform trans; - trans(ctx_, x_, x_ + nx_, MidWiseTransformIterator(y_, n, post), - z_, func_); + platform::Transform trans; + trans(ctx_, x_, x_ + nx_, + MidWiseTransformIterator(y_, n, post), z_, func_); } private: @@ -209,22 +210,24 @@ class TransformFunctor { const T* y_; T* z_; int64_t nx_; - const platform::DeviceContext& ctx_; + const DeviceContext& ctx_; Functor func_; }; #define EIGEN_FUNCTOR(name, eigen_op) \ struct Eigen##name##Functor { \ - template \ + template \ inline void Run(const framework::Tensor* x, const framework::Tensor* y, \ framework::Tensor* z, \ const framework::ExecutionContext& ctx) { \ auto x_e = framework::EigenVector::Flatten(*x); \ auto y_e = framework::EigenVector::Flatten(*y); \ auto z_e = framework::EigenVector::Flatten(*z); \ - z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_e); \ + z_e.device( \ + *ctx.template device_context().eigen_device()) = \ + eigen_op(x_e, y_e); \ } \ - template \ + template \ inline void RunBroadCast(const framework::Tensor* x, \ const framework::Tensor* y, framework::Tensor* z, \ const framework::ExecutionContext& ctx, int pre, \ @@ -235,9 +238,11 @@ class TransformFunctor { auto y_bcast = y_e.reshape(Eigen::DSizes(1, n)) \ .broadcast(Eigen::DSizes(pre, 1)) \ .reshape(Eigen::DSizes(x_e.size())); \ - z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_bcast); \ + z_e.device( \ + *ctx.template device_context().eigen_device()) = \ + eigen_op(x_e, y_bcast); \ } \ - template \ + template \ inline void RunBroadCast2(const framework::Tensor* x, \ const framework::Tensor* y, \ framework::Tensor* z, \ @@ -249,11 +254,13 @@ class TransformFunctor { auto y_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) \ .broadcast(Eigen::DSizes(pre, 1, post)) \ .reshape(Eigen::DSizes(x_e.size())); \ - z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_bcast); \ + z_e.device( \ + *ctx.template device_context().eigen_device()) = \ + eigen_op(x_e, y_bcast); \ } \ } -template +template void ElementwiseCompute(const framework::ExecutionContext& ctx) { using Tensor = framework::Tensor; @@ -269,7 +276,7 @@ void ElementwiseCompute(const framework::ExecutionContext& ctx) { if (x_dims == y_dims) { functor f; - f.template Run(x, y, z, ctx); + f.template Run(x, y, z, ctx); return; } @@ -282,11 +289,11 @@ void ElementwiseCompute(const framework::ExecutionContext& ctx) { get_mid_dims(x_dims, y_dims, axis, pre, n, post); if (post == 1) { functor f; - f.template RunBroadCast(x, y, z, ctx, pre, n); + f.template RunBroadCast(x, y, z, ctx, pre, n); return; } else { functor f; - f.template RunBroadCast2(x, y, z, ctx, pre, n, post); + f.template RunBroadCast2(x, y, z, ctx, pre, n, post); return; } } @@ -303,7 +310,7 @@ EIGEN_FUNCTOR(Mul, EIGEN_MUL); #define EIGEN_DIV(x, y) ((x) / (y)) EIGEN_FUNCTOR(Div, EIGEN_DIV); -template void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { using Tensor = framework::Tensor; @@ -313,7 +320,7 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); auto x_dims = x->dims(); auto y_dims = y->dims(); @@ -333,6 +340,13 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { return; } + if (y_dims.size() == 1 && y_dims[0] == 1) { + // y is a scalar + auto extended_dims = framework::vectorize(x_dims); + extended_dims.push_back(1); + x_dims = framework::make_ddim(extended_dims); + } + int axis = ctx.Attr("axis"); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); @@ -349,5 +363,50 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { return; } } + +template +void ElementwiseComputeEx(const framework::ExecutionContext& ctx) { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + TransformFunctor functor( + x, y, z, ctx.template device_context(), Functor()); + + auto x_dims = x->dims(); + auto y_dims = y->dims(); + PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), + "Rank of first input must >= rank of second input."); + + if (x_dims == y_dims) { + functor.Run(); + return; + } + + if (y_dims.size() == 1 && y_dims[0] == 1) { + // y is a scalar + auto extended_dims = framework::vectorize(x_dims); + extended_dims.push_back(1); + x_dims = framework::make_ddim(extended_dims); + } + + int axis = ctx.Attr("axis"); + axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); + PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), + "Axis should be in range [0, x_dims)"); + + int pre, n, post; + get_mid_dims(x_dims, y_dims, axis, pre, n, post); + if (post == 1) { + functor.RunRowWise(n, pre); + return; + } else { + functor.RunMidWise(n, pre, post); + return; + } +} + } // namespace operators } // namespace paddle diff --git a/paddle/operators/elementwise_sub_op.cc b/paddle/operators/elementwise_sub_op.cc index 95d7979e39..d3c51f0a69 100644 --- a/paddle/operators/elementwise_sub_op.cc +++ b/paddle/operators/elementwise_sub_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/elementwise_sub_op.h" #include "paddle/operators/elementwise_op.h" @@ -19,10 +19,9 @@ namespace paddle { namespace operators { class ElementwiseSubOpMaker : public ElementwiseOpMaker { public: - ElementwiseSubOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseSubOpMaker(OpProto* proto, OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { - SetComment("Sub", "$Out = X - Y$"); + SetComment("Sub", "Out = X - Y"); AddComment(comment_); } }; @@ -34,13 +33,13 @@ REGISTER_OP(elementwise_sub, ops::ElementwiseOp, ops::ElementwiseSubOpMaker, elementwise_sub_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_sub, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel); + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel); REGISTER_OP_CPU_KERNEL( elementwise_sub_grad, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel); + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel); diff --git a/paddle/operators/elementwise_sub_op.cu b/paddle/operators/elementwise_sub_op.cu index ec23bec35f..7a2516ef6a 100644 --- a/paddle/operators/elementwise_sub_op.cu +++ b/paddle/operators/elementwise_sub_op.cu @@ -1,31 +1,32 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/elementwise_sub_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( elementwise_sub, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel); -REGISTER_OP_GPU_KERNEL( + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel); +REGISTER_OP_CUDA_KERNEL( elementwise_sub_grad, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel); + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel); diff --git a/paddle/operators/elementwise_sub_op.h b/paddle/operators/elementwise_sub_op.h index 3f40c1c5bc..a2aca79302 100644 --- a/paddle/operators/elementwise_sub_op.h +++ b/paddle/operators/elementwise_sub_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/operators/elementwise_op_function.h" @@ -18,11 +18,16 @@ namespace paddle { namespace operators { -template +template +struct SubFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a - b; } +}; + +template class ElementwiseSubKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseCompute(ctx); + ElementwiseComputeEx, DeviceContext, T>(ctx); } }; @@ -43,23 +48,6 @@ struct ElementwiseSubGradFunctor { } }; -template -struct ElementwiseSubOneGradFunctor { - template - void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { - auto dz_e = framework::EigenVector::Flatten(*dz); - if (dx) { - auto dx_e = framework::EigenVector::Flatten(*dx); - dx_e.device(d) = dz_e; - } - if (dy) { - auto dy_e = framework::EigenVector::Flatten(*dy); - dy_e.device(d) = (-1.0) * dz_e.sum(); - } - } -}; - template struct ElementwiseSubBroadCastGradFunctor { template +template class ElementwiseSubGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseGradCompute, - ElementwiseSubOneGradFunctor, + ElementwiseGradCompute, ElementwiseSubBroadCastGradFunctor, ElementwiseSubBroadCast2GradFunctor>(ctx); } diff --git a/paddle/operators/expand_op.cc b/paddle/operators/expand_op.cc index 282775fcda..043c93654d 100644 --- a/paddle/operators/expand_op.cc +++ b/paddle/operators/expand_op.cc @@ -55,24 +55,24 @@ class ExpandOp : public framework::OperatorWithKernel { class ExpandOpMaker : public framework::OpProtoAndCheckerMaker { public: - ExpandOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + ExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", - "(Tensor, default Tensor) A tensor with rank in [1, 6]." - "X is the input tensor to be expanded."); + "(Tensor, default Tensor). A tensor with rank in [1, 6]." + "X is the input to be expanded."); AddOutput("Out", - "(Tensor, default Tensor) A tensor with rank in [1, 6]." - "The rank of Output(Out) is same as Input(X) except that each " - "dimension size of Output(Out) is equal to corresponding " - "dimension size of Input(X) multiplying corresponding value of " - "Attr(expand_times)."); + "(Tensor, default Tensor). A tensor with rank in [1, 6]." + "The rank of Output(Out) have the same with Input(X). " + "After expanding, size of each dimension of Output(Out) is equal " + "to size of the corresponding dimension of Input(X) multiplying " + "the corresponding value given by Attr(expand_times)."); AddAttr>("expand_times", "Expand times number for each dimension."); AddComment(R"DOC( Expand operator tiles the input by given times number. You should set times number for each dimension by providing attribute 'expand_times'. The rank of X -should be in [1, 6]. Please notice that size of 'expand_times' must be same with -X's rank. Following is a using case: +should be in [1, 6]. Please note that size of 'expand_times' must be the same +with X's rank. Following is a using case: Input(X) is a 3-D tensor with shape [2, 3, 1]: @@ -130,7 +130,8 @@ class ExpandGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(expand, ops::ExpandOp, ops::ExpandOpMaker, expand_grad, ops::ExpandGradOp); -REGISTER_OP_CPU_KERNEL(expand, - ops::ExpandKernel); REGISTER_OP_CPU_KERNEL( - expand_grad, ops::ExpandGradKernel); + expand, ops::ExpandKernel); +REGISTER_OP_CPU_KERNEL( + expand_grad, + ops::ExpandGradKernel); diff --git a/paddle/operators/expand_op.cu b/paddle/operators/expand_op.cu index 6744562b6c..84e8fa567b 100644 --- a/paddle/operators/expand_op.cu +++ b/paddle/operators/expand_op.cu @@ -1,23 +1,24 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/expand_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(expand, - ops::ExpandKernel); -REGISTER_OP_GPU_KERNEL( - expand_grad, ops::ExpandGradKernel); +REGISTER_OP_CUDA_KERNEL( + expand, ops::ExpandKernel); +REGISTER_OP_CUDA_KERNEL( + expand_grad, + ops::ExpandGradKernel); diff --git a/paddle/operators/expand_op.h b/paddle/operators/expand_op.h index 4d7996ad1e..a4994cf3a5 100644 --- a/paddle/operators/expand_op.h +++ b/paddle/operators/expand_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - You may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -56,7 +56,7 @@ template using EigenTensor = framework::EigenTensor; -template +template class ExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -83,12 +83,13 @@ class ExpandKernel : public framework::OpKernel { auto x = EigenTensor::From(*in0); out0->mutable_data(context.GetPlace()); auto y = EigenTensor::From(*out0); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); y.device(place) = x.broadcast(bcast_dims); } }; -template +template class ExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -125,8 +126,7 @@ class ExpandGradKernel : public framework::OpKernel { auto* in0 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); out0->mutable_data(context.GetPlace()); - framework::CopyFrom(*in0, context.GetPlace(), context.device_context(), - out0); + framework::Copy(*in0, context.GetPlace(), context.device_context(), out0); } else { switch (dims) { REP_EXPAND_GRAD_TEMPLATE(72) @@ -164,7 +164,8 @@ class ExpandGradKernel : public framework::OpKernel { reduce_dims[i] = reduce_dims_vec[i]; } auto out_grad = EigenVector::Flatten(*in0); - x_grad.device(context.GetEigenDevice()) = + x_grad.device( + *context.template device_context().eigen_device()) = out_grad.reshape(reshape_dims).sum(reduce_dims).reshape(x.dimensions()); } }; diff --git a/paddle/operators/feed_op.cc b/paddle/operators/feed_op.cc index ee43c22fb1..d738e1850c 100644 --- a/paddle/operators/feed_op.cc +++ b/paddle/operators/feed_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/feed_fetch_type.h" #include "paddle/framework/op_registry.h" @@ -25,7 +25,7 @@ class FeedOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto feed_var_name = Input("X"); auto *feed_var = scope.FindVar(feed_var_name); @@ -47,15 +47,19 @@ class FeedOp : public framework::OperatorBase { auto &feed_list = feed_var->Get(); auto &feed_item = feed_list.at(static_cast(col)); auto *out_item = out_var->GetMutable(); - framework::CopyFrom(feed_item, dev_ctx.GetPlace(), dev_ctx, out_item); + + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + + framework::Copy(feed_item, place, dev_ctx, out_item); out_item->set_lod(feed_item.lod()); } }; class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: - FeedOpInfoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FeedOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of feed op"); AddOutput("Out", "The output of feed op"); diff --git a/paddle/operators/fetch_op.cc b/paddle/operators/fetch_op.cc index 1ae07194c2..7205ee2a87 100644 --- a/paddle/operators/fetch_op.cc +++ b/paddle/operators/fetch_op.cc @@ -1,19 +1,20 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/feed_fetch_type.h" #include "paddle/framework/op_registry.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -26,7 +27,7 @@ class FetchOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto fetch_var_name = Input("X"); auto *fetch_var = scope.FindVar(fetch_var_name); PADDLE_ENFORCE(fetch_var != nullptr, @@ -51,7 +52,10 @@ class FetchOp : public framework::OperatorBase { // FIXME(yuyang18): Should we assume the fetch operator always generate // CPU outputs? - CopyFrom(src_item, platform::CPUPlace(), dev_ctx, &dst_item); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(src_item.place()); + + Copy(src_item, platform::CPUPlace(), dev_ctx, &dst_item); dev_ctx.Wait(); dst_item.set_lod(src_item.lod()); @@ -61,8 +65,7 @@ class FetchOp : public framework::OperatorBase { class FetchOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: - FetchOpInfoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FetchOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of fetch op"); AddOutput("Out", "The output of fetch op"); diff --git a/paddle/operators/fill_constant_batch_size_like_op.cc b/paddle/operators/fill_constant_batch_size_like_op.cc index 892922cd3a..c74a5b6ced 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.cc +++ b/paddle/operators/fill_constant_batch_size_like_op.cc @@ -49,10 +49,10 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( - static_cast(ctx.Attr("dtype")), + static_cast(ctx.Attr("dtype")), ctx.device_context()); } }; @@ -60,13 +60,12 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel { class FillConstantBatchSizeLikeOpMaker : public framework::OpProtoAndCheckerMaker { public: - FillConstantBatchSizeLikeOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FillConstantBatchSizeLikeOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddInput("Input", "(Tensor) Tensor " "whose dim_idx th dimension is used to specify the batch_size"); @@ -100,8 +99,11 @@ REGISTER_OPERATOR(fill_constant_batch_size_like, ops::FillConstantBatchSizeLikeOpMaker); REGISTER_OP_CPU_KERNEL( fill_constant_batch_size_like, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel); diff --git a/paddle/operators/fill_constant_batch_size_like_op.cu.cc b/paddle/operators/fill_constant_batch_size_like_op.cu.cc index 9e7a1eeab8..608f4b9162 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.cu.cc +++ b/paddle/operators/fill_constant_batch_size_like_op.cu.cc @@ -1,25 +1,28 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/fill_constant_batch_size_like_op.h" #include "paddle/framework/op_registry.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( fill_constant_batch_size_like, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel); diff --git a/paddle/operators/fill_constant_batch_size_like_op.h b/paddle/operators/fill_constant_batch_size_like_op.h index 339d97a30a..66da9d0307 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.h +++ b/paddle/operators/fill_constant_batch_size_like_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class FillConstantBatchSizeLikeOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -27,8 +27,9 @@ class FillConstantBatchSizeLikeOpKernel : public framework::OpKernel { out->mutable_data(ctx.GetPlace()); auto value = ctx.Attr("value"); - math::SetConstant setter; - setter(ctx.device_context(), out, static_cast(value)); + math::SetConstant setter; + setter(ctx.template device_context(), out, + static_cast(value)); } }; diff --git a/paddle/operators/fill_constant_op.cc b/paddle/operators/fill_constant_op.cc index 3d5f84bc23..dcd43a30c8 100644 --- a/paddle/operators/fill_constant_op.cc +++ b/paddle/operators/fill_constant_op.cc @@ -15,6 +15,7 @@ limitations under the License. */ #include "paddle/framework/data_type.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/math/math_function.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -33,8 +34,9 @@ class FillConstantOp : public framework::OperatorBase { public: using framework::OperatorBase::OperatorBase; void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { - auto data_type = static_cast(Attr("dtype")); + const platform::Place &dev_place) const override { + auto data_type = + static_cast(Attr("dtype")); auto value = Attr("value"); auto force_cpu = Attr("force_cpu"); auto &out = @@ -44,21 +46,23 @@ class FillConstantOp : public framework::OperatorBase { auto cpu = platform::CPUPlace(); out.mutable_data(cpu, framework::ToTypeIndex(data_type)); } else { - out.mutable_data(dev_ctx.GetPlace(), framework::ToTypeIndex(data_type)); + out.mutable_data(dev_place, framework::ToTypeIndex(data_type)); } + + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); math::set_constant(dev_ctx, &out, value); } }; class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker { public: - FillConstantOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FillConstantOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddAttr>("shape", "(vector) The shape of the output"); AddAttr("value", "(float, default 0) The value to be filled") .SetDefault(0.0f); diff --git a/paddle/operators/fill_op.cc b/paddle/operators/fill_op.cc new file mode 100644 index 0000000000..4f5a2ed169 --- /dev/null +++ b/paddle/operators/fill_op.cc @@ -0,0 +1,114 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/data_type.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { + +struct FillOpVisitor { + FillOpVisitor(framework::LoDTensor *tensor, const std::vector &value) + : tensor_(tensor), value_(value) {} + + template + void operator()() const { + platform::CPUPlace cpu; + auto *data = tensor_->mutable_data(cpu); + std::transform(value_.data(), value_.data() + tensor_->numel(), data, + [](float dat) { return static_cast(dat); }); + } + + framework::LoDTensor *tensor_; + const std::vector &value_; +}; + +class FillOp : public framework::OperatorBase { + public: + FillOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + auto &out = + detail::Ref(detail::Ref(scope.FindVar(Output("Out")), + "Cannot find variable %s", Output("Out")) + .GetMutable()); + out.Resize(framework::make_ddim(Attr>("shape"))); + auto dtype = static_cast(Attr("dtype")); + platform::CPUPlace cpu; + auto force_cpu = Attr("force_cpu"); + out.mutable_data(force_cpu ? cpu : place, framework::ToTypeIndex(dtype)); + + framework::LoDTensor tensor; + + if (force_cpu || platform::is_cpu_place(place)) { + tensor.ShareDataWith(out); + } else { + // Always make tensor in CPU memory. + tensor.Resize(out.dims()); + tensor.mutable_data(cpu, framework::ToTypeIndex(dtype)); + } + + framework::VisitDataType( + dtype, FillOpVisitor(&tensor, Attr>("value"))); + + if (!force_cpu && platform::is_gpu_place(place)) { + // Copy tensor to out + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + framework::Copy(tensor, place, dev_ctx, &out); + } + } +}; + +class FillOpMaker : public framework::OpProtoAndCheckerMaker { + public: + FillOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddComment(R"DOC(Fill operator + +Fill an tensor with `value` and `shape`. The type of the tensor is specify by +`dtype`. +)DOC"); + AddOutput("Out", "(LoDTensor) The output tensor."); + AddAttr>( + "value", "The float values of tensor, which are flatten in row major"); + AddAttr>("shape", "The shape of output tensor"); + AddAttr("dtype", "The data type of output tensor, Default is float") + .SetDefault(framework::proto::DataType::FP32); + AddAttr("force_cpu", + "Whether the output tensor must be at CPU memory or not. " + "Default is false.") + .SetDefault(false); + } +}; + +class FillOpInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + context->SetOutputDim( + "Out", + framework::make_ddim(context->Attrs().Get>("shape"))); + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; +REGISTER_OPERATOR(fill, ops::FillOp, ops::FillOpInferShape, ops::FillOpMaker); diff --git a/paddle/operators/fill_zeros_like_op.cc b/paddle/operators/fill_zeros_like_op.cc index 95fb5932b8..b4ae1de876 100644 --- a/paddle/operators/fill_zeros_like_op.cc +++ b/paddle/operators/fill_zeros_like_op.cc @@ -24,20 +24,19 @@ class FillZerosLikeOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of FillZerosLikeOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Y"), - "Output(Y) of FillZerosLikeOp should not be null."); - ctx->SetOutputDim("Y", ctx->GetInputDim("X")); - ctx->ShareLoD("X", /*->*/ "Y"); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of FillZerosLikeOp should not be null."); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Out"); } }; class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker { public: - FillZerosLikeOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FillZerosLikeOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of fill-zeros-like op."); - AddOutput("Y", "The variable will be filled up with zeros."); + AddOutput("Out", "The variable will be filled up with zeros."); AddComment(R"DOC( FillZerosLike Operator. @@ -54,8 +53,9 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, ops::FillZerosLikeOp, ops::FillZerosLikeOpMaker); REGISTER_OP_CPU_KERNEL( - fill_zeros_like, ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel); + fill_zeros_like, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel); diff --git a/paddle/operators/fill_zeros_like_op.cu.cc b/paddle/operators/fill_zeros_like_op.cu.cc index 1501a17441..b7048e8f58 100644 --- a/paddle/operators/fill_zeros_like_op.cu.cc +++ b/paddle/operators/fill_zeros_like_op.cu.cc @@ -1,24 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/fill_zeros_like_op.h" #include "paddle/framework/op_registry.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - fill_zeros_like, ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel); +REGISTER_OP_CUDA_KERNEL( + fill_zeros_like, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel); diff --git a/paddle/operators/fill_zeros_like_op.h b/paddle/operators/fill_zeros_like_op.h index 7e7d78eea2..351ecf8b2f 100644 --- a/paddle/operators/fill_zeros_like_op.h +++ b/paddle/operators/fill_zeros_like_op.h @@ -19,15 +19,16 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class FillZerosLikeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* out = context.Output("Y"); + auto* out = context.Output("Out"); out->mutable_data(context.GetPlace()); - math::SetConstant setter; - setter(context.device_context(), out, static_cast(0)); + math::SetConstant setter; + setter(context.template device_context(), out, + static_cast(0)); } }; diff --git a/paddle/operators/ftrl_op.cc b/paddle/operators/ftrl_op.cc index cb7ae69196..d00700823d 100644 --- a/paddle/operators/ftrl_op.cc +++ b/paddle/operators/ftrl_op.cc @@ -57,7 +57,7 @@ class FTRLOp : public framework::OperatorWithKernel { class FTRLOpMaker : public framework::OpProtoAndCheckerMaker { public: - FTRLOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + FTRLOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -135,5 +135,5 @@ The paper that proposed Follow The Regularized Leader (FTRL): namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(ftrl, ops::FTRLOp, ops::FTRLOpMaker); -REGISTER_OP_CPU_KERNEL(ftrl, - ops::FTRLOpKernel); +REGISTER_OP_CPU_KERNEL( + ftrl, ops::FTRLOpKernel); diff --git a/paddle/operators/ftrl_op.cu b/paddle/operators/ftrl_op.cu index 97b36dade6..abbbe7adbe 100644 --- a/paddle/operators/ftrl_op.cu +++ b/paddle/operators/ftrl_op.cu @@ -15,5 +15,5 @@ specific language governing permissions and limitations under the License. */ #include "paddle/operators/ftrl_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(ftrl, - ops::FTRLOpKernel); +REGISTER_OP_CUDA_KERNEL( + ftrl, ops::FTRLOpKernel); diff --git a/paddle/operators/ftrl_op.h b/paddle/operators/ftrl_op.h index b040162f8d..4eea04cd8d 100644 --- a/paddle/operators/ftrl_op.h +++ b/paddle/operators/ftrl_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class FTRLOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -53,7 +53,7 @@ class FTRLOpKernel : public framework::OpKernel { auto p_out = EigenVector::Flatten(*param_out); auto s_acc_out = EigenVector::Flatten(*sq_accum_out); auto l_acc_out = EigenVector::Flatten(*lin_accum_out); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); diff --git a/paddle/operators/gather.cu.h b/paddle/operators/gather.cu.h index 8d04ecd284..9840c066f0 100644 --- a/paddle/operators/gather.cu.h +++ b/paddle/operators/gather.cu.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/tensor.h" @@ -20,7 +20,7 @@ namespace paddle { namespace operators { using framework::Tensor; -using platform::Place; +using platform::DeviceContext; #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index 8f80fb1625..597fdad079 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -40,7 +40,7 @@ class GatherOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -57,7 +57,7 @@ class GatherGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -67,7 +67,7 @@ class GatherGradOp : public framework::OperatorWithKernel { class GatherOpMaker : public framework::OpProtoAndCheckerMaker { public: - GatherOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + GatherOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The source input of gather op"); AddInput("Index", "The index input of gather op"); diff --git a/paddle/operators/gather_op.cu b/paddle/operators/gather_op.cu index 92219d6a43..eec2415e1d 100644 --- a/paddle/operators/gather_op.cu +++ b/paddle/operators/gather_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "gather.cu.h" #include "paddle/framework/eigen.h" @@ -49,7 +49,8 @@ class GatherGradOpCUDAKernel : public framework::OpKernel { dX->mutable_data(ctx.GetPlace()); auto dxt = framework::EigenVector::Flatten(*dX); - auto place = ctx.GetEigenDevice(); + auto &place = *ctx.template device_context() + .eigen_device(); dxt.device(place) = dxt.constant(static_cast(0)); GPUScatterAssign(ctx.device_context(), *dO, *Index, dX); @@ -60,5 +61,5 @@ class GatherGradOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(gather, ops::GatherOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel); diff --git a/paddle/operators/gather_op.h b/paddle/operators/gather_op.h index 8276ed0d3d..1a1ba0c41a 100644 --- a/paddle/operators/gather_op.h +++ b/paddle/operators/gather_op.h @@ -53,7 +53,8 @@ class GatherGradientOpKernel : public framework::OpKernel { dX->mutable_data(ctx.GetPlace()); auto dxt = framework::EigenVector::Flatten(*dX); - auto place = ctx.GetEigenDevice(); + auto &place = *ctx.template device_context() + .eigen_device(); dxt.device(place) = dxt.constant(static_cast(0)); ScatterAssign(ctx.device_context(), *dO, *Index, dX); diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index 254c83e137..2dca05760e 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -1,13 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include "paddle/framework/op_registry.h" @@ -57,18 +60,17 @@ class GaussianRandomOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( - static_cast(ctx.Attr("dtype")), + static_cast(ctx.Attr("dtype")), ctx.device_context()); } }; class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker { public: - GaussianRandomOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + GaussianRandomOpMaker(OpProto* proto, OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Out", "Output matrix of gaussian random op"); @@ -91,7 +93,7 @@ class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker { AddAttr("dtype", "(int, default 5(FP32)) " "Output data type.") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddComment(R"DOC( GaussianRandom Operator. diff --git a/paddle/operators/gaussian_random_op.cu b/paddle/operators/gaussian_random_op.cu index 315560bf1b..8a70db17e1 100644 --- a/paddle/operators/gaussian_random_op.cu +++ b/paddle/operators/gaussian_random_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ -#include -#include +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include #include "paddle/framework/op_registry.h" @@ -60,5 +60,5 @@ class GPUGaussianRandomKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(gaussian_random, - paddle::operators::GPUGaussianRandomKernel); +REGISTER_OP_CUDA_KERNEL(gaussian_random, + paddle::operators::GPUGaussianRandomKernel); diff --git a/paddle/operators/get_places_op.cc b/paddle/operators/get_places_op.cc new file mode 100644 index 0000000000..24fafb2307 --- /dev/null +++ b/paddle/operators/get_places_op.cc @@ -0,0 +1,117 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" +#include "paddle/platform/place.h" +#ifdef PADDLE_WITH_CUDA +#include "paddle/platform/gpu_info.h" +#endif + +namespace paddle { +namespace operators { + +static size_t CUDADevCount() { +#ifdef PADDLE_WITH_CUDA + return platform::GetCUDADeviceCount(); +#else + return 0UL; +#endif +} + +class GetPlacesOp : public framework::OperatorBase { + public: + GetPlacesOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + bool is_gpu; + if (Attr("device_type") == "AUTO") { + is_gpu = platform::is_gpu_place(place); + } else { + is_gpu = Attr("device_type") == "CUDA"; + } + auto device_count = static_cast(Attr("device_count")); + if (device_count == 0) { + device_count = + is_gpu ? CUDADevCount() : std::thread::hardware_concurrency(); + } + PADDLE_ENFORCE_NE(device_count, 0, "Cannot indicate %s device count", + is_gpu ? "GPU" : "CPU"); + + auto out_var_name = Output("Out"); + auto &places = + *(detail::Ref(scope.FindVar(out_var_name), + "Output variable %s cannot be found", out_var_name) + .GetMutable()); + places.reserve(device_count); + if (is_gpu) { + PADDLE_ENFORCE_LE(device_count, CUDADevCount(), + "Only %d CUDA devices found, cannot set to %d", + CUDADevCount(), device_count); + for (size_t i = 0; i < device_count; ++i) { + places.emplace_back(platform::CUDAPlace(static_cast(i))); + } + } else { + for (size_t i = 0; i < device_count; ++i) { + places.emplace_back(platform::CPUPlace()); + } + } + } +}; + +class GetPlacesOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + GetPlacesOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddOutput("Out", "vector of Place"); + AddAttr("device_count", "device count").SetDefault(0); + AddAttr("device_type", "device type") + .InEnum({"CUDA", "CPU", "AUTO"}) + .SetDefault("AUTO"); + AddComment(R"DOC( +Returns a list of places based on flags. The list will be used for parallel +execution. +)DOC"); + } +}; + +class GetPlacesInferVarType : public framework::VarTypeInference { + public: + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { + for (auto &o_name : op_desc.Output("Out")) { + block->FindRecursiveOrCreateVar(o_name).SetType( + framework::proto::VarDesc::PLACE_LIST); + } + } +}; + +class GetPlacesInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + // Do nothing + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; + +REGISTER_OPERATOR(get_places, ops::GetPlacesOp, ops::GetPlacesOpProtoMaker, + ops::GetPlacesInferVarType, ops::GetPlacesInferShape, + paddle::framework::EmptyGradOpMaker); diff --git a/paddle/operators/gru_op.cc b/paddle/operators/gru_op.cc index 5aa03f8916..76f2adefed 100644 --- a/paddle/operators/gru_op.cc +++ b/paddle/operators/gru_op.cc @@ -1,13 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/gru_op.h" @@ -67,7 +70,7 @@ class GRUOp : public framework::OperatorWithKernel { class GRUOpMaker : public framework::OpProtoAndCheckerMaker { public: - GRUOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + GRUOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(LoDTensor) The first input is a LodTensor, which supports " @@ -213,8 +216,9 @@ class GRUGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(gru, ops::GRUOp, ops::GRUOpMaker, gru_grad, ops::GRUGradOp); -REGISTER_OP_CPU_KERNEL(gru, ops::GRUKernel, - ops::GRUKernel); -REGISTER_OP_CPU_KERNEL(gru_grad, - ops::GRUGradKernel, - ops::GRUGradKernel); +REGISTER_OP_CPU_KERNEL( + gru, ops::GRUKernel, + ops::GRUKernel); +REGISTER_OP_CPU_KERNEL( + gru_grad, ops::GRUGradKernel, + ops::GRUGradKernel); diff --git a/paddle/operators/gru_op.cu.cc b/paddle/operators/gru_op.cu.cc index 0ceff94ec3..9cb0cc42d5 100644 --- a/paddle/operators/gru_op.cu.cc +++ b/paddle/operators/gru_op.cu.cc @@ -1,22 +1,23 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/gru_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(gru, ops::GRUKernel, - ops::GRUKernel); -REGISTER_OP_GPU_KERNEL(gru_grad, - ops::GRUGradKernel, - ops::GRUGradKernel); +REGISTER_OP_CUDA_KERNEL( + gru, ops::GRUKernel, + ops::GRUKernel); +REGISTER_OP_CUDA_KERNEL( + gru_grad, ops::GRUGradKernel, + ops::GRUGradKernel); diff --git a/paddle/operators/gru_op.h b/paddle/operators/gru_op.h index 564489d3a9..b1957fb9ce 100644 --- a/paddle/operators/gru_op.h +++ b/paddle/operators/gru_op.h @@ -1,19 +1,20 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once +#include "paddle/operators/math/detail/activation_functions.h" #include "paddle/operators/math/gru_compute.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/sequence2batch.h" @@ -27,16 +28,16 @@ namespace operators { using LoDTensor = framework::LoDTensor; using Tensor = framework::Tensor; -template -inline void ReorderInitState(const platform::DeviceContext& ctx, +template +inline void ReorderInitState(const DeviceContext& ctx, const framework::Tensor& src, const size_t* index, framework::Tensor* dst, bool indexed_src) { - math::CopyMatrixRowsFunctor row_shuffle; + math::CopyMatrixRowsFunctor row_shuffle; dst->mutable_data(src.dims(), ctx.GetPlace()); row_shuffle(ctx, src, index, *dst, indexed_src); } -template +template class GRUKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { @@ -60,17 +61,17 @@ class GRUKernel : public framework::OpKernel { auto hidden_dims = hidden->dims(); bool is_reverse = context.Attr("is_reverse"); - math::LoDTensor2BatchFunctor to_batch; - auto& dev_ctx = context.device_context(); + math::LoDTensor2BatchFunctor to_batch; + auto& dev_ctx = context.template device_context(); to_batch(dev_ctx, *input, *batch_gate, true, is_reverse); if (bias) { - math::RowwiseAdd add_bias; + math::RowwiseAdd add_bias; add_bias(dev_ctx, *batch_gate, *bias, batch_gate); } int frame_size = hidden_dims[1]; - math::hl_gru_value gru_value; + math::GRUMetaValue gru_value; gru_value.gate_weight = const_cast(weight_data); gru_value.state_weight = const_cast(weight_data + 2 * frame_size * frame_size); @@ -80,14 +81,19 @@ class GRUKernel : public framework::OpKernel { // Since the batch computing for GRU reorders the input sequences // according to their length. The initialized cell state also needs // to reorder. - ReorderInitState(context.device_context(), *h0, order, - &ordered_h0, true); + ReorderInitState( + context.template device_context(), *h0, order, + &ordered_h0, true); gru_value.prev_out_value = ordered_h0.data(); } else { gru_value.prev_out_value = nullptr; } auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; + auto active_node = math::detail::GetActivationType( + context.Attr("activation")); + auto active_gate = math::detail::GetActivationType( + context.Attr("gate_activation")); for (size_t n = 0; n < num_batch; n++) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); @@ -99,14 +105,13 @@ class GRUKernel : public framework::OpKernel { gru_value.output_value = hidden_t.data(); gru_value.gate_value = gate_t.data(); gru_value.reset_output_value = reset_hidden_prev_t.data(); - math::GRUUnitFunctor::compute( - dev_ctx, gru_value, frame_size, cur_batch_size, - math::ActiveType(context.Attr("activation")), - math::ActiveType(context.Attr("gate_activation"))); + math::GRUUnitFunctor::compute( + dev_ctx, gru_value, frame_size, cur_batch_size, active_node, + active_gate); gru_value.prev_out_value = gru_value.output_value; } - math::Batch2LoDTensorFunctor to_seq; + math::Batch2LoDTensorFunctor to_seq; batch_hidden->set_lod(batch_gate->lod()); to_seq(dev_ctx, *batch_hidden, *hidden); } @@ -116,7 +121,7 @@ class GRUKernel : public framework::OpKernel { } }; -template +template class GRUGradKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { @@ -141,14 +146,14 @@ class GRUGradKernel : public framework::OpKernel { auto hidden_dims = hidden->dims(); int frame_size = hidden_dims[1]; - math::LoDTensor2BatchFunctor to_batch; + math::LoDTensor2BatchFunctor to_batch; LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad; batch_hidden_grad.mutable_data(hidden_dims, context.GetPlace()); batch_gate_grad.mutable_data(gate_dims, context.GetPlace()); batch_reset_hidden_prev_grad.mutable_data(hidden_dims, context.GetPlace()); - math::SetConstant zero; - auto& dev_ctx = context.device_context(); + math::SetConstant zero; + auto& dev_ctx = context.template device_context(); zero(dev_ctx, &batch_hidden_grad, static_cast(0.0)); zero(dev_ctx, &batch_gate_grad, static_cast(0.0)); zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast(0.0)); @@ -156,24 +161,25 @@ class GRUGradKernel : public framework::OpKernel { Tensor ordered_h0, ordered_h0_grad; const size_t* order = batch_gate->lod()[2].data(); if (h0) { - ReorderInitState(context.device_context(), *h0, order, - &ordered_h0, true); + ReorderInitState(dev_ctx, *h0, order, &ordered_h0, + true); } if (h0_grad) { ordered_h0_grad.mutable_data(h0_grad->dims(), context.GetPlace()); - zero(context.device_context(), &ordered_h0_grad, static_cast(0.0)); + zero(context.template device_context(), &ordered_h0_grad, + static_cast(0.0)); } bool is_reverse = context.Attr("is_reverse"); batch_hidden_grad.set_lod(batch_hidden->lod()); to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse); - math::hl_gru_value gru_value; + math::GRUMetaValue gru_value; gru_value.gate_weight = const_cast(weight_data); gru_value.state_weight = const_cast(weight_data + 2 * frame_size * frame_size); - math::hl_gru_grad gru_grad; + math::GRUMetaGrad gru_grad; if (weight_grad) { gru_grad.gate_weight_grad = weight_grad->mutable_data(context.GetPlace()); @@ -187,6 +193,10 @@ class GRUGradKernel : public framework::OpKernel { auto batch_starts = batch_hidden_grad.lod()[0]; size_t num_batch = batch_starts.size() - 1; + auto active_node = math::detail::GetActivationType( + context.Attr("activation")); + auto active_gate = math::detail::GetActivationType( + context.Attr("gate_activation")); for (int n = static_cast(num_batch) - 1; n >= 0; n--) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); @@ -216,25 +226,24 @@ class GRUGradKernel : public framework::OpKernel { gru_grad.prev_out_grad = hidden_prev_grad_t.data(); } - math::GRUUnitGradFunctor::compute( - dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, - math::ActiveType(context.Attr("activation")), - math::ActiveType(context.Attr("gate_activation"))); + math::GRUUnitGradFunctor::compute( + dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node, + active_gate); } if (input_grad) { input_grad->mutable_data(context.GetPlace()); - math::Batch2LoDTensorFunctor to_seq; + math::Batch2LoDTensorFunctor to_seq; batch_gate_grad.set_lod(batch_gate->lod()); to_seq(dev_ctx, batch_gate_grad, *input_grad); } if (bias_grad) { bias_grad->mutable_data(context.GetPlace()); - math::ColwiseSum col_sum; + math::ColwiseSum col_sum; col_sum(dev_ctx, batch_gate_grad, bias_grad); } if (h0 && h0_grad) { - ReorderInitState(context.device_context(), ordered_h0_grad, - order, h0_grad, false); + ReorderInitState(dev_ctx, ordered_h0_grad, order, + h0_grad, false); } } diff --git a/paddle/operators/gru_unit_op.cc b/paddle/operators/gru_unit_op.cc index 877c969103..c354293be7 100644 --- a/paddle/operators/gru_unit_op.cc +++ b/paddle/operators/gru_unit_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/gru_unit_op.h" @@ -71,8 +71,7 @@ class GRUUnitOp : public framework::OperatorWithKernel { class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker { public: - GRUUnitOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + GRUUnitOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the " @@ -201,9 +200,10 @@ class GRUUnitGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(gru_unit, ops::GRUUnitOp, ops::GRUUnitOpMaker, gru_unit_grad, ops::GRUUnitGradOp); -REGISTER_OP_CPU_KERNEL(gru_unit, - ops::GRUUnitKernel, - ops::GRUUnitKernel); REGISTER_OP_CPU_KERNEL( - gru_unit_grad, ops::GRUUnitGradKernel, - ops::GRUUnitGradKernel); + gru_unit, ops::GRUUnitKernel, + ops::GRUUnitKernel); +REGISTER_OP_CPU_KERNEL( + gru_unit_grad, + ops::GRUUnitGradKernel, + ops::GRUUnitGradKernel); diff --git a/paddle/operators/gru_unit_op.cu b/paddle/operators/gru_unit_op.cu index 821c8c6421..95c8c23dad 100644 --- a/paddle/operators/gru_unit_op.cu +++ b/paddle/operators/gru_unit_op.cu @@ -1,24 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/gru_unit_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(gru_unit, - ops::GRUUnitKernel, - ops::GRUUnitKernel); -REGISTER_OP_GPU_KERNEL( - gru_unit_grad, ops::GRUUnitGradKernel, - ops::GRUUnitGradKernel); +REGISTER_OP_CUDA_KERNEL( + gru_unit, ops::GRUUnitKernel, + ops::GRUUnitKernel); +REGISTER_OP_CUDA_KERNEL( + gru_unit_grad, + ops::GRUUnitGradKernel, + ops::GRUUnitGradKernel); diff --git a/paddle/operators/gru_unit_op.h b/paddle/operators/gru_unit_op.h index 3398c0934e..a77be46718 100644 --- a/paddle/operators/gru_unit_op.h +++ b/paddle/operators/gru_unit_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -34,7 +34,7 @@ using EigenVector = framework::EigenVector; enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 }; -template +template class GRUUnitKernel : public framework::OpKernel { public: template @@ -71,7 +71,8 @@ class GRUUnitKernel : public framework::OpKernel { auto g = EigenMatrix::From(*gate); auto r_h_p = EigenMatrix::From(*reset_hidden_prev); auto h = EigenMatrix::From(*hidden); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); // calculate unactivated gate outputs if (bias) { @@ -86,10 +87,10 @@ class GRUUnitKernel : public framework::OpKernel { const T* weight_data = weight->data(); T* gate_data = gate->data(); T* reset_hidden_prev_data = reset_hidden_prev->data(); - math::gemm(context.device_context(), false, false, batch_size, - 2 * frame_size, frame_size, 1, hidden_prev_data, - frame_size, weight_data, frame_size * 2, 1, gate_data, - frame_size * 3); + math::gemm( + context.template device_context(), false, false, + batch_size, 2 * frame_size, frame_size, 1, hidden_prev_data, frame_size, + weight_data, frame_size * 2, 1, gate_data, frame_size * 3); // calculate activited gate Eigen::array extents({{batch_size, frame_size}}); @@ -102,11 +103,11 @@ class GRUUnitKernel : public framework::OpKernel { g.slice(r_offsets, extents), g.slice(r_offsets, extents)); auto r = g.slice(r_offsets, extents); // reset gate r_h_p.device(place) = r * h_p; // reset previous hidden state - math::gemm(context.device_context(), false, false, batch_size, - frame_size, frame_size, 1, reset_hidden_prev_data, - frame_size, weight_data + frame_size * frame_size * 2, - frame_size, 1, gate_data + frame_size * 2, - frame_size * 3); + math::gemm( + context.template device_context(), false, false, + batch_size, frame_size, frame_size, 1, reset_hidden_prev_data, + frame_size, weight_data + frame_size * frame_size * 2, frame_size, 1, + gate_data + frame_size * 2, frame_size * 3); Eigen::array c_offsets({{0, frame_size * 2}}); ActCompute(context.Attr("activation"), place, @@ -118,7 +119,7 @@ class GRUUnitKernel : public framework::OpKernel { } }; -template +template class GRUUnitGradKernel : public framework::OpKernel { public: template @@ -166,7 +167,8 @@ class GRUUnitGradKernel : public framework::OpKernel { auto d_h = EigenMatrix::From(*hidden_grad); auto d_g = EigenMatrix::From(gate_grad); auto d_r_h_p = EigenMatrix::From(reset_hidden_prev_grad); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); int batch_size = input->dims()[0]; int frame_size = hidden_prev->dims()[1]; @@ -186,11 +188,11 @@ class GRUUnitGradKernel : public framework::OpKernel { ActGradCompute(context.Attr("activation"), place, c, c, d_g.slice(c_offsets, extents), d_h * u); // backward for reset_hidden_prev - math::gemm(context.device_context(), false, true, batch_size, - frame_size, frame_size, 1, - gate_grad_data + frame_size * 2, frame_size * 3, - weight_data + frame_size * frame_size * 2, frame_size, - 0, reset_hidden_prev_grad_data, frame_size); + math::gemm( + context.template device_context(), false, true, + batch_size, frame_size, frame_size, 1, gate_grad_data + frame_size * 2, + frame_size * 3, weight_data + frame_size * frame_size * 2, frame_size, + 0, reset_hidden_prev_grad_data, frame_size); // backward for unactivated reset gate ActGradCompute(context.Attr("gate_activation"), place, r, r, d_g.slice(r_offsets, extents), d_r_h_p * h_p); @@ -198,17 +200,18 @@ class GRUUnitGradKernel : public framework::OpKernel { if (weight_grad) { T* weight_grad_data = weight_grad->mutable_data(context.GetPlace()); // backward for state_weight - math::gemm( - context.device_context(), true, false, frame_size, frame_size, - batch_size, 1, reset_hidden_prev_data, frame_size, - gate_grad_data + frame_size * 2, frame_size * 3, 0, + math::gemm( + context.template device_context(), true, false, + frame_size, frame_size, batch_size, 1, reset_hidden_prev_data, + frame_size, gate_grad_data + frame_size * 2, frame_size * 3, 0, weight_grad_data + frame_size * frame_size * 2, frame_size); // backward for update_gate_weight and reset_gate_weight - math::gemm(context.device_context(), true, false, frame_size, - frame_size * 2, batch_size, 1, hidden_prev_data, - frame_size, gate_grad_data, frame_size * 3, 0, - weight_grad_data, frame_size * 2); + math::gemm( + context.template device_context(), true, false, + frame_size, frame_size * 2, batch_size, 1, hidden_prev_data, + frame_size, gate_grad_data, frame_size * 3, 0, weight_grad_data, + frame_size * 2); } // backward for hidden_prev if (hidden_prev_grad) { @@ -216,10 +219,11 @@ class GRUUnitGradKernel : public framework::OpKernel { hidden_prev_grad->mutable_data(context.GetPlace()); auto d_h_p = EigenMatrix::From(*hidden_prev_grad); d_h_p.device(place) = d_r_h_p * r + d_h * (u.constant(T(1)) - u); - math::gemm(context.device_context(), false, true, batch_size, - frame_size, frame_size * 2, 1, gate_grad_data, - frame_size * 3, weight_data, frame_size * 2, 1, - hidden_prev_grad_data, frame_size); + math::gemm( + context.template device_context(), false, true, + batch_size, frame_size, frame_size * 2, 1, gate_grad_data, + frame_size * 3, weight_data, frame_size * 2, 1, hidden_prev_grad_data, + frame_size); } // backward for input if (input_grad) { diff --git a/paddle/operators/hinge_loss_op.cc b/paddle/operators/hinge_loss_op.cc index 1e13897bb6..19d2e9dc56 100644 --- a/paddle/operators/hinge_loss_op.cc +++ b/paddle/operators/hinge_loss_op.cc @@ -46,8 +46,7 @@ class HingeLossOp : public framework::OperatorWithKernel { template class HingeLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - HingeLossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + HingeLossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Logits", "The input value (Logits) of Hinge loss op." @@ -106,8 +105,9 @@ class HingeLossGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(hinge_loss, ops::HingeLossOp, ops::HingeLossOpMaker, hinge_loss_grad, ops::HingeLossGradOp); -REGISTER_OP_CPU_KERNEL(hinge_loss, - ops::HingeLossKernel); +REGISTER_OP_CPU_KERNEL( + hinge_loss, + ops::HingeLossKernel); REGISTER_OP_CPU_KERNEL( hinge_loss_grad, - ops::HingeLossGradKernel); + ops::HingeLossGradKernel); diff --git a/paddle/operators/hinge_loss_op.cu b/paddle/operators/hinge_loss_op.cu index ec20b08e30..b9cfbc50c4 100644 --- a/paddle/operators/hinge_loss_op.cu +++ b/paddle/operators/hinge_loss_op.cu @@ -1,23 +1,24 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/hinge_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(hinge_loss, - ops::HingeLossKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + hinge_loss, + ops::HingeLossKernel); +REGISTER_OP_CUDA_KERNEL( hinge_loss_grad, - ops::HingeLossGradKernel); + ops::HingeLossGradKernel); diff --git a/paddle/operators/hinge_loss_op.h b/paddle/operators/hinge_loss_op.h index c0be496f9c..91369cfb8a 100644 --- a/paddle/operators/hinge_loss_op.h +++ b/paddle/operators/hinge_loss_op.h @@ -19,14 +19,15 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class HingeLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* pred = context.Input("Logits"); auto* label = context.Input("Labels"); auto* loss = context.Output("Loss"); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto x = framework::EigenVector::Flatten(*pred); auto y = framework::EigenVector::Flatten(*label); @@ -38,7 +39,7 @@ class HingeLossKernel : public framework::OpKernel { } }; -template +template class HingeLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -48,7 +49,8 @@ class HingeLossGradKernel : public framework::OpKernel { context.Input(framework::GradVarName("Loss")); auto* dpred = context.Output(framework::GradVarName("Logits")); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto x = framework::EigenVector::Flatten(*pred); auto y = framework::EigenVector::Flatten(*label); diff --git a/paddle/operators/huber_loss_op.cc b/paddle/operators/huber_loss_op.cc index 938803d5b3..5c92f2c7b2 100644 --- a/paddle/operators/huber_loss_op.cc +++ b/paddle/operators/huber_loss_op.cc @@ -45,8 +45,7 @@ class HuberLossOp : public framework::OperatorWithKernel { template class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - HuberLossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + HuberLossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input value of huber loss op." @@ -124,8 +123,9 @@ class HuberLossGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker, huber_loss_grad, ops::HuberLossGradOp); -REGISTER_OP_CPU_KERNEL(huber_loss, - ops::HuberLossKernel); +REGISTER_OP_CPU_KERNEL( + huber_loss, + ops::HuberLossKernel); REGISTER_OP_CPU_KERNEL( huber_loss_grad, - ops::HuberLossGradKernel); + ops::HuberLossGradKernel); diff --git a/paddle/operators/huber_loss_op.cu b/paddle/operators/huber_loss_op.cu index 317321dc6c..ccc83a16ba 100644 --- a/paddle/operators/huber_loss_op.cu +++ b/paddle/operators/huber_loss_op.cu @@ -1,23 +1,24 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/huber_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(huber_loss, - ops::HuberLossKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + huber_loss, + ops::HuberLossKernel); +REGISTER_OP_CUDA_KERNEL( huber_loss_grad, - ops::HuberLossGradKernel); + ops::HuberLossGradKernel); diff --git a/paddle/operators/huber_loss_op.h b/paddle/operators/huber_loss_op.h index 4e7bc55432..4dd20e8b08 100644 --- a/paddle/operators/huber_loss_op.h +++ b/paddle/operators/huber_loss_op.h @@ -41,7 +41,7 @@ struct HuberLossForward { T delta; }; -template +template class HuberLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -50,7 +50,8 @@ class HuberLossKernel : public framework::OpKernel { auto* out0 = context.Output("Residual"); auto* out1 = context.Output("Out"); auto delta = static_cast(context.Attr("delta")); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto x = EigenVector::Flatten(*in0); auto y = EigenVector::Flatten(*in1); @@ -85,7 +86,7 @@ struct HuberLossBackward { T delta; }; -template +template class HuberLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -94,7 +95,8 @@ class HuberLossGradKernel : public framework::OpKernel { auto* out0 = context.Output(framework::GradVarName("X")); auto* out1 = context.Output(framework::GradVarName("Y")); auto delta = static_cast(context.op().Attr("delta")); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto residual = EigenVector::Flatten(*in0); auto out_grad = EigenVector::Flatten(*in1); diff --git a/paddle/operators/increment_op.cc b/paddle/operators/increment_op.cc index 54911267e3..e0b80cc4e7 100644 --- a/paddle/operators/increment_op.cc +++ b/paddle/operators/increment_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_registry.h" @@ -52,7 +52,7 @@ class IncrementOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto &x = scope.FindVar(Input("X"))->Get(); auto &out = *scope.FindVar(Output("Out"))->GetMutable(); @@ -70,8 +70,7 @@ class IncrementOp : public framework::OperatorBase { class IncrementOpMaker : public framework::OpProtoAndCheckerMaker { public: - IncrementOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + IncrementOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor of increment operator"); AddOutput("Out", "(Tensor) The output tensor of increment operator."); @@ -94,13 +93,13 @@ class IncrementGradOpMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("increment"); grad_op->SetInput("X", Output("Out")); grad_op->SetOutput("Out", Input("X")); grad_op->SetAttr("step", -boost::get(GetAttr("step"))); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/is_empty_op.cc b/paddle/operators/is_empty_op.cc index 54fecf44e8..492ae48845 100644 --- a/paddle/operators/is_empty_op.cc +++ b/paddle/operators/is_empty_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" @@ -29,7 +29,7 @@ class IsEmptyOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { // get input auto *var = scope.FindVar(Input(kInput)); PADDLE_ENFORCE_NOT_NULL(var); @@ -47,8 +47,7 @@ class IsEmptyOp : public framework::OperatorBase { class IsEmptyOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - IsEmptyOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + IsEmptyOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput(kInput, "(Tensor) Tensor which is to be checked."); AddOutput(kOutput, "(Tensor) a boolean Tensor that indicate empty or not."); diff --git a/paddle/operators/l1_norm_op.cc b/paddle/operators/l1_norm_op.cc index 02ebf02296..1a5d6e1926 100644 --- a/paddle/operators/l1_norm_op.cc +++ b/paddle/operators/l1_norm_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/l1_norm_op.h" @@ -48,7 +48,7 @@ class L1NormGradOp : public framework::OperatorWithKernel { class L1NormOpMaker : public framework::OpProtoAndCheckerMaker { public: - L1NormOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + L1NormOpMaker(OpProto* proto, OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of l1_norm op."); AddOutput("Out", "(Scalar) The output of l1_norm op."); @@ -69,7 +69,8 @@ $$Out = \sum{|X|}$$ namespace ops = paddle::operators; REGISTER_OP(l1_norm, ops::L1NormOp, ops::L1NormOpMaker, l1_norm_grad, ops::L1NormGradOp); -REGISTER_OP_CPU_KERNEL(l1_norm, - ops::L1NormKernel); REGISTER_OP_CPU_KERNEL( - l1_norm_grad, ops::L1NormGradKernel); + l1_norm, ops::L1NormKernel); +REGISTER_OP_CPU_KERNEL( + l1_norm_grad, + ops::L1NormGradKernel); diff --git a/paddle/operators/l1_norm_op.cu b/paddle/operators/l1_norm_op.cu index 1c206e04cc..7ecc774670 100644 --- a/paddle/operators/l1_norm_op.cu +++ b/paddle/operators/l1_norm_op.cu @@ -1,22 +1,23 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/l1_norm_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(l1_norm, - ops::L1NormKernel); -REGISTER_OP_GPU_KERNEL( - l1_norm_grad, ops::L1NormGradKernel); +REGISTER_OP_CUDA_KERNEL( + l1_norm, ops::L1NormKernel); +REGISTER_OP_CUDA_KERNEL( + l1_norm_grad, + ops::L1NormGradKernel); diff --git a/paddle/operators/l1_norm_op.h b/paddle/operators/l1_norm_op.h index 3c60dc3dc7..086d42705d 100644 --- a/paddle/operators/l1_norm_op.h +++ b/paddle/operators/l1_norm_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" @@ -20,7 +20,7 @@ namespace paddle { namespace operators { // Out = sum(abs(X)) -template +template class L1NormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -30,14 +30,15 @@ class L1NormKernel : public framework::OpKernel { auto x = framework::EigenVector::Flatten(*X); auto out = framework::EigenScalar::From(*Out); - auto place = context.GetEigenDevice(); + auto &place = + *context.template device_context().eigen_device(); out.device(place) = x.abs().sum(); } }; // dX = dout * sign(X) -template +template class L1NormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -52,7 +53,8 @@ class L1NormGradKernel : public framework::OpKernel { auto x_eigen = framework::EigenVector::Flatten(*x); auto d_out_eigen = framework::EigenVector::Flatten(*d_out); auto dx_eigen = framework::EigenVector::Flatten(*dx); - auto place = context.GetEigenDevice(); + auto &place = + *context.template device_context().eigen_device(); Eigen::DSizes x_dsize(x->numel()); dx_eigen.device(place) = d_out_eigen.broadcast(x_dsize) * x_eigen.sign(); diff --git a/paddle/operators/linear_chain_crf_op.cc b/paddle/operators/linear_chain_crf_op.cc index 8e079a14e0..e24bf622b7 100644 --- a/paddle/operators/linear_chain_crf_op.cc +++ b/paddle/operators/linear_chain_crf_op.cc @@ -19,8 +19,7 @@ namespace operators { class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker { public: - LinearChainCRFOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + LinearChainCRFOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Emission", "(LoDTensor, default LoDTensor) " @@ -184,11 +183,11 @@ class LinearChainCRFOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of computation kernel of linear_chain_crf // is determined by its input "Emission". - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Emission")->type()), - ctx.device_context()); + platform::CPUPlace()); } }; @@ -243,13 +242,13 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of output of the linear_chain_crf_grad // operator is determined by its input: gradients of LogLikelihood. - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType( ctx.Input(framework::GradVarName("LogLikelihood")) ->type()), - ctx.device_context()); + platform::CPUPlace()); } }; @@ -261,9 +260,10 @@ REGISTER_OP(linear_chain_crf, ops::LinearChainCRFOp, ops::LinearChainCRFOpMaker, linear_chain_crf_grad, ops::LinearChainCRFGradOp); REGISTER_OP_CPU_KERNEL( linear_chain_crf, - ops::LinearChainCRFOpKernel, - ops::LinearChainCRFOpKernel); + ops::LinearChainCRFOpKernel, + ops::LinearChainCRFOpKernel); REGISTER_OP_CPU_KERNEL( linear_chain_crf_grad, - ops::LinearChainCRFGradOpKernel, - ops::LinearChainCRFGradOpKernel); + ops::LinearChainCRFGradOpKernel, + ops::LinearChainCRFGradOpKernel); diff --git a/paddle/operators/linear_chain_crf_op.cu b/paddle/operators/linear_chain_crf_op.cu index 6fc8995f4c..da612510b4 100644 --- a/paddle/operators/linear_chain_crf_op.cu +++ b/paddle/operators/linear_chain_crf_op.cu @@ -1,10 +1,10 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, @@ -16,11 +16,12 @@ limitations under the License. */ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( linear_chain_crf, - ops::LinearChainCRFOpKernel, - ops::LinearChainCRFOpKernel); -REGISTER_OP_GPU_KERNEL( + ops::LinearChainCRFOpKernel, + ops::LinearChainCRFOpKernel); +REGISTER_OP_CUDA_KERNEL( linear_chain_crf_grad, - ops::LinearChainCRFGradOpKernel, - ops::LinearChainCRFGradOpKernel); + ops::LinearChainCRFGradOpKernel, + ops::LinearChainCRFGradOpKernel); diff --git a/paddle/operators/linear_chain_crf_op.h b/paddle/operators/linear_chain_crf_op.h index 014bbfa758..afc197a1c3 100644 --- a/paddle/operators/linear_chain_crf_op.h +++ b/paddle/operators/linear_chain_crf_op.h @@ -50,7 +50,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class LinearChainCRFOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -65,57 +65,14 @@ class LinearChainCRFOpKernel : public framework::OpKernel { const size_t level = 0; const size_t seq_num = in_lod[level].size() - 1; - // These local variables hold the inputs and outputs, garanteeing them on - // CPU memory, to provide a consistent reference. - // TODO(caoying) Fix this by moving all these local variables into the - // class's data members once we can profile the whole training process. - LoDTensor* emission_weights = nullptr; - LoDTensor emission_weight_tensor; - Tensor* transition_weights = nullptr; - Tensor transition_weight_tensor; - LoDTensor* label = nullptr; - LoDTensor label_tensor; - - Tensor* emission_exps = nullptr; - Tensor emission_exps_tensor; - Tensor* transition_exps = nullptr; - Tensor transition_exps_tensor; - Tensor* alpha = nullptr; - Tensor alpha_tensor; - Tensor* ll = nullptr; - Tensor ll_tensor; - - if (platform::is_gpu_place(ctx.GetPlace())) { - emission_weights = &emission_weight_tensor; - transition_weights = &transition_weight_tensor; - label = &label_tensor; - - CopyInputsToCpuMemory( - ctx.device_context(), *ctx.Input("Emission"), - *ctx.Input("Transition"), *ctx.Input("Label"), - emission_weights, transition_weights, label); - - emission_exps = &emission_exps_tensor; - emission_exps->Resize(emission_weights->dims()); - - transition_exps = &transition_exps_tensor; - transition_exps->Resize(transition_weights->dims()); - - alpha = &alpha_tensor; - alpha->Resize(ctx.Output("Alpha")->dims()); - - ll = &ll_tensor; - } else { - emission_weights = - const_cast(ctx.Input("Emission")); - transition_weights = const_cast(ctx.Input("Transition")); - label = const_cast(ctx.Input("Label")); - - emission_exps = ctx.Output("EmissionExps"); - transition_exps = ctx.Output("TransitionExps"); - alpha = ctx.Output("Alpha"); - ll = ctx.Output("LogLikelihood"); - } + const LoDTensor* emission_weights = ctx.Input("Emission"); + const Tensor* transition_weights = ctx.Input("Transition"); + const LoDTensor* label = ctx.Input("Label"); + + Tensor* emission_exps = ctx.Output("EmissionExps"); + Tensor* transition_exps = ctx.Output("TransitionExps"); + Tensor* alpha = ctx.Output("Alpha"); + Tensor* ll = ctx.Output("LogLikelihood"); // Because the computation codes only runs on CPU, here the memory for all // the outputs is FIXED to be allocated on the CPU memory. @@ -137,7 +94,8 @@ class LinearChainCRFOpKernel : public framework::OpKernel { framework::make_ddim({static_cast(batch_size), 1}), platform::CPUPlace()); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context() + .eigen_device(); auto x = EigenMatrix::From(*emission_weights); auto x_row_max = EigenMatrix::From(emission_row_max); x_row_max.device(place) = @@ -172,61 +130,9 @@ class LinearChainCRFOpKernel : public framework::OpKernel { one_seq, one_seq_row_max, one_seq_exps, *transition_weights, *transition_exps, one_seq_label, &one_seq_alpha); } - - if (platform::is_gpu_place(ctx.GetPlace())) { - CopyOutputsToGpuMemory( - ctx.device_context(), *emission_exps, *transition_exps, *alpha, *ll, - ctx.Output("EmissionExps"), - ctx.Output("TransitionExps"), ctx.Output("Alpha"), - ctx.Output("LogLikelihood")); - } }; private: - void CopyInputsToCpuMemory(const platform::DeviceContext& ctx, - const LoDTensor& emission_weights_src, - const Tensor& transition_weights_src, - const LoDTensor& label_src, - LoDTensor* emission_weights_dst, - Tensor* transition_weights_dst, - LoDTensor* label_dst) const { - // Copy the inputs from GPU memory to CPU memory if this operators runs on - // GPU device. - auto copyLoDTensor = [](const platform::DeviceContext& ctx, - const LoDTensor& src, LoDTensor* dst) { - dst->mutable_data(src.dims(), platform::CPUPlace()); - framework::CopyFrom(src, platform::CPUPlace(), ctx, dst); - }; - - copyLoDTensor(ctx, emission_weights_src, emission_weights_dst); - copyLoDTensor(ctx, label_src, label_dst); - - transition_weights_dst->mutable_data(transition_weights_src.dims(), - platform::CPUPlace()); - framework::CopyFrom(transition_weights_src, platform::CPUPlace(), ctx, - transition_weights_dst); - } - - void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx, - const Tensor& emission_exps_src, - const Tensor& transition_exps_src, - const Tensor& alpha_src, const Tensor& ll_src, - Tensor* emission_exps_dst, - Tensor* transition_exps_dst, Tensor* alpha_dst, - Tensor* ll_dst) const { - // Copy the forward results from CPU memory to GPU memory if this - // operators runs on GPU device. - auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src, - Tensor* dst) { - dst->mutable_data(platform::GPUPlace()); - framework::CopyFrom(src, platform::GPUPlace(), ctx, dst); - }; - copyTensor(ctx, emission_exps_src, emission_exps_dst); - copyTensor(ctx, transition_exps_src, transition_exps_dst); - copyTensor(ctx, alpha_src, alpha_dst); - copyTensor(ctx, ll_src, ll_dst); - } - T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max, const Tensor& emission_exps, const Tensor& trans_weights, const Tensor& trans_weight_exps, const Tensor& label, @@ -287,7 +193,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel { } }; -template +template class LinearChainCRFGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -295,63 +201,17 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { auto lod = ctx.Input("Label")->lod(); PADDLE_ENFORCE(lod.size(), "Input(Label) must be a sequence."); - // These local variables hold the inputs and outputs, garanteeing them on - // CPU memory, to provide a consistent reference. - // TODO(caoying) Fix this by moving all these local variables into the - // class's data members once we can profile the training process, or - // implementing a real GPU kernel for CRF. - Tensor* label = nullptr; - Tensor label_tensor; - Tensor* emission_exps = nullptr; - Tensor emission_exps_tensor; - Tensor* transition_exps = nullptr; - Tensor transition_exps_tensor; - Tensor* alpha = nullptr; - Tensor alpha_tensor; - Tensor ll_grad_tensor; - T* ll_grad = nullptr; - - Tensor* emission_grad = nullptr; - Tensor emission_grad_tensor; - Tensor* transition_grad = nullptr; - Tensor transition_grad_tensor; - - if (platform::is_gpu_place(ctx.GetPlace())) { - label = &label_tensor; - emission_exps = &emission_exps_tensor; - transition_exps = &transition_exps_tensor; - alpha = &alpha_tensor; - CopyInputsToCpuMemory( - ctx.device_context(), *ctx.Input("Label"), - *ctx.Input("EmissionExps"), - *ctx.Input("TransitionExps"), *ctx.Input("Alpha"), - *ctx.Input(framework::GradVarName("LogLikelihood")), label, - emission_exps, transition_exps, alpha, &ll_grad_tensor); - ll_grad = ll_grad_tensor.data(); - - if (ctx.Output(framework::GradVarName("Emission"))) { - emission_grad = &emission_grad_tensor; - emission_grad->Resize(emission_exps->dims()); - } + const Tensor* label = ctx.Input("Label"); + const Tensor* emission_exps = ctx.Input("EmissionExps"); + const Tensor* transition_exps = ctx.Input("TransitionExps"); + const Tensor* alpha = ctx.Input("Alpha"); + const T* ll_grad = + ctx.Input(framework::GradVarName("LogLikelihood"))->data(); - if (ctx.Output(framework::GradVarName("Transition"))) { - transition_grad = &transition_grad_tensor; - transition_grad->Resize(transition_exps->dims()); - } - } else { - label = const_cast(ctx.Input("Label")); - emission_exps = const_cast(ctx.Input("EmissionExps")); - transition_exps = - const_cast(ctx.Input("TransitionExps")); - alpha = const_cast(ctx.Input("Alpha")); - ll_grad = const_cast( - ctx.Input(framework::GradVarName("LogLikelihood"))) - ->data(); - - emission_grad = ctx.Output(framework::GradVarName("Emission")); - transition_grad = - ctx.Output(framework::GradVarName("Transition")); - } + Tensor* emission_grad = + ctx.Output(framework::GradVarName("Emission")); + Tensor* transition_grad = + ctx.Output(framework::GradVarName("Transition")); // TODO(caoying) Fix this constraint. When the Input(Emission) is from the // data reader operator, it can have no gradients. @@ -359,8 +219,7 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { emission_grad->mutable_data(platform::CPUPlace()); if (transition_grad) { transition_grad->mutable_data(platform::CPUPlace()); - math::SetConstant()(ctx.device_context(), - transition_grad, 0.); + math::set_constant(ctx.device_context(), transition_grad, 0.); } // Now, all the inputs and outputs should be on the CPU memory. @@ -384,65 +243,16 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { Tensor one_seq_beta = beta.Slice(start_pos, end_pos); Tensor one_seq_emission_grad = emission_grad->Slice(start_pos, end_pos); - BackwardOneSequence(ctx.device_context(), ll_grad[i], - one_seq_emission_exps, *transition_exps, - one_seq_alpha, one_seq_label, &one_seq_beta, - transition_grad, &one_seq_emission_grad); - } - - if (platform::is_gpu_place(ctx.GetPlace())) { - CopyOutputsToGpuMemory( - ctx.device_context(), emission_grad, transition_grad, - ctx.Output(framework::GradVarName("Emission")), - ctx.Output(framework::GradVarName("Transition"))); + BackwardOneSequence( + ctx.template device_context(), ll_grad[i], + one_seq_emission_exps, *transition_exps, one_seq_alpha, one_seq_label, + &one_seq_beta, transition_grad, &one_seq_emission_grad); } }; private: - void CopyInputsToCpuMemory(const platform::DeviceContext& ctx, - const LoDTensor& label_src, - const Tensor& emission_exps_src, - const Tensor& transition_exps_src, - const Tensor& alpha_src, const Tensor& ll_grad_src, - Tensor* label_dst, Tensor* emission_exps_dst, - Tensor* transition_exps_dst, Tensor* alpha_dst, - Tensor* ll_grad_dst) const { - // Copy the inputs from GPU memory to CPU memory when this operators runs on - // GPU device. - label_dst->mutable_data(label_src.dims(), platform::CPUPlace()); - framework::CopyFrom(label_src, platform::CPUPlace(), ctx, label_dst); - - auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src, - Tensor* dst) { - dst->mutable_data(src.dims(), platform::CPUPlace()); - framework::CopyFrom(src, platform::CPUPlace(), ctx, dst); - }; - copyTensor(ctx, emission_exps_src, emission_exps_dst); - copyTensor(ctx, transition_exps_src, transition_exps_dst); - copyTensor(ctx, alpha_src, alpha_dst); - copyTensor(ctx, ll_grad_src, ll_grad_dst); - } - - void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx, - const Tensor* emission_grad_src, - const Tensor* transition_grad_src, - Tensor* emission_grad_dst, - Tensor* transition_grad_dst) const { - // Copy the backward results from CPU memory to GPU - // memory if this operators runs on GPU device. - auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor* src, - Tensor* dst) { - if (src && dst) { - dst->mutable_data(platform::GPUPlace()); - framework::CopyFrom(*src, platform::GPUPlace(), ctx, dst); - } - }; - copyTensor(ctx, emission_grad_src, emission_grad_dst); - copyTensor(ctx, transition_grad_src, transition_grad_dst); - } - - void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad, - const Tensor& emission_exps, + void BackwardOneSequence(const platform::CPUDeviceContext& ctx, + const T ll_grad, const Tensor& emission_exps, const Tensor& transition_exps, const Tensor& alpha, const Tensor& label, Tensor* beta, Tensor* transition_grad, @@ -481,7 +291,7 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { auto alpha_mat = EigenMatrix::From(alpha); auto beta_mat = EigenMatrix::From(*beta); - auto* place = ctx.GetEigenDevice(); + auto* place = ctx.eigen_device(); auto prob = alpha_mat * beta_mat; auto row_sum = prob.sum(Eigen::DSizes(1)) .reshape(Eigen::DSizes(seq_length, 1)) diff --git a/paddle/operators/load_op.cc b/paddle/operators/load_op.cc index 4e58b84430..f886b423ac 100644 --- a/paddle/operators/load_op.cc +++ b/paddle/operators/load_op.cc @@ -1,20 +1,20 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#include #include "paddle/framework/op_registry.h" - -#include +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -26,7 +26,7 @@ class LoadOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto filename = Attr("file_path"); std::ifstream fin(filename); PADDLE_ENFORCE(static_cast(fin), "Cannot open file %s for load op", @@ -38,9 +38,11 @@ class LoadOp : public framework::OperatorBase { out_var_name); auto *tensor = out_var->GetMutable(); - framework::DeserializeFromStream(fin, tensor); - auto place = dev_ctx.GetPlace(); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + DeserializeFromStream(fin, tensor, dev_ctx); + if (platform::is_gpu_place(place)) { // copy CPU to GPU framework::LoDTensor cpu_tensor; @@ -51,15 +53,14 @@ class LoadOp : public framework::OperatorBase { out_var->Clear(); tensor = out_var->GetMutable(); tensor->set_lod(cpu_tensor.lod()); - CopyFrom(cpu_tensor, place, dev_ctx, tensor); + Copy(cpu_tensor, place, dev_ctx, tensor); } } }; class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - LoadOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoadOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Out", "(Tensor) The tensor need to be loaded"); AddAttr("file_path", diff --git a/paddle/operators/lod_array_length_op.cc b/paddle/operators/lod_array_length_op.cc index b2f4ec57fa..d2c52745cf 100644 --- a/paddle/operators/lod_array_length_op.cc +++ b/paddle/operators/lod_array_length_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/op_registry.h" @@ -26,7 +26,7 @@ class LoDArrayLengthOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto &x = scope.FindVar(Input("X"))->Get(); auto &out = *scope.FindVar(Output("Out"))->GetMutable(); @@ -38,8 +38,7 @@ class LoDArrayLengthOp : public framework::OperatorBase { class LoDArrayLengthProtoMaker : public framework::OpProtoAndCheckerMaker { public: - LoDArrayLengthProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoDArrayLengthProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensorArray) The input tensor array."); AddOutput("Out", "(Tensor) 1x1 CPU Tensor of length, int64_t"); diff --git a/paddle/operators/lod_rank_table_op.cc b/paddle/operators/lod_rank_table_op.cc index f7d4db1947..692b9bf371 100644 --- a/paddle/operators/lod_rank_table_op.cc +++ b/paddle/operators/lod_rank_table_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/op_registry.h" namespace paddle { @@ -24,19 +24,19 @@ class LoDRankTableOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { auto x = scope.FindVar(Input("X"))->Get(); auto *out = scope.FindVar(Output("Out"))->GetMutable(); VLOG(10) << "Level = " << static_cast(Attr("level")); out->Reset(x.lod(), static_cast(Attr("level"))); + VLOG(10) << Input("X") << "'s lod information is " << *out; } }; class LoDRankTableOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - LoDRankTableOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoDRankTableOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) input lod tensor, must contain lod information."); @@ -63,11 +63,11 @@ class LoDRankTableInferShape : public framework::InferShapeBase { class LoDRankTableInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind &op_desc, - framework::BlockDescBind *block) const override { + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { for (auto &o : op_desc.Output("Out")) { - block->FindRecursiveOrCreateVar(o)->SetType( - framework::VarDesc::LOD_RANK_TABLE); + block->FindRecursiveOrCreateVar(o).SetType( + framework::proto::VarDesc::LOD_RANK_TABLE); } } }; diff --git a/paddle/operators/lod_reset_op.cc b/paddle/operators/lod_reset_op.cc index 32831cb1e2..3d7b15edcf 100644 --- a/paddle/operators/lod_reset_op.cc +++ b/paddle/operators/lod_reset_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/lod_reset_op.h" @@ -38,7 +38,7 @@ class LoDResetOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -48,8 +48,7 @@ class LoDResetOp : public framework::OperatorWithKernel { class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker { public: - LoDResetOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoDResetOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) The input tensor of lod_reset operator."); AddInput("TargetLoD", @@ -98,7 +97,7 @@ class LoDResetGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/lod_reset_op.cu b/paddle/operators/lod_reset_op.cu index 5244a17c3a..910866ea63 100644 --- a/paddle/operators/lod_reset_op.cu +++ b/paddle/operators/lod_reset_op.cu @@ -1,24 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/lod_reset_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lod_reset, - ops::LoDResetKernel, - ops::LoDResetKernel); -REGISTER_OP_GPU_KERNEL( - lod_reset_grad, ops::LoDResetGradKernel, - ops::LoDResetGradKernel); +REGISTER_OP_CUDA_KERNEL( + lod_reset, ops::LoDResetKernel, + ops::LoDResetKernel); +REGISTER_OP_CUDA_KERNEL( + lod_reset_grad, + ops::LoDResetGradKernel, + ops::LoDResetGradKernel); diff --git a/paddle/operators/lod_reset_op.h b/paddle/operators/lod_reset_op.h index cbcbf80adc..c1bbba7a83 100644 --- a/paddle/operators/lod_reset_op.h +++ b/paddle/operators/lod_reset_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -20,7 +20,7 @@ namespace paddle { namespace operators { -template +template class LoDResetKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -33,8 +33,8 @@ class LoDResetKernel : public framework::OpKernel { auto* lod = lod_t->data(); if (platform::is_gpu_place(ctx.GetPlace())) { framework::Tensor lod_cpu; - framework::CopyFrom(*lod_t, platform::CPUPlace(), ctx.device_context(), - &lod_cpu); + framework::Copy(*lod_t, platform::CPUPlace(), ctx.device_context(), + &lod_cpu); lod = lod_cpu.data(); } level0 = std::vector(lod, lod + lod_t->numel()); @@ -65,7 +65,7 @@ class LoDResetKernel : public framework::OpKernel { } }; -template +template class LoDResetGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { diff --git a/paddle/operators/lod_tensor_to_array_op.cc b/paddle/operators/lod_tensor_to_array_op.cc index b970bf3177..685a807a8a 100644 --- a/paddle/operators/lod_tensor_to_array_op.cc +++ b/paddle/operators/lod_tensor_to_array_op.cc @@ -1,20 +1,21 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/detail/safe_ref.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -32,7 +33,7 @@ class LoDTensorToArrayOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto &x = detail::Ref(scope.FindVar(Input("X")), "Cannot find input %s", Input("X")) .Get(); @@ -86,9 +87,14 @@ class LoDTensorToArrayOp : public framework::OperatorBase { // out[i][offset: offset+len] = x[each_range.begin: each_range.end] auto slice = out[i].Slice(static_cast(offset), static_cast(offset + len)); - framework::CopyFrom(x.Slice(static_cast(each_range.begin), - static_cast(each_range.end)), - x.place(), dev_ctx, &slice); + + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + + framework::Copy(x.Slice(static_cast(each_range.begin), + static_cast(each_range.end)), + x.place(), dev_ctx, &slice); offset += len; } } @@ -97,8 +103,7 @@ class LoDTensorToArrayOp : public framework::OperatorBase { class LoDTensorToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - LoDTensorToArrayOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoDTensorToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", ""); AddInput("RankTable", ""); @@ -128,10 +133,10 @@ class LoDTensorToArrayInferShape : public framework::InferShapeBase { class LoDTensorToArrayInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind &op_desc, - framework::BlockDescBind *block) const override { + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { for (auto &out_var : op_desc.Output("Out")) { - block->Var(out_var)->SetType(framework::VarDesc::LOD_TENSOR_ARRAY); + block->Var(out_var)->SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY); } } }; @@ -141,14 +146,14 @@ class LoDTensorToArrayGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("array_to_lod_tensor"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetInput("RankTable", Input("RankTable")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/log_loss_op.cc b/paddle/operators/log_loss_op.cc index 257e5c8a49..f714945354 100644 --- a/paddle/operators/log_loss_op.cc +++ b/paddle/operators/log_loss_op.cc @@ -46,8 +46,7 @@ class LogLossOp : public framework::OperatorWithKernel { template class LogLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - LogLossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + LogLossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Predicted", "The input value (Predicted) of Log loss op." @@ -109,7 +108,8 @@ class LogLossGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(log_loss, ops::LogLossOp, ops::LogLossOpMaker, log_loss_grad, ops::LogLossGradOp); -REGISTER_OP_CPU_KERNEL(log_loss, - ops::LogLossKernel); REGISTER_OP_CPU_KERNEL( - log_loss_grad, ops::LogLossGradKernel); + log_loss, ops::LogLossKernel); +REGISTER_OP_CPU_KERNEL( + log_loss_grad, + ops::LogLossGradKernel); diff --git a/paddle/operators/log_loss_op.cu b/paddle/operators/log_loss_op.cu index 6c189ef341..be283e4700 100644 --- a/paddle/operators/log_loss_op.cu +++ b/paddle/operators/log_loss_op.cu @@ -1,22 +1,23 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/log_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(log_loss, - ops::LogLossKernel); -REGISTER_OP_GPU_KERNEL( - log_loss_grad, ops::LogLossGradKernel); +REGISTER_OP_CUDA_KERNEL( + log_loss, ops::LogLossKernel); +REGISTER_OP_CUDA_KERNEL( + log_loss_grad, + ops::LogLossGradKernel); diff --git a/paddle/operators/log_loss_op.h b/paddle/operators/log_loss_op.h index 73404fce91..743eddb740 100644 --- a/paddle/operators/log_loss_op.h +++ b/paddle/operators/log_loss_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class LogLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -38,7 +38,7 @@ class LogLossKernel : public framework::OpKernel { auto label = EigenVector::Flatten(*ctx.Input("Labels")); auto loss = EigenVector::Flatten(*loss_out); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); loss.device(place) = (-(label * (prediction + epsilon).log()) - ((static_cast(1) - label) * @@ -46,7 +46,7 @@ class LogLossKernel : public framework::OpKernel { } }; -template +template class LogLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -59,7 +59,7 @@ class LogLossGradKernel : public framework::OpKernel { auto* dpred = ctx.Output(framework::GradVarName("Predicted")); auto dl = EigenVector::Flatten(*dloss); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); if (dpred) { dpred->mutable_data(ctx.GetPlace()); diff --git a/paddle/operators/logical_op.cc b/paddle/operators/logical_op.cc index c818d5e9c1..fedd325cf4 100644 --- a/paddle/operators/logical_op.cc +++ b/paddle/operators/logical_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/logical_op.h" #include "paddle/framework/op_registry.h" @@ -20,8 +20,7 @@ namespace operators { template class BinaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - BinaryLogicalOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + BinaryLogicalOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { OpComment comment; AddInput("X", @@ -45,8 +44,7 @@ Each element of Out is calculated by %s template class UnaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - UnaryLogicalOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + UnaryLogicalOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { OpComment comment; AddInput("X", string::Sprintf("(LoDTensor) Operand of %s operator", @@ -101,9 +99,9 @@ class LogicalOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { - framework::OpKernelType kt = OperatorWithKernel::GetKernelType(ctx); + framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); // LogicalOp kernel's device type is decided by input tensor place kt.place_ = ctx.Input("X")->place(); return kt; diff --git a/paddle/operators/logical_op.cu b/paddle/operators/logical_op.cu index d41239b2ca..87f2287b8f 100644 --- a/paddle/operators/logical_op.cu +++ b/paddle/operators/logical_op.cu @@ -1,24 +1,24 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/logical_op.h" -REGISTER_BINARY_LOGICAL_KERNEL(logical_and, GPU, +REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CUDA, paddle::operators::LogicalAndFunctor); -REGISTER_BINARY_LOGICAL_KERNEL(logical_or, GPU, +REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CUDA, paddle::operators::LogicalOrFunctor); -REGISTER_UNARY_LOGICAL_KERNEL(logical_not, GPU, +REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CUDA, paddle::operators::LogicalNotFunctor); -REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, GPU, +REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CUDA, paddle::operators::LogicalXorFunctor); diff --git a/paddle/operators/logical_op.h b/paddle/operators/logical_op.h index 6e78a7d6ed..4138576856 100644 --- a/paddle/operators/logical_op.h +++ b/paddle/operators/logical_op.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include @@ -47,7 +47,7 @@ struct LogicalXorFunctor { } }; -template +template class BinaryLogicalOpKernel : public framework::OpKernel { public: @@ -57,14 +57,14 @@ class BinaryLogicalOpKernel auto* y = context.Input("Y"); auto* out = context.Output("Out"); Functor binary_func; - platform::Transform trans; - trans(context.device_context(), x->data(), x->data() + x->numel(), - y->data(), out->mutable_data(context.GetPlace()), - binary_func); + platform::Transform trans; + trans(context.template device_context(), x->data(), + x->data() + x->numel(), y->data(), + out->mutable_data(context.GetPlace()), binary_func); } }; -template +template class UnaryLogicalOpKernel : public framework::OpKernel { public: @@ -73,8 +73,9 @@ class UnaryLogicalOpKernel auto* x = context.Input("X"); auto* out = context.Output("Out"); Functor unary_func; - platform::Transform trans; - trans(context.device_context(), x->data(), x->data() + x->numel(), + platform::Transform trans; + trans(context.template device_context(), x->data(), + x->data() + x->numel(), out->mutable_data(context.GetPlace()), unary_func); } }; @@ -85,9 +86,9 @@ class UnaryLogicalOpKernel #define REGISTER_BINARY_LOGICAL_KERNEL(op_type, dev, functor) \ REGISTER_OP_##dev##_KERNEL( \ op_type, ::paddle::operators::BinaryLogicalOpKernel< \ - ::paddle::platform::dev##Place, functor>); + ::paddle::platform::dev##DeviceContext, functor>); #define REGISTER_UNARY_LOGICAL_KERNEL(op_type, dev, functor) \ REGISTER_OP_##dev##_KERNEL( \ op_type, ::paddle::operators::UnaryLogicalOpKernel< \ - ::paddle::platform::dev##Place, functor>); + ::paddle::platform::dev##DeviceContext, functor>); diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index 93e812ac5b..bb03def439 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/lookup_table_op.h" #include "paddle/framework/var_type_inference.h" @@ -41,7 +41,7 @@ class LookupTableOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("W")->type()), @@ -51,8 +51,7 @@ class LookupTableOp : public framework::OperatorWithKernel { class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { public: - LookupTableOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("W", "An input represents embedding tensors, " @@ -99,7 +98,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("W")->type()), @@ -109,19 +108,20 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { class LookupTableOpGradVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind& op_desc, - framework::BlockDescBind* block) const override { + void operator()(const framework::OpDesc& op_desc, + framework::BlockDesc* block) const override { auto out_var_name = op_desc.Output(framework::GradVarName("W")).front(); auto attr = op_desc.GetAttr("is_sparse"); bool is_sparse = boost::get(attr); if (is_sparse) { VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W") << " is set to SelectedRows"; - block->Var(out_var_name)->SetType(framework::VarDesc::SELECTED_ROWS); + block->Var(out_var_name) + ->SetType(framework::proto::VarDesc::SELECTED_ROWS); } else { VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W") << " is set to LoDTensor"; - block->Var(out_var_name)->SetType(framework::VarDesc::LOD_TENSOR); + block->Var(out_var_name)->SetType(framework::proto::VarDesc::LOD_TENSOR); } } }; diff --git a/paddle/operators/lookup_table_op.cu b/paddle/operators/lookup_table_op.cu index 84b044184a..261a28da69 100644 --- a/paddle/operators/lookup_table_op.cu +++ b/paddle/operators/lookup_table_op.cu @@ -1,13 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" @@ -85,6 +88,8 @@ template class LookupTableGradCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { + auto& dev_ctx = + context.template device_context(); bool is_sparse = context.Attr("is_sparse"); if (is_sparse) { auto* ids = context.Input("Ids"); @@ -95,11 +100,11 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { auto* ids_data = ids->data(); auto ids_dim = ids->dims(); - auto stream = context.cuda_device_context().stream(); + auto stream = dev_ctx.stream(); // copy GPU memory to CPU pinned memory framework::Vector new_rows; new_rows.resize(ids_dim[0]); - auto gpu_place = boost::get(context.GetPlace()); + auto gpu_place = boost::get(context.GetPlace()); memory::Copy(platform::CPUPlace(), new_rows.data(), gpu_place, ids_data, ids_dim[0] * sizeof(int64_t), stream); @@ -129,14 +134,11 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { T* d_table = d_table_t->mutable_data(context.GetPlace()); auto t = framework::EigenVector::Flatten(*d_table_t); - t.device(context.GetEigenDevice()) = - t.constant(static_cast(0)); + t.device(*dev_ctx.eigen_device()) = t.constant(static_cast(0)); dim3 threads(128, 8); dim3 grids(8, 1); - LookupTableGrad< - T, 128, 8, - 8><<>>( + LookupTableGrad<<>>( d_table, d_output, ids, N, K, D); } } @@ -146,7 +148,8 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lookup_table, ops::LookupTableCUDAKernel, - ops::LookupTableCUDAKernel); -REGISTER_OP_GPU_KERNEL(lookup_table_grad, ops::LookupTableGradCUDAKernel, - ops::LookupTableGradCUDAKernel); +REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel, + ops::LookupTableCUDAKernel); +REGISTER_OP_CUDA_KERNEL(lookup_table_grad, + ops::LookupTableGradCUDAKernel, + ops::LookupTableGradCUDAKernel); diff --git a/paddle/operators/lookup_table_op.h b/paddle/operators/lookup_table_op.h index 99b912163b..2fd3335868 100644 --- a/paddle/operators/lookup_table_op.h +++ b/paddle/operators/lookup_table_op.h @@ -1,13 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/operators/lrn_op.cc b/paddle/operators/lrn_op.cc index e20340e77b..95673ba19e 100644 --- a/paddle/operators/lrn_op.cc +++ b/paddle/operators/lrn_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/lrn_op.h" @@ -20,7 +20,7 @@ namespace operators { using framework::Tensor; template -struct LRNFunctor { +struct LRNFunctor { void operator()(const framework::ExecutionContext& ctx, const framework::Tensor& input, framework::Tensor* out, framework::Tensor* mid, int N, int C, int H, int W, int n, @@ -55,11 +55,11 @@ struct LRNFunctor { out_e = x_v * e_mid.reshape(Eigen::DSizes(e_mid.size())).pow(-beta); } }; -template struct LRNFunctor; -template struct LRNFunctor; +template struct LRNFunctor; +template struct LRNFunctor; template -struct LRNGradFunctor { +struct LRNGradFunctor { void operator()(const framework::ExecutionContext& ctx, const framework::Tensor& x, const framework::Tensor& out, const framework::Tensor& mid, framework::Tensor* x_g, @@ -113,8 +113,8 @@ struct LRNGradFunctor { } } }; -template struct LRNGradFunctor; -template struct LRNGradFunctor; +template struct LRNGradFunctor; +template struct LRNGradFunctor; class LRNOp : public framework::OperatorWithKernel { public: @@ -140,7 +140,7 @@ class LRNOp : public framework::OperatorWithKernel { template class LRNOpMaker : public framework::OpProtoAndCheckerMaker { public: - LRNOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + LRNOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of LRN operator. " @@ -204,7 +204,7 @@ Input(i, x, y), Output(i, x, y) represents an element in an image. C is the number of feature maps of one image. n is a hyper-parameter configured when operator is initialized. The sum in the denominator is the sum of the same positions in the neighboring maps. - + )DOC"); } }; @@ -230,6 +230,7 @@ class LRNOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(lrn, ops::LRNOp, ops::LRNOpMaker, lrn_grad, ops::LRNOpGrad); -REGISTER_OP_CPU_KERNEL(lrn, ops::LRNKernel); -REGISTER_OP_CPU_KERNEL(lrn_grad, - ops::LRNGradKernel); +REGISTER_OP_CPU_KERNEL( + lrn, ops::LRNKernel); +REGISTER_OP_CPU_KERNEL( + lrn_grad, ops::LRNGradKernel); diff --git a/paddle/operators/lrn_op.cu b/paddle/operators/lrn_op.cu index e9a8671233..eb9d66a73d 100644 --- a/paddle/operators/lrn_op.cu +++ b/paddle/operators/lrn_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/lrn_op.h" @@ -69,19 +69,18 @@ void CrossMapNormal(const framework::ExecutionContext& ctx, const T* inputs, const int block_size = 1024; int grid_size = (img_size + block_size - 1) / block_size; - KeCMRNormFillScale< - T><<>>( + auto& dev_ctx = ctx.template device_context(); + KeCMRNormFillScale<<>>( img_size, inputs, mid, C, H, W, n, k, alpha); int input_size = N * H * W * C; grid_size = (input_size + block_size - 1) / block_size; - KeCMRNormOutput< - T><<>>( + KeCMRNormOutput<<>>( input_size, inputs, mid, -beta, outputs); } template -struct LRNFunctor { +struct LRNFunctor { void operator()(const framework::ExecutionContext& ctx, const framework::Tensor& input, framework::Tensor* out, framework::Tensor* mid, int N, int C, int H, int W, int n, @@ -92,8 +91,8 @@ struct LRNFunctor { } }; -template struct LRNFunctor; -template struct LRNFunctor; +template struct LRNFunctor; +template struct LRNFunctor; template __global__ void KeCMRNormDiff(int img_size, const T* x, const T* out, @@ -148,14 +147,14 @@ void CrossMapNormalGrad(const framework::ExecutionContext& ctx, const T* x, const int block_size = 1024; int grid_size = (img_size + block_size - 1) / block_size; - KeCMRNormDiff< - T><<>>( + auto& dev_ctx = ctx.template device_context(); + KeCMRNormDiff<<>>( img_size, x, out, mid, x_g, out_g, C, H, W, n, -beta, 2.0f * alpha * beta); } template -struct LRNGradFunctor { +struct LRNGradFunctor { void operator()(const framework::ExecutionContext& ctx, const framework::Tensor& x, const framework::Tensor& out, const framework::Tensor& mid, framework::Tensor* x_g, @@ -167,12 +166,13 @@ struct LRNGradFunctor { } }; -template struct LRNGradFunctor; -template struct LRNGradFunctor; +template struct LRNGradFunctor; +template struct LRNGradFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lrn, ops::LRNKernel); -REGISTER_OP_GPU_KERNEL(lrn_grad, - ops::LRNGradKernel); +REGISTER_OP_CUDA_KERNEL( + lrn, ops::LRNKernel); +REGISTER_OP_CUDA_KERNEL( + lrn_grad, ops::LRNGradKernel); diff --git a/paddle/operators/lrn_op.h b/paddle/operators/lrn_op.h index aa7539db4a..ef3a2883a8 100644 --- a/paddle/operators/lrn_op.h +++ b/paddle/operators/lrn_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - You may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -29,7 +29,7 @@ struct LRNFunctor { T k, T alpha, T beta); }; -template +template class LRNKernel : public framework::OpKernel { public: using Tensor = framework::Tensor; @@ -65,12 +65,12 @@ class LRNKernel : public framework::OpKernel { PADDLE_ENFORCE(beta >= 0.0, "beta should >= 0.0"); PADDLE_ENFORCE(k >= 0.0, "k should >= 0.0"); - LRNFunctor f; + LRNFunctor f; f(ctx, x, out, mid, N, C, H, W, n, k, alpha, beta); } }; -template +template struct LRNGradFunctor { void operator()(const framework::ExecutionContext& ctx, const framework::Tensor& x, const framework::Tensor& out, @@ -98,7 +98,7 @@ struct LRNGradFunctor { * The upper and lower is the same as forward. The logic of the sum * is also the same as forward. */ -template +template class LRNGradKernel : public framework::OpKernel { public: using Tensor = framework::Tensor; @@ -121,7 +121,7 @@ class LRNGradKernel : public framework::OpKernel { T alpha = ctx.Attr("alpha"); T beta = ctx.Attr("beta"); - LRNGradFunctor f; + LRNGradFunctor f; f(ctx, x, out, mid, x_g, out_g, N, C, H, W, n, alpha, beta); } }; diff --git a/paddle/operators/lstm_op.cc b/paddle/operators/lstm_op.cc index fa8e5f2da8..afb095a04e 100644 --- a/paddle/operators/lstm_op.cc +++ b/paddle/operators/lstm_op.cc @@ -92,7 +92,7 @@ class LSTMOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), @@ -102,7 +102,7 @@ class LSTMOp : public framework::OperatorWithKernel { class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { public: - LSTMOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + LSTMOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(LoDTensor) the first input is a LodTensor, which support " @@ -117,7 +117,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("C0", "(Tensor, optional) the initial cell state is an optional " "input. This is a tensor with shape (N x D), where N is the " - "batch size. `H0` and `C0` can be NULL but only at the same time") + "batch size. `H0` and `C0` can be NULL but only at the same time.") .AsDispensable(); AddInput("Weight", "(Tensor) the learnable hidden-hidden weights." @@ -260,7 +260,7 @@ class LSTMGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), @@ -273,8 +273,9 @@ class LSTMGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(lstm, ops::LSTMOp, ops::LSTMOpMaker, lstm_grad, ops::LSTMGradOp); -REGISTER_OP_CPU_KERNEL(lstm, ops::LSTMKernel, - ops::LSTMKernel); -REGISTER_OP_CPU_KERNEL(lstm_grad, - ops::LSTMGradKernel, - ops::LSTMGradKernel); +REGISTER_OP_CPU_KERNEL( + lstm, ops::LSTMKernel, + ops::LSTMKernel); +REGISTER_OP_CPU_KERNEL( + lstm_grad, ops::LSTMGradKernel, + ops::LSTMGradKernel); diff --git a/paddle/operators/lstm_op.cu.cc b/paddle/operators/lstm_op.cu.cc index 610cbb03e8..cfcc1fc92a 100644 --- a/paddle/operators/lstm_op.cu.cc +++ b/paddle/operators/lstm_op.cu.cc @@ -1,22 +1,23 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/lstm_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lstm, ops::LSTMKernel, - ops::LSTMKernel); -REGISTER_OP_GPU_KERNEL(lstm_grad, - ops::LSTMGradKernel, - ops::LSTMGradKernel); +REGISTER_OP_CUDA_KERNEL( + lstm, ops::LSTMKernel, + ops::LSTMKernel); +REGISTER_OP_CUDA_KERNEL( + lstm_grad, ops::LSTMGradKernel, + ops::LSTMGradKernel); diff --git a/paddle/operators/lstm_op.h b/paddle/operators/lstm_op.h index a78f548aaf..c57ee414dc 100644 --- a/paddle/operators/lstm_op.h +++ b/paddle/operators/lstm_op.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once #include "paddle/framework/op_registry.h" +#include "paddle/operators/math/detail/activation_functions.h" #include "paddle/operators/math/lstm_compute.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/sequence2batch.h" @@ -24,16 +25,16 @@ namespace operators { using LoDTensor = framework::LoDTensor; using Tensor = framework::Tensor; -template -inline void ReorderInitState(const platform::DeviceContext& ctx, +template +inline void ReorderInitState(const DeviceContext& ctx, const framework::Tensor& src, const size_t* index, framework::Tensor* dst, bool indexed_src) { - math::CopyMatrixRowsFunctor row_shuffle; + math::CopyMatrixRowsFunctor row_shuffle; dst->mutable_data(src.dims(), ctx.GetPlace()); row_shuffle(ctx, src, index, *dst, indexed_src); } -template +template class LSTMKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -52,8 +53,8 @@ class LSTMKernel : public framework::OpKernel { cell_out->mutable_data(ctx.GetPlace()); bool is_reverse = ctx.Attr("is_reverse"); - math::LoDTensor2BatchFunctor to_batch; - auto& device_ctx = ctx.device_context(); + math::LoDTensor2BatchFunctor to_batch; + auto& device_ctx = ctx.template device_context(); to_batch(device_ctx, *input, *batch_gate, true, is_reverse); auto in_dims = input->dims(); @@ -64,7 +65,7 @@ class LSTMKernel : public framework::OpKernel { Tensor b = *bias; b.Resize({bias->numel(), 1}); Tensor gate_bias = b.Slice(0, 4 * frame_size); - math::RowwiseAdd add_bias; + math::RowwiseAdd add_bias; add_bias(device_ctx, *batch_gate, gate_bias, batch_gate); } @@ -88,8 +89,8 @@ class LSTMKernel : public framework::OpKernel { // Since the batch computing for LSTM reorders the input sequence // according to their length. The initialized cell state also needs // to reorder. - ReorderInitState(device_ctx, *cell_t0, order, &ordered_c0, - true); + ReorderInitState(device_ctx, *cell_t0, order, + &ordered_c0, true); lstm_value.prev_state_value = ordered_c0.data(); } @@ -102,9 +103,12 @@ class LSTMKernel : public framework::OpKernel { auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; - auto gate_act = ctx.Attr("gate_activation"); - auto cell_act = ctx.Attr("cell_activation"); - auto cand_act = ctx.Attr("candidate_activation"); + auto gate_act = math::detail::GetActivationType( + ctx.Attr("gate_activation")); + auto cell_act = math::detail::GetActivationType( + ctx.Attr("cell_activation")); + auto cand_act = math::detail::GetActivationType( + ctx.Attr("candidate_activation")); for (size_t n = 0; n < num_batch; n++) { int bstart = static_cast(batch_starts[n]); @@ -121,9 +125,9 @@ class LSTMKernel : public framework::OpKernel { int pre_h_start = static_cast(batch_starts[n - 1]); int pre_h_end = pre_h_start + cur_batch_size; auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end); - math::matmul(device_ctx, pre_hidden_t, false, *weight, false, - static_cast(1.0), &gate_t, - static_cast(1.0)); + math::matmul(device_ctx, pre_hidden_t, false, *weight, + false, static_cast(1.0), &gate_t, + static_cast(1.0)); } else if (hidden_t0) { // If n == 0 and there is no initialized hidden state, that is to say // the H0 is zeros, the calculation W_h * H0 will be skiped. @@ -133,24 +137,24 @@ class LSTMKernel : public framework::OpKernel { // according to their length. The initialized hidden state also needs // to reorder. Tensor ordered_h0; - ReorderInitState(device_ctx, *hidden_t0, order, &ordered_h0, - true); - math::matmul(device_ctx, ordered_h0, false, *weight, false, - static_cast(1.0), &gate_t, - static_cast(1.0)); + ReorderInitState(device_ctx, *hidden_t0, order, + &ordered_h0, true); + math::matmul(device_ctx, ordered_h0, false, *weight, + false, static_cast(1.0), &gate_t, + static_cast(1.0)); } lstm_value.gate_value = gate_t.data(); lstm_value.output_value = out_t.data(); lstm_value.state_value = cell_t.data(); lstm_value.state_active_value = cell_pre_act_t.data(); - math::LstmUnitFunctor::compute(device_ctx, lstm_value, - frame_size, cur_batch_size, - gate_act, cell_act, cand_act); + math::LstmUnitFunctor::compute( + device_ctx, lstm_value, frame_size, cur_batch_size, gate_act, + cell_act, cand_act); lstm_value.prev_state_value = lstm_value.state_value; } - math::Batch2LoDTensorFunctor to_seq; + math::Batch2LoDTensorFunctor to_seq; batch_hidden.set_lod(batch_gate->lod()); // restore the output hidden in LoDTensor from the batch hidden to_seq(device_ctx, batch_hidden, *hidden_out); @@ -161,7 +165,7 @@ class LSTMKernel : public framework::OpKernel { } }; -template +template class LSTMGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -187,8 +191,8 @@ class LSTMGradKernel : public framework::OpKernel { auto* h0_g = ctx.Output(framework::GradVarName("H0")); auto* c0_g = ctx.Output(framework::GradVarName("C0")); - auto& device_ctx = ctx.device_context(); - math::SetConstant zero; + auto& device_ctx = ctx.template device_context(); + math::SetConstant zero; if (weight_g) { weight_g->mutable_data(ctx.GetPlace()); zero(device_ctx, weight_g, static_cast(0.0)); @@ -200,7 +204,8 @@ class LSTMGradKernel : public framework::OpKernel { Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g; const size_t* order = batch_gate->lod()[2].data(); if (c0) { - ReorderInitState(device_ctx, *c0, order, &ordered_c0, true); + ReorderInitState(device_ctx, *c0, order, &ordered_c0, + true); } if (c0 && c0_g) { ordered_c0_g.mutable_data(c0_g->dims(), ctx.GetPlace()); @@ -240,10 +245,10 @@ class LSTMGradKernel : public framework::OpKernel { lstm_grad.check_og_grad = nullptr; } - math::LoDTensor2BatchFunctor to_batch; + math::LoDTensor2BatchFunctor to_batch; auto ToBatch = [&batch_gate, &to_batch]( - const platform::DeviceContext& ctx, const framework::LoDTensor& src, + const DeviceContext& ctx, const framework::LoDTensor& src, const framework::DDim& dims, framework::LoDTensor& dst) { dst.mutable_data(dims, ctx.GetPlace()); dst.set_lod(batch_gate->lod()); @@ -263,9 +268,12 @@ class LSTMGradKernel : public framework::OpKernel { batch_gate_g.mutable_data(batch_gate->dims(), ctx.GetPlace()); batch_gate_g.set_lod(batch_gate->lod()); - auto gate_act = ctx.Attr("gate_activation"); - auto cell_act = ctx.Attr("cell_activation"); - auto cand_act = ctx.Attr("candidate_activation"); + auto gate_act = math::detail::GetActivationType( + ctx.Attr("gate_activation")); + auto cell_act = math::detail::GetActivationType( + ctx.Attr("cell_activation")); + auto cand_act = math::detail::GetActivationType( + ctx.Attr("candidate_activation")); auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; @@ -299,7 +307,7 @@ class LSTMGradKernel : public framework::OpKernel { } int cur_batch_size = bend - bstart; - math::LstmUnitGradFunctor::compute( + math::LstmUnitGradFunctor::compute( device_ctx, lstm_value, lstm_grad, frame_size, cur_batch_size, gate_act, cell_act, cand_act); @@ -307,33 +315,34 @@ class LSTMGradKernel : public framework::OpKernel { int pre_h_start = static_cast(batch_starts[n - 1]); int pre_h_end = pre_h_start + cur_batch_size; auto pre_hidden_g = batch_hidden_g.Slice(pre_h_start, pre_h_end); - math::matmul(device_ctx, gate_g, false, *weight, true, - static_cast(1.0), &pre_hidden_g, - static_cast(1.0)); + math::matmul(device_ctx, gate_g, false, *weight, true, + static_cast(1.0), &pre_hidden_g, + static_cast(1.0)); if (weight_g) { /* backward weight */ auto pre_hidden = batch_hidden.Slice(pre_h_start, pre_h_end); - math::matmul(device_ctx, pre_hidden, true, gate_g, false, - static_cast(1.0), weight_g, - static_cast(1.0)); + math::matmul(device_ctx, pre_hidden, true, gate_g, + false, static_cast(1.0), weight_g, + static_cast(1.0)); } } else { if (h0 && weight_g) { - ReorderInitState(device_ctx, *h0, order, &ordered_h0, true); - math::matmul(device_ctx, ordered_h0, true, gate_g, false, - static_cast(1.0), weight_g, - static_cast(1.0)); + ReorderInitState(device_ctx, *h0, order, + &ordered_h0, true); + math::matmul(device_ctx, ordered_h0, true, gate_g, + false, static_cast(1.0), weight_g, + static_cast(1.0)); } if (h0 && h0_g) { ordered_h0_g.mutable_data(h0_g->dims(), ctx.GetPlace()); - math::matmul(device_ctx, gate_g, false, *weight, true, - static_cast(1.0), &ordered_h0_g, - static_cast(0.0)); + math::matmul(device_ctx, gate_g, false, *weight, + true, static_cast(1.0), + &ordered_h0_g, static_cast(0.0)); } } } - math::Batch2LoDTensorFunctor to_seq; + math::Batch2LoDTensorFunctor to_seq; if (in_g) { /* backward data */ in_g->mutable_data(ctx.GetPlace()); @@ -344,15 +353,17 @@ class LSTMGradKernel : public framework::OpKernel { Tensor b_g = *bias_g; b_g.Resize({bias_g->numel(), 1}); Tensor gate_bias_g = b_g.Slice(0, 4 * frame_size); - math::ColwiseSum col_sum; + math::ColwiseSum col_sum; col_sum(device_ctx, batch_gate_g, &gate_bias_g); } if (h0 && h0_g) { - ReorderInitState(device_ctx, ordered_h0_g, order, h0_g, false); + ReorderInitState(device_ctx, ordered_h0_g, order, h0_g, + false); } if (c0 && c0_g) { - ReorderInitState(device_ctx, ordered_c0_g, order, c0_g, false); + ReorderInitState(device_ctx, ordered_c0_g, order, c0_g, + false); } } }; diff --git a/paddle/operators/lstm_unit_op.cc b/paddle/operators/lstm_unit_op.cc index 18b9cdf2a3..c2d2c43982 100644 --- a/paddle/operators/lstm_unit_op.cc +++ b/paddle/operators/lstm_unit_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/lstm_unit_op.h" @@ -48,10 +48,12 @@ class LstmUnitOp : public framework::OperatorWithKernel { class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker { public: - LstmUnitOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + LstmUnitOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "FC input before the non-linear activation."); + AddInput("X", + "Lstm unit only applies non-linear activations, please make sure" + "that linear tranformation has already been applied to `X`. " + "Linear tranformation can be applied by adding a `fc` layer"); AddInput( "C_prev", "The cell state tensor of last time-step in the Lstm Unit operator."); diff --git a/paddle/operators/lstm_unit_op.cu b/paddle/operators/lstm_unit_op.cu index e192283aa0..5ee5ddd280 100644 --- a/paddle/operators/lstm_unit_op.cu +++ b/paddle/operators/lstm_unit_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ /* Acknowledgement: the following code is strongly inspired by https://github.com/caffe2/caffe2/blob/master/caffe2/operators/lstm_unit_op_gpu.cu @@ -98,7 +98,7 @@ class LstmUnitOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); auto* x_tensor = ctx.Input("X"); auto* c_prev_tensor = ctx.Input("C_prev"); @@ -129,7 +129,7 @@ class LstmUnitGradOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); auto x_tensor = ctx.Input("X"); auto c_prev_tensor = ctx.Input("C_prev"); @@ -173,7 +173,7 @@ class LstmUnitGradOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lstm_unit, ops::LstmUnitOpCUDAKernel, - ops::LstmUnitOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(lstm_unit_grad, ops::LstmUnitGradOpCUDAKernel, - ops::LstmUnitGradOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(lstm_unit, ops::LstmUnitOpCUDAKernel, + ops::LstmUnitOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(lstm_unit_grad, ops::LstmUnitGradOpCUDAKernel, + ops::LstmUnitGradOpCUDAKernel); diff --git a/paddle/operators/lstm_unit_op.h b/paddle/operators/lstm_unit_op.h index 38cb298f92..fa8d141bcb 100644 --- a/paddle/operators/lstm_unit_op.h +++ b/paddle/operators/lstm_unit_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ /* Acknowledgement: the following code is strongly inspired by https://github.com/caffe2/caffe2/blob/master/caffe2/operators/lstm_unit_op.h @@ -35,7 +35,7 @@ inline T tanh(T x) { return 2. * sigmoid(2. * x) - 1.; } -template +template class LstmUnitKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -78,7 +78,7 @@ class LstmUnitKernel : public framework::OpKernel { } }; -template +template class LstmUnitGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/margin_rank_loss_op.cc b/paddle/operators/margin_rank_loss_op.cc index d7e8a0ea76..e0df307774 100644 --- a/paddle/operators/margin_rank_loss_op.cc +++ b/paddle/operators/margin_rank_loss_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/margin_rank_loss_op.h" @@ -42,8 +42,7 @@ class MarginRankLossOp : public framework::OperatorWithKernel { template class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - MarginRankLossOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MarginRankLossOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X1", "(2-D tensor with shape [batch_size x 1]) The score for " @@ -117,7 +116,7 @@ REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp, ops::MarginRankLossGradOp); REGISTER_OP_CPU_KERNEL( margin_rank_loss, - ops::MarginRankLossKernel); + ops::MarginRankLossKernel); REGISTER_OP_CPU_KERNEL( margin_rank_loss_grad, - ops::MarginRankLossGradKernel); + ops::MarginRankLossGradKernel); diff --git a/paddle/operators/margin_rank_loss_op.cu b/paddle/operators/margin_rank_loss_op.cu index 3a639f25d4..798c3ed182 100644 --- a/paddle/operators/margin_rank_loss_op.cu +++ b/paddle/operators/margin_rank_loss_op.cu @@ -1,24 +1,24 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/margin_rank_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( margin_rank_loss, - ops::MarginRankLossKernel); -REGISTER_OP_GPU_KERNEL( + ops::MarginRankLossKernel); +REGISTER_OP_CUDA_KERNEL( margin_rank_loss_grad, - ops::MarginRankLossGradKernel); + ops::MarginRankLossGradKernel); diff --git a/paddle/operators/margin_rank_loss_op.h b/paddle/operators/margin_rank_loss_op.h index 8d0830147e..7438e881e1 100644 --- a/paddle/operators/margin_rank_loss_op.h +++ b/paddle/operators/margin_rank_loss_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -34,7 +34,7 @@ struct Heaviside { } }; -template +template class MarginRankLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -56,13 +56,13 @@ class MarginRankLossKernel : public framework::OpKernel { auto x1 = framework::EigenVector::Flatten(*x1_t); auto x2 = framework::EigenVector::Flatten(*x2_t); - auto& dev = ctx.GetEigenDevice(); + auto& dev = *ctx.template device_context().eigen_device(); out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU()); act.device(dev) = out.unaryExpr(Heaviside()); } }; -template +template class MarginRankLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -78,7 +78,7 @@ class MarginRankLossGradKernel : public framework::OpKernel { auto d_out = framework::EigenVector::Flatten(*d_out_t); auto act = framework::EigenVector::Flatten(*act_t); auto label = framework::EigenVector::Flatten(*label_t); - auto& dev = ctx.GetEigenDevice(); + auto& dev = *ctx.template device_context().eigen_device(); // compute d_x1 if (d_x1_t) { diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt index bf47879f77..c607704efa 100644 --- a/paddle/operators/math/CMakeLists.txt +++ b/paddle/operators/math/CMakeLists.txt @@ -9,13 +9,16 @@ if(WITH_GPU) nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS device_context) nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context) nv_library(sequence_pooling SRCS sequence_pooling.cc sequence_pooling.cu DEPS device_context math_function) - nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context) + nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context tensor) nv_library(context_project SRCS context_project.cc context_project.cu DEPS device_context math_function) - nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context) + nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context tensor) + nv_library(sequence_padding SRCS sequence_padding.cc sequence_padding.cu DEPS lod_tensor device_context) + nv_library(sequence_scale SRCS sequence_scale.cc sequence_scale.cu DEPS lod_tensor device_context) nv_library(lstm_compute SRCS lstm_compute.cc lstm_compute.cu DEPS device_context activation_functions) nv_library(maxouting SRCS maxouting.cc maxouting.cu DEPS device_context) nv_library(unpooling SRCS unpooling.cc unpooling.cu DEPS device_context) nv_library(gru_compute SRCS gru_compute.cc gru_compute.cu DEPS device_context activation_functions math_function) + nv_library(cos_sim_functor SRCS cos_sim_functor.cc cos_sim_functor.cu DEPS device_context) else() cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context framework_proto) cc_library(selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function) @@ -23,16 +26,20 @@ else() cc_library(cross_entropy SRCS cross_entropy.cc DEPS device_context) cc_library(pooling SRCS pooling.cc DEPS device_context) cc_library(sequence_pooling SRCS sequence_pooling.cc DEPS device_context math_function) - cc_library(vol2col SRCS vol2col.cc DEPS device_context) + cc_library(vol2col SRCS vol2col.cc DEPS device_context tensor) cc_library(context_project SRCS context_project.cc DEPS device_context math_function) - cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context) + cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context tensor) + cc_library(sequence_padding SRCS sequence_padding.cc DEPS lod_tensor device_context) + cc_library(sequence_scale SRCS sequence_scale.cc DEPS lod_tensor device_context) cc_library(lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions) cc_library(maxouting SRCS maxouting.cc DEPS device_context) cc_library(unpooling SRCS unpooling.cc DEPS device_context) cc_library(gru_compute SRCS gru_compute.cc DEPS device_context activation_functions math_function) + cc_library(cos_sim_functor SRCS cos_sim_functor.cc DEPS device_context) endif() cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) cc_test(selected_rows_functor_test SRCS selected_rows_functor_test.cc DEPS selected_rows_functor) cc_test(im2col_test SRCS im2col_test.cc DEPS math_function tensor) cc_test(vol2col_test SRCS vol2col_test.cc DEPS vol2col tensor) +cc_test(sequence_padding_test SRCS sequence_padding_test.cc DEPS sequence_padding) diff --git a/paddle/operators/math/context_project.cc b/paddle/operators/math/context_project.cc index f82ea5d7be..980dd90df8 100644 --- a/paddle/operators/math/context_project.cc +++ b/paddle/operators/math/context_project.cc @@ -18,8 +18,8 @@ namespace paddle { namespace operators { namespace math { -template class ContextProjectFunctor; -template class ContextProjectFunctor; +template class ContextProjectFunctor; +template class ContextProjectFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/context_project.cu b/paddle/operators/math/context_project.cu index 04eeed543c..934e3df645 100644 --- a/paddle/operators/math/context_project.cu +++ b/paddle/operators/math/context_project.cu @@ -20,8 +20,8 @@ namespace paddle { namespace operators { namespace math { -template class ContextProjectFunctor; -template class ContextProjectFunctor; +template class ContextProjectFunctor; +template class ContextProjectFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/context_project.h b/paddle/operators/math/context_project.h index d853507188..218de9fb95 100644 --- a/paddle/operators/math/context_project.h +++ b/paddle/operators/math/context_project.h @@ -81,17 +81,17 @@ using LoDTensor = framework::LoDTensor; * */ -template +template class ContextProjectFunctor { public: - void operator()(const platform::DeviceContext& context, const LoDTensor& in, + void operator()(const DeviceContext& context, const LoDTensor& in, const Tensor& padding_data, bool padding_trainable, const int context_start, const int context_length, const int context_stride, const int up_pad, const int down_pad, Tensor* col) { auto lod_level_0 = in.lod()[0]; - math::Im2ColFunctor im2col_ocf; + math::Im2ColFunctor im2col_ocf; std::vector dilation({1, 1}); std::vector padding({up_pad, 0, down_pad, 0}); @@ -149,7 +149,7 @@ class ContextProjectFunctor { Tensor out_t_sub = out_t.Slice(k * context_length, k * context_length + padding_size); Tensor w_sub = padding_data.Slice(k, k + padding_size); - framework::CopyFrom(w_sub, context.GetPlace(), context, &out_t_sub); + framework::Copy(w_sub, context.GetPlace(), context, &out_t_sub); } } if (down_pad > 0) { // add down pad @@ -179,7 +179,7 @@ class ContextProjectFunctor { (down_pad_begin_row + t) * context_length); Tensor w_sub = padding_data.Slice( up_pad + padding_idx, up_pad + padding_idx + padding_size); - framework::CopyFrom(w_sub, context.GetPlace(), context, &out_t_sub); + framework::Copy(w_sub, context.GetPlace(), context, &out_t_sub); } } out_t.Resize({sequence_height, context_length * sequence_width}); @@ -188,17 +188,17 @@ class ContextProjectFunctor { } }; -template +template class ContextProjectGradFunctor { public: - void operator()(const platform::DeviceContext& context, const LoDTensor& in, + void operator()(const DeviceContext& context, const LoDTensor& in, bool padding_trainable, const int context_start, const int context_length, const int context_stride, const int up_pad, const int down_pad, bool pad_grad, bool input_grad, Tensor* padding_data, Tensor* col) { auto lod_level_0 = in.lod()[0]; - math::Col2ImFunctor col2im_ocf; + math::Col2ImFunctor col2im_ocf; std::vector dilation({1, 1}); std::vector padding({up_pad, 0, down_pad, 0}); @@ -258,8 +258,8 @@ class ContextProjectGradFunctor { Tensor out_t_sub = out_t.Slice(k * context_length, k * context_length + padding_size); Tensor w_sub = padding_data->Slice(k, k + padding_size); - axpy(context, w_sub.numel(), static_cast(1), - out_t_sub.data(), w_sub.data()); + axpy(context, w_sub.numel(), static_cast(1), + out_t_sub.data(), w_sub.data()); } } if (down_pad > 0) { @@ -290,8 +290,8 @@ class ContextProjectGradFunctor { (down_pad_begin_row + t) * context_length); Tensor w_sub = padding_data->Slice( up_pad + padding_idx, up_pad + padding_idx + padding_size); - axpy(context, w_sub.numel(), static_cast(1), - out_t_sub.data(), w_sub.data()); + axpy(context, w_sub.numel(), static_cast(1), + out_t_sub.data(), w_sub.data()); } } out_t.Resize({sequence_height, context_length * sequence_width}); diff --git a/paddle/operators/math/cos_sim_functor.cc b/paddle/operators/math/cos_sim_functor.cc new file mode 100644 index 0000000000..6af9f0fcd9 --- /dev/null +++ b/paddle/operators/math/cos_sim_functor.cc @@ -0,0 +1,48 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/cos_sim_functor.h" + +namespace paddle { +namespace operators { +namespace math { + +template +struct CosSimDyFunctor { + void operator()(const platform::CPUDeviceContext& ctx, const T* x_norm, + const T* y_norm, const T* x, const T* y, const T* z, + const T* dz, const size_t rows, const size_t cols, + T* dy) const { + for (size_t row_id = 0; row_id < rows; ++row_id) { + auto xy_norm_prod = x_norm[row_id] * y_norm[0]; + auto dz_data = dz[row_id]; + auto z_data = z[row_id]; + auto* x_data = x + cols * row_id; + auto reciprocal_xy_norm_prod = 1 / xy_norm_prod; + + auto y_norm_square = y_norm[0] * y_norm[0]; + auto reciprocal_y_norm_square = 1 / y_norm_square; + for (size_t i = 0; i < cols; ++i) { + dy[i] += dz_data * (x_data[i] * reciprocal_xy_norm_prod - + z_data * y[i] * reciprocal_y_norm_square); + } + } + } +}; + +template struct CosSimDyFunctor; +template struct CosSimDyFunctor; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/cos_sim_functor.cu b/paddle/operators/math/cos_sim_functor.cu new file mode 100644 index 0000000000..6eb0a4ea4c --- /dev/null +++ b/paddle/operators/math/cos_sim_functor.cu @@ -0,0 +1,64 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/cos_sim_functor.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { +namespace math { + +template +__global__ void CosSimDyKernel(const T* x_norm, const T* y_norm, const T* x, + const T* y, const T* z, const T* dz, + const size_t rows, const size_t cols, T* dy) { + int grid_size = blockDim.x * gridDim.x; + T y_norm_data = y_norm[0]; + for (int row_id = blockIdx.x * blockDim.x + threadIdx.x; row_id < rows; + row_id += grid_size) { + T xy_norm_prod = x_norm[row_id] * y_norm_data; + T dz_data = dz[row_id]; + T z_data = z[row_id]; + const T* x_data = x + cols * row_id; + T reciprocal_xy_norm_prod = 1 / xy_norm_prod; + + T y_norm_square = y_norm_data * y_norm_data; + T reciprocal_y_norm_square = 1 / y_norm_square; + for (size_t i = 0; i < cols; ++i) { + T dy_data = dz_data * (x_data[i] * reciprocal_xy_norm_prod - + z_data * y[i] * reciprocal_y_norm_square); + platform::CudaAtomicAdd(dy + i, dy_data); + } + } +} + +template +struct CosSimDyFunctor { + void operator()(const platform::CUDADeviceContext& ctx, const T* x_norm, + const T* y_norm, const T* x, const T* y, const T* z, + const T* dz, const size_t rows, const size_t cols, + T* dy) const { + const int block_size = 512; + dim3 threads(block_size, 1); + dim3 grid(1, (rows + block_size - 1) / block_size); + CosSimDyKernel<<>>( + x_norm, y_norm, x, y, z, dz, rows, cols, dy); + } +}; + +template struct CosSimDyFunctor; +template struct CosSimDyFunctor; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/cos_sim_functor.h b/paddle/operators/math/cos_sim_functor.h new file mode 100644 index 0000000000..aae8ab5b7a --- /dev/null +++ b/paddle/operators/math/cos_sim_functor.h @@ -0,0 +1,166 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include "paddle/platform/device_context.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { +namespace math { + +template +struct CosSimFunctor { + CosSimFunctor(const T* x, const T* y, T* x_norm, T* y_norm, T* z, int cols) + : x_norm_(x_norm), + y_norm_(y_norm), + x_(x), + y_(y), + z_(z), + cols_(static_cast(cols)) {} + + inline HOSTDEVICE void operator()(size_t row_id) const { + auto* x = x_ + cols_ * row_id; + T xx = 0, xy = 0, yy = 0; + if (same_row) { + auto* y = y_ + cols_ * row_id; + T tep_x, tep_y; + for (size_t i = 0; i < cols_; ++i) { + tep_x = x[i]; + tep_y = y[i]; + xx += tep_x * tep_x; + yy += tep_y * tep_y; + xy += tep_x * tep_y; + } + xx = sqrt(xx); + yy = sqrt(yy); + y_norm_[row_id] = yy; + x_norm_[row_id] = xx; + z_[row_id] = xy / (xx * yy); + } else { // This can be wrote in a better way. + T tep_x, tep_y; + for (size_t i = 0; i < cols_; ++i) { + tep_x = x[i]; + tep_y = y_[i]; + xx += tep_x * tep_x; + yy += tep_y * tep_y; + xy += tep_x * tep_y; + } + xx = sqrt(xx); + yy = sqrt(yy); + if (row_id == 0) y_norm_[0] = yy; + x_norm_[row_id] = xx; + z_[row_id] = xy / (xx * yy); + } + } + + T* x_norm_; + T* y_norm_; + const T* x_; + const T* y_; + T* z_; + const size_t cols_; +}; + +template +struct CosSimGradFunctor { + CosSimGradFunctor(const T* x_norm, const T* y_norm, const T* x, const T* y, + const T* z, const T* dz, T* dx, int cols) + : x_norm_(x_norm), + y_norm_(y_norm), + x_(x), + y_(y), + z_(z), + dz_(dz), + dx_(dx), + cols_(static_cast(cols)) {} + + inline HOSTDEVICE void operator()(size_t row_id) const { + auto x_norm_square = x_norm_[row_id] * x_norm_[row_id]; + auto xy_norm_prod = x_norm_[row_id] * y_norm_[row_id]; + auto dz = dz_[row_id]; + auto z = z_[row_id]; + + auto* dx = dx_ + cols_ * row_id; + auto* x = x_ + cols_ * row_id; + auto* y = y_ + cols_ * row_id; + + auto reciprocal_xy_norm_prod = 1 / xy_norm_prod; + auto reciprocal_x_norm_square = 1 / x_norm_square; + for (size_t i = 0; i < cols_; ++i) { + dx[i] = dz * (y[i] * reciprocal_xy_norm_prod - + z * x[i] * reciprocal_x_norm_square); + } + } + + const T* x_norm_; + const T* y_norm_; + const T* x_; + const T* y_; + const T* z_; + const T* dz_; + T* dx_; + const size_t cols_; +}; + +template +struct CosSimDxFunctor { + CosSimDxFunctor(const T* x_norm, const T* y_norm, const T* x, const T* y, + const T* z, const T* dz, T* dx, int cols) + : x_norm_(x_norm), + y_norm_(y_norm), + x_(x), + y_(y), + z_(z), + dz_(dz), + dx_(dx), + cols_(static_cast(cols)) {} + + inline HOSTDEVICE void operator()(size_t row_id) const { + auto xy_norm_prod = x_norm_[row_id] * y_norm_[0]; + auto dz = dz_[row_id]; + auto z = z_[row_id]; + auto* x = x_ + cols_ * row_id; + auto reciprocal_xy_norm_prod = 1 / xy_norm_prod; + auto x_norm_square = x_norm_[row_id] * x_norm_[row_id]; + auto* dx = dx_ + cols_ * row_id; + auto reciprocal_x_norm_square = 1 / x_norm_square; + + for (size_t i = 0; i < cols_; ++i) { + dx[i] = dz * (y_[i] * reciprocal_xy_norm_prod - + z * x[i] * reciprocal_x_norm_square); + } + } + const T* x_norm_; + const T* y_norm_; + const T* x_; + const T* y_; + const T* z_; + const T* dz_; + T* dx_; + const size_t cols_; +}; + +template +struct CosSimDyFunctor { + void operator()(const DeviceContext& ctx, const T* x_norm, const T* y_norm, + const T* x, const T* y, const T* z, const T* dz, + const size_t rows, const size_t cols, T* dy) const; +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/cross_entropy.cc b/paddle/operators/math/cross_entropy.cc index cf238a58e0..d9cb016fb4 100644 --- a/paddle/operators/math/cross_entropy.cc +++ b/paddle/operators/math/cross_entropy.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/math/cross_entropy.h" @@ -24,9 +24,9 @@ template ; template -class CrossEntropyFunctor { +class CrossEntropyFunctor { public: - void operator()(const platform::DeviceContext& ctx, framework::Tensor* out, + void operator()(const platform::CPUDeviceContext& ctx, framework::Tensor* out, const framework::Tensor* prob, const framework::Tensor* labels, const bool softLabel) { const int batch_size = prob->dims()[0]; @@ -35,7 +35,7 @@ class CrossEntropyFunctor { auto lbl = EigenMatrix::From(*labels); auto loss = EigenMatrix::From(*out); - loss.device(*ctx.GetEigenDevice()) = + loss.device(*ctx.eigen_device()) = -((lbl * in.log().unaryExpr(math::TolerableValue())) .sum(Eigen::DSizes(1)) .reshape(Eigen::DSizes(batch_size, 1))); @@ -53,8 +53,8 @@ class CrossEntropyFunctor { } }; -template class CrossEntropyFunctor; -template class CrossEntropyFunctor; +template class CrossEntropyFunctor; +template class CrossEntropyFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/cross_entropy.cu b/paddle/operators/math/cross_entropy.cu index 651c08f740..16c9e7b28e 100644 --- a/paddle/operators/math/cross_entropy.cu +++ b/paddle/operators/math/cross_entropy.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/math/cross_entropy.h" @@ -95,10 +95,10 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label, using Tensor = framework::Tensor; template -class CrossEntropyFunctor { +class CrossEntropyFunctor { public: - void operator()(const platform::DeviceContext& ctx, framework::Tensor* out, - const framework::Tensor* prob, + void operator()(const platform::CUDADeviceContext& ctx, + framework::Tensor* out, const framework::Tensor* prob, const framework::Tensor* labels, bool softLabel) { const T* prob_data = prob->data(); T* loss_data = out->mutable_data(ctx.GetPlace()); @@ -118,16 +118,14 @@ class CrossEntropyFunctor { const int64_t* label_data = labels->data(); int block = 512; int grid = (batch_size + block - 1) / block; - CrossEntropyKernel<<< - grid, block, 0, - reinterpret_cast(ctx).stream()>>>( + CrossEntropyKernel<<>>( loss_data, prob_data, label_data, batch_size, class_num); } } }; -template class CrossEntropyFunctor; -template class CrossEntropyFunctor; +template class CrossEntropyFunctor; +template class CrossEntropyFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/cross_entropy.h b/paddle/operators/math/cross_entropy.h index 70ed9ddd55..b3b6d767a8 100644 --- a/paddle/operators/math/cross_entropy.h +++ b/paddle/operators/math/cross_entropy.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" @@ -33,11 +33,11 @@ struct TolerableValue { } }; -template +template class CrossEntropyFunctor { public: - void operator()(const platform::DeviceContext& context, - framework::Tensor* out, const framework::Tensor* prob, + void operator()(const DeviceContext& context, framework::Tensor* out, + const framework::Tensor* prob, const framework::Tensor* labels, const bool softLabel); }; } // namespace math diff --git a/paddle/operators/math/detail/activation_functions.h b/paddle/operators/math/detail/activation_functions.h index a20c35d1d9..585a012343 100644 --- a/paddle/operators/math/detail/activation_functions.h +++ b/paddle/operators/math/detail/activation_functions.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once #include +#include "paddle/platform/enforce.h" #include "paddle/platform/hostdevice.h" #ifdef __AVX__ @@ -29,6 +30,26 @@ namespace detail { #define SIGMOID_THRESHOLD_MAX 13.0 #define EXP_MAX_INPUT 40.0 +enum ActivationType { + kSigmoid, + kReLU, + kTanh, + kIdentity, +}; + +inline ActivationType GetActivationType(const std::string &type) { + if (type == "sigmoid") { + return ActivationType::kSigmoid; + } else if (type == "relu") { + return ActivationType::kReLU; + } else if (type == "tanh") { + return ActivationType::kTanh; + } else if (type == "identity" || type == "") { + return ActivationType::kIdentity; + } + PADDLE_THROW("Not support type %s.", type); +} + namespace forward { template diff --git a/paddle/operators/math/detail/gru_cpu_kernel.h b/paddle/operators/math/detail/gru_cpu_kernel.h index 4c67dec9cb..a61b232f42 100644 --- a/paddle/operators/math/detail/gru_cpu_kernel.h +++ b/paddle/operators/math/detail/gru_cpu_kernel.h @@ -28,7 +28,7 @@ template void hl_naive_gru_forward_reset_output(OpResetOutput op_reset_output, T *gate_value, T *reset_output_value, T *prev_output_value, int frame_size, - activation_mode_t active_gate) { + ActivationType active_gate) { T r_value_update_gate; T r_value_reset_gate; T r_value_reset_output; @@ -56,7 +56,7 @@ template void hl_naive_gru_forward_final_output(OpFinalOutput op_final_output, T *gate_value, T *prev_output_value, T *output_value, int frame_size, - activation_mode_t active_node) { + ActivationType active_node) { T r_value_update_gate; T r_value_frame_state; T r_prev_out = 0; @@ -83,7 +83,7 @@ template void hl_avx_gru_forward_reset_output(OpResetOutput op_reset_output, T *gate_value, T *reset_output_value, T *prev_output_value, int frame_size, - activation_mode_t active_gate) { + ActivationType active_gate) { #ifdef __AVX__ __m256 r_value_update_gate; __m256 r_value_reset_gate; @@ -113,7 +113,7 @@ template void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output, T *gate_value, T *prev_output_value, T *output_value, int frame_size, - activation_mode_t active_node) { + ActivationType active_node) { #ifdef __AVX__ __m256 r_value_update_gate; __m256 r_value_frame_state; @@ -140,9 +140,8 @@ void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output, template inline void forward_reset_output(OpResetOutput op_reset_output, - hl_gru_value value, int frame_size, - int batch_size, - activation_mode_t active_gate) { + GRUMetaValue value, int frame_size, + int batch_size, ActivationType active_gate) { for (int b = 0; b < batch_size; b++) { if (OpResetOutput::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) { hl_avx_gru_forward_reset_output( @@ -164,9 +163,8 @@ inline void forward_reset_output(OpResetOutput op_reset_output, template inline void forward_final_output(OpFinalOutput op_final_output, - hl_gru_value value, int frame_size, - int batch_size, - activation_mode_t active_node) { + GRUMetaValue value, int frame_size, + int batch_size, ActivationType active_node) { for (int b = 0; b < batch_size; b++) { if (OpFinalOutput::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) { hl_avx_gru_forward_final_output(op_final_output, value.gate_value, @@ -191,7 +189,7 @@ void hl_naive_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *output_grad, int frame_size, - activation_mode_t active_node) { + ActivationType active_node) { T r_update_gate_value; T r_update_gate_grad; T r_frame_state_value; @@ -232,7 +230,7 @@ void hl_naive_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *reset_output_grad, int frame_size, - activation_mode_t active_gate) { + ActivationType active_gate) { T r_update_gate_value; T r_update_gate_grad; T r_reset_gate_value; @@ -277,7 +275,7 @@ void hl_avx_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *output_grad, int frame_size, - activation_mode_t active_node) { + ActivationType active_node) { #ifdef __AVX__ __m256 r_update_gate_value; __m256 r_update_gate_grad; @@ -320,7 +318,7 @@ void hl_avx_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *reset_output_grad, int frame_size, - activation_mode_t active_gate) { + ActivationType active_gate) { #ifdef __AVX__ __m256 r_update_gate_value; __m256 r_update_gate_grad; @@ -364,9 +362,9 @@ void hl_avx_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value, template inline void backward_state_grad(OpStateGrad op_state_grad, - hl_gru_value value, hl_gru_grad grad, + GRUMetaValue value, GRUMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_node) { + ActivationType active_node) { for (int b = 0; b < batch_size; b++) { if (OpStateGrad::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) { hl_avx_gru_backward_state_grad( @@ -393,9 +391,9 @@ inline void backward_state_grad(OpStateGrad op_state_grad, template inline void backward_reset_grad(OpResetGrad op_reset_grad, - hl_gru_value value, hl_gru_grad grad, + GRUMetaValue value, GRUMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_gate) { + ActivationType active_gate) { for (int b = 0; b < batch_size; b++) { if (OpResetGrad::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) { hl_avx_gru_backward_reset_grad( diff --git a/paddle/operators/math/detail/gru_gpu_kernel.h b/paddle/operators/math/detail/gru_gpu_kernel.h index d2edcb7f25..1783d46096 100644 --- a/paddle/operators/math/detail/gru_gpu_kernel.h +++ b/paddle/operators/math/detail/gru_gpu_kernel.h @@ -19,8 +19,6 @@ limitations under the License. */ #include "paddle/platform/cuda_helper.h" #include "paddle/platform/device_context.h" -#include - namespace paddle { namespace operators { namespace math { @@ -35,7 +33,7 @@ __global__ void KeGruForwardResetOutput(OpResetOutput op_reset_output, T *gate_value, T *reset_output_value, T *prev_output_value, int frame_size, int batch_size, - activation_mode_t active_gate) { + ActivationType active_gate) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; @@ -74,7 +72,7 @@ __global__ void KeGruForwardFinalOutput(OpFinalOutput op_final_output, T *gate_value, T *prev_output_value, T *output_value, int frame_size, int batch_size, - activation_mode_t active_node) { + ActivationType active_node) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; int batch_idx = 0; @@ -111,7 +109,7 @@ __global__ void KeGruBackwardStateGrad(OpStateGrad op_state_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *output_grad, int frame_size, int batch_size, - activation_mode_t active_node) { + ActivationType active_node) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; int batch_idx = 0; @@ -159,7 +157,7 @@ __global__ void KeGruBackwardResetGrad(OpResetGrad op_reset_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *reset_output_grad, int frame_size, int batch_size, - activation_mode_t active_gate) { + ActivationType active_gate) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; int batch_idx = 0; diff --git a/paddle/operators/math/detail/gru_kernel.h b/paddle/operators/math/detail/gru_kernel.h index acd84be01d..4d8245cb5d 100644 --- a/paddle/operators/math/detail/gru_kernel.h +++ b/paddle/operators/math/detail/gru_kernel.h @@ -30,7 +30,7 @@ class gru_resetOutput { public: HOSTDEVICE void operator()(T &value_update_gate, T &value_reset_gate, T &prev_out, T &value_reset_output, - activation_mode_t act_gate) { + ActivationType act_gate) { value_update_gate = activation(value_update_gate, act_gate); value_reset_gate = activation(value_reset_gate, act_gate); value_reset_output = prev_out * value_reset_gate; @@ -43,7 +43,7 @@ class gru_resetOutput { HOSTDEVICE void operator()(__m256 &value_update_gate, __m256 &value_reset_gate, __m256 &prev_out, __m256 &value_reset_output, - activation_mode_t act_gate) { + ActivationType act_gate) { value_update_gate = activation(value_update_gate, act_gate); value_reset_gate = activation(value_reset_gate, act_gate); value_reset_output = _mm256_mul_ps(prev_out, value_reset_gate); @@ -57,7 +57,7 @@ class gru_finalOutput { public: HOSTDEVICE void operator()(T &value_update_gate, T &value_frame_state, T &prev_out, T &value_output, - activation_mode_t act_input) { + ActivationType act_input) { value_frame_state = activation(value_frame_state, act_input); value_output = prev_out - (value_update_gate * prev_out) + (value_update_gate * value_frame_state); @@ -69,8 +69,7 @@ class gru_finalOutput { static const bool avx = true; HOSTDEVICE void operator()(__m256 &value_update_gate, __m256 &value_frame_state, __m256 &prev_out, - __m256 &value_output, - activation_mode_t act_input) { + __m256 &value_output, ActivationType act_input) { value_frame_state = activation(value_frame_state, act_input); value_output = _mm256_add_ps( _mm256_sub_ps(prev_out, _mm256_mul_ps(value_update_gate, prev_out)), @@ -89,7 +88,7 @@ class gru_stateGrad { HOSTDEVICE void operator()(T &value_update_gate, T &grad_update_gate, T &value_frame_state, T &grad_frame_state, T &value_prev_out, T &grad_prev_out, - T &grad_output, activation_mode_t act_input) { + T &grad_output, ActivationType act_input) { grad_update_gate = (grad_output * value_frame_state); grad_update_gate -= (grad_output * value_prev_out); grad_prev_out -= (grad_output * value_update_gate); @@ -107,7 +106,7 @@ class gru_stateGrad { __m256 &value_frame_state, __m256 &grad_frame_state, __m256 &value_prev_out, __m256 &grad_prev_out, __m256 &grad_output, - activation_mode_t act_input) { + ActivationType act_input) { grad_update_gate = _mm256_mul_ps(grad_output, value_frame_state); grad_update_gate = _mm256_sub_ps( grad_update_gate, _mm256_mul_ps(grad_output, value_prev_out)); @@ -128,7 +127,7 @@ class gru_resetGrad { HOSTDEVICE void operator()(T &value_update_gate, T &grad_update_gate, T &value_reset_gate, T &grad_reset_gate, T &value_prev_out, T &grad_prev_out, - T &grad_reset_output, activation_mode_t act_gate) { + T &grad_reset_output, ActivationType act_gate) { grad_reset_gate = (grad_reset_output * value_prev_out); grad_prev_out += (grad_reset_output * value_reset_gate); grad_update_gate = @@ -144,7 +143,7 @@ class gru_resetGrad { __m256 &grad_update_gate, __m256 &value_reset_gate, __m256 &grad_reset_gate, __m256 &value_prev_out, __m256 &grad_prev_out, __m256 &grad_reset_output, - activation_mode_t act_gate) { + ActivationType act_gate) { grad_reset_gate = _mm256_mul_ps(grad_reset_output, value_prev_out); grad_prev_out = _mm256_add_ps( grad_prev_out, _mm256_mul_ps(grad_reset_output, value_reset_gate)); diff --git a/paddle/operators/math/detail/lstm_cpu_kernel.h b/paddle/operators/math/detail/lstm_cpu_kernel.h index a734ad31ee..42888fcdb0 100644 --- a/paddle/operators/math/detail/lstm_cpu_kernel.h +++ b/paddle/operators/math/detail/lstm_cpu_kernel.h @@ -26,10 +26,9 @@ namespace detail { template void naive_lstm_forward_one_sequence(Op op, LstmMetaValue value, - int frame_size, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + int frame_size, ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { T r_value_in; T r_value_ig; T r_value_fg; @@ -77,9 +76,9 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue value, template void naive_lstm_backward_one_sequence(Op op, LstmMetaValue value, LstmMetaGrad grad, int frame_size, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { T r_value_in; T r_value_ig; T r_value_fg; @@ -149,10 +148,9 @@ void naive_lstm_backward_one_sequence(Op op, LstmMetaValue value, template void avx_lstm_forward_one_sequence(Op op, LstmMetaValue value, - int frame_size, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + int frame_size, ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { #ifdef __AVX__ __m256 r_value_in; __m256 r_value_ig; @@ -204,9 +202,9 @@ void avx_lstm_forward_one_sequence(Op op, LstmMetaValue value, template void avx_lstm_backward_one_sequence(Op op, LstmMetaValue value, LstmMetaGrad grad, int frame_size, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { #ifdef __AVX__ __m256 r_value_in; __m256 r_value_ig; @@ -281,9 +279,8 @@ void avx_lstm_backward_one_sequence(Op op, LstmMetaValue value, template void cpu_lstm_forward(Op op, LstmMetaValue value, int frame_size, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + ActivationType active_node, ActivationType active_gate, + ActivationType active_state) { if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same::value)) { avx_lstm_forward_one_sequence(op, value, frame_size, active_node, active_gate, active_state); @@ -295,9 +292,9 @@ void cpu_lstm_forward(Op op, LstmMetaValue value, int frame_size, template void cpu_lstm_backward(Op op, LstmMetaValue value, LstmMetaGrad grad, - int frame_size, activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + int frame_size, ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same::value)) { avx_lstm_backward_one_sequence(op, value, grad, frame_size, active_node, active_gate, active_state); diff --git a/paddle/operators/math/detail/lstm_gpu_kernel.h b/paddle/operators/math/detail/lstm_gpu_kernel.h index 91bfedea53..e31e657e8b 100644 --- a/paddle/operators/math/detail/lstm_gpu_kernel.h +++ b/paddle/operators/math/detail/lstm_gpu_kernel.h @@ -31,9 +31,9 @@ namespace detail { */ template __global__ void KeLstmForward(Op op, LstmMetaValue value, int frame_size, - int batch_size, activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + int batch_size, ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; @@ -91,9 +91,9 @@ __global__ void KeLstmForward(Op op, LstmMetaValue value, int frame_size, template __global__ void KeLstmBackward(Op op, LstmMetaValue value, LstmMetaGrad grad, int frame_size, - int batch_size, activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + int batch_size, ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; @@ -185,9 +185,8 @@ __global__ void KeLstmBackward(Op op, LstmMetaValue value, template void gpu_lstm_forward(const platform::DeviceContext& context, Op op, LstmMetaValue value, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + ActivationType active_node, ActivationType active_gate, + ActivationType active_state) { dim3 threads; dim3 grid; if (batch_size == 1) { @@ -220,9 +219,8 @@ template void gpu_lstm_backward(const platform::DeviceContext& context, Op op, LstmMetaValue value, LstmMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + ActivationType active_node, ActivationType active_gate, + ActivationType active_state) { dim3 threads; dim3 grid; if (batch_size == 1) { diff --git a/paddle/operators/math/detail/lstm_kernel.h b/paddle/operators/math/detail/lstm_kernel.h index 78f9a249a3..fed8f9c4ca 100644 --- a/paddle/operators/math/detail/lstm_kernel.h +++ b/paddle/operators/math/detail/lstm_kernel.h @@ -30,9 +30,9 @@ class lstm { HOSTDEVICE void operator()(T &value_in, T &value_ig, T &value_fg, T &value_og, T &prev_state, T &state, T &state_atv, T &output, T &checkI, T &checkF, T &checkO, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { value_in = activation(value_in, active_node); value_ig = activation(value_ig + prev_state * checkI, active_gate); value_fg = activation(value_fg + prev_state * checkF, active_gate); @@ -53,9 +53,9 @@ class lstm { __m256 &prev_state, __m256 &state, __m256 &state_atv, __m256 &output, __m256 &checkI, __m256 &checkF, __m256 &checkO, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { value_in = activation(value_in, active_node); value_ig = activation(_mm256_add_ps(value_ig, _mm256_mul_ps(prev_state, checkI)), @@ -87,9 +87,9 @@ class lstm { T &state_grad, T &state_atv, T &output_grad, T &checkI, T &checkF, T &checkO, T &checkIGrad, T &checkFGrad, T &checkOGrad, - activation_mode_t active_node, - activation_mode_t active_gate, - activation_mode_t active_state) { + ActivationType active_node, + ActivationType active_gate, + ActivationType active_state) { grad_og = activation(output_grad * state_atv, value_og, active_gate); state_grad += activation(output_grad * value_og, state_atv, active_state) + grad_og * checkO; @@ -114,8 +114,8 @@ class lstm { __m256 &prev_state, __m256 &prev_state_grad, __m256 &state, __m256 &state_grad, __m256 &state_atv, __m256 &output_grad, __m256 &checkI, __m256 &checkF, __m256 &checkO, __m256 &checkIGrad, - __m256 &checkFGrad, __m256 &checkOGrad, activation_mode_t active_node, - activation_mode_t active_gate, activation_mode_t active_state) { + __m256 &checkFGrad, __m256 &checkOGrad, ActivationType active_node, + ActivationType active_gate, ActivationType active_state) { grad_og = activation(_mm256_mul_ps(output_grad, state_atv), value_og, active_gate); state_grad = _mm256_add_ps(activation(_mm256_mul_ps(output_grad, value_og), diff --git a/paddle/operators/math/detection_util.h b/paddle/operators/math/detection_util.h new file mode 100644 index 0000000000..e3a3ef2bad --- /dev/null +++ b/paddle/operators/math/detection_util.h @@ -0,0 +1,300 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#pragma once +#include +#include "paddle/framework/selected_rows.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { +namespace math { +template +struct BBox { + BBox(T x_min, T y_min, T x_max, T y_max) + : x_min(x_min), + y_min(y_min), + x_max(x_max), + y_max(y_max), + is_difficult(false) {} + + BBox() {} + + T get_width() const { return x_max - x_min; } + + T get_height() const { return y_max - y_min; } + + T get_center_x() const { return (x_min + x_max) / 2; } + + T get_center_y() const { return (y_min + y_max) / 2; } + + T get_area() const { return get_width() * get_height(); } + + // coordinate of bounding box + T x_min; + T y_min; + T x_max; + T y_max; + // whether difficult object (e.g. object with heavy occlusion is difficult) + bool is_difficult; +}; +// KNCHW ==> NHWC +// template +template +void GetBBoxFromPriorData(const T* prior_data, const size_t num_bboxes, + std::vector>& bbox_vec); +template +void GetBBoxVarFromPriorData(const T* prior_data, const size_t num, + std::vector>& var_vec); +template +BBox DecodeBBoxWithVar(BBox& prior_bbox, + const std::vector& prior_bbox_var, + const std::vector& loc_pred_data); +template +bool SortScorePairDescend(const std::pair& pair1, + const std::pair& pair2); +template +bool SortScorePairDescend(const std::pair>& pair1, + const std::pair>& pair2); +template +T jaccard_overlap(const BBox& bbox1, const BBox& bbox2); + +template +void ApplyNmsFast(const std::vector>& bboxes, const T* conf_score_data, + size_t class_idx, size_t top_k, T conf_threshold, + T nms_threshold, size_t num_priors, size_t num_classes, + std::vector* indices); +template +int GetDetectionIndices( + const T* conf_data, const size_t num_priors, const size_t num_classes, + const size_t background_label_id, const size_t batch_size, + const T conf_threshold, const size_t nms_top_k, const T nms_threshold, + const size_t top_k, + const std::vector>>& all_decoded_bboxes, + std::vector>>* all_detection_indices); +template +BBox ClipBBox(const BBox& bbox); +template +void GetDetectionOutput( + const T* conf_data, const size_t num_kept, const size_t num_priors, + const size_t num_classes, const size_t batch_size, + const std::vector>>& all_indices, + const std::vector>>& all_decoded_bboxes, T* out_data); +template +void GetBBoxFromPriorData(const T* prior_data, const size_t num_bboxes, + std::vector>& bbox_vec) { + size_t out_offset = bbox_vec.size(); + bbox_vec.resize(bbox_vec.size() + num_bboxes); + for (size_t i = 0; i < num_bboxes; ++i) { + BBox bbox; + bbox.x_min = *(prior_data + i * 8); + bbox.y_min = *(prior_data + i * 8 + 1); + bbox.x_max = *(prior_data + i * 8 + 2); + bbox.y_max = *(prior_data + i * 8 + 3); + bbox_vec[out_offset + i] = bbox; + } +} +template +void GetBBoxVarFromPriorData(const T* prior_data, const size_t num, + std::vector>& var_vec) { + size_t out_offset = var_vec.size(); + var_vec.resize(var_vec.size() + num); + for (size_t i = 0; i < num; ++i) { + std::vector var; + var.push_back(*(prior_data + i * 8 + 4)); + var.push_back(*(prior_data + i * 8 + 5)); + var.push_back(*(prior_data + i * 8 + 6)); + var.push_back(*(prior_data + i * 8 + 7)); + var_vec[out_offset + i] = var; + } +} +template +BBox DecodeBBoxWithVar(BBox& prior_bbox, + const std::vector& prior_bbox_var, + const std::vector& loc_pred_data) { + T prior_bbox_width = prior_bbox.get_width(); + T prior_bbox_height = prior_bbox.get_height(); + T prior_bbox_center_x = prior_bbox.get_center_x(); + T prior_bbox_center_y = prior_bbox.get_center_y(); + + T decoded_bbox_center_x = + prior_bbox_var[0] * loc_pred_data[0] * prior_bbox_width + + prior_bbox_center_x; + T decoded_bbox_center_y = + prior_bbox_var[1] * loc_pred_data[1] * prior_bbox_height + + prior_bbox_center_y; + T decoded_bbox_width = + std::exp(prior_bbox_var[2] * loc_pred_data[2]) * prior_bbox_width; + T decoded_bbox_height = + std::exp(prior_bbox_var[3] * loc_pred_data[3]) * prior_bbox_height; + + BBox decoded_bbox; + decoded_bbox.x_min = decoded_bbox_center_x - decoded_bbox_width / 2; + decoded_bbox.y_min = decoded_bbox_center_y - decoded_bbox_height / 2; + decoded_bbox.x_max = decoded_bbox_center_x + decoded_bbox_width / 2; + decoded_bbox.y_max = decoded_bbox_center_y + decoded_bbox_height / 2; + + return decoded_bbox; +} +template +bool SortScorePairDescend(const std::pair& pair1, + const std::pair& pair2) { + return pair1.first > pair2.first; +} +template +T jaccard_overlap(const BBox& bbox1, const BBox& bbox2) { + if (bbox2.x_min > bbox1.x_max || bbox2.x_max < bbox1.x_min || + bbox2.y_min > bbox1.y_max || bbox2.y_max < bbox1.y_min) { + return 0.0; + } else { + T inter_x_min = std::max(bbox1.x_min, bbox2.x_min); + T inter_y_min = std::max(bbox1.y_min, bbox2.y_min); + T interX_max = std::min(bbox1.x_max, bbox2.x_max); + T interY_max = std::min(bbox1.y_max, bbox2.y_max); + + T inter_width = interX_max - inter_x_min; + T inter_height = interY_max - inter_y_min; + T inter_area = inter_width * inter_height; + + T bbox_area1 = bbox1.get_area(); + T bbox_area2 = bbox2.get_area(); + + return inter_area / (bbox_area1 + bbox_area2 - inter_area); + } +} + +template +void ApplyNmsFast(const std::vector>& bboxes, const T* conf_score_data, + size_t class_idx, size_t top_k, T conf_threshold, + T nms_threshold, size_t num_priors, size_t num_classes, + std::vector* indices) { + std::vector> scores; + for (size_t i = 0; i < num_priors; ++i) { + size_t conf_offset = i * num_classes + class_idx; + if (conf_score_data[conf_offset] > conf_threshold) + scores.push_back(std::make_pair(conf_score_data[conf_offset], i)); + } + std::stable_sort(scores.begin(), scores.end(), + SortScorePairDescend); + if (top_k > 0 && top_k < scores.size()) scores.resize(top_k); + while (scores.size() > 0) { + const size_t idx = scores.front().second; + bool keep = true; + for (size_t i = 0; i < indices->size(); ++i) { + if (keep) { + const size_t saved_idx = (*indices)[i]; + T overlap = jaccard_overlap(bboxes[idx], bboxes[saved_idx]); + keep = overlap <= nms_threshold; + } else { + break; + } + } + if (keep) indices->push_back(idx); + scores.erase(scores.begin()); + } +} +template +int GetDetectionIndices( + const T* conf_data, const size_t num_priors, const size_t num_classes, + const size_t background_label_id, const size_t batch_size, + const T conf_threshold, const size_t nms_top_k, const T nms_threshold, + const size_t top_k, + const std::vector>>& all_decoded_bboxes, + std::vector>>* all_detection_indices) { + int total_keep_num = 0; + for (size_t n = 0; n < batch_size; ++n) { + const std::vector>& decoded_bboxes = all_decoded_bboxes[n]; + size_t num_detected = 0; + std::map> indices; + size_t conf_offset = n * num_priors * num_classes; + for (size_t c = 0; c < num_classes; ++c) { + if (c == background_label_id) continue; + ApplyNmsFast(decoded_bboxes, conf_data + conf_offset, c, nms_top_k, + conf_threshold, nms_threshold, num_priors, num_classes, + &(indices[c])); + num_detected += indices[c].size(); + } + if (top_k > 0 && num_detected > top_k) { + // std::vector> score_index_pairs; + std::vector>> score_index_pairs; + for (size_t c = 0; c < num_classes; ++c) { + const std::vector& label_indices = indices[c]; + for (size_t i = 0; i < label_indices.size(); ++i) { + size_t idx = label_indices[i]; + score_index_pairs.push_back( + std::make_pair((conf_data + conf_offset)[idx * num_classes + c], + std::make_pair(c, idx))); + } + } + std::sort(score_index_pairs.begin(), score_index_pairs.end(), + SortScorePairDescend>); + score_index_pairs.resize(top_k); + std::map> new_indices; + for (size_t i = 0; i < score_index_pairs.size(); ++i) { + size_t label = score_index_pairs[i].second.first; + size_t idx = score_index_pairs[i].second.second; + new_indices[label].push_back(idx); + } + all_detection_indices->push_back(new_indices); + total_keep_num += top_k; + } else { + all_detection_indices->push_back(indices); + total_keep_num += num_detected; + } + } + return total_keep_num; +} +template +BBox ClipBBox(const BBox& bbox) { + T one = static_cast(1.0); + T zero = static_cast(0.0); + BBox clipped_bbox; + clipped_bbox.x_min = std::max(std::min(bbox.x_min, one), zero); + clipped_bbox.y_min = std::max(std::min(bbox.y_min, one), zero); + clipped_bbox.x_max = std::max(std::min(bbox.x_max, one), zero); + clipped_bbox.y_max = std::max(std::min(bbox.y_max, one), zero); + return clipped_bbox; +} +template +void GetDetectionOutput( + const T* conf_data, const size_t num_kept, const size_t num_priors, + const size_t num_classes, const size_t batch_size, + const std::vector>>& all_indices, + const std::vector>>& all_decoded_bboxes, T* out_data) { + size_t count = 0; + for (size_t n = 0; n < batch_size; ++n) { + for (std::map>::const_iterator it = + all_indices[n].begin(); + it != all_indices[n].end(); ++it) { + size_t label = it->first; + const std::vector& indices = it->second; + const std::vector>& decoded_bboxes = all_decoded_bboxes[n]; + for (size_t i = 0; i < indices.size(); ++i) { + size_t idx = indices[i]; + size_t conf_offset = n * num_priors * num_classes + idx * num_classes; + out_data[count * 7] = n; + out_data[count * 7 + 1] = label; + out_data[count * 7 + 2] = (conf_data + conf_offset)[label]; + BBox clipped_bbox = ClipBBox(decoded_bboxes[idx]); + out_data[count * 7 + 3] = clipped_bbox.x_min; + out_data[count * 7 + 4] = clipped_bbox.y_min; + out_data[count * 7 + 5] = clipped_bbox.x_max; + out_data[count * 7 + 6] = clipped_bbox.y_max; + ++count; + } + } + } +} +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/gru_compute.cc b/paddle/operators/math/gru_compute.cc index ae4e47b014..101ab85962 100644 --- a/paddle/operators/math/gru_compute.cc +++ b/paddle/operators/math/gru_compute.cc @@ -19,14 +19,14 @@ namespace operators { namespace math { template -struct GRUUnitFunctor { - static void compute(const platform::DeviceContext &context, - hl_gru_value value, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate) { +struct GRUUnitFunctor { + static void compute(const platform::CPUDeviceContext &context, + GRUMetaValue value, int frame_size, int batch_size, + const detail::ActivationType active_node, + const detail::ActivationType active_gate) { #ifndef __NVCC__ if (value.prev_out_value) { - math::gemm( + math::gemm( context, false, false, batch_size, frame_size * 2, frame_size, 1, value.prev_out_value, frame_size, value.gate_weight, frame_size * 2, 1, value.gate_value, frame_size * 3); @@ -36,7 +36,7 @@ struct GRUUnitFunctor { frame_size, batch_size, active_gate); if (value.prev_out_value) { - math::gemm( + math::gemm( context, false, false, batch_size, frame_size, frame_size, 1, value.reset_output_value, frame_size, value.state_weight, frame_size, 1, value.gate_value + frame_size * 2, frame_size * 3); @@ -49,24 +49,24 @@ struct GRUUnitFunctor { }; template -struct GRUUnitGradFunctor { - static void compute(const platform::DeviceContext &context, - hl_gru_value value, hl_gru_grad grad, +struct GRUUnitGradFunctor { + static void compute(const platform::CPUDeviceContext &context, + GRUMetaValue value, GRUMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate) { + const detail::ActivationType active_node, + const detail::ActivationType active_gate) { #ifndef __NVCC__ detail::backward_state_grad(detail::backward::gru_stateGrad(), value, grad, frame_size, batch_size, active_node); if (value.prev_out_value && grad.prev_out_grad) { - math::gemm( + math::gemm( context, false, true, batch_size, frame_size, frame_size, 1, grad.gate_grad + frame_size * 2, frame_size * 3, value.state_weight, frame_size, 0, grad.reset_output_grad, frame_size); if (grad.state_weight_grad) { - math::gemm( + math::gemm( context, true, false, frame_size, frame_size, batch_size, 1, value.reset_output_value, frame_size, grad.gate_grad + frame_size * 2, frame_size * 3, 1, @@ -78,13 +78,13 @@ struct GRUUnitGradFunctor { grad, frame_size, batch_size, active_gate); if (grad.prev_out_grad && value.prev_out_value) { - math::gemm( + math::gemm( context, false, true, batch_size, frame_size, frame_size * 2, 1, grad.gate_grad, frame_size * 3, value.gate_weight, frame_size * 2, 1, grad.prev_out_grad, frame_size); if (grad.gate_weight_grad) { - math::gemm( + math::gemm( context, true, false, frame_size, frame_size * 2, batch_size, 1, value.prev_out_value, frame_size, grad.gate_grad, frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2); @@ -94,10 +94,10 @@ struct GRUUnitGradFunctor { } }; -template struct GRUUnitFunctor; -template struct GRUUnitFunctor; -template struct GRUUnitGradFunctor; -template struct GRUUnitGradFunctor; +template struct GRUUnitFunctor; +template struct GRUUnitFunctor; +template struct GRUUnitGradFunctor; +template struct GRUUnitGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/gru_compute.cu b/paddle/operators/math/gru_compute.cu index 0252bdbdb6..d5a0e630ea 100644 --- a/paddle/operators/math/gru_compute.cu +++ b/paddle/operators/math/gru_compute.cu @@ -19,13 +19,12 @@ namespace operators { namespace math { template -struct GRUUnitFunctor { - static void compute(const platform::DeviceContext &context, - hl_gru_value value, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate) { - auto stream = - reinterpret_cast(context).stream(); +struct GRUUnitFunctor { + static void compute(const platform::CUDADeviceContext &context, + GRUMetaValue value, int frame_size, int batch_size, + const detail::ActivationType active_node, + const detail::ActivationType active_gate) { + auto stream = context.stream(); dim3 threads; dim3 grid; if (batch_size == 1) { @@ -39,7 +38,7 @@ struct GRUUnitFunctor { } if (value.prev_out_value) { - math::gemm( + math::gemm( context, false, false, batch_size, frame_size * 2, frame_size, 1, value.prev_out_value, frame_size, value.gate_weight, frame_size * 2, 1, value.gate_value, frame_size * 3); @@ -62,7 +61,7 @@ struct GRUUnitFunctor { } if (value.prev_out_value) { - math::gemm( + math::gemm( context, false, false, batch_size, frame_size, frame_size, 1, value.reset_output_value, frame_size, value.state_weight, frame_size, 1, value.gate_value + frame_size * 2, frame_size * 3); @@ -87,14 +86,13 @@ struct GRUUnitFunctor { }; template -struct GRUUnitGradFunctor { - static void compute(const platform::DeviceContext &context, - hl_gru_value value, hl_gru_grad grad, +struct GRUUnitGradFunctor { + static void compute(const platform::CUDADeviceContext &context, + GRUMetaValue value, GRUMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate) { - auto stream = - reinterpret_cast(context).stream(); + const detail::ActivationType active_node, + const detail::ActivationType active_gate) { + auto stream = context.stream(); dim3 threads; dim3 grid; if (batch_size == 1) { @@ -124,13 +122,13 @@ struct GRUUnitGradFunctor { } if (value.prev_out_value && grad.prev_out_grad) { - math::gemm( + math::gemm( context, false, true, batch_size, frame_size, frame_size, 1, grad.gate_grad + frame_size * 2, frame_size * 3, value.state_weight, frame_size, 0, grad.reset_output_grad, frame_size); if (grad.state_weight_grad) { - math::gemm( + math::gemm( context, true, false, frame_size, frame_size, batch_size, 1, value.reset_output_value, frame_size, grad.gate_grad + frame_size * 2, frame_size * 3, 1, @@ -155,13 +153,13 @@ struct GRUUnitGradFunctor { } if (grad.prev_out_grad && value.prev_out_value) { - math::gemm( + math::gemm( context, false, true, batch_size, frame_size, frame_size * 2, 1, grad.gate_grad, frame_size * 3, value.gate_weight, frame_size * 2, 1, grad.prev_out_grad, frame_size); if (grad.gate_weight_grad) { - math::gemm( + math::gemm( context, true, false, frame_size, frame_size * 2, batch_size, 1, value.prev_out_value, frame_size, grad.gate_grad, frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2); @@ -170,10 +168,10 @@ struct GRUUnitGradFunctor { } }; -template struct GRUUnitFunctor; -template struct GRUUnitFunctor; -template struct GRUUnitGradFunctor; -template struct GRUUnitGradFunctor; +template struct GRUUnitFunctor; +template struct GRUUnitFunctor; +template struct GRUUnitGradFunctor; +template struct GRUUnitGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/gru_compute.h b/paddle/operators/math/gru_compute.h index 58ea59f68e..bf69147b50 100644 --- a/paddle/operators/math/gru_compute.h +++ b/paddle/operators/math/gru_compute.h @@ -11,7 +11,7 @@ limitations under the License. */ #pragma once -#include "paddle/operators/math/lstm_compute.h" +#include "paddle/operators/math/detail/activation_functions.h" #include "paddle/platform/device_context.h" #include "paddle/platform/enforce.h" @@ -19,9 +19,8 @@ namespace paddle { namespace operators { namespace math { -// TODO(guosheng): refine code style in gru_compute template -struct hl_gru_value { +struct GRUMetaValue { T *gate_weight; T *state_weight; T *gate_value; @@ -31,7 +30,7 @@ struct hl_gru_value { }; template -struct hl_gru_grad { +struct GRUMetaGrad { T *gate_weight_grad; T *state_weight_grad; T *gate_grad; @@ -40,21 +39,20 @@ struct hl_gru_grad { T *prev_out_grad; }; -template +template struct GRUUnitFunctor { - static void compute(const platform::DeviceContext &context, - hl_gru_value value, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate); + static void compute(const DeviceContext &context, GRUMetaValue value, + int frame_size, int batch_size, + const detail::ActivationType active_node, + const detail::ActivationType active_gate); }; -template +template struct GRUUnitGradFunctor { - static void compute(const platform::DeviceContext &context, - hl_gru_value value, hl_gru_grad grad, - int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate); + static void compute(const DeviceContext &context, GRUMetaValue value, + GRUMetaGrad grad, int frame_size, int batch_size, + const detail::ActivationType active_node, + const detail::ActivationType active_gate); }; } // namespace math diff --git a/paddle/operators/math/im2col.cc b/paddle/operators/math/im2col.cc index c10c44c520..c2633b2e16 100644 --- a/paddle/operators/math/im2col.cc +++ b/paddle/operators/math/im2col.cc @@ -25,9 +25,9 @@ namespace math { */ template class Im2ColFunctor { + platform::CPUDeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col) { @@ -61,14 +61,13 @@ class Im2ColFunctor(); T* col_data = col->data(); - for (int c = 0; c < channels_col; ++c) { int w_offset = c % filter_width; int h_offset = (c / filter_width) % filter_height; - int c_im = c / filter_width / filter_height; + int c_im = c / (filter_width * filter_height); for (int h = 0; h < col_height; ++h) { + int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0]; for (int w = 0; w < col_width; ++w) { - int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0]; int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1]; int col_idx = (c * col_height + h) * col_width + w; int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx; @@ -90,9 +89,9 @@ class Im2ColFunctor class Col2ImFunctor { + platform::CPUDeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, @@ -130,16 +129,14 @@ class Col2ImFunctor= 0 && (im_row_idx) < im_height && (im_col_idx) >= 0 && (im_col_idx) < im_width) { - im_row_idx += c_im * im_height; - im_data[im_row_idx * im_width + im_col_idx] += + im_data[(im_row_idx + c_im * im_height) * im_width + im_col_idx] += col_data[(c * col_height + h) * col_width + w]; } } @@ -149,13 +146,13 @@ class Col2ImFunctor; + platform::CPUDeviceContext, float>; template class Im2ColFunctor; + platform::CPUDeviceContext, double>; template class Col2ImFunctor; + platform::CPUDeviceContext, float>; template class Col2ImFunctor; + platform::CPUDeviceContext, double>; /* * im = [input_channels, input_height, input_width] @@ -164,9 +161,9 @@ template class Col2ImFunctor class Im2ColFunctor { + platform::CPUDeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col) { @@ -199,12 +196,13 @@ class Im2ColFunctor class Col2ImFunctor { + platform::CPUDeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, @@ -271,12 +269,13 @@ class Col2ImFunctor= 0 && im_row_offset < im_height && im_col_offset >= 0 && im_col_offset < im_width) { int im_offset = @@ -300,13 +300,13 @@ class Col2ImFunctor; + platform::CPUDeviceContext, float>; template class Im2ColFunctor; + platform::CPUDeviceContext, double>; template class Col2ImFunctor; + platform::CPUDeviceContext, float>; template class Col2ImFunctor; + platform::CPUDeviceContext, double>; } // namespace math } // namespace operators diff --git a/paddle/operators/math/im2col.cu b/paddle/operators/math/im2col.cu index bf78942439..a88e837b03 100644 --- a/paddle/operators/math/im2col.cu +++ b/paddle/operators/math/im2col.cu @@ -58,9 +58,9 @@ __global__ void im2col(const T* data_im, int num_outs, int im_height, */ template class Im2ColFunctor { + platform::CUDADeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col) { @@ -96,9 +96,7 @@ class Im2ColFunctor<<(context) - .stream()>>>( + im2col<<>>( im.data(), num_outputs, im_height, im_width, dilation[0], dilation[1], filter_height, filter_width, stride[0], stride[1], padding[0], padding[1], col_height, col_width, col->data()); @@ -160,9 +158,9 @@ __global__ void col2im(int n, const T* data_col, int im_height, int im_width, */ template class Col2ImFunctor { + platform::CUDADeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, @@ -203,9 +201,7 @@ class Col2ImFunctor<<(context) - .stream()>>>( + col2im<<>>( num_kernels, col.data(), im_height, im_width, dilation[0], dilation[1], filter_height, filter_width, stride[0], stride[1], padding[0], padding[2], col_height, col_width, im->data()); @@ -213,13 +209,13 @@ class Col2ImFunctor; + platform::CUDADeviceContext, float>; template class Im2ColFunctor; + platform::CUDADeviceContext, double>; template class Col2ImFunctor; + platform::CUDADeviceContext, float>; template class Col2ImFunctor; + platform::CUDADeviceContext, double>; template __global__ void im2colOCF(const T* im_data, int im_channels, int im_height, @@ -260,9 +256,9 @@ __global__ void im2colOCF(const T* im_data, int im_channels, int im_height, */ template class Im2ColFunctor { + platform::CUDADeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col) { @@ -310,9 +306,7 @@ class Im2ColFunctor<<(context) - .stream()>>>( + im2colOCF<<>>( im.data(), im_channels, im_height, im_width, filter_height, filter_width, stride[0], stride[1], padding[0], padding[1], col_height, col_width, col->data()); @@ -358,9 +352,9 @@ __global__ void col2imOCF(const T* col_data, int im_channels, int im_height, */ template class Col2ImFunctor { + platform::CUDADeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, @@ -409,9 +403,7 @@ class Col2ImFunctor<<(context) - .stream()>>>( + col2imOCF<<>>( col.data(), im_channels, im_height, im_width, filter_height, filter_width, stride[0], stride[1], padding[0], padding[1], col_height, col_width, im->data()); @@ -419,13 +411,13 @@ class Col2ImFunctor; + platform::CUDADeviceContext, float>; template class Im2ColFunctor; + platform::CUDADeviceContext, double>; template class Col2ImFunctor; + platform::CUDADeviceContext, float>; template class Col2ImFunctor; + platform::CUDADeviceContext, double>; } // namespace math } // namespace operators diff --git a/paddle/operators/math/im2col.h b/paddle/operators/math/im2col.h index 24fd9a06e9..38f2c9fe0a 100644 --- a/paddle/operators/math/im2col.h +++ b/paddle/operators/math/im2col.h @@ -79,20 +79,19 @@ enum class ColFormat { kCFO = 0, kOCF = 1 }; * \note The caller needs to ensure that imShape.inputChannels is equal to * colShape.inputChannels. */ -template +template class Im2ColFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& im, const std::vector& dilation, + void operator()(const DeviceContext& context, const framework::Tensor& im, + const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col); }; -template +template class Col2ImFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& col, + void operator()(const DeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* im); diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index ae197a97ed..1ba24325ff 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -14,9 +14,8 @@ limitations under the License. */ #include "paddle/operators/math/im2col.h" #include -#include -template +template void testIm2col() { paddle::framework::Tensor input_tmp; paddle::framework::Tensor input; @@ -59,22 +58,11 @@ void testIm2col() { memcpy(input_ptr, arr, 6 * sizeof(float)); auto* place = new Place(); - paddle::platform::DeviceContext* context; - if (paddle::platform::is_cpu_place(*place)) { - context = - new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace()); - } else { -#ifdef PADDLE_WITH_CUDA - context = - new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); -#else - PADDLE_THROW("no GPU support"); -#endif // PADDLE_WITH_CUDA - } + DeviceContext* context = new DeviceContext(*place); if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } output_cfo.mutable_data( {1, filter_size, filter_size, output_height, output_width}, *place); @@ -83,10 +71,10 @@ void testIm2col() { // Im2Col paddle::operators::math::Im2ColFunctor< - paddle::operators::math::ColFormat::kCFO, Place, float> + paddle::operators::math::ColFormat::kCFO, DeviceContext, float> im2col; paddle::operators::math::Im2ColFunctor< - paddle::operators::math::ColFormat::kOCF, Place, float> + paddle::operators::math::ColFormat::kOCF, DeviceContext, float> im2col_ocf; im2col(*context, input, dilation, stride, padding, &output_cfo); @@ -99,7 +87,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output_cfo.data(); } else { - CopyFrom(output_cfo, paddle::platform::CPUPlace(), *context, &output_tmp); + Copy(output_cfo, paddle::platform::CPUPlace(), *context, &output_tmp); out_cfo_ptr = output_tmp.data(); } for (int i = 0; i < 6; ++i) { @@ -110,19 +98,20 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { out_ocf_ptr = output_ocf.data(); } else { - CopyFrom(output_ocf, paddle::platform::CPUPlace(), *context, &output_tmp); + Copy(output_ocf, paddle::platform::CPUPlace(), *context, &output_tmp); out_ocf_ptr = output_tmp.data(); } + for (int i = 0; i < 6; ++i) { EXPECT_EQ(out_ocf_ptr[i], out_ocf_data[i]); } // Col2Im: kCFO paddle::operators::math::Col2ImFunctor< - paddle::operators::math::ColFormat::kCFO, Place, float> + paddle::operators::math::ColFormat::kCFO, DeviceContext, float> col2im; paddle::operators::math::Col2ImFunctor< - paddle::operators::math::ColFormat::kOCF, Place, float> + paddle::operators::math::ColFormat::kOCF, DeviceContext, float> col2im_ocf; float col2im_data[] = {0, 2, 2, 3, 8, 5}; @@ -130,7 +119,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } col2im(*context, output_cfo, dilation, stride, padding, &input); @@ -139,7 +128,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { - CopyFrom(input, paddle::platform::CPUPlace(), *context, &input_tmp); + Copy(input, paddle::platform::CPUPlace(), *context, &input_tmp); in_ptr = input_tmp.data(); } for (int i = 0; i < 6; ++i) { @@ -151,7 +140,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } col2im_ocf(*context, output_ocf, dilation, stride, padding, &input); @@ -159,17 +148,21 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { - CopyFrom(input, paddle::platform::CPUPlace(), *context, &input_tmp); + Copy(input, paddle::platform::CPUPlace(), *context, &input_tmp); in_ptr = input_tmp.data(); } for (int i = 0; i < 6; ++i) { EXPECT_EQ(in_ptr[i], col2im_data[i]); } + + delete place; + delete context; } TEST(math, im2col) { - testIm2col(); + testIm2col(); #ifdef PADDLE_WITH_CUDA - testIm2col(); + testIm2col(); #endif } diff --git a/paddle/operators/math/lstm_compute.cc b/paddle/operators/math/lstm_compute.cc index ad3a59bcdb..d453102ece 100644 --- a/paddle/operators/math/lstm_compute.cc +++ b/paddle/operators/math/lstm_compute.cc @@ -21,15 +21,15 @@ namespace operators { namespace math { template -struct LstmUnitFunctor { - static void compute(const platform::DeviceContext& context, +struct LstmUnitFunctor { + static void compute(const platform::CPUDeviceContext& context, LstmMetaValue value, int frame_size, int batch_size, - const std::string& gate_act, const std::string& cell_act, - const std::string& cand_act) { + const detail::ActivationType& gate_act, + const detail::ActivationType& cell_act, + const detail::ActivationType& cand_act) { for (int b = 0; b < batch_size; b++) { detail::cpu_lstm_forward(detail::forward::lstm(), value, frame_size, - ActiveType(cand_act), ActiveType(gate_act), - ActiveType(cell_act)); + cand_act, gate_act, cell_act); value.gate_value += frame_size * 4; value.state_value += frame_size; value.state_active_value += frame_size; @@ -42,16 +42,16 @@ struct LstmUnitFunctor { }; template -struct LstmUnitGradFunctor { - static void compute(const platform::DeviceContext& context, +struct LstmUnitGradFunctor { + static void compute(const platform::CPUDeviceContext& context, LstmMetaValue value, LstmMetaGrad grad, int frame_size, int batch_size, - const std::string& gate_act, const std::string& cell_act, - const std::string& cand_act) { + const detail::ActivationType& gate_act, + const detail::ActivationType& cell_act, + const detail::ActivationType& cand_act) { for (int b = 0; b < batch_size; b++) { detail::cpu_lstm_backward(detail::backward::lstm(), value, grad, - frame_size, ActiveType(cand_act), - ActiveType(gate_act), ActiveType(cell_act)); + frame_size, cand_act, gate_act, cell_act); value.gate_value += frame_size * 4; value.state_value += frame_size; @@ -72,10 +72,10 @@ struct LstmUnitGradFunctor { } }; -template class LstmUnitFunctor; -template class LstmUnitFunctor; -template class LstmUnitGradFunctor; -template class LstmUnitGradFunctor; +template class LstmUnitFunctor; +template class LstmUnitFunctor; +template class LstmUnitGradFunctor; +template class LstmUnitGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/lstm_compute.cu b/paddle/operators/math/lstm_compute.cu index b2122f2a5c..82065d699f 100644 --- a/paddle/operators/math/lstm_compute.cu +++ b/paddle/operators/math/lstm_compute.cu @@ -21,34 +21,36 @@ namespace operators { namespace math { template -struct LstmUnitFunctor { - static void compute(const platform::DeviceContext& context, +struct LstmUnitFunctor { + static void compute(const platform::CUDADeviceContext& context, LstmMetaValue value, int frame_size, int batch_size, - const std::string& gate_act, const std::string& cell_act, - const std::string& cand_act) { + const detail::ActivationType& gate_act, + const detail::ActivationType& cell_act, + const detail::ActivationType& cand_act) { detail::gpu_lstm_forward(context, detail::forward::lstm(), value, - frame_size, batch_size, ActiveType(cand_act), - ActiveType(gate_act), ActiveType(cell_act)); + frame_size, batch_size, cand_act, gate_act, + cell_act); } }; template -struct LstmUnitGradFunctor { - static void compute(const platform::DeviceContext& context, +struct LstmUnitGradFunctor { + static void compute(const platform::CUDADeviceContext& context, LstmMetaValue value, LstmMetaGrad grad, int frame_size, int batch_size, - const std::string& gate_act, const std::string& cell_act, - const std::string& cand_act) { + const detail::ActivationType& gate_act, + const detail::ActivationType& cell_act, + const detail::ActivationType& cand_act) { detail::gpu_lstm_backward(context, detail::backward::lstm(), value, grad, - frame_size, batch_size, ActiveType(cand_act), - ActiveType(gate_act), ActiveType(cell_act)); + frame_size, batch_size, cand_act, gate_act, + cell_act); } }; -template class LstmUnitFunctor; -template class LstmUnitFunctor; -template class LstmUnitGradFunctor; -template class LstmUnitGradFunctor; +template class LstmUnitFunctor; +template class LstmUnitFunctor; +template class LstmUnitGradFunctor; +template class LstmUnitGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/lstm_compute.h b/paddle/operators/math/lstm_compute.h index 9652399d4c..e1ad6b64d2 100644 --- a/paddle/operators/math/lstm_compute.h +++ b/paddle/operators/math/lstm_compute.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once +#include "paddle/operators/math/detail/activation_functions.h" #include "paddle/platform/device_context.h" #include "paddle/platform/enforce.h" @@ -21,14 +22,6 @@ namespace paddle { namespace operators { namespace math { -typedef enum { - HL_ACTIVATION_SIGMOID = 0, - HL_ACTIVATION_RELU = 1, - HL_ACTIVATION_TANH = 2, - HL_ACTIVATION_LINEAR = 3, - HL_ACTIVATION_END -} activation_mode_t; - template struct LstmMetaValue { T *gate_value; @@ -53,37 +46,24 @@ struct LstmMetaGrad { T *check_og_grad; }; -inline activation_mode_t ActiveType(const std::string &type) { - if (type == "sigmoid") { - return HL_ACTIVATION_SIGMOID; - } else if (type == "relu") { - return HL_ACTIVATION_RELU; - } else if (type == "tanh") { - return HL_ACTIVATION_TANH; - } else if (type == "linear" || type == "identity" || type == "") { - return HL_ACTIVATION_LINEAR; - } else { - PADDLE_THROW("Do not support activation type."); - } -} - -template +template class LstmUnitFunctor { public: - static void compute(const platform::DeviceContext &context, - LstmMetaValue value, int frame_size, int batch_size, - const std::string &gate_act, const std::string &cell_act, - const std::string &cand_act); + static void compute(const DeviceContext &context, LstmMetaValue value, + int frame_size, int batch_size, + const detail::ActivationType &gate_act, + const detail::ActivationType &cell_act, + const detail::ActivationType &cand_act); }; -template +template class LstmUnitGradFunctor { public: - static void compute(const platform::DeviceContext &context, - LstmMetaValue value, LstmMetaGrad grad, - int frame_size, int batch_size, - const std::string &gate_act, const std::string &cell_act, - const std::string &cand_act); + static void compute(const DeviceContext &context, LstmMetaValue value, + LstmMetaGrad grad, int frame_size, int batch_size, + const detail::ActivationType &gate_act, + const detail::ActivationType &cell_act, + const detail::ActivationType &cand_act); }; } // namespace math diff --git a/paddle/operators/math/math_function.cc b/paddle/operators/math/math_function.cc index 2e333a8cde..dcf4b85e1a 100644 --- a/paddle/operators/math/math_function.cc +++ b/paddle/operators/math/math_function.cc @@ -21,13 +21,11 @@ namespace operators { namespace math { template <> -void gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE transB, const int M, - const int N, const int K, - const float alpha, const float* A, - const float* B, const float beta, - float* C) { +void gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C) { int lda = (transA == CblasNoTrans) ? K : M; int ldb = (transB == CblasNoTrans) ? N : K; int ldc = N; @@ -36,13 +34,11 @@ void gemm(const platform::DeviceContext& context, } template <> -void gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE transB, const int M, - const int N, const int K, - const double alpha, const double* A, - const double* B, const double beta, - double* C) { +void gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C) { int lda = (transA == CblasNoTrans) ? K : M; int ldb = (transB == CblasNoTrans) ? N : K; int ldc = N; @@ -51,35 +47,32 @@ void gemm(const platform::DeviceContext& context, } template <> -void gemm(const platform::DeviceContext& context, - const bool transA, const bool transB, - const int M, const int N, const int K, - const float alpha, const float* A, - const int lda, const float* B, - const int ldb, const float beta, float* C, - const int ldc) { +void gemm( + const platform::CPUDeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, const float alpha, + const float* A, const int lda, const float* B, const int ldb, + const float beta, float* C, const int ldc) { cblas_sgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); } template <> -void gemm(const platform::DeviceContext& context, - const bool transA, const bool transB, - const int M, const int N, const int K, - const double alpha, const double* A, - const int lda, const double* B, - const int ldb, const double beta, - double* C, const int ldc) { +void gemm( + const platform::CPUDeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, + const double alpha, const double* A, const int lda, const double* B, + const int ldb, const double beta, double* C, const int ldc) { cblas_dgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); } template <> -void matmul( - const platform::DeviceContext& context, const framework::Tensor& matrix_a, - bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha, +void matmul( + const platform::CPUDeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, float alpha, framework::Tensor* matrix_out, float beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); @@ -99,15 +92,16 @@ void matmul( CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; - gemm( + gemm( context, transA, transB, M, N, K, alpha, matrix_a.data(), matrix_b.data(), beta, matrix_out->data()); } template <> -void matmul( - const platform::DeviceContext& context, const framework::Tensor& matrix_a, - bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha, +void matmul( + const platform::CPUDeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, double alpha, framework::Tensor* matrix_out, double beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); @@ -127,16 +121,16 @@ void matmul( CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; - gemm( + gemm( context, transA, transB, M, N, K, alpha, matrix_a.data(), matrix_b.data(), beta, matrix_out->data()); } -#ifdef PADDLE_USE_MKLML +#ifdef PADDLE_WITH_MKLML // Use cblas_{s,d}gemm_batched if available: Run with 1 group of size batchSize. template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const float alpha, const float* A, const float* B, const float beta, float* C, const int batchCount, const int strideA, const int strideB) { @@ -157,8 +151,8 @@ void batched_gemm( } template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, double* C, const int batchCount, const int strideA, const int strideB) { @@ -183,8 +177,8 @@ void batched_gemm( // functions of Intel MKL are not available. In the future, this computation // should be parallelized. template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const float alpha, const float* A, const float* B, const float beta, float* C, const int batchCount, const int strideA, const int strideB) { @@ -192,14 +186,14 @@ void batched_gemm( const float* Ak = &A[k * strideA]; const float* Bk = &B[k * strideB]; float* Ck = &C[k * M * N]; - gemm(context, transA, transB, M, N, K, alpha, Ak, - Bk, beta, Ck); + gemm(context, transA, transB, M, N, K, + alpha, Ak, Bk, beta, Ck); } } template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, double* C, const int batchCount, const int strideA, const int strideB) { @@ -207,55 +201,56 @@ void batched_gemm( const double* Ak = &A[k * strideA]; const double* Bk = &B[k * strideB]; double* Ck = &C[k * M * N]; - gemm(context, transA, transB, M, N, K, alpha, - Ak, Bk, beta, Ck); + gemm(context, transA, transB, M, N, K, + alpha, Ak, Bk, beta, Ck); } } #endif template <> -void gemv(const platform::DeviceContext& context, - const bool trans_a, const int M, - const int N, const float alpha, - const float* A, const float* B, - const float beta, float* C) { +void gemv( + const platform::CPUDeviceContext& context, const bool trans_a, const int M, + const int N, const float alpha, const float* A, const float* B, + const float beta, float* C) { CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; cblas_sgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1); } template <> -void gemv(const platform::DeviceContext& context, - const bool trans_a, const int M, - const int N, const double alpha, - const double* A, const double* B, - const double beta, double* C) { +void gemv( + const platform::CPUDeviceContext& context, const bool trans_a, const int M, + const int N, const double alpha, const double* A, const double* B, + const double beta, double* C) { CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; cblas_dgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1); } template <> -void axpy(const platform::DeviceContext& context, - const int n, const float alpha, - const float* x, float* y) { +void axpy( + const platform::CPUDeviceContext& context, const int n, const float alpha, + const float* x, float* y) { cblas_saxpy(n, alpha, x, 1, y, 1); } template <> -void axpy(const platform::DeviceContext& context, - const int n, const double alpha, - const double* x, double* y) { +void axpy( + const platform::CPUDeviceContext& context, const int n, const double alpha, + const double* x, double* y) { cblas_daxpy(n, alpha, x, 1, y, 1); } -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; -#define DEFINE_CPU_TRANS(RANK) \ - template struct Transpose; \ - template struct Transpose; +#define DEFINE_CPU_TRANS(RANK) \ + template struct Transpose; \ + template struct Transpose; \ + template struct Transpose; \ + template struct Transpose; \ + template struct Transpose; DEFINE_CPU_TRANS(1); DEFINE_CPU_TRANS(2); @@ -310,10 +305,31 @@ void set_constant(const platform::DeviceContext& context, #endif } -template struct RowwiseAdd; -template struct RowwiseAdd; -template struct ColwiseSum; -template struct ColwiseSum; +template +struct RowwiseAdd { + void operator()(const platform::CPUDeviceContext& context, + const framework::Tensor& input, + const framework::Tensor& vector, framework::Tensor* output) { + auto in_dims = input.dims(); + auto size = input.numel() / in_dims[0]; + PADDLE_ENFORCE_EQ(vector.numel(), size); + PADDLE_ENFORCE_EQ(output->dims(), in_dims); + + auto in = framework::EigenMatrix::From(input); + auto vec = framework::EigenVector::Flatten(vector); + auto out = framework::EigenMatrix::From(*output); + + for (int64_t i = 0; i < in_dims[0]; ++i) { + out.chip(i, 0) = in.chip(i, 0) + vec; + } + } +}; + +template struct RowwiseAdd; +template struct RowwiseAdd; + +template struct ColwiseSum; +template struct ColwiseSum; } // namespace math } // namespace operators diff --git a/paddle/operators/math/math_function.cu b/paddle/operators/math/math_function.cu index 3018e50a4f..d47a7f818d 100644 --- a/paddle/operators/math/math_function.cu +++ b/paddle/operators/math/math_function.cu @@ -22,13 +22,11 @@ namespace operators { namespace math { template <> -void gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE transB, const int M, - const int N, const int K, - const float alpha, const float* A, - const float* B, const float beta, - float* C) { +void gemm( + const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. int lda = (transA == CblasNoTrans) ? K : M; @@ -39,19 +37,16 @@ void gemm(const platform::DeviceContext& context, (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasSgemm( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, + lda, &beta, C, N)); } template <> -void gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE transB, const int M, - const int N, const int K, - const double alpha, const double* A, - const double* B, const double beta, - double* C) { +void gemm( + const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. int lda = (transA == CblasNoTrans) ? K : M; @@ -61,51 +56,45 @@ void gemm(const platform::DeviceContext& context, cublasOperation_t cuTransB = (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasDgemm( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, + lda, &beta, C, N)); } template <> -void gemm(const platform::DeviceContext& context, - const bool transA, const bool transB, - const int M, const int N, const int K, - const float alpha, const float* A, - const int lda, const float* B, - const int ldb, const float beta, float* C, - const int ldc) { +void gemm( + const platform::CUDADeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, const float alpha, + const float* A, const int lda, const float* B, const int ldb, + const float beta, float* C, const int ldc) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T; cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasSgemm( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, + lda, &beta, C, ldc)); } template <> -void gemm(const platform::DeviceContext& context, - const bool transA, const bool transB, - const int M, const int N, const int K, - const double alpha, const double* A, - const int lda, const double* B, - const int ldb, const double beta, - double* C, const int ldc) { +void gemm( + const platform::CUDADeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, + const double alpha, const double* A, const int lda, const double* B, + const int ldb, const double beta, double* C, const int ldc) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T; cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasDgemm( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, + lda, &beta, C, ldc)); } template <> -void matmul( - const platform::DeviceContext& context, const framework::Tensor& matrix_a, - bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha, +void matmul( + const platform::CUDADeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, float alpha, framework::Tensor* matrix_out, float beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); @@ -116,7 +105,7 @@ void matmul( PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) && platform::is_gpu_place(matrix_b.place()) && platform::is_gpu_place(matrix_out->place()), - "Matrix must all be in GPUPlace"); + "Matrix must all be in CUDAPlace"); int M = dim_out[0]; int N = dim_out[1]; @@ -125,15 +114,16 @@ void matmul( CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; - gemm( + gemm( context, transA, transB, M, N, K, alpha, matrix_a.data(), matrix_b.data(), beta, matrix_out->data()); } template <> -void matmul( - const platform::DeviceContext& context, const framework::Tensor& matrix_a, - bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha, +void matmul( + const platform::CUDADeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, double alpha, framework::Tensor* matrix_out, double beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); @@ -144,7 +134,7 @@ void matmul( PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) && platform::is_gpu_place(matrix_b.place()) && platform::is_gpu_place(matrix_out->place()), - "Matrix must all be in GPUPlace"); + "Matrix must all be in CUDAPlace"); int M = dim_out[0]; int N = dim_out[1]; @@ -153,14 +143,14 @@ void matmul( CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; - gemm( + gemm( context, transA, transB, M, N, K, alpha, matrix_a.data(), matrix_b.data(), beta, matrix_out->data()); } template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const float alpha, const float* A, const float* B, const float beta, float* C, const int batchCount, const int strideA, const int strideB) { @@ -176,15 +166,13 @@ void batched_gemm( const int strideC = M * N; PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA, - &beta, C, ldc, strideC, batchCount)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, + strideB, A, lda, strideA, &beta, C, ldc, strideC, batchCount)); } template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, double* C, const int batchCount, const int strideA, const int strideB) { @@ -200,68 +188,58 @@ void batched_gemm( const int strideC = M * N; PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA, - &beta, C, ldc, strideC, batchCount)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, + strideB, A, lda, strideA, &beta, C, ldc, strideC, batchCount)); } template <> -void gemv(const platform::DeviceContext& context, - const bool trans_a, const int M, - const int N, const float alpha, - const float* A, const float* B, - const float beta, float* C) { +void gemv( + const platform::CUDADeviceContext& context, const bool trans_a, const int M, + const int N, const float alpha, const float* A, const float* B, + const float beta, float* C) { cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N; - PADDLE_ENFORCE(platform::dynload::cublasSgemv( - reinterpret_cast(context) - .cublas_handle(), - cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1)); + PADDLE_ENFORCE(platform::dynload::cublasSgemv(context.cublas_handle(), + cuTransA, N, M, &alpha, A, N, B, + 1, &beta, C, 1)); } template <> -void gemv(const platform::DeviceContext& context, - const bool trans_a, const int M, - const int N, const double alpha, - const double* A, const double* B, - const double beta, double* C) { +void gemv( + const platform::CUDADeviceContext& context, const bool trans_a, const int M, + const int N, const double alpha, const double* A, const double* B, + const double beta, double* C) { cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N; - PADDLE_ENFORCE(platform::dynload::cublasDgemv( - reinterpret_cast(context) - .cublas_handle(), - cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1)); + PADDLE_ENFORCE(platform::dynload::cublasDgemv(context.cublas_handle(), + cuTransA, N, M, &alpha, A, N, B, + 1, &beta, C, 1)); } template <> -void axpy(const platform::DeviceContext& context, - const int n, const float alpha, - const float* x, float* y) { - PADDLE_ENFORCE(platform::dynload::cublasSaxpy( - reinterpret_cast(context) - .cublas_handle(), - n, &alpha, x, 1, y, 1)); +void axpy( + const platform::CUDADeviceContext& context, const int n, const float alpha, + const float* x, float* y) { + PADDLE_ENFORCE(platform::dynload::cublasSaxpy(context.cublas_handle(), n, + &alpha, x, 1, y, 1)); } template <> -void axpy(const platform::DeviceContext& context, - const int n, const double alpha, - const double* x, double* y) { - PADDLE_ENFORCE(platform::dynload::cublasDaxpy( - reinterpret_cast(context) - .cublas_handle(), - n, &alpha, x, 1, y, 1)); +void axpy( + const platform::CUDADeviceContext& context, const int n, const double alpha, + const double* x, double* y) { + PADDLE_ENFORCE(platform::dynload::cublasDaxpy(context.cublas_handle(), n, + &alpha, x, 1, y, 1)); } -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; -#define DEFINE_GPU_TRANS(RANK) \ - template struct Transpose; \ - template struct Transpose; +#define DEFINE_GPU_TRANS(RANK) \ + template struct Transpose; \ + template struct Transpose; DEFINE_GPU_TRANS(1); DEFINE_GPU_TRANS(2); @@ -277,8 +255,9 @@ struct TensorSetConstantGPU { template void operator()() const { - SetConstant functor; - functor(context_, tensor_, static_cast(value_)); + SetConstant functor; + functor(reinterpret_cast(context_), + tensor_, static_cast(value_)); } const platform::DeviceContext& context_; @@ -287,34 +266,63 @@ struct TensorSetConstantGPU { }; template <> -void set_constant_with_place( +void set_constant_with_place( const platform::DeviceContext& context, framework::Tensor* tensor, float value) { framework::VisitDataType(framework::ToDataType(tensor->type()), TensorSetConstantGPU(context, tensor, value)); } -template struct RowwiseAdd; -template struct RowwiseAdd; -template struct ColwiseSum; -// template struct ColwiseSum; -// The ColwiseSum failed in debug mode, +template +__global__ void RowwiseAddKernel(const T* a, const T* b, T* c, int width, + int num) { + T tmp = 1.0 / width; + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num; + i += blockDim.x * gridDim.x) { + int h = i * tmp; + int w = i - h * width; + c[i] = a[i] + b[w]; + } +} + +template +struct RowwiseAdd { + void operator()(const platform::CUDADeviceContext& context, + const framework::Tensor& input, + const framework::Tensor& vector, framework::Tensor* output) { + auto in_dims = input.dims(); + auto size = input.numel() / in_dims[0]; + PADDLE_ENFORCE_EQ(vector.numel(), size); + PADDLE_ENFORCE_EQ(output->dims(), in_dims); + int blocks = 512; + int grids = (input.numel() + blocks - 1) / blocks; + RowwiseAddKernel<<>>( + input.data(), vector.data(), output->data(), + static_cast(in_dims[1]), static_cast(input.numel())); + } +}; + +template struct RowwiseAdd; +template struct RowwiseAdd; +template struct ColwiseSum; +// template struct ColwiseSum; +// The ColwiseSum failed in debug mode, // and only failed for this case. So reimplemented it. template <> -void ColwiseSum::operator()( - const platform::DeviceContext& context, const framework::Tensor& input, +void ColwiseSum::operator()( + const platform::CUDADeviceContext& context, const framework::Tensor& input, framework::Tensor* vector) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; PADDLE_ENFORCE_EQ(vector->numel(), size); framework::Tensor one; one.mutable_data({in_dims[0]}, context.GetPlace()); - SetConstant set; + SetConstant set; set(context, &one, static_cast(1.0)); - gemv(context, true, static_cast(in_dims[0]), - static_cast(in_dims[1]), 1.0, - input.data(), one.data(), - 0.0, vector->data()); + gemv( + context, true, static_cast(in_dims[0]), static_cast(in_dims[1]), + 1.0, input.data(), one.data(), 0.0, + vector->data()); } } // namespace math diff --git a/paddle/operators/math/math_function.h b/paddle/operators/math/math_function.h index 5a42854f22..8cc03c2ba0 100644 --- a/paddle/operators/math/math_function.h +++ b/paddle/operators/math/math_function.h @@ -13,7 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once -#ifdef PADDLE_USE_MKLML +#ifdef PADDLE_WITH_MKLML #include #include #include @@ -62,53 +62,51 @@ namespace math { // Then matrixA: M * K, matrixB: K * N, matrixC : M * N // For more detailed info, please refer to // http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html -template -void gemm(const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +template +void gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const T alpha, const T* A, const T* B, const T beta, T* C); // gemm wrapper with stride args for matrix uncontinuous in memory -template -void gemm(const platform::DeviceContext& context, const bool transA, - const bool transB, const int M, const int N, const int K, - const T alpha, const T* A, const int lda, const T* B, const int ldb, - const T beta, T* C, const int ldc); +template +void gemm(const DeviceContext& context, const bool transA, const bool transB, + const int M, const int N, const int K, const T alpha, const T* A, + const int lda, const T* B, const int ldb, const T beta, T* C, + const int ldc); // matrix multiply with continuous memory -template -void matmul(const platform::DeviceContext& context, - const framework::Tensor& matrix_a, bool trans_a, - const framework::Tensor& matrix_b, bool trans_b, T alpha, - framework::Tensor* matrix_out, T beta); +template +void matmul(const DeviceContext& context, const framework::Tensor& matrix_a, + bool trans_a, const framework::Tensor& matrix_b, bool trans_b, + T alpha, framework::Tensor* matrix_out, T beta); // Batched gemm -template -void batched_gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, - const int M, const int N, const int K, const T alpha, - const T* A, const T* B, const T beta, T* C, - const int batchCount, const int strideA, const int strideB); - -template -void gemv(const platform::DeviceContext& context, const bool trans_a, - const int M, const int N, const T alpha, const T* A, const T* B, - const T beta, T* C); - -template -void axpy(const platform::DeviceContext& context, const int n, const T alpha, - const T* x, T* y); - -template +template +void batched_gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, + const int K, const T alpha, const T* A, const T* B, + const T beta, T* C, const int batchCount, const int strideA, + const int strideB); + +template +void gemv(const DeviceContext& context, const bool trans_a, const int M, + const int N, const T alpha, const T* A, const T* B, const T beta, + T* C); + +template +void axpy(const DeviceContext& context, const int n, const T alpha, const T* x, + T* y); + +template struct Transpose { - void operator()(const platform::DeviceContext& context, - const framework::Tensor& in, framework::Tensor* out, - const std::vector& axis); + void operator()(const DeviceContext& context, const framework::Tensor& in, + framework::Tensor* out, const std::vector& axis); }; -template +template struct SetConstant { - void operator()(const platform::DeviceContext& context, - framework::Tensor* tensor, T num); + void operator()(const DeviceContext& context, framework::Tensor* tensor, + T num); }; template @@ -118,17 +116,16 @@ void set_constant_with_place(const platform::DeviceContext& context, void set_constant(const platform::DeviceContext& context, framework::Tensor* tensor, float value); -template +template struct RowwiseAdd { - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, const framework::Tensor& vec, - framework::Tensor* output); + void operator()(const DeviceContext& context, const framework::Tensor& input, + const framework::Tensor& vec, framework::Tensor* output); }; -template +template struct ColwiseSum { - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, framework::Tensor* vec); + void operator()(const DeviceContext& context, const framework::Tensor& input, + framework::Tensor* vec); }; } // namespace math diff --git a/paddle/operators/math/math_function_impl.h b/paddle/operators/math/math_function_impl.h index 4dc17a4e52..de591626df 100644 --- a/paddle/operators/math/math_function_impl.h +++ b/paddle/operators/math/math_function_impl.h @@ -20,16 +20,17 @@ namespace paddle { namespace operators { namespace math { -template -void SetConstant::operator()(const platform::DeviceContext& context, - framework::Tensor* tensor, T num) { +template +void SetConstant::operator()(const DeviceContext& context, + framework::Tensor* tensor, + T num) { auto t = framework::EigenVector::Flatten(*tensor); - t.device(*context.GetEigenDevice()) = t.constant(static_cast(num)); + t.device(*context.eigen_device()) = t.constant(static_cast(num)); } -template -void Transpose::operator()( - const platform::DeviceContext& context, const framework::Tensor& in, +template +void Transpose::operator()( + const DeviceContext& context, const framework::Tensor& in, framework::Tensor* out, const std::vector& axis) { Eigen::array permute; for (int i = 0; i < Rank; i++) { @@ -40,43 +41,51 @@ void Transpose::operator()( auto eigen_in = framework::EigenTensor::From(in); auto eigen_out = framework::EigenTensor::From(*out); - auto* dev = context.GetEigenDevice(); + auto* dev = context.eigen_device(); eigen_out.device(*dev) = eigen_in.shuffle(permute); } -template -void RowwiseAdd::operator()(const platform::DeviceContext& context, - const framework::Tensor& input, - const framework::Tensor& vector, - framework::Tensor* output) { +template +void ColwiseSum::operator()(const DeviceContext& context, + const framework::Tensor& input, + framework::Tensor* out) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; - PADDLE_ENFORCE_EQ(vector.numel(), size); - PADDLE_ENFORCE_EQ(output->dims(), in_dims); + PADDLE_ENFORCE_EQ(out->numel(), size); auto in = framework::EigenMatrix::From(input); - auto vec = framework::EigenMatrix::From(vector); - auto out = framework::EigenMatrix::From(*output); - Eigen::array shape({{1, static_cast(size)}}); - Eigen::array bcast({{static_cast(in_dims[0]), 1}}); - out.device(*context.GetEigenDevice()) = - in + vec.reshape(shape).broadcast(bcast); + auto vec = framework::EigenVector::Flatten(*out); + + vec.device(*context.eigen_device()) = in.sum(Eigen::array({{0}})); } -template -void ColwiseSum::operator()(const platform::DeviceContext& context, - const framework::Tensor& input, - framework::Tensor* vector) { - auto in_dims = input.dims(); - auto size = input.numel() / in_dims[0]; - PADDLE_ENFORCE_EQ(vector->numel(), size); +// Specialize for CPU, since Eigen implement a general reduce. However, +// colwise-sum can be easily implemented. General reduce has a huge overhead in +// CPU +template +class ColwiseSum { + public: + void operator()(const platform::CPUDeviceContext& context, + const framework::Tensor& input, framework::Tensor* out) { + auto& in_dims = input.dims(); + auto height = in_dims[0]; + auto size = in_dims[1]; + PADDLE_ENFORCE_EQ(out->numel(), size); - auto vec = framework::EigenMatrix::From(*vector); - auto in = framework::EigenMatrix::From(input); - Eigen::array shape({{1, static_cast(size)}}); - vec.reshape(shape).device(*context.GetEigenDevice()) = - in.sum(Eigen::array({{0}})).reshape(shape); -} + T* out_buf = out->mutable_data(out->place()); + const T* in_buf = input.data(); + + for (size_t i = 0; i < static_cast(height); ++i) { + for (size_t j = 0; j < static_cast(size); ++j) { + if (i == 0) { + out_buf[j] = in_buf[i * size + j]; + } else { + out_buf[j] += in_buf[i * size + j]; + } + } + } + } +}; } // namespace math } // namespace operators diff --git a/paddle/operators/math/math_function_test.cc b/paddle/operators/math/math_function_test.cc index 983c9fdcff..c9f322b92e 100644 --- a/paddle/operators/math/math_function_test.cc +++ b/paddle/operators/math/math_function_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include "paddle/operators/math/math_function.h" #include "gtest/gtest.h" @@ -21,7 +34,7 @@ TEST(math_function, gemm_notrans_cblas) { memcpy(input3_ptr, arr3, 8 * sizeof(float)); paddle::platform::CPUDeviceContext context(*cpu_place); - paddle::operators::math::gemm( + paddle::operators::math::gemm( context, false, false, m, n, k, 1, input1_ptr, 3, input2_ptr + 1, 4, 1, input3_ptr + 1, 4); @@ -55,7 +68,7 @@ TEST(math_function, gemm_trans_clbas) { memcpy(input3_ptr, arr3, 8 * sizeof(float)); paddle::platform::CPUDeviceContext context(*cpu_place); - paddle::operators::math::gemm( + paddle::operators::math::gemm( context, false, true, m, n, k, 1, input1_ptr, 3, input2_ptr + 3, 3, 1, input3_ptr + 1, 4); @@ -74,7 +87,8 @@ TEST(math_function, zero) { auto* cpu_place = new paddle::platform::CPUPlace(); float* t = tensor.mutable_data({2, 2}, *cpu_place); paddle::platform::CPUDeviceContext context(*cpu_place); - paddle::operators::math::SetConstant + paddle::operators::math::SetConstant functor; functor(context, &tensor, 0); EXPECT_EQ(t[0], 0); @@ -110,7 +124,7 @@ void GemvTest(int m, int n, bool trans) { } paddle::platform::CPUDeviceContext context(*cpu_place); - paddle::operators::math::gemv( + paddle::operators::math::gemv( context, trans, static_cast(m), static_cast(n), 1., data_a, data_b, 0., data_c); diff --git a/paddle/operators/math/math_function_test.cu b/paddle/operators/math/math_function_test.cu index d5d6f0c73b..6f16d66792 100644 --- a/paddle/operators/math/math_function_test.cu +++ b/paddle/operators/math/math_function_test.cu @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include "gtest/gtest.h" #include "paddle/operators/math/math_function.h" @@ -13,18 +26,18 @@ TEST(math_function, notrans_mul_trans) { float arr[6] = {0, 1, 2, 3, 4, 5}; memcpy(input1_ptr, arr, 6 * sizeof(float)); - auto* gpu_place = new paddle::platform::GPUPlace(0); + auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input2_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input2_gpu); out_gpu.mutable_data({2, 2}, *gpu_place); - paddle::operators::math::matmul( + paddle::operators::math::matmul( context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0); - paddle::framework::CopyFrom(out_gpu, *cpu_place, context, &out); + paddle::framework::Copy(out_gpu, *cpu_place, context, &out); float* out_ptr = out.data(); context.Wait(); @@ -47,18 +60,18 @@ TEST(math_function, trans_mul_notrans) { float arr[6] = {0, 1, 2, 3, 4, 5}; memcpy(input1_ptr, arr, 6 * sizeof(float)); - auto* gpu_place = new paddle::platform::GPUPlace(0); + auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input2_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input2_gpu); out_gpu.mutable_data({3, 3}, *gpu_place); - paddle::operators::math::matmul( + paddle::operators::math::matmul( context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0); - paddle::framework::CopyFrom(out_gpu, *cpu_place, context, &out); + paddle::framework::Copy(out_gpu, *cpu_place, context, &out); float* out_ptr = out.data(); context.Wait(); @@ -96,20 +109,20 @@ TEST(math_function, gemm_notrans_cublas) { float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; memcpy(input3_ptr, arr3, 8 * sizeof(float)); - auto* gpu_place = new paddle::platform::GPUPlace(0); + auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu); - paddle::framework::CopyFrom(input2, *gpu_place, context, &input2_gpu); - paddle::framework::CopyFrom(input3, *gpu_place, context, &input3_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu); + paddle::framework::Copy(input2, *gpu_place, context, &input2_gpu); + paddle::framework::Copy(input3, *gpu_place, context, &input3_gpu); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); - paddle::operators::math::gemm( + paddle::operators::math::gemm( context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4); - paddle::framework::CopyFrom(input3_gpu, *cpu_place, context, &input3); + paddle::framework::Copy(input3_gpu, *cpu_place, context, &input3); // numpy code: // a = np.arange(6).reshape(2, 3) @@ -151,20 +164,20 @@ TEST(math_function, gemm_trans_cublas) { float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; memcpy(input3_ptr, arr3, 8 * sizeof(float)); - auto* gpu_place = new paddle::platform::GPUPlace(0); + auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu); - paddle::framework::CopyFrom(input2, *gpu_place, context, &input2_gpu); - paddle::framework::CopyFrom(input3, *gpu_place, context, &input3_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu); + paddle::framework::Copy(input2, *gpu_place, context, &input2_gpu); + paddle::framework::Copy(input3, *gpu_place, context, &input3_gpu); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); - paddle::operators::math::gemm( + paddle::operators::math::gemm( context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4); - paddle::framework::CopyFrom(input3_gpu, *cpu_place, context, &input3); + paddle::framework::Copy(input3_gpu, *cpu_place, context, &input3); context.Wait(); EXPECT_EQ(input3_ptr[0], 0); @@ -189,7 +202,7 @@ void GemvTest(int m, int n, bool trans) { T* data_b = vec_b.mutable_data({trans ? m : n}, *cpu_place); T* data_c = vec_c.mutable_data({trans ? n : m}, *cpu_place); - auto* gpu_place = new paddle::platform::GPUPlace(0); + auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::framework::Tensor g_mat_a; paddle::framework::Tensor g_vec_b; paddle::framework::Tensor g_vec_c; @@ -205,15 +218,15 @@ void GemvTest(int m, int n, bool trans) { } paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(mat_a, *gpu_place, context, &g_mat_a); - paddle::framework::CopyFrom(vec_b, *gpu_place, context, &g_vec_b); + paddle::framework::Copy(mat_a, *gpu_place, context, &g_mat_a); + paddle::framework::Copy(vec_b, *gpu_place, context, &g_vec_b); - paddle::operators::math::gemv( + paddle::operators::math::gemv( context, trans, static_cast(m), static_cast(n), 1., g_data_a, g_data_b, 0., g_data_c); - paddle::framework::CopyFrom(g_vec_c, paddle::platform::CPUPlace(), context, - &vec_c); + paddle::framework::Copy(g_vec_c, paddle::platform::CPUPlace(), context, + &vec_c); if (!trans) { for (int i = 0; i < m; ++i) { diff --git a/paddle/operators/math/matmul.h b/paddle/operators/math/matmul.h index 6ba9a0ba9a..7048e11e6f 100644 --- a/paddle/operators/math/matmul.h +++ b/paddle/operators/math/matmul.h @@ -26,13 +26,12 @@ namespace math { // // Both a & b can be 1- to 3-dimensional. Higher rank tensors are not supported // yet. -template +template class MatMulFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& a, bool trans_a, - const framework::Tensor& b, bool trans_b, T alpha, - framework::Tensor* out, T beta) { + void operator()(const DeviceContext& context, const framework::Tensor& a, + bool trans_a, const framework::Tensor& b, bool trans_b, + T alpha, framework::Tensor* out, T beta) { auto dim_a = a.dims(); auto dim_b = b.dims(); @@ -108,13 +107,13 @@ class MatMulFunctor { if (!batchCount) { // regular matrix multiplication - gemm(context, transA, transB, M, N, kA, alpha, a.data(), - b.data(), beta, out->data()); + gemm(context, transA, transB, M, N, kA, alpha, + a.data(), b.data(), beta, out->data()); } else { // batched matrix multiplication - batched_gemm(context, transA, transB, M, N, kA, alpha, - a.data(), b.data(), beta, out->data(), - batchCount, strideA, strideB); + batched_gemm( + context, transA, transB, M, N, kA, alpha, a.data(), b.data(), + beta, out->data(), batchCount, strideA, strideB); } } }; diff --git a/paddle/operators/math/maxouting.cc b/paddle/operators/math/maxouting.cc index c9003962d3..fea86675f7 100644 --- a/paddle/operators/math/maxouting.cc +++ b/paddle/operators/math/maxouting.cc @@ -20,9 +20,9 @@ namespace math { // All tensors are in NCHW format, and the groups must be greater than 1 template -class MaxOutFunctor { +class MaxOutFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, framework::Tensor* output, int groups) { const int batch_size = input.dims()[0]; @@ -54,9 +54,9 @@ class MaxOutFunctor { }; template -class MaxOutGradFunctor { +class MaxOutGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, framework::Tensor* input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, int groups) { @@ -91,10 +91,10 @@ class MaxOutGradFunctor { } }; -template class MaxOutGradFunctor; -template class MaxOutGradFunctor; -template class MaxOutFunctor; -template class MaxOutFunctor; +template class MaxOutGradFunctor; +template class MaxOutGradFunctor; +template class MaxOutFunctor; +template class MaxOutFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/maxouting.cu b/paddle/operators/math/maxouting.cu index c3fabcae08..6056ad251c 100644 --- a/paddle/operators/math/maxouting.cu +++ b/paddle/operators/math/maxouting.cu @@ -78,9 +78,9 @@ __global__ void KernelMaxoutGrad(const int nthreads, const T* input_data, * All tensors are in NCHW format. */ template -class MaxOutFunctor { +class MaxOutFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, framework::Tensor* output, int groups) { const int batch_size = input.dims()[0]; @@ -98,20 +98,18 @@ class MaxOutFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxOut< - T><<(context) - .stream()>>>(nthreads, input_data, input_channels, - input_height, input_width, groups, output_data); + KernelMaxOut<<>>( + nthreads, input_data, input_channels, input_height, input_width, groups, + output_data); } }; /* * All tensors are in NCHW format. */ template -class MaxOutGradFunctor { +class MaxOutGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, framework::Tensor* input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, int groups) { @@ -132,20 +130,17 @@ class MaxOutGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxoutGrad< - T><<(context) - .stream()>>>(nthreads, input_data, output_data, - output_grad_data, input_grad_data, input_channels, - input_height, input_width, groups); + KernelMaxoutGrad<<>>( + nthreads, input_data, output_data, output_grad_data, input_grad_data, + input_channels, input_height, input_width, groups); } }; -template class MaxOutGradFunctor; -template class MaxOutGradFunctor; +template class MaxOutGradFunctor; +template class MaxOutGradFunctor; -template class MaxOutFunctor; -template class MaxOutFunctor; +template class MaxOutFunctor; +template class MaxOutFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/maxouting.h b/paddle/operators/math/maxouting.h index 2d9069b0b3..68f4743db0 100644 --- a/paddle/operators/math/maxouting.h +++ b/paddle/operators/math/maxouting.h @@ -23,20 +23,18 @@ namespace math { #define FLT_MAX __FLT_MAX__ -template - +template class MaxOutFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, framework::Tensor* output, - int groups); + void operator()(const DeviceContext& context, const framework::Tensor& input, + framework::Tensor* output, int groups); }; -template +template class MaxOutGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, framework::Tensor* input_grad, + void operator()(const DeviceContext& context, const framework::Tensor& input, + framework::Tensor* input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, int groups); }; diff --git a/paddle/operators/math/pooling.cc b/paddle/operators/math/pooling.cc index 135984586a..150de6fd59 100644 --- a/paddle/operators/math/pooling.cc +++ b/paddle/operators/math/pooling.cc @@ -24,9 +24,9 @@ namespace math { * height and width, respectively. */ template -class Pool2dFunctor { +class Pool2dFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_process, framework::Tensor* output) { @@ -84,9 +84,9 @@ class Pool2dFunctor { * and width, respectively. */ template -class Pool2dGradFunctor { +class Pool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -152,9 +152,9 @@ class Pool2dGradFunctor { * height and width, respectively. */ template -class MaxPool2dGradFunctor { +class MaxPool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -213,25 +213,29 @@ class MaxPool2dGradFunctor { } }; -template class MaxPool2dGradFunctor; -template class MaxPool2dGradFunctor; +template class MaxPool2dGradFunctor; +template class MaxPool2dGradFunctor; -template class Pool2dFunctor, float>; -template class Pool2dFunctor, float>; -template class Pool2dGradFunctor< - platform::CPUPlace, paddle::operators::math::MaxPoolGrad, float>; -template class Pool2dGradFunctor< - platform::CPUPlace, paddle::operators::math::AvgPoolGrad, float>; -template class Pool2dFunctor, + float>; +template class Pool2dGradFunctor, + float>; +template class Pool2dFunctor, double>; -template class Pool2dFunctor, double>; -template class Pool2dGradFunctor< - platform::CPUPlace, paddle::operators::math::MaxPoolGrad, double>; -template class Pool2dGradFunctor< - platform::CPUPlace, paddle::operators::math::AvgPoolGrad, double>; +template class Pool2dGradFunctor, + double>; +template class Pool2dGradFunctor, + double>; /* * All tensors are in NCDHW format. @@ -239,9 +243,9 @@ template class Pool2dGradFunctor< * depth, height and width, respectively. */ template -class Pool3dFunctor { +class Pool3dFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_process, framework::Tensor* output) { @@ -314,9 +318,9 @@ class Pool3dFunctor { * depth, height and width, respectively. */ template -class Pool3dGradFunctor { +class Pool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -398,9 +402,9 @@ class Pool3dGradFunctor { * depth, height and width, respectively. */ template -class MaxPool3dGradFunctor { +class MaxPool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -473,25 +477,29 @@ class MaxPool3dGradFunctor { } }; -template class MaxPool3dGradFunctor; -template class MaxPool3dGradFunctor; +template class MaxPool3dGradFunctor; +template class MaxPool3dGradFunctor; -template class Pool3dFunctor, float>; -template class Pool3dFunctor, float>; -template class Pool3dGradFunctor< - platform::CPUPlace, paddle::operators::math::MaxPoolGrad, float>; -template class Pool3dGradFunctor< - platform::CPUPlace, paddle::operators::math::AvgPoolGrad, float>; -template class Pool3dFunctor, + float>; +template class Pool3dGradFunctor, + float>; +template class Pool3dFunctor, double>; -template class Pool3dFunctor, double>; -template class Pool3dGradFunctor< - platform::CPUPlace, paddle::operators::math::MaxPoolGrad, double>; -template class Pool3dGradFunctor< - platform::CPUPlace, paddle::operators::math::AvgPoolGrad, double>; +template class Pool3dGradFunctor, + double>; +template class Pool3dGradFunctor, + double>; /* * All tensors are in NCHW format. @@ -499,9 +507,9 @@ template class Pool3dGradFunctor< * height and width, respectively. */ template -class MaxPool2dWithIndexFunctor { +class MaxPool2dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* output, framework::Tensor* mask) { @@ -564,9 +572,9 @@ class MaxPool2dWithIndexFunctor { * height and width, respectively. */ template -class MaxPool2dWithIndexGradFunctor { +class MaxPool2dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -602,10 +610,14 @@ class MaxPool2dWithIndexGradFunctor { } }; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; /* * All tensors are in NCDHW format. @@ -613,9 +625,9 @@ template class MaxPool2dWithIndexGradFunctor; * depth, height and width, respectively. */ template -class MaxPool3dWithIndexFunctor { +class MaxPool3dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* output, framework::Tensor* mask) { @@ -692,9 +704,9 @@ class MaxPool3dWithIndexFunctor { * depth, height and width, respectively. */ template -class MaxPool3dWithIndexGradFunctor { +class MaxPool3dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -735,10 +747,14 @@ class MaxPool3dWithIndexGradFunctor { } }; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/pooling.cu b/paddle/operators/math/pooling.cu index ca3560f264..0243cf8316 100644 --- a/paddle/operators/math/pooling.cu +++ b/paddle/operators/math/pooling.cu @@ -155,9 +155,9 @@ __global__ void KernelMaxPool2DGrad( * height and width, respectively. */ template -class Pool2dFunctor { +class Pool2dFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_process, framework::Tensor* output) { @@ -183,11 +183,7 @@ class Pool2dFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelPool2D< - PoolProcess, - T><<(context) - .stream()>>>( + KernelPool2D<<>>( nthreads, input_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, pool_process, output_data); @@ -200,9 +196,9 @@ class Pool2dFunctor { * height and width, respectively. */ template -class Pool2dGradFunctor { +class Pool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -231,11 +227,7 @@ class Pool2dGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelPool2DGrad< - PoolProcess, - T><<(context) - .stream()>>>( + KernelPool2DGrad<<>>( nthreads, input_data, output_data, output_grad_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, @@ -249,9 +241,9 @@ class Pool2dGradFunctor { * height and width, respectively. */ template -class MaxPool2dGradFunctor { +class MaxPool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -281,10 +273,7 @@ class MaxPool2dGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool2DGrad< - T><<(context) - .stream()>>>( + KernelMaxPool2DGrad<<>>( nthreads, input_data, output_data, output_grad_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, @@ -292,25 +281,29 @@ class MaxPool2dGradFunctor { } }; -template class MaxPool2dGradFunctor; -template class MaxPool2dGradFunctor; +template class MaxPool2dGradFunctor; +template class MaxPool2dGradFunctor; -template class Pool2dFunctor, float>; -template class Pool2dFunctor, float>; -template class Pool2dGradFunctor< - platform::GPUPlace, paddle::operators::math::MaxPoolGrad, float>; -template class Pool2dGradFunctor< - platform::GPUPlace, paddle::operators::math::AvgPoolGrad, float>; -template class Pool2dFunctor, + float>; +template class Pool2dGradFunctor, + float>; +template class Pool2dFunctor, double>; -template class Pool2dFunctor, double>; -template class Pool2dGradFunctor< - platform::GPUPlace, paddle::operators::math::MaxPoolGrad, double>; -template class Pool2dGradFunctor< - platform::GPUPlace, paddle::operators::math::AvgPoolGrad, double>; +template class Pool2dGradFunctor, + double>; +template class Pool2dGradFunctor, + double>; template __global__ void KernelPool3D(const int nthreads, const T* input_data, @@ -478,9 +471,9 @@ __global__ void KernelMaxPool3DGrad( * depth, height and width, respectively. */ template -class Pool3dFunctor { +class Pool3dFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_process, framework::Tensor* output) { @@ -512,11 +505,7 @@ class Pool3dFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelPool3D< - PoolProcess, - T><<(context) - .stream()>>>( + KernelPool3D<<>>( nthreads, input_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, @@ -531,9 +520,9 @@ class Pool3dFunctor { * depth, height and width, respectively. */ template -class Pool3dGradFunctor { +class Pool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -569,11 +558,7 @@ class Pool3dGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelPool3DGrad< - PoolProcess, - T><<(context) - .stream()>>>( + KernelPool3DGrad<<>>( nthreads, input_data, output_data, output_grad_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, @@ -588,9 +573,9 @@ class Pool3dGradFunctor { * depth, height and width, respectively. */ template -class MaxPool3dGradFunctor { +class MaxPool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -626,10 +611,7 @@ class MaxPool3dGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool3DGrad< - T><<(context) - .stream()>>>( + KernelMaxPool3DGrad<<>>( nthreads, input_data, output_data, output_grad_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, @@ -638,25 +620,29 @@ class MaxPool3dGradFunctor { } }; -template class MaxPool3dGradFunctor; -template class MaxPool3dGradFunctor; +template class MaxPool3dGradFunctor; +template class MaxPool3dGradFunctor; -template class Pool3dFunctor, float>; -template class Pool3dFunctor, float>; -template class Pool3dGradFunctor< - platform::GPUPlace, paddle::operators::math::MaxPoolGrad, float>; -template class Pool3dGradFunctor< - platform::GPUPlace, paddle::operators::math::AvgPoolGrad, float>; -template class Pool3dFunctor, + float>; +template class Pool3dGradFunctor, + float>; +template class Pool3dFunctor, double>; -template class Pool3dFunctor, double>; -template class Pool3dGradFunctor< - platform::GPUPlace, paddle::operators::math::MaxPoolGrad, double>; -template class Pool3dGradFunctor< - platform::GPUPlace, paddle::operators::math::AvgPoolGrad, double>; +template class Pool3dGradFunctor, + double>; +template class Pool3dGradFunctor, + double>; template __global__ void KernelMaxPool2dWithIdx( @@ -747,9 +733,9 @@ __global__ void KernelMaxPool2DWithIdxGrad( * height and width, respectively. */ template -class MaxPool2dWithIndexFunctor { +class MaxPool2dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* output, framework::Tensor* mask) { @@ -776,10 +762,7 @@ class MaxPool2dWithIndexFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool2dWithIdx< - T1, T2><<(context) - .stream()>>>( + KernelMaxPool2dWithIdx<<>>( nthreads, input_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, output_data, mask_data); @@ -792,9 +775,9 @@ class MaxPool2dWithIndexFunctor { * height and width, respectively. */ template -class MaxPool2dWithIndexGradFunctor { +class MaxPool2dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -821,10 +804,7 @@ class MaxPool2dWithIndexGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool2DWithIdxGrad< - T1, T2><<(context) - .stream()>>>( + KernelMaxPool2DWithIdxGrad<<>>( nthreads, output_grad_data, mask_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, @@ -832,10 +812,14 @@ class MaxPool2dWithIndexGradFunctor { } }; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; template __global__ void KernelMaxPool3DWithIdx( @@ -950,9 +934,9 @@ __global__ void KernelMaxPool3DWithIdxGrad( * depth, height and width, respectively. */ template -class MaxPool3dWithIndexFunctor { +class MaxPool3dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* output, framework::Tensor* mask) { @@ -985,10 +969,7 @@ class MaxPool3dWithIndexFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool3DWithIdx< - T1, T2><<(context) - .stream()>>>( + KernelMaxPool3DWithIdx<<>>( nthreads, input_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, @@ -1002,9 +983,9 @@ class MaxPool3dWithIndexFunctor { * depth, height and width, respectively. */ template -class MaxPool3dWithIndexGradFunctor { +class MaxPool3dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -1037,10 +1018,7 @@ class MaxPool3dWithIndexGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool3DWithIdxGrad< - T1, T2><<(context) - .stream()>>>( + KernelMaxPool3DWithIdxGrad<<>>( nthreads, output_grad_data, mask_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, @@ -1049,10 +1027,14 @@ class MaxPool3dWithIndexGradFunctor { } }; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/pooling.h b/paddle/operators/math/pooling.h index 19fbd8b4bb..2759f06cb6 100644 --- a/paddle/operators/math/pooling.h +++ b/paddle/operators/math/pooling.h @@ -84,62 +84,58 @@ class AvgPoolGrad { * This is different from average pooling. So we rewrite the max_pool_grad: * MaxPool2dGradFunctor, MaxPool3dGradFunctor. */ -template +template class Pool2dFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, std::vector& ksize, - std::vector& strides, std::vector& paddings, - PoolProcess pool_compute, framework::Tensor* output); + void operator()(const DeviceContext& context, const framework::Tensor& input, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_compute, + framework::Tensor* output); }; -template +template class Pool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_compute, framework::Tensor* input_grad); }; -template +template class MaxPool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* input_grad); }; -template +template class Pool3dFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, std::vector& ksize, - std::vector& strides, std::vector& paddings, - PoolProcess pool_compute, framework::Tensor* output); + void operator()(const DeviceContext& context, const framework::Tensor& input, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_compute, + framework::Tensor* output); }; -template +template class Pool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_compute, framework::Tensor* input_grad); }; -template +template class MaxPool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -153,38 +149,38 @@ class MaxPool3dGradFunctor { * In pool2d, all tensors are in NCHW format. In pool3d, all tensors are in * NCDHW format. */ -template +template class MaxPool2dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, std::vector& ksize, - std::vector& strides, std::vector& paddings, - framework::Tensor* output, framework::Tensor* mask); + void operator()(const DeviceContext& context, const framework::Tensor& input, + std::vector& ksize, std::vector& strides, + std::vector& paddings, framework::Tensor* output, + framework::Tensor* mask); }; -template +template class MaxPool2dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* input_grad); }; -template +template class MaxPool3dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, std::vector& ksize, - std::vector& strides, std::vector& paddings, - framework::Tensor* output, framework::Tensor* mask); + void operator()(const DeviceContext& context, const framework::Tensor& input, + std::vector& ksize, std::vector& strides, + std::vector& paddings, framework::Tensor* output, + framework::Tensor* mask); }; -template +template class MaxPool3dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, diff --git a/paddle/operators/math/selected_rows_functor.cc b/paddle/operators/math/selected_rows_functor.cc index 514f2adef2..8a1ebb58c2 100644 --- a/paddle/operators/math/selected_rows_functor.cc +++ b/paddle/operators/math/selected_rows_functor.cc @@ -12,15 +12,17 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/operators/math/selected_rows_functor.h" +#include + #include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/selected_rows_functor.h" namespace paddle { namespace operators { namespace math { template -struct SelectedRowsAdd { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAdd { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2, framework::SelectedRows* output) { @@ -67,12 +69,12 @@ struct SelectedRowsAdd { } }; -template struct SelectedRowsAdd; -template struct SelectedRowsAdd; +template struct SelectedRowsAdd; +template struct SelectedRowsAdd; template -struct SelectedRowsAddTensor { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddTensor { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input1, const framework::Tensor& input2, framework::Tensor* output) { auto in1_height = input1.height(); @@ -88,7 +90,7 @@ struct SelectedRowsAddTensor { PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height); PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height); - SetConstant functor; + SetConstant functor; functor(context, output, 0.0); auto* in1_data = in1_value.data(); @@ -103,17 +105,16 @@ struct SelectedRowsAddTensor { auto out_eigen = framework::EigenVector::Flatten(*output); auto in2_eigen = framework::EigenVector::Flatten(input2); - out_eigen.device(*context.GetEigenDevice()) = - out_eigen + in2_eigen; + out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen; } }; -template struct SelectedRowsAddTensor; -template struct SelectedRowsAddTensor; +template struct SelectedRowsAddTensor; +template struct SelectedRowsAddTensor; template -struct SelectedRowsAddTo { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddTo { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input1, const int64_t input2_offset, framework::SelectedRows* input2) { @@ -143,14 +144,14 @@ struct SelectedRowsAddTo { } }; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; template -struct SelectedRowsAddToTensor { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddToTensor { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input1, framework::Tensor* input2) { auto in1_height = input1.height(); @@ -175,11 +176,123 @@ struct SelectedRowsAddToTensor { } }; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; + +// This is a separated namespace for manipulate SelectedRows typed +// data. Like merge duplicated rows, adding two SelectedRows etc. +// +// Another group of functors is called "scatter updates", which means +// use SelectedRows to update a dense tensor with different Ops, like +// add or mul. +namespace scatter { + +size_t FindPos(const std::vector& rows, int64_t value) { + return std::find(rows.begin(), rows.end(), value) - rows.begin(); +} + +template +struct MergeAdd { + framework::SelectedRows operator()(const platform::CPUDeviceContext& context, + const framework::SelectedRows& input) { + framework::SelectedRows out; + auto input_rows = input.rows(); + std::set row_set(input_rows.begin(), input_rows.end()); + std::vector merge_rows(row_set.begin(), row_set.end()); + + auto input_width = input.value().dims()[1]; + out.set_rows(merge_rows); + out.set_height(input.height()); + out.mutable_value()->mutable_data( + framework::make_ddim( + {static_cast(merge_rows.size()), input_width}), + context.GetPlace()); + + math::SetConstant constant_functor; + constant_functor(context, out.mutable_value(), 0.0); + + auto* out_data = out.mutable_value()->data(); + auto* input_data = input.value().data(); + + for (size_t i = 0; i < input_rows.size(); i++) { + size_t out_i = FindPos(merge_rows, input_rows[i]); + for (int64_t j = 0; j < input_width; j++) { + out_data[out_i * input_width + j] += input_data[i * input_width + j]; + } + } + return out; + } +}; + +template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; + +template +struct UpdateToTensor { + void operator()(const platform::CPUDeviceContext& context, + const ScatterOps& op, const framework::SelectedRows& input1, + framework::Tensor* input2) { + auto in1_height = input1.height(); + auto in2_dims = input2->dims(); + PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]); + + auto& in1_value = input1.value(); + auto& in1_rows = input1.rows(); + + int64_t in1_row_numel = in1_value.numel() / in1_rows.size(); + PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height); + + auto* in1_data = in1_value.data(); + auto* input2_data = input2->data(); + + // FIXME(typhoonzero): use macro fix the below messy code. + switch (op) { + case ScatterOps::ASSIGN: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] = + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::ADD: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] += + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::SUB: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] -= + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::SUBBY: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] = + in1_data[i * in1_row_numel + j] - + input2_data[in1_rows[i] * in1_row_numel + j]; + break; + case ScatterOps::MUL: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] *= + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::DIV: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] /= + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::DIVBY: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] = + in1_data[i * in1_row_numel + j] / + input2_data[in1_rows[i] * in1_row_numel + j]; + break; + } + } +}; +} // namespace scatter } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor.cu b/paddle/operators/math/selected_rows_functor.cu index c1dd323ba2..0ee456f9bc 100644 --- a/paddle/operators/math/selected_rows_functor.cu +++ b/paddle/operators/math/selected_rows_functor.cu @@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include + #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/selected_rows_functor.h" #include "paddle/platform/cuda_helper.h" @@ -20,8 +22,8 @@ namespace paddle { namespace operators { namespace math { template -struct SelectedRowsAdd { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAdd { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2, framework::SelectedRows* output) { @@ -58,22 +60,21 @@ struct SelectedRowsAdd { PADDLE_ENFORCE(platform::is_gpu_place(out_place)); memory::Copy( - boost::get(out_place), out_data, - boost::get(in1_place), in1_data, + boost::get(out_place), out_data, + boost::get(in1_place), in1_data, in1_value.numel() * sizeof(T), reinterpret_cast(context).stream()); auto* in2_data = in2_value.data(); - memory::Copy( - boost::get(out_place), out_data + in1_value.numel(), - boost::get(in2_place), in2_data, - in2_value.numel() * sizeof(T), - reinterpret_cast(context).stream()); + memory::Copy(boost::get(out_place), + out_data + in1_value.numel(), + boost::get(in2_place), in2_data, + in2_value.numel() * sizeof(T), context.stream()); } }; -template struct SelectedRowsAdd; -template struct SelectedRowsAdd; +template struct SelectedRowsAdd; +template struct SelectedRowsAdd; namespace { template @@ -96,8 +97,8 @@ __global__ void SelectedRowsAddTensorKernel(const T* selected_rows, } // namespace template -struct SelectedRowsAddTensor { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddTensor { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input1, const framework::Tensor& input2, framework::Tensor* output) { auto in1_height = input1.height(); @@ -117,30 +118,28 @@ struct SelectedRowsAddTensor { auto* in2_data = input2.data(); auto* out_data = output->data(); - SetConstant functor; + SetConstant functor; functor(context, output, 0.0); const int block_size = 256; dim3 threads(block_size, 1); dim3 grid(1, in1_rows.size()); - SelectedRowsAddTensorKernel<<< - grid, threads, 0, - reinterpret_cast(context) - .stream()>>>(in1_data, in1_rows.data(), out_data, in1_row_numel); + SelectedRowsAddTensorKernel< + T, block_size><<>>( + in1_data, in1_rows.data(), out_data, in1_row_numel); auto out_eigen = framework::EigenVector::Flatten(*output); auto in2_eigen = framework::EigenVector::Flatten(input2); - out_eigen.device(*context.GetEigenDevice()) = - out_eigen + in2_eigen; + out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen; } }; -template struct SelectedRowsAddTensor; -template struct SelectedRowsAddTensor; +template struct SelectedRowsAddTensor; +template struct SelectedRowsAddTensor; template -struct SelectedRowsAddTo { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddTo { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input1, const int64_t input2_offset, framework::SelectedRows* input2) { @@ -163,18 +162,17 @@ struct SelectedRowsAddTo { auto* in1_data = in1_value.data(); auto* in2_data = in2_value->data(); - memory::Copy( - boost::get(in2_place), in2_data + input2_offset, - boost::get(in1_place), in1_data, - in1_value.numel() * sizeof(T), - reinterpret_cast(context).stream()); + memory::Copy(boost::get(in2_place), + in2_data + input2_offset, + boost::get(in1_place), in1_data, + in1_value.numel() * sizeof(T), context.stream()); } }; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; namespace { template @@ -197,8 +195,8 @@ __global__ void SelectedRowsAddToTensorKernel(const T* selected_rows, } // namespace template -struct SelectedRowsAddToTensor { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddToTensor { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input1, framework::Tensor* input2) { auto in1_height = input1.height(); @@ -216,17 +214,167 @@ struct SelectedRowsAddToTensor { const int block_size = 256; dim3 threads(block_size, 1); dim3 grid(1, in1_rows.size()); - SelectedRowsAddToTensorKernel<<< - grid, threads, 0, - reinterpret_cast(context) - .stream()>>>(in1_data, in1_rows.data(), in2_data, in1_row_numel); + SelectedRowsAddToTensorKernel< + T, block_size><<>>( + in1_data, in1_rows.data(), in2_data, in1_row_numel); + } +}; + +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; + +namespace scatter { + +template +__global__ void MergeAddKernel(const T* input, const int64_t* input_rows, + T* out, const int64_t* out_rows, + size_t out_rows_size, int64_t row_numel) { + const int ty = blockIdx.y; + int tid = threadIdx.x; + __shared__ size_t out_idx; + + if (tid == 0) { + for (size_t i = 0; i < out_rows_size; i++) { + if (input_rows[ty] == out_rows[i]) { + out_idx = i; + } + } + } + + __syncthreads(); + + input += ty * row_numel; + out += out_idx * row_numel; + for (int index = tid; index < row_numel; index += block_size) { + paddle::platform::CudaAtomicAdd(out + index, input[index]); + } +} + +template +struct MergeAdd { + framework::SelectedRows operator()(const platform::CUDADeviceContext& context, + const framework::SelectedRows& input) { + framework::SelectedRows out; + auto input_rows = input.rows(); + std::set row_set(input_rows.begin(), input_rows.end()); + std::vector merge_rows(row_set.begin(), row_set.end()); + + auto input_width = input.value().dims()[1]; + + out.set_rows(merge_rows); + out.set_height(input.height()); + out.mutable_value()->mutable_data( + framework::make_ddim( + {static_cast(merge_rows.size()), input_width}), + context.GetPlace()); + + math::SetConstant constant_functor; + constant_functor(context, out.mutable_value(), 0.0); + + auto* out_data = out.mutable_value()->data(); + auto* input_data = input.value().data(); + + const int block_size = 256; + dim3 threads(block_size, 1); + dim3 grid1(1, input_rows.size()); + + MergeAddKernel< + T, 256><<(context) + .stream()>>>(input_data, input.rows().data(), out_data, + out.rows().data(), out.rows().size(), + input_width); + return out; } }; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; +template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; + +template +__global__ void UpdateToTensorKernel(const T* selected_rows, + const int64_t* rows, const ScatterOps& op, + T* tensor_out, int64_t row_numel) { + const int ty = blockIdx.y; + int tid = threadIdx.x; + + selected_rows += ty * row_numel; + tensor_out += rows[ty] * row_numel; + // FIXME(typhoonzero): use macro fix the below messy code. + switch (op) { + case ScatterOps::ASSIGN: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] = selected_rows[index]; + } + break; + case ScatterOps::ADD: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] += selected_rows[index]; + } + break; + case ScatterOps::SUB: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] -= selected_rows[index]; + } + break; + case ScatterOps::SUBBY: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] = selected_rows[index] - tensor_out[index]; + } + break; + case ScatterOps::MUL: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] *= selected_rows[index]; + } + break; + case ScatterOps::DIV: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] /= selected_rows[index]; + } + break; + case ScatterOps::DIVBY: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] = selected_rows[index] / tensor_out[index]; + } + break; + } +} + +template +struct UpdateToTensor { + void operator()(const platform::CUDADeviceContext& context, + const ScatterOps& op, const framework::SelectedRows& input1, + framework::Tensor* input2) { + // NOTE: Use SelectedRowsAddToTensor for better performance + // no additional MergeAdd called. + MergeAdd merge_func; + auto merged_in1 = merge_func(context, input1); + + auto in1_height = merged_in1.height(); + auto in2_dims = input2->dims(); + PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]); + + auto& in1_value = merged_in1.value(); + auto& in1_rows = merged_in1.rows(); + + int64_t in1_row_numel = in1_value.numel() / in1_rows.size(); + PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height); + + auto* in1_data = in1_value.template data(); + auto* in2_data = input2->data(); + + dim3 threads(platform::PADDLE_CUDA_NUM_THREADS, 1); + dim3 grid(1, in1_rows.size()); + UpdateToTensorKernel<<< + grid, threads, 0, context.stream()>>>(in1_data, in1_rows.data(), op, + in2_data, in1_row_numel); + } +}; +} // namespace scatter } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor.h b/paddle/operators/math/selected_rows_functor.h index d6dc6c03c9..09d4631905 100644 --- a/paddle/operators/math/selected_rows_functor.h +++ b/paddle/operators/math/selected_rows_functor.h @@ -12,46 +12,123 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include "paddle/framework/eigen.h" #include "paddle/framework/selected_rows.h" #include "paddle/platform/device_context.h" +#define INLINE_FOR2(sizei, sizej) \ + for (int64_t i = 0; i < sizei; i++) \ + for (int64_t j = 0; j < sizej; j++) + namespace paddle { namespace operators { namespace math { // SelectedRows + SelectedRows will simplely concat value and rows. // The real computation happens in dealing with LoDTensor. -template +template struct SelectedRowsAdd { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2, framework::SelectedRows* output); }; -template +template struct SelectedRowsAddTensor { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const framework::Tensor& input2, framework::Tensor* output); }; // input2 = input1 + input2 -template +template struct SelectedRowsAddTo { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const int64_t input2_offset, framework::SelectedRows* input2); }; // input2 = input1 + input2 -template +template struct SelectedRowsAddToTensor { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, + const framework::SelectedRows& input1, + framework::Tensor* input2); +}; + +namespace scatter { +// functors for manuplating SelectedRows data +template +struct MergeAdd { + // unary functor, merge by adding duplicated rows in + // the input SelectedRows object. + framework::SelectedRows operator()(const DeviceContext& context, + const framework::SelectedRows& input); +}; + +template +struct Add { + framework::SelectedRows operator()(const DeviceContext& context, + const framework::SelectedRows& input1, + const framework::SelectedRows& input2) { + framework::SelectedRows out; + out.set_rows(input1.rows()); + out.set_height(input1.height()); + out.mutable_value()->mutable_data(input1.value().dims(), + context.GetPlace()); + auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); + auto e_in1 = framework::EigenVector::Flatten(input1.value()); + auto e_in2 = framework::EigenVector::Flatten(input2.value()); + e_out.device(*context.eigen_device()) = e_in1 + e_in2; + return out; + } +}; + +template +struct Mul { + // multiply two SelectedRows + framework::SelectedRows operator()(const DeviceContext& context, + const framework::SelectedRows& input1, + const framework::SelectedRows& input2) { + framework::SelectedRows out; + out.set_rows(input1.rows()); + out.set_height(input1.height()); + out.mutable_value()->mutable_data(input1.value().dims(), + context.GetPlace()); + auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); + auto e_in1 = framework::EigenVector::Flatten(input1.value()); + auto e_in2 = framework::EigenVector::Flatten(input2.value()); + e_out.device(*context.eigen_device()) = e_in1 * e_in2; + return out; + } + // multiply scalar to SelectedRows + framework::SelectedRows operator()(const DeviceContext& context, + const framework::SelectedRows& input1, + const T input2) { + framework::SelectedRows out; + out.set_rows(input1.rows()); + out.set_height(input1.height()); + out.mutable_value()->mutable_data(input1.value().dims(), + context.GetPlace()); + auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); + auto e_in1 = framework::EigenVector::Flatten(input1.value()); + e_out.device(*context.eigen_device()) = input2 * e_in1; + return out; + } +}; + +enum class ScatterOps { ASSIGN, ADD, SUB, SUBBY, MUL, DIV, DIVBY }; + +// out = seleted_rows_in / tensor +template +struct UpdateToTensor { + void operator()(const DeviceContext& context, const ScatterOps& op, const framework::SelectedRows& input1, framework::Tensor* input2); }; +} // namespace scatter } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor_test.cc b/paddle/operators/math/selected_rows_functor_test.cc index a3649b6875..8c74cab0a1 100644 --- a/paddle/operators/math/selected_rows_functor_test.cc +++ b/paddle/operators/math/selected_rows_functor_test.cc @@ -23,7 +23,7 @@ TEST(selected_rows_functor, cpu_add) { CPUPlace cpu_place; CPUDeviceContext ctx(cpu_place); - SetConstant functor; + SetConstant functor; int64_t height = 10; int64_t row_numel = 10; @@ -47,7 +47,7 @@ TEST(selected_rows_functor, cpu_add) { // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), cpu_place); - SelectedRowsAdd add_functor; + SelectedRowsAdd add_functor; add_functor(ctx, *selected_rows1, *selected_rows2, output.get()); auto out_height = output->height(); @@ -85,7 +85,7 @@ TEST(selected_rows_functor, cpu_add) { std::unique_ptr tensor2{new Tensor()}; tensor2->mutable_data(make_ddim({height, row_numel}), cpu_place); - SelectedRowsAddTensor add_tensor_functor; + SelectedRowsAddTensor add_tensor_functor; add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); auto* tensor2_data = tensor2->data(); @@ -112,7 +112,7 @@ TEST(selected_rows_functor, cpu_add_to) { CPUPlace cpu_place; CPUDeviceContext ctx(cpu_place); - SetConstant functor; + SetConstant functor; int64_t height = 10; int64_t row_numel = 10; @@ -137,7 +137,7 @@ TEST(selected_rows_functor, cpu_add_to) { // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), cpu_place); - SelectedRowsAddTo add_to_functor; + SelectedRowsAddTo add_to_functor; add_to_functor(ctx, *selected_rows1, 0, output.get()); add_to_functor(ctx, *selected_rows2, in1_value->numel(), output.get()); @@ -173,7 +173,7 @@ TEST(selected_rows_functor, cpu_add_to) { tensor1->mutable_data(make_ddim({height, row_numel}), cpu_place); functor(ctx, tensor1.get(), 3.0); - SelectedRowsAddToTensor add_to_tensor_functor; + SelectedRowsAddToTensor add_to_tensor_functor; add_to_tensor_functor(ctx, *output, tensor1.get()); auto* tensor1_data = tensor1->data(); diff --git a/paddle/operators/math/selected_rows_functor_test.cu b/paddle/operators/math/selected_rows_functor_test.cu index 7de9291c17..38808e1301 100644 --- a/paddle/operators/math/selected_rows_functor_test.cu +++ b/paddle/operators/math/selected_rows_functor_test.cu @@ -21,10 +21,10 @@ TEST(selected_rows_functor, gpu_add) { using namespace paddle::platform; using namespace paddle::operators::math; - GPUPlace gpu_place(0); + CUDAPlace gpu_place(0); CPUPlace cpu_place; CUDADeviceContext ctx(gpu_place); - SetConstant functor; + SetConstant functor; int64_t height = 10; int64_t row_numel = 10; @@ -48,7 +48,7 @@ TEST(selected_rows_functor, gpu_add) { // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), gpu_place); - SelectedRowsAdd add_functor; + SelectedRowsAdd add_functor; add_functor(ctx, *selected_rows1, *selected_rows2, output.get()); auto out_height = output->height(); @@ -67,7 +67,7 @@ TEST(selected_rows_functor, gpu_add) { EXPECT_EQ(out_rows[6], 9); Tensor out_cpu; - CopyFrom(*out_value, cpu_place, ctx, &out_cpu); + Copy(*out_value, cpu_place, ctx, &out_cpu); ctx.Wait(); auto* out_cpu_data = out_cpu.data(); @@ -90,11 +90,11 @@ TEST(selected_rows_functor, gpu_add) { std::unique_ptr tensor2{new Tensor()}; tensor2->mutable_data(make_ddim({height, row_numel}), gpu_place); - SelectedRowsAddTensor add_tensor_functor; + SelectedRowsAddTensor add_tensor_functor; add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); Tensor tensor2_cpu; - CopyFrom(*tensor2, cpu_place, ctx, &tensor2_cpu); + Copy(*tensor2, cpu_place, ctx, &tensor2_cpu); ctx.Wait(); auto* tensor2_cpu_data = tensor2_cpu.data(); @@ -119,10 +119,10 @@ TEST(selected_rows_functor, gpu_add_to) { using namespace paddle::platform; using namespace paddle::operators::math; - GPUPlace gpu_place(0); + CUDAPlace gpu_place(0); CPUPlace cpu_place; CUDADeviceContext ctx(gpu_place); - SetConstant functor; + SetConstant functor; int64_t height = 10; int64_t row_numel = 10; @@ -147,7 +147,7 @@ TEST(selected_rows_functor, gpu_add_to) { // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), gpu_place); - SelectedRowsAddTo add_to_functor; + SelectedRowsAddTo add_to_functor; add_to_functor(ctx, *selected_rows1, 0, output.get()); add_to_functor(ctx, *selected_rows2, in1_value->numel(), output.get()); @@ -167,7 +167,7 @@ TEST(selected_rows_functor, gpu_add_to) { EXPECT_EQ(out_rows[6], 9); Tensor out_cpu; - CopyFrom(*out_value, cpu_place, ctx, &out_cpu); + Copy(*out_value, cpu_place, ctx, &out_cpu); ctx.Wait(); auto* out_cpu_data = out_cpu.data(); @@ -187,11 +187,11 @@ TEST(selected_rows_functor, gpu_add_to) { tensor1->mutable_data(make_ddim({height, row_numel}), gpu_place); functor(ctx, tensor1.get(), 3.0); - SelectedRowsAddToTensor add_to_tensor_functor; + SelectedRowsAddToTensor add_to_tensor_functor; add_to_tensor_functor(ctx, *output, tensor1.get()); Tensor tensor1_cpu; - CopyFrom(*tensor1, cpu_place, ctx, &tensor1_cpu); + Copy(*tensor1, cpu_place, ctx, &tensor1_cpu); ctx.Wait(); auto* tensor1_cpu_data = tensor1_cpu.data(); diff --git a/paddle/operators/math/sequence2batch.cc b/paddle/operators/math/sequence2batch.cc index 5b3bde02fb..e459a42ca2 100644 --- a/paddle/operators/math/sequence2batch.cc +++ b/paddle/operators/math/sequence2batch.cc @@ -13,15 +13,16 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/math/sequence2batch.h" +#include "paddle/operators/math/math_function.h" namespace paddle { namespace operators { namespace math { template -class CopyMatrixRowsFunctor { +class CopyMatrixRowsFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& src, const size_t* index, framework::Tensor& dst, bool is_src_index) { auto src_dims = src.dims(); @@ -48,13 +49,13 @@ class CopyMatrixRowsFunctor { } }; -template class CopyMatrixRowsFunctor; -template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; -template class LoDTensor2BatchFunctor; -template class LoDTensor2BatchFunctor; -template class Batch2LoDTensorFunctor; -template class Batch2LoDTensorFunctor; +template class LoDTensor2BatchFunctor; +template class LoDTensor2BatchFunctor; +template class Batch2LoDTensorFunctor; +template class Batch2LoDTensorFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/sequence2batch.cu b/paddle/operators/math/sequence2batch.cu index c5d968aeb2..452ae89510 100644 --- a/paddle/operators/math/sequence2batch.cu +++ b/paddle/operators/math/sequence2batch.cu @@ -39,9 +39,9 @@ __global__ void CopyMatrixRowsKernel(const T* src, T* dst, const size_t* index, } template -class CopyMatrixRowsFunctor { +class CopyMatrixRowsFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& src, const size_t* index, framework::Tensor& dst, bool is_src_index) { auto src_dims = src.dims(); @@ -59,20 +59,19 @@ class CopyMatrixRowsFunctor { dim3 threads(128, 8); dim3 grid(8, 1); - auto stream = - reinterpret_cast(context).stream(); + auto stream = context.stream(); CopyMatrixRowsKernel<<>>( src_data, dst_data, index, height, width, is_src_index); } }; -template class CopyMatrixRowsFunctor; -template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; -template class LoDTensor2BatchFunctor; -template class LoDTensor2BatchFunctor; -template class Batch2LoDTensorFunctor; -template class Batch2LoDTensorFunctor; +template class LoDTensor2BatchFunctor; +template class LoDTensor2BatchFunctor; +template class Batch2LoDTensorFunctor; +template class Batch2LoDTensorFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/sequence2batch.h b/paddle/operators/math/sequence2batch.h index 73295ddbcb..a5c43a2c7d 100644 --- a/paddle/operators/math/sequence2batch.h +++ b/paddle/operators/math/sequence2batch.h @@ -26,7 +26,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class CopyMatrixRowsFunctor { public: // If is_src_index is true, @@ -34,12 +34,12 @@ class CopyMatrixRowsFunctor { // If is_src_index is false, // copy the input src to the indexed rows of output dst. // The indexed rows are based on the input index. - void operator()(const platform::DeviceContext& context, - const framework::Tensor& src, const size_t* index, - framework::Tensor& dst, bool is_src_index); + void operator()(const DeviceContext& context, const framework::Tensor& src, + const size_t* index, framework::Tensor& dst, + bool is_src_index); }; -template +template class LoDTensor2BatchFunctor { // Calculate the length of each sequence and // sort sequence index by the length. @@ -56,7 +56,7 @@ class LoDTensor2BatchFunctor { }; public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::LoDTensor& lod_tensor, framework::LoDTensor& batch, bool is_cal_batch_lod, bool is_reverse = false) const { @@ -65,7 +65,7 @@ class LoDTensor2BatchFunctor { PADDLE_ENFORCE_GT(lods.size(), 2UL); PADDLE_ENFORCE_EQ(lods[1].size(), static_cast(lod_tensor.dims()[0])); - CopyMatrixRowsFunctor to_batch; + CopyMatrixRowsFunctor to_batch; to_batch(context, lod_tensor, lods[1].data(), batch, true); return; } @@ -143,22 +143,22 @@ class LoDTensor2BatchFunctor { } batch.set_lod(batch_lods); - CopyMatrixRowsFunctor to_batch; + CopyMatrixRowsFunctor to_batch; to_batch(context, lod_tensor, seq2batch_idx, batch, true); } }; -template +template class Batch2LoDTensorFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::LoDTensor& batch, framework::LoDTensor& lod_tensor) const { auto in_lod = batch.lod(); PADDLE_ENFORCE_GT(in_lod.size(), 2UL); PADDLE_ENFORCE_EQ(in_lod[1].size(), static_cast(lod_tensor.dims()[0])); - CopyMatrixRowsFunctor to_seq; + CopyMatrixRowsFunctor to_seq; size_t* index = in_lod[1].data(); to_seq(context, batch, index, lod_tensor, false); } diff --git a/paddle/operators/math/sequence_padding.cc b/paddle/operators/math/sequence_padding.cc new file mode 100644 index 0000000000..2e69aa47eb --- /dev/null +++ b/paddle/operators/math/sequence_padding.cc @@ -0,0 +1,146 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence_padding.h" + +namespace paddle { +namespace operators { +namespace math { + +template +class PaddingLoDTensorFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + const framework::LoDTensor& seq, framework::Tensor& padding, + bool norm_by_times) { + auto lod = seq.lod(); + PADDLE_ENFORCE_GT(lod.size(), 0UL, + "The LoD of LoDTensor seq should not be null."); + + const size_t level = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + auto seq_dims = seq.dims(); + PADDLE_ENFORCE_EQ(seq_dims[0], + static_cast(abs_offset_lod[level].back()), + "The first dimension of LoDTensor seq should be " + "equal to the sum of all sequences's length."); + + auto padding_dims = padding.dims(); + PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL, + "The input padding should be a 3-D Tensor of shape " + "[max_sequence_length, num_sequences, sequence_width]."); + + const int64_t max_sequence_length = MaximumSequenceLength(lod, level); + PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, + "The first dimension of Tensor padding should be the " + "maximum length of all sequences in LoDTensor seq."); + + const int64_t num_sequences = abs_offset_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, + "The second dimension of Tensor padding should be the " + "number of sequences in LoDTensor seq."); + + const int64_t sequence_width = seq.numel() / seq_dims[0]; + PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, + "The third dimension of Tensor padding should be the " + "width of sequence in LoDTensor seq."); + + const T* seq_data = seq.data(); + T* padding_data = padding.data(); + for (int64_t i = 0; i < max_sequence_length; ++i) { + for (int64_t j = 0; j < num_sequences; ++j) { + int64_t start_pos = abs_offset_lod[level][j]; + int64_t sequence_length = abs_offset_lod[level][j + 1] - start_pos; + if (i < sequence_length) { + // i > 0 => sequence_length > 0 + T scale = + norm_by_times ? (1.0f / static_cast(sequence_length)) : 1.0f; + for (int64_t k = 0; k < sequence_width; ++k) { + padding_data[(i * num_sequences + j) * sequence_width + k] = + seq_data[(start_pos + i) * sequence_width + k] * scale; + } + } else { + memset(padding_data + (i * num_sequences + j) * sequence_width, 0, + sequence_width * sizeof(T)); + } + } + } + } +}; + +template +class UnpaddingLoDTensorFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + framework::LoDTensor& seq, const framework::Tensor& padding, + bool norm_by_times) { + auto lod = seq.lod(); + PADDLE_ENFORCE_GT(lod.size(), 0UL, + "The LoD of LoDTensor seq should not be null."); + + const size_t level = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + auto seq_dims = seq.dims(); + PADDLE_ENFORCE_EQ(seq_dims[0], + static_cast(abs_offset_lod[level].back()), + "The first dimension of LoDTensor seq should be " + "equal to the sum of all sequences's length."); + + auto padding_dims = padding.dims(); + PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL, + "The input padding should be a 3-D Tensor of shape " + "[max_sequnece_length, num_sequences, sequence_width]."); + + const int64_t max_sequence_length = MaximumSequenceLength(lod, level); + PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, + "The first dimension of Tensor padding should be " + "the maximum length of all sequences in LoDTensor seq."); + + const int64_t num_sequences = abs_offset_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, + "The second dimension of Tensor padding should be " + "the number of sequences in LoDTensor seq."); + + const int64_t sequence_width = seq.numel() / seq_dims[0]; + PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, + "The third dimension of Tensor padding should be the " + "width of sequence in LoDTensor seq."); + + const T* padding_data = padding.data(); + T* seq_data = seq.data(); + for (int64_t i = 0; i < num_sequences; ++i) { + int64_t start_pos = abs_offset_lod[level][i]; + int64_t sequence_length = abs_offset_lod[level][i + 1] - start_pos; + for (int64_t j = 0; j < sequence_length; ++j) { + // sequence_width > j > 0 + T scale = + norm_by_times ? (1.0f / static_cast(sequence_length)) : 1.0f; + for (int64_t k = 0; k < sequence_width; ++k) { + seq_data[(start_pos + j) * sequence_width + k] = + padding_data[(j * num_sequences + i) * sequence_width + k] * + scale; + } + } + } + } +}; + +template class PaddingLoDTensorFunctor; +template class UnpaddingLoDTensorFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence_padding.cu b/paddle/operators/math/sequence_padding.cu new file mode 100644 index 0000000000..a38df26f59 --- /dev/null +++ b/paddle/operators/math/sequence_padding.cu @@ -0,0 +1,211 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence_padding.h" + +namespace paddle { +namespace operators { +namespace math { + +template +__global__ void SequencePaddingKernel(T* padding, T* sequence, + const size_t* sequence_start_positions, + const size_t sequence_width, + const size_t max_sequence_length, + const size_t num_sequences) { + size_t padding_idx = blockIdx.y; + size_t start_pos = sequence_start_positions[padding_idx]; + size_t sequence_length = + sequence_start_positions[padding_idx + 1] - start_pos; + + size_t sequence_idx = blockIdx.x * blockDim.y + threadIdx.y; + size_t padding_base_idx = + (sequence_idx * num_sequences + padding_idx) * sequence_width; + size_t sequence_base_idx = (start_pos + sequence_idx) * sequence_width; + + if (sequence_idx < sequence_length) { + T scale = NormByTimes ? (1.0f / static_cast(sequence_length)) : 1.0f; + if (Padding) { + /* sequence -> padding */ + for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) { + padding[padding_base_idx + i] = scale * sequence[sequence_base_idx + i]; + } + } else { + /* padding -> sequence */ + for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) { + sequence[sequence_base_idx + i] = scale * padding[padding_base_idx + i]; + } + } + } else if (sequence_idx < max_sequence_length) { + if (Padding) { + /* sequence -> padding */ + for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) { + padding[padding_base_idx + i] = 0; + } + } + } +} + +template +class PaddingLoDTensorFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + const framework::LoDTensor& seq, framework::Tensor& padding, + bool norm_by_times) { + auto lod = seq.lod(); + PADDLE_ENFORCE_GT(lod.size(), 0UL, + "The lod of LoDTensor seq should not be null."); + + const size_t level = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + auto seq_dims = seq.dims(); + PADDLE_ENFORCE_EQ(seq_dims[0], + static_cast(abs_offset_lod[level].back()), + "The first dimension of LoDTensor seq should be " + "equal to the sum of all sequences's length."); + + auto padding_dims = padding.dims(); + PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL, + "The input padding should be a 3-D Tensor of shape " + "[max_sequence_length, num_sequences, sequence_width]."); + + int64_t max_sequence_length = MaximumSequenceLength(lod, level); + PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, + "The first dimension of Tensor padding should be the " + "maximum length of all sequences in LoDTensor seq."); + + const int64_t num_sequences = abs_offset_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, + "The second dimension of Tensor padding should be the " + "number of sequences in LoDTensor seq."); + + const int64_t sequence_width = seq.numel() / seq_dims[0]; + PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, + "The third dimension of Tensor padding should be the " + "width of sequence in LoDTensor seq."); + + if (!norm_by_times && num_sequences == 1UL) { + Copy(seq, context.GetPlace(), context, &padding); + padding.Resize(padding_dims); + return; + } + + const int64_t kBlockSize = 512; + + /* At least use 32 threads to copy sequence_width elements, + * and at least 8 elements for each thread. + */ + size_t block_dim_x = + std::min(((((sequence_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize); + size_t block_dim_y = kBlockSize / block_dim_x; + dim3 threads(block_dim_x, block_dim_y); + + size_t grid_dim_x = (max_sequence_length + block_dim_y - 1) / block_dim_y; + size_t grid_dim_y = num_sequences; + dim3 grid(grid_dim_x, grid_dim_y); + + const T* seq_data = seq.data(); + T* padding_data = padding.data(); + if (norm_by_times) { + SequencePaddingKernel<<>>( + padding_data, const_cast(seq_data), abs_offset_lod[level].data(), + sequence_width, max_sequence_length, num_sequences); + } else { + SequencePaddingKernel<<>>( + padding_data, const_cast(seq_data), abs_offset_lod[level].data(), + sequence_width, max_sequence_length, num_sequences); + } + } +}; + +template +class UnpaddingLoDTensorFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + framework::LoDTensor& seq, const framework::Tensor& padding, + bool norm_by_times) { + auto lod = seq.lod(); + PADDLE_ENFORCE_GT(lod.size(), 0UL, + "The lod of LoDTensor seq should not be null."); + + const size_t level = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + auto seq_dims = seq.dims(); + PADDLE_ENFORCE_EQ(seq_dims[0], + static_cast(abs_offset_lod[level].back()), + "The first dimension of LoDTensor seq should be " + "equal to the sum of all sequences's length."); + + auto padding_dims = padding.dims(); + PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL, + "The input padding should be a 3-D Tensor of shape " + "[max_sequnece_length, num_sequences, sequence_width]."); + + int64_t max_sequence_length = MaximumSequenceLength(lod, level); + PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, + "The first dimension of Tensor padding should be " + "the maximum length of all sequences in LoDTensor seq."); + + const int64_t num_sequences = abs_offset_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, + "The second dimension of Tensor padding should be " + "the number of sequences in LoDTensor seq."); + + const int64_t sequence_width = seq.numel() / seq_dims[0]; + PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, + "The third dimension of Tensor padding should be the " + "width of sequence in LoDTensor seq."); + + if (!norm_by_times && num_sequences == 1UL) { + Copy(padding, context.GetPlace(), context, &seq); + seq.Resize(seq_dims); + return; + } + + const int64_t kBlockSize = 512; + + /* At least use 32 threads to copy sequence_width elements, + * and at least 8 elements for each thread. + */ + size_t block_dim_x = + std::min(((((sequence_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize); + size_t block_dim_y = kBlockSize / block_dim_x; + dim3 threads(block_dim_x, block_dim_y); + + size_t grid_dim_x = (max_sequence_length + block_dim_y - 1) / block_dim_y; + size_t grid_dim_y = num_sequences; + dim3 grid(grid_dim_x, grid_dim_y); + + const T* padding_data = padding.data(); + T* seq_data = seq.data(); + if (norm_by_times) { + SequencePaddingKernel<<>>( + const_cast(padding_data), seq_data, abs_offset_lod[level].data(), + sequence_width, max_sequence_length, num_sequences); + } else { + SequencePaddingKernel<<>>( + const_cast(padding_data), seq_data, abs_offset_lod[level].data(), + sequence_width, max_sequence_length, num_sequences); + } + } +}; + +template class PaddingLoDTensorFunctor; +template class UnpaddingLoDTensorFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence_padding.h b/paddle/operators/math/sequence_padding.h new file mode 100644 index 0000000000..8f586c5eb4 --- /dev/null +++ b/paddle/operators/math/sequence_padding.h @@ -0,0 +1,79 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/lod_tensor.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { +namespace math { + +inline static size_t MaximumSequenceLength(const framework::LoD& lod, + const size_t level) { + const size_t num_sequences = lod[level].size() - 1; + size_t max_sequence_length = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + for (size_t i = 0; i < num_sequences; ++i) { + max_sequence_length = + std::max(max_sequence_length, + abs_offset_lod[level][i + 1] - abs_offset_lod[level][i]); + } + return max_sequence_length; +} + +/* + * \brief Padding/Unpadding LoDTensor to/from normal Tensor of the shape + * [max_sequence_length, num_sequences, sequence_width]. + * + * Padding sequence: + * padding[i] = seq[lod[level][i]] + * Unpadding sequence: + * seq[lod[level][i]] = padding[i] + * + * All sequences will be padded to the same length and stored in a transposed + * shape. + * Example: + * seq (s0, s0, s0, s0; s1, s1; s2, s2, s2; s3) + * padding (s0, s1, s2, s3; s0, s1, s2, 0; s0, 0, s2, 0; s0, 0, 0, 0) + * + * \param context device context of this functor. + * \param seq LoDTensor which is stored in sequence format, the shape + * is [total_sequence_length, sequence_width] where + * total_sequence_length is the sum of all sequences' + * length. + * \param padding Tensor which is padded to the same length, the shape is + * [max_sequence_length, num_sequences, sequence_width]. + * \param norm_by_times whether dividing sequence's length. + * + * \note transposition is also done in this functor. + */ +template +class PaddingLoDTensorFunctor { + public: + void operator()(const DeviceContext& context, const framework::LoDTensor& seq, + framework::Tensor& padding, bool norm_by_times); +}; + +template +class UnpaddingLoDTensorFunctor { + public: + void operator()(const DeviceContext& context, framework::LoDTensor& seq, + const framework::Tensor& padding, bool norm_by_times); +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence_padding_test.cc b/paddle/operators/math/sequence_padding_test.cc new file mode 100644 index 0000000000..3e504f4a15 --- /dev/null +++ b/paddle/operators/math/sequence_padding_test.cc @@ -0,0 +1,104 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence_padding.h" +#include + +template +void TestSequencePadding(const paddle::framework::LoD& lod, + const size_t sequence_width) { + paddle::framework::LoDTensor cpu_seq; + paddle::framework::LoDTensor cpu_seq_back; + paddle::framework::LoDTensor seq; + paddle::framework::LoDTensor seq_back; + paddle::framework::Tensor padding; + + const size_t level = lod.size() - 1; + auto seq_dims = + paddle::framework::make_ddim({static_cast(lod[level].back()), + static_cast(sequence_width)}); + + cpu_seq.set_lod(lod); + cpu_seq.mutable_data(seq_dims, paddle::platform::CPUPlace()); + for (int64_t i = 0; i < cpu_seq.numel(); ++i) { + cpu_seq.data()[i] = static_cast(i); + } + + auto* place = new Place(); + DeviceContext* context = new DeviceContext(*place); + if (paddle::platform::is_cpu_place(*place)) { + seq = cpu_seq; + } else { + Copy(cpu_seq, *place, *context, &seq); + seq.set_lod(lod); + } + + const size_t max_sequence_length = + paddle::operators::math::MaximumSequenceLength(lod, level); + const size_t num_sequences = lod[level].size() - 1; + auto padding_dims = + paddle::framework::make_ddim({static_cast(max_sequence_length), + static_cast(num_sequences), + static_cast(sequence_width)}); + padding.mutable_data(padding_dims, *place); + paddle::operators::math::PaddingLoDTensorFunctor()( + *context, seq, padding, false); + + seq_back.set_lod(lod); + seq_back.mutable_data(seq_dims, *place); + paddle::operators::math::UnpaddingLoDTensorFunctor()( + *context, seq_back, padding, false); + + if (paddle::platform::is_cpu_place(*place)) { + cpu_seq_back = seq_back; + } else { + Copy(seq_back, paddle::platform::CPUPlace(), *context, &cpu_seq_back); + cpu_seq_back.set_lod(lod); + } + + EXPECT_EQ(cpu_seq.numel(), cpu_seq_back.numel()); + EXPECT_EQ(cpu_seq.dims(), cpu_seq_back.dims()); + for (int64_t i = 0; i < cpu_seq.numel(); ++i) { + EXPECT_EQ(cpu_seq.data()[i], cpu_seq_back.data()[i]); + } + + delete place; + delete context; +}; + +TEST(Seq2BatchPadding, CPU) { + paddle::framework::LoD lod1; + lod1.push_back(std::vector{0, 10}); + TestSequencePadding(lod1, 16); + + paddle::framework::LoD lod2; + lod2.push_back(std::vector{0, 2, 7, 10}); + TestSequencePadding(lod2, 128); +} + +#ifdef PADDLE_WITH_CUDA +TEST(SequencePadding, CUDA) { + paddle::framework::LoD lod1; + lod1.push_back(std::vector{0, 10}); + TestSequencePadding(lod1, 16); + + paddle::framework::LoD lod2; + lod2.push_back(std::vector{0, 2, 7, 10}); + TestSequencePadding(lod2, 128); +} +#endif diff --git a/paddle/operators/math/sequence_pooling.cc b/paddle/operators/math/sequence_pooling.cc index 5913c99fdb..8fb92b1a13 100644 --- a/paddle/operators/math/sequence_pooling.cc +++ b/paddle/operators/math/sequence_pooling.cc @@ -20,9 +20,9 @@ namespace operators { namespace math { template -class MaxSeqPoolFunctor { +class MaxSeqPoolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::LoDTensor& input, framework::Tensor* output, framework::Tensor* index) { auto in_dims = input.dims(); @@ -60,9 +60,9 @@ class MaxSeqPoolFunctor { }; template -class MaxSeqPoolGradFunctor { +class MaxSeqPoolGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& out_grad, const framework::Tensor& index, framework::LoDTensor* in_grad) { @@ -80,7 +80,7 @@ class MaxSeqPoolGradFunctor { const int* max_index = index.data(); T* ig_data = in_grad->data(); - SetConstant set_zero; + SetConstant set_zero; set_zero(context, in_grad, static_cast(0.0)); int64_t num_seq = og_dims[0]; int64_t dim = out_grad.numel() / num_seq; @@ -93,10 +93,10 @@ class MaxSeqPoolGradFunctor { } }; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolGradFunctor; -template class MaxSeqPoolGradFunctor; +template class MaxSeqPoolFunctor; +template class MaxSeqPoolFunctor; +template class MaxSeqPoolGradFunctor; +template class MaxSeqPoolGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/sequence_pooling.cu b/paddle/operators/math/sequence_pooling.cu index 5ed951402f..4c9e6b375c 100644 --- a/paddle/operators/math/sequence_pooling.cu +++ b/paddle/operators/math/sequence_pooling.cu @@ -46,9 +46,9 @@ __global__ void KeMaxSequencePool(const T* input, const size_t* starts, } template -class MaxSeqPoolFunctor { +class MaxSeqPoolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::LoDTensor& input, framework::Tensor* output, framework::Tensor* index) { auto in_dims = input.dims(); @@ -71,8 +71,7 @@ class MaxSeqPoolFunctor { dim3 threads(256, 1); dim3 grid(num_seq, 1); - auto stream = - reinterpret_cast(context).stream(); + auto stream = context.stream(); KeMaxSequencePool<<>>( in_data, starts.data(), out_data, max_index, num_seq, dim); } @@ -91,9 +90,9 @@ __global__ void KeMaxSequencePoolGrad(const T* out_grad, const int* max_index, } template -class MaxSeqPoolGradFunctor { +class MaxSeqPoolGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& out_grad, const framework::Tensor& index, framework::LoDTensor* in_grad) { @@ -111,7 +110,7 @@ class MaxSeqPoolGradFunctor { const int* max_index = index.data(); T* ig_data = in_grad->data(); - SetConstant set_zero; + SetConstant set_zero; set_zero(context, in_grad, static_cast(0.0)); int64_t num_seq = og_dims[0]; int64_t dim = out_grad.numel() / num_seq; @@ -119,17 +118,16 @@ class MaxSeqPoolGradFunctor { unsigned int blocks = (num_seq * dim + 128 - 1) / 128; dim3 threads(128, 1); dim3 grid(blocks, 1); - auto stream = - reinterpret_cast(context).stream(); + auto stream = context.stream(); KeMaxSequencePoolGrad<<>>( og_data, max_index, ig_data, num_seq, dim); } }; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolGradFunctor; -template class MaxSeqPoolGradFunctor; +template class MaxSeqPoolFunctor; +template class MaxSeqPoolFunctor; +template class MaxSeqPoolGradFunctor; +template class MaxSeqPoolGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/sequence_pooling.h b/paddle/operators/math/sequence_pooling.h index 35dfe26de1..13ffb2ebef 100644 --- a/paddle/operators/math/sequence_pooling.h +++ b/paddle/operators/math/sequence_pooling.h @@ -23,18 +23,18 @@ namespace math { #define FLT_MAX __FLT_MAX__ -template +template class MaxSeqPoolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::LoDTensor& input, framework::Tensor* output, framework::Tensor* index); }; -template +template class MaxSeqPoolGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::Tensor& out_grad, const framework::Tensor& index, framework::LoDTensor* in_grad); diff --git a/paddle/operators/math/sequence_scale.cc b/paddle/operators/math/sequence_scale.cc new file mode 100644 index 0000000000..7e439e9a2c --- /dev/null +++ b/paddle/operators/math/sequence_scale.cc @@ -0,0 +1,46 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence_scale.h" + +namespace paddle { +namespace operators { +namespace math { + +template +class ScaleLoDTensorFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + framework::LoDTensor& seq, const T* scales) { + const size_t level = 0; + auto lod = seq.lod(); + const size_t num_seq = lod[level].size() - 1; + size_t seq_width = seq.dims()[1]; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + T* seq_data = seq.mutable_data(context.GetPlace()); + for (size_t i = 0; i < num_seq; ++i) { + for (size_t j = lod[level][i] * seq_width; + j < lod[level][i + 1] * seq_width; ++j) { + seq_data[j] *= scales[i]; + } + } + } +}; + +template class ScaleLoDTensorFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence_scale.cu b/paddle/operators/math/sequence_scale.cu new file mode 100644 index 0000000000..ceaabd8e0f --- /dev/null +++ b/paddle/operators/math/sequence_scale.cu @@ -0,0 +1,57 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence_scale.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { +namespace math { + +using platform::PADDLE_CUDA_NUM_THREADS; + +template +__global__ void SequenceScaleKernel(T* seq, size_t* lod, const T* scales, + const size_t seq_width) { + for (int i = threadIdx.x; + i < (lod[blockIdx.x + 1] - lod[blockIdx.x]) * seq_width; + i += BlockSize) { + int idx = lod[blockIdx.x] * seq_width + i; + seq[idx] *= scales[blockIdx.x]; + } +} + +template +class ScaleLoDTensorFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + framework::LoDTensor& seq, const T* scales) { + const size_t level = 0; + auto lod = seq.lod(); + const size_t num_seq = lod[level].size() - 1; + const size_t seq_width = seq.numel() / seq.dims()[0]; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + T* seq_data = seq.mutable_data(context.GetPlace()); + + SequenceScaleKernel<<< + num_seq, PADDLE_CUDA_NUM_THREADS, 0, context.stream()>>>( + seq_data, abs_offset_lod[level].data(), scales, seq_width); + } +}; + +template class ScaleLoDTensorFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence_scale.h b/paddle/operators/math/sequence_scale.h new file mode 100644 index 0000000000..ecd9a57c3f --- /dev/null +++ b/paddle/operators/math/sequence_scale.h @@ -0,0 +1,55 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/lod_tensor.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { +namespace math { + +/* + * \brief Scale a sequence. + * + * All sequences will be padded to the same length and stored in a transposed + * shape. + * Example: + * Given: + * seq = (s0, s0, s0, s0; s1, s1; s2, s2, s2; s3) + * scales = (2, 3, 4, 5) + * then: + * result = (2*s0, 2*s0, 2*s0, 2*s0; 3*s1, 3*s1; 4*s2, 4*s2, 4*s2; 5*s3) + + * + * \param context Device context of this functor. + * \param seq LoDTensor which is stored in sequence format, the shape + * is [total_sequence_length, sequence_width] where + * total_sequence_length is the sum of all sequences' + * length. + * \param scales Array. The i-th sequence will be scaled by scales[i]. + * \param num_seq Number of sequence + * + */ +template +class ScaleLoDTensorFunctor { + public: + void operator()(const DeviceContext& context, framework::LoDTensor& seq, + const T* scales); +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/softmax.cc b/paddle/operators/math/softmax.cc index 3e2f15d6c2..72f10f35f4 100644 --- a/paddle/operators/math/softmax.cc +++ b/paddle/operators/math/softmax.cc @@ -19,10 +19,10 @@ namespace paddle { namespace operators { namespace math { -template class SoftmaxFunctor; -template class SoftmaxFunctor; -template class SoftmaxGradFunctor; -template class SoftmaxGradFunctor; +template class SoftmaxFunctor; +template class SoftmaxFunctor; +template class SoftmaxGradFunctor; +template class SoftmaxGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/softmax.cu b/paddle/operators/math/softmax.cu index 4dbab51d46..9e73f6a371 100644 --- a/paddle/operators/math/softmax.cu +++ b/paddle/operators/math/softmax.cu @@ -21,10 +21,10 @@ namespace paddle { namespace operators { namespace math { -template class SoftmaxFunctor; -template class SoftmaxFunctor; -template class SoftmaxGradFunctor; -template class SoftmaxGradFunctor; +template class SoftmaxFunctor; +template class SoftmaxFunctor; +template class SoftmaxGradFunctor; +template class SoftmaxGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/softmax.h b/paddle/operators/math/softmax.h index fe10746502..471f44d340 100644 --- a/paddle/operators/math/softmax.h +++ b/paddle/operators/math/softmax.h @@ -19,19 +19,18 @@ namespace paddle { namespace operators { namespace math { -template +template class SoftmaxFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor* X, framework::Tensor* Y); + void operator()(const DeviceContext& context, const framework::Tensor* X, + framework::Tensor* Y); }; -template +template class SoftmaxGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor* y, const framework::Tensor* y_grad, - framework::Tensor* x_grad); + void operator()(const DeviceContext& context, const framework::Tensor* y, + const framework::Tensor* y_grad, framework::Tensor* x_grad); }; } // namespace math diff --git a/paddle/operators/math/softmax_impl.h b/paddle/operators/math/softmax_impl.h index 05793eeb3e..82f597ff79 100644 --- a/paddle/operators/math/softmax_impl.h +++ b/paddle/operators/math/softmax_impl.h @@ -32,10 +32,10 @@ struct ValueClip { } }; -template -void SoftmaxFunctor::operator()( - const platform::DeviceContext& context, const framework::Tensor* X, - framework::Tensor* Y) { +template +void SoftmaxFunctor::operator()(const DeviceContext& context, + const framework::Tensor* X, + framework::Tensor* Y) { auto logits = EigenMatrix::From(*X); auto softmax = EigenMatrix::From(*Y); @@ -56,19 +56,18 @@ void SoftmaxFunctor::operator()( .broadcast(one_by_class)) .unaryExpr(ValueClip()); - softmax.device(*context.GetEigenDevice()) = shifted_logits.exp(); - softmax.device(*context.GetEigenDevice()) = - (softmax * - softmax.sum(along_class) - .inverse() - .eval() - .reshape(batch_by_one) - .broadcast(one_by_class)); + softmax.device(*context.eigen_device()) = shifted_logits.exp(); + softmax.device(*context.eigen_device()) = (softmax * + softmax.sum(along_class) + .inverse() + .eval() + .reshape(batch_by_one) + .broadcast(one_by_class)); } -template -void SoftmaxGradFunctor::operator()( - const platform::DeviceContext& context, const framework::Tensor* y, +template +void SoftmaxGradFunctor::operator()( + const DeviceContext& context, const framework::Tensor* y, const framework::Tensor* y_grad, framework::Tensor* x_grad) { auto softmax = EigenMatrix::From(*y); auto softmax_grad = EigenMatrix::From(*y_grad); @@ -89,8 +88,7 @@ void SoftmaxGradFunctor::operator()( .eval() .reshape(batch_by_one) .broadcast(one_by_class); - logits_grad.device(*context.GetEigenDevice()) = - (softmax_grad - dot) * softmax; + logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax; } } // namespace math diff --git a/paddle/operators/math/unpooling.cc b/paddle/operators/math/unpooling.cc index b57d3dc141..ecd3a647e0 100644 --- a/paddle/operators/math/unpooling.cc +++ b/paddle/operators/math/unpooling.cc @@ -17,9 +17,9 @@ namespace paddle { namespace operators { namespace math { template -class Unpool2dMaxFunctor { +class Unpool2dMaxFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, framework::Tensor* output) { const int batch_size = input.dims()[0]; @@ -48,9 +48,9 @@ class Unpool2dMaxFunctor { } }; template -class Unpool2dMaxGradFunctor { +class Unpool2dMaxGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, const framework::Tensor& output, @@ -82,10 +82,10 @@ class Unpool2dMaxGradFunctor { } } }; -template class Unpool2dMaxGradFunctor; -template class Unpool2dMaxGradFunctor; -template class Unpool2dMaxFunctor; -template class Unpool2dMaxFunctor; +template class Unpool2dMaxGradFunctor; +template class Unpool2dMaxGradFunctor; +template class Unpool2dMaxFunctor; +template class Unpool2dMaxFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/unpooling.cu b/paddle/operators/math/unpooling.cu index 37c3c8b689..ecbde0f6a7 100644 --- a/paddle/operators/math/unpooling.cu +++ b/paddle/operators/math/unpooling.cu @@ -67,9 +67,9 @@ __global__ void KernelUnpool2dMaxGrad( * All tensors are in NCHW format. */ template -class Unpool2dMaxFunctor { +class Unpool2dMaxFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, framework::Tensor* output) { const int batch_size = input.dims()[0]; @@ -83,21 +83,18 @@ class Unpool2dMaxFunctor { T* output_data = output->mutable_data(context.GetPlace()); int threads = 1024; int grid = (input.numel() + threads - 1) / threads; - KernelUnpool2dMax< - T><<(context) - .stream()>>>(input.numel(), input_data, indices_data, - input_height, input_width, output_channels, - output_data, output_height, output_width); + KernelUnpool2dMax<<>>( + input.numel(), input_data, indices_data, input_height, input_width, + output_channels, output_data, output_height, output_width); } }; /* * All tensors are in NCHW format. */ template -class Unpool2dMaxGradFunctor { +class Unpool2dMaxGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, const framework::Tensor& output, @@ -116,19 +113,16 @@ class Unpool2dMaxGradFunctor { T* input_grad_data = input_grad->mutable_data(context.GetPlace()); int threads = 1024; int grid = (input.numel() + threads - 1) / threads; - KernelUnpool2dMaxGrad< - T><<(context) - .stream()>>>(input.numel(), input_data, indices_data, - input_height, input_width, output_channels, - output_data, output_grad_data, output_height, - output_width, input_grad_data); + KernelUnpool2dMaxGrad<<>>( + input.numel(), input_data, indices_data, input_height, input_width, + output_channels, output_data, output_grad_data, output_height, + output_width, input_grad_data); } }; -template class Unpool2dMaxGradFunctor; -template class Unpool2dMaxGradFunctor; -template class Unpool2dMaxFunctor; -template class Unpool2dMaxFunctor; +template class Unpool2dMaxGradFunctor; +template class Unpool2dMaxGradFunctor; +template class Unpool2dMaxFunctor; +template class Unpool2dMaxFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/unpooling.h b/paddle/operators/math/unpooling.h index 7077d7c227..0f0ff1371e 100644 --- a/paddle/operators/math/unpooling.h +++ b/paddle/operators/math/unpooling.h @@ -18,18 +18,16 @@ limitations under the License. */ namespace paddle { namespace operators { namespace math { -template +template class Unpool2dMaxFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, framework::Tensor* output); }; -template +template class Unpool2dMaxGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, const framework::Tensor& output, const framework::Tensor& output_grad, diff --git a/paddle/operators/math/vol2col.cc b/paddle/operators/math/vol2col.cc index 99eb7fd46d..d574ed9234 100644 --- a/paddle/operators/math/vol2col.cc +++ b/paddle/operators/math/vol2col.cc @@ -25,9 +25,9 @@ namespace math { * output_depth, output_height, output_width] */ template -class Vol2ColFunctor { +class Vol2ColFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& vol, const std::vector& dilations, const std::vector& strides, @@ -111,9 +111,9 @@ class Vol2ColFunctor { * output_depth, output_height, output_width] */ template -class Col2VolFunctor { +class Col2VolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& col, const std::vector& dilations, const std::vector& strides, @@ -190,10 +190,10 @@ class Col2VolFunctor { } }; -template class Vol2ColFunctor; -template class Vol2ColFunctor; -template class Col2VolFunctor; -template class Col2VolFunctor; +template class Vol2ColFunctor; +template class Vol2ColFunctor; +template class Col2VolFunctor; +template class Col2VolFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/vol2col.cu b/paddle/operators/math/vol2col.cu index dae3be858e..b029442fe4 100644 --- a/paddle/operators/math/vol2col.cu +++ b/paddle/operators/math/vol2col.cu @@ -68,9 +68,9 @@ __global__ void vol2col(int num_kernels, const T* data_vol, int depth, * output_depth, output_height, output_width] */ template -class Vol2ColFunctor { +class Vol2ColFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& vol, const std::vector& dilations, const std::vector& strides, @@ -117,9 +117,7 @@ class Vol2ColFunctor { const int threads = 1024; const int blocks = (num_outputs + 1024 - 1) / 1024; - vol2col<<(context) - .stream()>>>( + vol2col<<>>( num_outputs, vol.data(), input_depth, input_height, input_width, dilations[0], dilations[1], dilations[2], filter_depth, filter_height, filter_width, strides[0], strides[1], strides[2], paddings[0], @@ -196,9 +194,9 @@ __global__ void col2vol(int num_kernels, const T* data_col, int depth, * output_depth, output_height, output_width] */ template -class Col2VolFunctor { +class Col2VolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& col, const std::vector& dilations, const std::vector& strides, @@ -245,9 +243,7 @@ class Col2VolFunctor { const int threads = 1024; const int blocks = (num_kernels + 1024 - 1) / 1024; - col2vol<<(context) - .stream()>>>( + col2vol<<>>( num_kernels, col.data(), input_depth, input_height, input_width, dilations[0], dilations[1], dilations[2], filter_depth, filter_height, filter_width, strides[0], strides[1], strides[2], paddings[0], @@ -256,10 +252,10 @@ class Col2VolFunctor { } }; -template class Vol2ColFunctor; -template class Vol2ColFunctor; -template class Col2VolFunctor; -template class Col2VolFunctor; +template class Vol2ColFunctor; +template class Vol2ColFunctor; +template class Col2VolFunctor; +template class Col2VolFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/vol2col.h b/paddle/operators/math/vol2col.h index dc64d1d977..dcd80370e8 100644 --- a/paddle/operators/math/vol2col.h +++ b/paddle/operators/math/vol2col.h @@ -63,22 +63,20 @@ namespace math { * \note The caller needs to ensure that volShape.inputChannels is equal to * colShape.inputChannels. */ -template +template class Vol2ColFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& vol, + void operator()(const DeviceContext& context, const framework::Tensor& vol, const std::vector& dilations, const std::vector& strides, const std::vector& paddings, framework::Tensor* col) const; }; -template +template class Col2VolFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& col, + void operator()(const DeviceContext& context, const framework::Tensor& col, const std::vector& dilations, const std::vector& strides, const std::vector& paddings, diff --git a/paddle/operators/math/vol2col_test.cc b/paddle/operators/math/vol2col_test.cc index 62c3152304..7a308ca814 100644 --- a/paddle/operators/math/vol2col_test.cc +++ b/paddle/operators/math/vol2col_test.cc @@ -16,7 +16,7 @@ limitations under the License. */ #include #include -template +template void testVol2col() { paddle::framework::Tensor input; paddle::framework::Tensor input_tmp; @@ -24,18 +24,7 @@ void testVol2col() { paddle::framework::Tensor output_tmp; auto* place = new Place(); - paddle::platform::DeviceContext* context; - if (paddle::platform::is_cpu_place(*place)) { - context = - new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace()); - } else { -#ifdef PADDLE_WITH_CUDA - context = - new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); -#else - PADDLE_THROW("no GPU support"); -#endif // PADDLE_WITH_CUDA - } + DeviceContext* context = new DeviceContext(*place); /** * input = [[0, 1, 2, @@ -82,13 +71,13 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } output.mutable_data({1, filter_size, filter_size, filter_size, output_depth, output_height, output_width}, *place); - paddle::operators::math::Vol2ColFunctor vol2col; + paddle::operators::math::Vol2ColFunctor vol2col; vol2col(*context, input, dilations, strides, paddings, &output); float vol_2_col[] = {0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11}; @@ -96,7 +85,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output.data(); } else { - CopyFrom(output, paddle::platform::CPUPlace(), *context, &output_tmp); + Copy(output, paddle::platform::CPUPlace(), *context, &output_tmp); out_cfo_ptr = output_tmp.data(); } @@ -110,17 +99,17 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } - paddle::operators::math::Col2VolFunctor col2vol; + paddle::operators::math::Col2VolFunctor col2vol; col2vol(*context, output, dilations, strides, paddings, &input); float* in_ptr; if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { - CopyFrom(input, paddle::platform::CPUPlace(), *context, &input_tmp); + Copy(input, paddle::platform::CPUPlace(), *context, &input_tmp); in_ptr = input_tmp.data(); } @@ -130,8 +119,9 @@ void testVol2col() { } TEST(math, vol2col) { - testVol2col(); + testVol2col(); #ifdef PADDLE_WITH_CUDA - testVol2col(); + testVol2col(); #endif // PADDLE_WITH_CUDA } diff --git a/paddle/operators/matmul_op.cc b/paddle/operators/matmul_op.cc index 5a1a615420..fd65d894d5 100644 --- a/paddle/operators/matmul_op.cc +++ b/paddle/operators/matmul_op.cc @@ -130,7 +130,7 @@ class MatMulOp : public framework::OperatorWithKernel { class MatMulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MatMulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + MatMulOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The first input of MatMul op"); AddInput("Y", "The second input of MatMul op"); @@ -206,7 +206,8 @@ class MatMulOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(matmul, ops::MatMulOp, ops::MatMulOpMaker, matmul_grad, ops::MatMulOpGrad); -REGISTER_OP_CPU_KERNEL(matmul, - ops::MatMulKernel); REGISTER_OP_CPU_KERNEL( - matmul_grad, ops::MatMulGradKernel); + matmul, ops::MatMulKernel); +REGISTER_OP_CPU_KERNEL( + matmul_grad, + ops::MatMulGradKernel); diff --git a/paddle/operators/matmul_op.cu.cc b/paddle/operators/matmul_op.cu.cc index b7e66382f0..d28d12164e 100644 --- a/paddle/operators/matmul_op.cu.cc +++ b/paddle/operators/matmul_op.cu.cc @@ -1,21 +1,22 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/matmul_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(matmul, - ops::MatMulKernel); -REGISTER_OP_GPU_KERNEL( - matmul_grad, ops::MatMulGradKernel); +REGISTER_OP_CUDA_KERNEL( + matmul, ops::MatMulKernel); +REGISTER_OP_CUDA_KERNEL( + matmul_grad, + ops::MatMulGradKernel); diff --git a/paddle/operators/matmul_op.h b/paddle/operators/matmul_op.h index 1e4aa48b70..78adc64f76 100644 --- a/paddle/operators/matmul_op.h +++ b/paddle/operators/matmul_op.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - You may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -27,7 +27,7 @@ using DDim = framework::DDim; using framework::make_ddim; using framework::vectorize; -template +template class MatMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -38,8 +38,9 @@ class MatMulKernel : public framework::OpKernel { bool transpose_x = context.Attr("transpose_X"); bool transpose_y = context.Attr("transpose_Y"); - math::MatMulFunctor()(context.device_context(), x, transpose_x, y, - transpose_y, T(1), out, T(0)); + math::MatMulFunctor()( + context.template device_context(), x, transpose_x, y, + transpose_y, T(1), out, T(0)); } }; @@ -68,17 +69,16 @@ Tensor CombineBatchAndM(const Tensor& input) { // Reshape a rank-3 tensor from P x M x N to M x (P * N). // (Warning: This requires transposing data and writes into new memory.) // Identity op if the tensor is not of rank 3. -template -Tensor CombineBatchAndN(const framework::ExecutionContext& context, - const Tensor& input) { +template +Tensor CombineBatchAndN(const DeviceContext& context, const Tensor& input) { Tensor output; auto in_dims = input.dims(); if (in_dims.size() == 3) { output.Resize({in_dims[1], in_dims[0], in_dims[2]}); output.mutable_data(context.GetPlace()); std::vector axis = {1, 0, 2}; - math::Transpose trans; - trans(context.device_context(), input, &output, axis); + math::Transpose trans; + trans(context, input, &output, axis); std::vector out_dims = {in_dims[1], in_dims[0] * in_dims[2]}; output.Resize({in_dims[1], in_dims[0] * in_dims[2]}); } else { @@ -112,7 +112,7 @@ Tensor CombineBatchAndN(const framework::ExecutionContext& context, // // To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N // to X: (P * M) x K, dOut: (P * M) x N. -template +template class MatMulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -178,24 +178,23 @@ class MatMulGradKernel : public framework::OpKernel { Tensor Y = Reshape(y, make_ddim(y_dims)); Tensor dOut = Reshape(dout, make_ddim(dout_dims)); + auto& dev_ctx = context.template device_context(); if (dx) { dx->mutable_data(context.GetPlace()); const Tensor& dOut_for_dX = (x_dims.size() == 2 && y_dims.size() == 3) - ? CombineBatchAndN(context, dOut) + ? CombineBatchAndN(dev_ctx, dOut) : dOut; if (x_dims.size() == 2 && y_dims.size() == 3) { Y = transpose_y ? CombineBatchAndM(Y) - : CombineBatchAndN(context, Y); + : CombineBatchAndN(dev_ctx, Y); } if (transpose_x) { - math::MatMulFunctor()(context.device_context(), Y, - transpose_y, dOut_for_dX, transpose_x, - T(1), dx, T(0)); + math::MatMulFunctor()( + dev_ctx, Y, transpose_y, dOut_for_dX, transpose_x, T(1), dx, T(0)); } else { - math::MatMulFunctor()(context.device_context(), dOut_for_dX, - transpose_x, Y, !transpose_y, T(1), dx, - T(0)); + math::MatMulFunctor()( + dev_ctx, dOut_for_dX, transpose_x, Y, !transpose_y, T(1), dx, T(0)); } } @@ -205,18 +204,16 @@ class MatMulGradKernel : public framework::OpKernel { ? CombineBatchAndM(dOut) : dOut; if (y_dims.size() == 2 && x_dims.size() == 3) { - X = transpose_x ? CombineBatchAndN(context, X) + X = transpose_x ? CombineBatchAndN(dev_ctx, X) : CombineBatchAndM(X); dOut = CombineBatchAndM(dOut); } if (transpose_y) { - math::MatMulFunctor()(context.device_context(), dOut_for_dY, - transpose_y, X, transpose_x, T(1), dy, - T(0)); + math::MatMulFunctor()( + dev_ctx, dOut_for_dY, transpose_y, X, transpose_x, T(1), dy, T(0)); } else { - math::MatMulFunctor()(context.device_context(), X, - !transpose_x, dOut_for_dY, transpose_y, - T(1), dy, T(0)); + math::MatMulFunctor()( + dev_ctx, X, !transpose_x, dOut_for_dY, transpose_y, T(1), dy, T(0)); } } } diff --git a/paddle/operators/max_sequence_len_op.cc b/paddle/operators/max_sequence_len_op.cc index 798022c9dd..019150e491 100644 --- a/paddle/operators/max_sequence_len_op.cc +++ b/paddle/operators/max_sequence_len_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/op_registry.h" @@ -28,7 +28,7 @@ class MaxSeqenceLenOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { auto &rank_table = scope.FindVar(Input("RankTable"))->Get(); auto *out = @@ -40,8 +40,7 @@ class MaxSeqenceLenOp : public framework::OperatorBase { class MaxSeqenceLenOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - MaxSeqenceLenOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MaxSeqenceLenOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("RankTable", "The lod_rank_table."); AddOutput("Out", "The max sequence length."); diff --git a/paddle/operators/maxout_op.cc b/paddle/operators/maxout_op.cc index 44bf402e95..3ee3226941 100644 --- a/paddle/operators/maxout_op.cc +++ b/paddle/operators/maxout_op.cc @@ -20,7 +20,7 @@ using framework::Tensor; class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker { public: - MaxOutOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + MaxOutOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -101,7 +101,8 @@ class MaxOutOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(maxout, ops::MaxOutOp, ops::MaxOutOpMaker, maxout_grad, ops::MaxOutOpGrad); -REGISTER_OP_CPU_KERNEL(maxout, - ops::MaxOutKernel); REGISTER_OP_CPU_KERNEL( - maxout_grad, ops::MaxOutGradKernel); + maxout, ops::MaxOutKernel); +REGISTER_OP_CPU_KERNEL( + maxout_grad, + ops::MaxOutGradKernel); diff --git a/paddle/operators/maxout_op.cu.cc b/paddle/operators/maxout_op.cu.cc index decd43913d..c4a2d676d3 100644 --- a/paddle/operators/maxout_op.cu.cc +++ b/paddle/operators/maxout_op.cu.cc @@ -1,23 +1,24 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/maxout_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(maxout, - ops::MaxOutKernel, - ops::MaxOutKernel); -REGISTER_OP_GPU_KERNEL( - maxout_grad, ops::MaxOutGradKernel, - ops::MaxOutGradKernel); +REGISTER_OP_CUDA_KERNEL( + maxout, ops::MaxOutKernel, + ops::MaxOutKernel); +REGISTER_OP_CUDA_KERNEL( + maxout_grad, + ops::MaxOutGradKernel, + ops::MaxOutGradKernel); diff --git a/paddle/operators/maxout_op.h b/paddle/operators/maxout_op.h index 44a0d073dd..e8b12552b9 100644 --- a/paddle/operators/maxout_op.h +++ b/paddle/operators/maxout_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class MaxOutKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -31,12 +31,13 @@ class MaxOutKernel : public framework::OpKernel { Tensor* out = context.Output("Out"); int groups = context.template Attr("groups"); - math::MaxOutFunctor maxout_forward; - maxout_forward(context.device_context(), *in_x, out, groups); + math::MaxOutFunctor maxout_forward; + maxout_forward(context.template device_context(), *in_x, out, + groups); } }; -template +template class MaxOutGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -46,14 +47,13 @@ class MaxOutGradKernel : public framework::OpKernel { context.Input(framework::GradVarName("Out")); Tensor* in_x_grad = context.Output(framework::GradVarName("X")); int groups = context.template Attr("groups"); - auto& device_ctx = context.device_context(); - math::SetConstant zero; + auto& device_ctx = context.template device_context(); + math::SetConstant zero; if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); zero(device_ctx, in_x_grad, static_cast(0.0)); - math::MaxOutGradFunctor maxout_backward; - maxout_backward(context.device_context(), *in_x, in_x_grad, *out, - *out_grad, groups); + math::MaxOutGradFunctor maxout_backward; + maxout_backward(device_ctx, *in_x, in_x_grad, *out, *out_grad, groups); } } }; diff --git a/paddle/operators/mean_op.cc b/paddle/operators/mean_op.cc index dcc5b4286f..411f4d14ef 100644 --- a/paddle/operators/mean_op.cc +++ b/paddle/operators/mean_op.cc @@ -32,7 +32,7 @@ class MeanOp : public framework::OperatorWithKernel { class MeanOpMaker : public framework::OpProtoAndCheckerMaker { public: - MeanOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + MeanOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of mean op"); AddOutput("Out", "The output of mean op"); @@ -60,13 +60,13 @@ class MeanGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto* grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto* grad_op = new framework::OpDesc(); grad_op->SetType("mean_grad"); grad_op->SetInput("X", Input("X")); grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -76,8 +76,9 @@ class MeanGradMaker : public framework::SingleGradOpDescMaker { namespace ops = paddle::operators; REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanGradMaker); REGISTER_OPERATOR(mean_grad, ops::MeanGradOp); -REGISTER_OP_CPU_KERNEL(mean, ops::MeanKernel, - ops::MeanKernel); -REGISTER_OP_CPU_KERNEL(mean_grad, - ops::MeanGradKernel, - ops::MeanGradKernel); +REGISTER_OP_CPU_KERNEL( + mean, ops::MeanKernel, + ops::MeanKernel); +REGISTER_OP_CPU_KERNEL( + mean_grad, ops::MeanGradKernel, + ops::MeanGradKernel); diff --git a/paddle/operators/mean_op.cu b/paddle/operators/mean_op.cu index ca089938c0..212d448113 100644 --- a/paddle/operators/mean_op.cu +++ b/paddle/operators/mean_op.cu @@ -1,24 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/mean_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel, - ops::MeanKernel); -REGISTER_OP_GPU_KERNEL(mean_grad, - ops::MeanGradKernel, - ops::MeanGradKernel); +REGISTER_OP_CUDA_KERNEL( + mean, ops::MeanKernel, + ops::MeanKernel); +REGISTER_OP_CUDA_KERNEL( + mean_grad, ops::MeanGradKernel, + ops::MeanGradKernel); diff --git a/paddle/operators/mean_op.h b/paddle/operators/mean_op.h index c99286a5b9..351b345959 100644 --- a/paddle/operators/mean_op.h +++ b/paddle/operators/mean_op.h @@ -27,7 +27,7 @@ template using EigenVector = framework::EigenVector; -template +template class MeanKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -38,13 +38,14 @@ class MeanKernel : public framework::OpKernel { auto X = EigenVector::Flatten(*input); auto y = EigenScalar::From(*output); - auto& place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); y.device(place) = X.mean(); } }; -template +template class MeanGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -56,7 +57,8 @@ class MeanGradKernel : public framework::OpKernel { T ig_size = static_cast(IG->numel()); Eigen::DSizes bcast(ig_size); - EigenVector::Flatten(*IG).device(context.GetEigenDevice()) = + EigenVector::Flatten(*IG).device( + *context.template device_context().eigen_device()) = (EigenVector::From(*OG) / ig_size).broadcast(bcast); } }; diff --git a/paddle/operators/merge_lod_tensor_op.cc b/paddle/operators/merge_lod_tensor_op.cc index adc688dbd5..87644d316d 100644 --- a/paddle/operators/merge_lod_tensor_op.cc +++ b/paddle/operators/merge_lod_tensor_op.cc @@ -28,7 +28,11 @@ class MergeLoDTensorOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); + auto &x = scope.FindVar(Input("X"))->Get(); auto &mask = scope.FindVar(Input("Mask"))->Get(); auto &in_true = scope.FindVar(Input("InTrue"))->Get(); @@ -45,7 +49,7 @@ class MergeLoDTensorOp : public framework::OperatorBase { cpu_mask->ShareDataWith(mask); } else if (platform::is_gpu_place(mask.place())) { #ifdef PADDLE_WITH_CUDA - framework::CopyFrom(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get()); + framework::Copy(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get()); #else PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option"); #endif @@ -100,8 +104,8 @@ class MergeLoDTensorOp : public framework::OperatorBase { continue; } auto slice = out->Slice(out_offset, out_offset + len); - framework::CopyFrom(input->Slice(start_offset, end_offset), place, - dev_ctx, &slice); + framework::Copy(input->Slice(start_offset, end_offset), place, dev_ctx, + &slice); out_offset += len; (*in_idx) += 1; } @@ -114,8 +118,7 @@ class MergeLoDTensorOp : public framework::OperatorBase { class MergeLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - MergeLoDTensorOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MergeLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input LoDTensor, contains complete lod information to " @@ -162,15 +165,15 @@ class MergeLoDTensorGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("split_lod_tensor"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetInput("Mask", Input("Mask")); grad_op->SetOutput("OutTrue", InputGrad("InTrue")); grad_op->SetOutput("OutFalse", InputGrad("InFalse")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/minus_op.cc b/paddle/operators/minus_op.cc index 4684c20208..3d7742dd4b 100644 --- a/paddle/operators/minus_op.cc +++ b/paddle/operators/minus_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/minus_op.h" #include "paddle/operators/net_op.h" @@ -46,7 +46,7 @@ class MinusOp : public framework::OperatorWithKernel { class MinusOpMaker : public framework::OpProtoAndCheckerMaker { public: - MinusOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + MinusOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The left tensor of minus operator."); AddInput("Y", "The right tensor of minus operator."); @@ -70,12 +70,11 @@ class MinusGradMaker : public framework::GradOpDescMakerBase { public: using framework::GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() - const override { - std::vector> ops; + std::vector> operator()() const override { + std::vector> ops; auto x_g = InputGrad("X"); if (!x_g.empty()) { - auto *x_g_op = new framework::OpDescBind(); + auto *x_g_op = new framework::OpDesc(); x_g_op->SetType("scale"); x_g_op->SetInput("X", OutputGrad("Out")); x_g_op->SetOutput("Out", x_g); @@ -85,7 +84,7 @@ class MinusGradMaker : public framework::GradOpDescMakerBase { auto y_g = InputGrad("Y"); if (!y_g.empty()) { - auto *y_g_op = new framework::OpDescBind(); + auto *y_g_op = new framework::OpDesc(); y_g_op->SetType("scale"); y_g_op->SetInput("X", OutputGrad("Out")); y_g_op->SetOutput("Out", y_g); @@ -102,5 +101,5 @@ class MinusGradMaker : public framework::GradOpDescMakerBase { namespace ops = paddle::operators; REGISTER_OPERATOR(minus, ops::MinusOp, ops::MinusOpMaker, ops::MinusGradMaker); -REGISTER_OP_CPU_KERNEL(minus, - ops::MinusKernel); +REGISTER_OP_CPU_KERNEL( + minus, ops::MinusKernel); diff --git a/paddle/operators/minus_op.cu b/paddle/operators/minus_op.cu index a8375cc630..80cd9f7c16 100644 --- a/paddle/operators/minus_op.cu +++ b/paddle/operators/minus_op.cu @@ -1,18 +1,19 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/minus_op.h" -REGISTER_OP_GPU_KERNEL( - minus, paddle::operators::MinusKernel); +REGISTER_OP_CUDA_KERNEL( + minus, + paddle::operators::MinusKernel); diff --git a/paddle/operators/minus_op.h b/paddle/operators/minus_op.h index bd9a2790aa..20760b8cd5 100644 --- a/paddle/operators/minus_op.h +++ b/paddle/operators/minus_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" @@ -19,7 +19,7 @@ namespace paddle { namespace operators { -template +template class MinusKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -28,7 +28,8 @@ class MinusKernel : public framework::OpKernel { auto* out_tensor = context.Output("Out"); out_tensor->mutable_data(context.GetPlace()); - auto& dev = context.GetEigenDevice(); + auto& dev = + *context.template device_context().eigen_device(); framework::EigenVector::Flatten(*out_tensor).device(dev) = framework::EigenVector::Flatten(*left_tensor) - framework::EigenVector::Flatten(*right_tensor); diff --git a/paddle/operators/modified_huber_loss_op.cc b/paddle/operators/modified_huber_loss_op.cc index 28528848af..f5d69071a8 100644 --- a/paddle/operators/modified_huber_loss_op.cc +++ b/paddle/operators/modified_huber_loss_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/modified_huber_loss_op.h" @@ -39,8 +39,7 @@ class ModifiedHuberLossOp : public framework::OperatorWithKernel { class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - ModifiedHuberLossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ModifiedHuberLossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of modified huber loss op. " @@ -115,6 +114,6 @@ REGISTER_OP(modified_huber_loss, ops::ModifiedHuberLossOp, REGISTER_OP_CPU_KERNEL( modified_huber_loss, - ops::ModifiedHuberLossKernel); + ops::ModifiedHuberLossKernel); REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad, ops::ModifiedHuberLossGradCPUKernel); diff --git a/paddle/operators/modified_huber_loss_op.cu b/paddle/operators/modified_huber_loss_op.cu index 8854e166cd..3d2a5562e8 100644 --- a/paddle/operators/modified_huber_loss_op.cu +++ b/paddle/operators/modified_huber_loss_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ -#include -#include +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include #include "paddle/framework/op_registry.h" @@ -71,8 +71,8 @@ class ModifiedHuberLossGradGPUKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( modified_huber_loss, - ops::ModifiedHuberLossKernel); -REGISTER_OP_GPU_KERNEL(modified_huber_loss_grad, - ops::ModifiedHuberLossGradGPUKernel); + ops::ModifiedHuberLossKernel); +REGISTER_OP_CUDA_KERNEL(modified_huber_loss_grad, + ops::ModifiedHuberLossGradGPUKernel); diff --git a/paddle/operators/modified_huber_loss_op.h b/paddle/operators/modified_huber_loss_op.h index aba75efad9..6ce86feee5 100644 --- a/paddle/operators/modified_huber_loss_op.h +++ b/paddle/operators/modified_huber_loss_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -46,7 +46,7 @@ struct ModifiedHuberLossForward { } }; -template +template class ModifiedHuberLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -57,7 +57,8 @@ class ModifiedHuberLossKernel : public framework::OpKernel { out0->mutable_data(context.GetPlace()); out1->mutable_data(context.GetPlace()); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto x = EigenVector::Flatten(*in0); auto y = EigenVector::Flatten(*in1); diff --git a/paddle/operators/momentum_op.cc b/paddle/operators/momentum_op.cc index 2ab48fedec..15b8b80776 100644 --- a/paddle/operators/momentum_op.cc +++ b/paddle/operators/momentum_op.cc @@ -54,8 +54,7 @@ class MomentumOp : public framework::OperatorWithKernel { class MomentumOpMaker : public framework::OpProtoAndCheckerMaker { public: - MomentumOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MomentumOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " diff --git a/paddle/operators/momentum_op.cu b/paddle/operators/momentum_op.cu index be0c8ea071..2b9314162e 100644 --- a/paddle/operators/momentum_op.cu +++ b/paddle/operators/momentum_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_registry.h" @@ -74,5 +74,5 @@ class MomentumOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(momentum, ops::MomentumOpCUDAKernel, - ops::MomentumOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(momentum, ops::MomentumOpCUDAKernel, + ops::MomentumOpCUDAKernel); diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 3c39ae10dc..c923e988a5 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -71,41 +71,52 @@ class MulOpShapeInference : public framework::InferShapeBase { class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + MulOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of mul op"); - AddInput("Y", "The second input of mul op"); - AddOutput("Out", "The output of mul op"); + AddInput("X", "(Tensor), The first input tensor of mul op."); + AddInput("Y", "(Tensor), The second input tensor of mul op."); + AddOutput("Out", "(Tensor), The output tensor of mul op."); AddAttr( "x_num_col_dims", - "(int, default 1) " - R"DOC(mul_op can take tensors with more than two dimensions as input `X`, - in that case, tensors will be reshaped to a matrix. The matrix's first - dimension(column length) will be the product of tensor's last - `num_col_dims` dimensions, and the matrix's second dimension(row length) - will be the product of tensor's first `rank - num_col_dims` dimensions. + R"DOC((int, default 1), The mul_op can take tensors with more than two + dimensions as its inputs. If the input $X$ is a tensor with more + than two dimensions, $X$ will be flattened into a two-dimensional + matrix first. The flattening rule is: the first `num_col_dims` + will be flattened to form the first dimension of the final matrix + (the height of the matrix), and the rest `rank(X) - num_col_dims` + dimensions are flattened to form the second dimension of the final + matrix (the width of the matrix). As a result, height of the + flattened matrix is equal to the product of $X$'s first + `x_num_col_dims` dimensions' sizes, and width of the flattened + matrix is equal to the product of $X$'s last `rank(x) - num_col_dims` + dimensions' size. For example, suppose $X$ is a 6-dimensional + tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. + Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = + [24, 30]. )DOC") .SetDefault(1) .EqualGreaterThan(1); AddAttr( "y_num_col_dims", - "(int, default 1) " - R"DOC(mul_op can take tensors with more than two dimensions as input `Y`, - in that case, tensors will be reshaped to a matrix. Just like input `X`. + R"DOC((int, default 1), The mul_op can take tensors with more than two, + dimensions as its inputs. If the input $Y$ is a tensor with more + than two dimensions, $Y$ will be flattened into a two-dimensional + matrix first. The attribute `y_num_col_dims` determines how $Y$ is + flattened. See comments of `x_num_col_dims` for more details. )DOC") .SetDefault(1) .EqualGreaterThan(1); AddComment(R"DOC( -Mul Operator. +Mul Operator. -This operator is used to perform matrix multiplication for input X and Y. +This operator is used to perform matrix multiplication for input $X$ and $Y$. The equation is: - $$Out = X * Y$$ +$$Out = X * Y$$ -Both the input `X` and `Y` can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD information with input `X`. +Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD information with input $X$. )DOC"); } @@ -149,6 +160,7 @@ REGISTER_OPERATOR(mul, paddle::framework::OperatorWithKernel, ops::MulOpMaker, ops::MulOpShapeInference, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(mul_grad, ops::MulOpGrad); -REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); -REGISTER_OP_CPU_KERNEL(mul_grad, - ops::MulGradKernel); +REGISTER_OP_CPU_KERNEL( + mul, ops::MulKernel); +REGISTER_OP_CPU_KERNEL( + mul_grad, ops::MulGradKernel); diff --git a/paddle/operators/mul_op.cu.cc b/paddle/operators/mul_op.cu.cc index 66dc3d6d10..43de9a7194 100644 --- a/paddle/operators/mul_op.cu.cc +++ b/paddle/operators/mul_op.cu.cc @@ -1,20 +1,21 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/mul_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); -REGISTER_OP_GPU_KERNEL(mul_grad, - ops::MulGradKernel); +REGISTER_OP_CUDA_KERNEL( + mul, ops::MulKernel); +REGISTER_OP_CUDA_KERNEL( + mul_grad, ops::MulGradKernel); diff --git a/paddle/operators/mul_op.h b/paddle/operators/mul_op.h index 0eb9df41e9..1fb0569b49 100644 --- a/paddle/operators/mul_op.h +++ b/paddle/operators/mul_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - You may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -46,15 +46,16 @@ class MulKernel : public framework::OpKernel { if (z_dim.size() != 2) { z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]}); } - math::matmul(context.device_context(), x_matrix, false, y_matrix, - false, 1, z, 0); + math::matmul( + context.template device_context(), x_matrix, false, + y_matrix, false, 1, z, 0); if (z_dim.size() != 2) { z->Resize(z_dim); } } }; -template +template class MulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -77,6 +78,7 @@ class MulGradKernel : public framework::OpKernel { Tensor* dx = ctx.Output(framework::GradVarName("X")); Tensor* dy = ctx.Output(framework::GradVarName("Y")); + auto& dev_ctx = ctx.template device_context(); if (dx) { dx->mutable_data(ctx.GetPlace()); Tensor dx_matrix = dx->dims().size() > 2 @@ -84,8 +86,8 @@ class MulGradKernel : public framework::OpKernel { : *dx; // dx = dout * y'. dx: M x K, dout : M x N, y : K x N - math::matmul(ctx.device_context(), dout_mat, false, y_matrix, - true, 1, &dx_matrix, 0); + math::matmul(dev_ctx, dout_mat, false, y_matrix, true, + 1, &dx_matrix, 0); } if (dy) { dy->mutable_data(ctx.GetPlace()); @@ -93,8 +95,8 @@ class MulGradKernel : public framework::OpKernel { ? framework::ReshapeToMatrix(*dy, y_num_col_dims) : *dy; // dy = x' * dout. dy K x N, dout : M x N, x : M x K - math::matmul(ctx.device_context(), x_matrix, true, dout_mat, - false, 1, &dy_matrix, 0); + math::matmul(dev_ctx, x_matrix, true, dout_mat, false, + 1, &dy_matrix, 0); } } }; diff --git a/paddle/operators/multiplex_op.cc b/paddle/operators/multiplex_op.cc index 8e7f544e0d..78263da2fb 100644 --- a/paddle/operators/multiplex_op.cc +++ b/paddle/operators/multiplex_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/multiplex_op.h" @@ -51,7 +51,7 @@ class MultiplexOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.MultiInput("X")[0]->type()), @@ -61,8 +61,7 @@ class MultiplexOp : public framework::OperatorWithKernel { class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker { public: - MultiplexOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + MultiplexOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Ids", "The index tensor of multiplex operator."); AddInput("X", "The candidate tensors of multiplex operator.") @@ -103,7 +102,7 @@ class MultiplexGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.MultiInput("X")[0]->type()), @@ -119,7 +118,8 @@ REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp); REGISTER_OP_CPU_KERNEL( - multiplex, ops::MultiplexCPUKernel); + multiplex, + ops::MultiplexCPUKernel); REGISTER_OP_CPU_KERNEL( multiplex_grad, - ops::MultiplexGradCPUKernel); + ops::MultiplexGradCPUKernel); diff --git a/paddle/operators/multiplex_op.cu b/paddle/operators/multiplex_op.cu index 10dff8d021..4372dc2c65 100644 --- a/paddle/operators/multiplex_op.cu +++ b/paddle/operators/multiplex_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/operators/multiplex_op.h" @@ -33,10 +33,10 @@ class MultiplexGPUKernel : public framework::OpKernel { auto cols = ins[0]->numel() / rows; // copy index to cpu Tensor index_t_cpu; - CopyFrom(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); + Copy(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); auto* index = index_t_cpu.data(); auto stream = ctx.cuda_device_context().stream(); - Place place = boost::get(ctx.GetPlace()); + platform::CUDAPlace place = boost::get(ctx.GetPlace()); for (auto i = 0; i < rows; i++) { int32_t k = index[i]; PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative."); @@ -60,7 +60,8 @@ class MultiplexGradGPUKernel : public framework::OpKernel { if (d_ins[i]) { d_ins[i]->mutable_data(ctx.GetPlace()); auto t = framework::EigenVector::Flatten(*d_ins[i]); - t.device(ctx.GetEigenDevice()) = t.constant(static_cast(0)); + t.device(*ctx.template device_context().eigen_device()) = + t.constant(static_cast(0)); } } @@ -68,11 +69,11 @@ class MultiplexGradGPUKernel : public framework::OpKernel { auto cols = ins[0]->numel() / rows; // copy index to cpu Tensor index_t_cpu; - CopyFrom(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); + Copy(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); auto* index = index_t_cpu.data(); auto stream = ctx.cuda_device_context().stream(); - Place place = boost::get(ctx.GetPlace()); + platform::CUDAPlace place = boost::get(ctx.GetPlace()); for (auto i = 0; i < rows; i++) { size_t k = static_cast(index[i]); if (d_ins[k]) { @@ -87,8 +88,9 @@ class MultiplexGradGPUKernel : public framework::OpKernel { namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - multiplex, ops::MultiplexGPUKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + multiplex, + ops::MultiplexGPUKernel); +REGISTER_OP_CUDA_KERNEL( multiplex_grad, - ops::MultiplexGradGPUKernel); + ops::MultiplexGradGPUKernel); diff --git a/paddle/operators/multiplex_op.h b/paddle/operators/multiplex_op.h index ab3cafaa32..ef66be5556 100644 --- a/paddle/operators/multiplex_op.h +++ b/paddle/operators/multiplex_op.h @@ -1,17 +1,16 @@ - /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -22,7 +21,7 @@ namespace paddle { namespace operators { -template +template class MultiplexCPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -35,7 +34,7 @@ class MultiplexCPUKernel : public framework::OpKernel { auto rows = ins[0]->dims()[0]; auto cols = ins[0]->numel() / rows; auto index = ids->data(); - Place place = boost::get(ctx.GetPlace()); + platform::CPUPlace place = boost::get(ctx.GetPlace()); for (auto i = 0; i < rows; i++) { int32_t k = index[i]; PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative."); @@ -47,7 +46,7 @@ class MultiplexCPUKernel : public framework::OpKernel { } }; -template +template class MultiplexGradCPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -60,14 +59,15 @@ class MultiplexGradCPUKernel : public framework::OpKernel { if (d_ins[i]) { d_ins[i]->mutable_data(ctx.GetPlace()); auto t = framework::EigenVector::Flatten(*d_ins[i]); - t.device(ctx.GetEigenDevice()) = t.constant(static_cast(0)); + t.device(*ctx.template device_context().eigen_device()) = + t.constant(static_cast(0)); } } auto rows = ins[0]->dims()[0]; auto cols = ins[0]->numel() / rows; auto* index = ids->data(); - Place place = boost::get(ctx.GetPlace()); + platform::CPUPlace place = boost::get(ctx.GetPlace()); for (auto i = 0; i < rows; i++) { size_t k = static_cast(index[i]); if (d_ins[k]) { diff --git a/paddle/operators/nccl/nccl_gpu_common.cc b/paddle/operators/nccl/nccl_gpu_common.cc index 6be735e4c7..1602a3d9b5 100644 --- a/paddle/operators/nccl/nccl_gpu_common.cc +++ b/paddle/operators/nccl/nccl_gpu_common.cc @@ -1,13 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/nccl/nccl_gpu_common.h" #include "paddle/platform/gpu_info.h" diff --git a/paddle/operators/nccl/nccl_gpu_common.h b/paddle/operators/nccl/nccl_gpu_common.h index 48e322f993..5173996f20 100644 --- a/paddle/operators/nccl/nccl_gpu_common.h +++ b/paddle/operators/nccl/nccl_gpu_common.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/operators/nccl_op.cc b/paddle/operators/nccl_op.cc index 22a37ff1bb..9d51153b06 100644 --- a/paddle/operators/nccl_op.cc +++ b/paddle/operators/nccl_op.cc @@ -1,13 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/operators/nccl/nccl_gpu_common.h" @@ -24,7 +27,7 @@ class NCCLInitOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { const auto &name = Output("Communicator"); PADDLE_ENFORCE_NOT_NULL(scope.FindVar(name), "Can not find variable '%s' in the scope.", name); @@ -43,8 +46,7 @@ class NCCLInitOp : public framework::OperatorBase { class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCCLInitOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + NCCLInitOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Communicator", "Create Communicator for communicating between gpus"); @@ -52,7 +54,7 @@ class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker { AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddComment(R"DOC( NCCLInit Operator. @@ -141,8 +143,7 @@ class NCCLBcastOp : public framework::OperatorWithKernel { // AllreduceOp class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCCLAllReduceOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + NCCLAllReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of AllReduce op"); AddInput("Communicator", "Communicator for communicating between gpus"); @@ -163,8 +164,7 @@ AllReduce the input tensors. // ReduceOp class NCCLReduceOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCCLReduceOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + NCCLReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of Reduce op"); AddInput("Communicator", "Communicator for communicating between gpus"); @@ -190,8 +190,7 @@ Reduce the tensors. // BcastOp class NCCLBcastOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCCLBcastOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + NCCLBcastOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of BcastSend op"); AddInput("Communicator", "Communicator for communicating between gpus"); diff --git a/paddle/operators/nccl_op.cu.cc b/paddle/operators/nccl_op.cu.cc index 4f0a2a79ed..1b986a1365 100644 --- a/paddle/operators/nccl_op.cu.cc +++ b/paddle/operators/nccl_op.cu.cc @@ -67,7 +67,7 @@ class NCCLAllReduceKernel : public framework::OpKernel { auto stream = ctx.cuda_device_context().stream(); // device id - int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); + int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(gpu_id); for (size_t i = 0; i < ins.size(); ++i) { @@ -120,7 +120,7 @@ class NCCLReduceKernel : public framework::OpKernel { ctx.device_context()) .stream(); // device id - int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); + int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(gpu_id); auto ins_names = ctx.Inputs("X"); @@ -164,7 +164,7 @@ class NCCLBcastKernel : public framework::OpKernel { ctx.device_context()) .stream(); // device id - int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); + int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(gpu_id); if (idx == root) { @@ -204,6 +204,6 @@ class NCCLBcastKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel); -REGISTER_OP_GPU_KERNEL(ncclBcast, ops::NCCLBcastKernel); -REGISTER_OP_GPU_KERNEL(ncclReduce, ops::NCCLReduceKernel); +REGISTER_OP_CUDA_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel); +REGISTER_OP_CUDA_KERNEL(ncclBcast, ops::NCCLBcastKernel); +REGISTER_OP_CUDA_KERNEL(ncclReduce, ops::NCCLReduceKernel); diff --git a/paddle/operators/nccl_op_test.cu.cc b/paddle/operators/nccl_op_test.cu.cc index bb7ae20286..6546096069 100644 --- a/paddle/operators/nccl_op_test.cu.cc +++ b/paddle/operators/nccl_op_test.cu.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include @@ -22,6 +22,7 @@ #include #include "paddle/framework/block_desc.h" +#include "paddle/framework/init.h" #include "paddle/framework/op_desc.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/program_desc.h" @@ -33,9 +34,9 @@ #include "paddle/platform/place.h" USE_NO_KERNEL_OP(ncclInit); -USE_GPU_ONLY_OP(ncclAllReduce); -USE_GPU_ONLY_OP(ncclReduce); -USE_GPU_ONLY_OP(ncclBcast); +USE_CUDA_ONLY_OP(ncclAllReduce); +USE_CUDA_ONLY_OP(ncclReduce); +USE_CUDA_ONLY_OP(ncclBcast); namespace f = paddle::framework; namespace p = paddle::platform; @@ -49,9 +50,9 @@ const f::DDim kDims = {100, 100}; class NCCLTester : public ::testing::Test { public: virtual void SetUp() override { - cpu_ctx = new p::CPUDeviceContext(p::CPUPlace()); + paddle::platform::CPUPlace cpu_place; for (size_t i = 0; i < gpu_list.size(); ++i) { - p::GPUPlace place(i); + p::CUDAPlace place(i); dev_ctxs.emplace_back(new p::CUDADeviceContext(place)); } @@ -65,7 +66,8 @@ class NCCLTester : public ::testing::Test { } void NCCLInitOp() { - std::unique_ptr op1(new f::OpDescBind); + paddle::platform::CPUPlace cpu_place; + std::unique_ptr op1(new f::OpDesc); op1->SetType("ncclInit"); op1->SetOutput("Communicator", {"comm"}); @@ -76,17 +78,16 @@ class NCCLTester : public ::testing::Test { auto op = f::OpRegistry::CreateOp(*op1); VLOG(1) << "invoke NCCLInitOp."; - op->Run(g_scope, *cpu_ctx); + op->Run(g_scope, cpu_place); VLOG(1) << "NCCLInitOp finished."; } template - void PerThreadProgram(int gpu_id, const f::OpDescBind &op_desc, - f::Scope *scope) { + void PerThreadProgram(int gpu_id, const f::OpDesc &op_desc, f::Scope *scope) { std::unique_lock lk(mu); - const f::OpDescBind *op1 = &op_desc; + const f::OpDesc *op1 = &op_desc; - p::GPUPlace place(gpu_id); + p::CUDAPlace place(gpu_id); auto &ctx = dev_ctxs.at(gpu_id); auto *send_tensor = scope->Var("st")->GetMutable(); @@ -112,40 +113,39 @@ class NCCLTester : public ::testing::Test { VLOG(1) << "Device : " << gpu_id << " invoke " << op_desc.Type(); VLOG(1) << " send_tensor : " << send_tensor->numel() << " recv_tensor : " << recv_tensor->numel(); - op->Run(*scope, *ctx); + op->Run(*scope, place); VLOG(1) << "Device : " << gpu_id << " finished " << op_desc.Type(); } public: std::vector dev_ctxs; - p::DeviceContext *cpu_ctx; f::Scope g_scope; std::mutex mu; }; // ncclInitOp with desc TEST(NCCL, ncclInitOp) { - std::unique_ptr op_desc(new f::OpDescBind); + std::unique_ptr op_desc(new f::OpDesc); op_desc->SetType("ncclInit"); op_desc->SetOutput("Communicator", {"x1"}); op_desc->SetAttr("gpus", {gpu_list}); f::Scope g_scope; - std::unique_ptr ctx(new p::CPUDeviceContext(p::CPUPlace())); + paddle::platform::CPUPlace cpu_place; auto *var = g_scope.Var("x1"); var->GetMutable(); auto op = f::OpRegistry::CreateOp(*op_desc); VLOG(1) << "invoke NCCLInitOp."; - op->Run(g_scope, *ctx.get()); + op->Run(g_scope, cpu_place); VLOG(1) << "NCCLInitOp finished."; } // ncclAllReduceOp with desc TEST_F(NCCLTester, ncclAllReduceOp) { - std::unique_ptr op2(new f::OpDescBind); + std::unique_ptr op2(new f::OpDesc); op2->SetType("ncclAllReduce"); op2->SetInput("X", {"st"}); op2->SetInput("Communicator", {"comm"}); @@ -171,7 +171,7 @@ TEST_F(NCCLTester, ncclAllReduceOp) { for (size_t i = 0; i < dev_scopes.size(); ++i) { p::CPUPlace cpu_place; - p::GPUPlace gpu_place(gpu_list[i]); + p::CUDAPlace gpu_place(gpu_list[i]); auto &recv_tensor = dev_scopes[i]->FindVar("rt")->Get(); auto *rt = recv_tensor.data(); @@ -180,7 +180,7 @@ TEST_F(NCCLTester, ncclAllReduceOp) { auto *ct = result_tensor->mutable_data(cpu_place); paddle::memory::Copy( - cpu_place, ct, p::GPUPlace(gpu_list[i]), rt, + cpu_place, ct, p::CUDAPlace(gpu_list[i]), rt, recv_tensor.numel() * sizeof(float), static_cast(dev_ctxs[i])->stream()); @@ -192,7 +192,7 @@ TEST_F(NCCLTester, ncclAllReduceOp) { // ncclReduceOp with desc TEST_F(NCCLTester, ncclReduceOp) { - std::unique_ptr op2(new f::OpDescBind); + std::unique_ptr op2(new f::OpDesc); const int kRoot = 0; op2->SetType("ncclReduce"); op2->SetInput("X", {"st"}); @@ -219,7 +219,7 @@ TEST_F(NCCLTester, ncclReduceOp) { float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0); p::CPUPlace cpu_place; - p::GPUPlace gpu_place(gpu_list[kRoot]); + p::CUDAPlace gpu_place(gpu_list[kRoot]); auto &recv_tensor = dev_scopes[kRoot]->FindVar("rt")->Get(); auto *rt = recv_tensor.data(); @@ -229,7 +229,7 @@ TEST_F(NCCLTester, ncclReduceOp) { auto *ct = result_tensor->mutable_data(cpu_place); paddle::memory::Copy( - cpu_place, ct, p::GPUPlace(gpu_list[kRoot]), rt, + cpu_place, ct, p::CUDAPlace(gpu_list[kRoot]), rt, recv_tensor.numel() * sizeof(float), static_cast(dev_ctxs[kRoot])->stream()); @@ -240,7 +240,7 @@ TEST_F(NCCLTester, ncclReduceOp) { // ncclBcastOp with desc TEST_F(NCCLTester, ncclBcastOp) { - std::unique_ptr op2(new f::OpDescBind); + std::unique_ptr op2(new f::OpDesc); const int kRoot = 5; op2->SetType("ncclBcast"); op2->SetInput("X", {"st"}); @@ -268,7 +268,7 @@ TEST_F(NCCLTester, ncclBcastOp) { float result = kRoot; p::CPUPlace cpu_place; - p::GPUPlace gpu_place(gpu_list[idx]); + p::CUDAPlace gpu_place(gpu_list[idx]); auto &recv_tensor = dev_scopes[idx]->FindVar("rt")->Get(); auto *rt = recv_tensor.data(); @@ -277,7 +277,7 @@ TEST_F(NCCLTester, ncclBcastOp) { auto *ct = result_tensor->mutable_data(cpu_place); paddle::memory::Copy( - cpu_place, ct, p::GPUPlace(gpu_list[idx]), rt, + cpu_place, ct, p::CUDAPlace(gpu_list[idx]), rt, recv_tensor.numel() * sizeof(float), static_cast(dev_ctxs[idx])->stream()); @@ -295,9 +295,18 @@ int main(int argc, char **argv) { return 0; } - for (int i = 0; i < dev_count; ++i) { + std::vector places; + + places.emplace_back(paddle::platform::CPUPlace()); + int count = paddle::platform::GetCUDADeviceCount(); + for (int i = 0; i < count; ++i) { + places.emplace_back(paddle::platform::CUDAPlace(i)); gpu_list.emplace_back(i); } + + VLOG(0) << " DeviceCount " << count; + paddle::platform::DeviceContextPool::Init(places); + testing::InitGoogleTest(&argc, argv); // device context should be release before scope. diff --git a/paddle/operators/nce_op.cc b/paddle/operators/nce_op.cc index 952da10434..84ba3ead2b 100644 --- a/paddle/operators/nce_op.cc +++ b/paddle/operators/nce_op.cc @@ -63,17 +63,17 @@ class NCEOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), - ctx.device_context()); + ctx.GetPlace()); } }; class NCEOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCEOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + NCEOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim]."); AddInput( @@ -166,11 +166,11 @@ class NCEOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), - ctx.device_context()); + ctx.GetPlace()); } }; diff --git a/paddle/operators/nce_op.h b/paddle/operators/nce_op.h index 0a8a95de5f..e6b496f789 100644 --- a/paddle/operators/nce_op.h +++ b/paddle/operators/nce_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -28,7 +28,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template void PrepareSamples(const framework::ExecutionContext& context) { auto label = context.Input("Label"); const int64_t* label_data = label->data(); @@ -67,11 +67,11 @@ void PrepareSamples(const framework::ExecutionContext& context) { } } -template +template class NCEKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - PrepareSamples(context); + PrepareSamples(context); auto sample_labels = context.Output("SampleLabels"); const int64_t* sample_labels_data = sample_labels->data(); auto sample_out = context.Output("SampleLogits"); @@ -135,7 +135,7 @@ class NCEKernel : public framework::OpKernel { } }; -template +template class NCEGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index 78b5e27678..f12074a5f2 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. @@ -56,11 +69,11 @@ void NetOp::CompleteAddOp(bool calc) { std::copy(output_set.begin(), output_set.end(), std::back_inserter(outputs)); } -std::string NetOp::DebugString() const { +std::string NetOp::DebugStringEx(const framework::Scope* scope) const { std::ostringstream os; - os << OperatorBase::DebugString() << std::endl; + os << OperatorBase::DebugStringEx(scope) << std::endl; for (auto& op : ops_) { - std::istringstream is(op->DebugString()); + std::istringstream is(op->DebugStringEx(scope)); for (std::string line; std::getline(is, line);) { os << " " << line << std::endl; } diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index ebeb262d96..b24042f5ef 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -38,7 +38,10 @@ namespace operators { class NetOp : public framework::OperatorBase { public: static const char kAll[]; - NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {} + NetOp() + : framework::OperatorBase("plain_net", framework::VariableNameMap{}, + framework::VariableNameMap{}, + framework::AttributeMap{}) {} NetOp(const std::string& type, const framework::VariableNameMap& inputs, const framework::VariableNameMap& outputs, @@ -62,9 +65,9 @@ class NetOp : public framework::OperatorBase { * will be used. */ void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override { + const platform::Place& place) const override { for (auto& op : ops_) { - op->Run(scope, dev_ctx); + op->Run(scope, place); } } @@ -103,7 +106,8 @@ class NetOp : public framework::OperatorBase { void CompleteAddOp(bool calculate = true); - std::string DebugString() const override; + std::string DebugStringEx( + const framework::Scope* scope = nullptr) const override; bool IsNetOp() const override; std::vector OutputVars(bool has_intermediate) const override; diff --git a/paddle/operators/net_op_test.cc b/paddle/operators/net_op_test.cc index 63bebd5b44..9358f29f62 100644 --- a/paddle/operators/net_op_test.cc +++ b/paddle/operators/net_op_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include "paddle/operators/net_op.h" #include @@ -13,8 +26,7 @@ class TestOp : public framework::OperatorBase { public: using framework::OperatorBase::OperatorBase; DEFINE_OP_CLONE_METHOD(TestOp); - void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const override { + void Run(const Scope& scope, const platform::Place& place) const override { ++run_cnt; } }; @@ -38,10 +50,10 @@ TEST(OpKernel, all) { net->AppendOp(std::unique_ptr( new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, - {{"Out", {"y"}}}, {}))); + {{"Out", {"y"}}}, framework::AttributeMap{}))); net->AppendOp(std::unique_ptr( new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}}, - {{"Out", {"z"}}}, {}))); + {{"Out", {"z"}}}, framework::AttributeMap{}))); net->CompleteAddOp(); AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, @@ -58,7 +70,7 @@ TEST(NetOp, insert_op) { NetOp net; auto op1 = std::unique_ptr( new framework::NOP("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, - {{"Out", {"y"}}}, {})); + {{"Out", {"y"}}}, framework::AttributeMap{})); net.AppendOp(*op1); net.InsertOp(0, *op1); ASSERT_EQ(2UL, net.ops_.size()); @@ -68,10 +80,12 @@ TEST(NetOp, insert_op) { TEST(NetOp, Clone) { NetOp net; - net.AppendOp( - std::unique_ptr(new framework::NOP{"empty", {}, {}, {}})); - net.AppendOp(std::unique_ptr( - new framework::NOP{"empty2", {}, {}, {}})); + net.AppendOp(std::unique_ptr(new framework::NOP{ + "empty", framework::VariableNameMap{}, framework::VariableNameMap{}, + framework::AttributeMap{}})); + net.AppendOp(std::unique_ptr(new framework::NOP{ + "empty2", framework::VariableNameMap{}, framework::VariableNameMap{}, + framework::AttributeMap{}})); net.CompleteAddOp(true); auto new_net_op = net.Clone(); ASSERT_NE(new_net_op, nullptr); diff --git a/paddle/operators/norm_op.cc b/paddle/operators/norm_op.cc new file mode 100644 index 0000000000..0eeafcaae0 --- /dev/null +++ b/paddle/operators/norm_op.cc @@ -0,0 +1,95 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/norm_op.h" +namespace paddle { +namespace operators { + +template +class NormOpMaker : public framework::OpProtoAndCheckerMaker { + public: + NormOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "X", + "(Tensor) The input tensor of norm operator. " + "The format of input tensor is NCHW. Where N is batch size, C is the " + "number of channels, H and W is the height and width of feature."); + AddInput("Scale", + "(Tensor) The input tensor of norm operator. " + "The format of input tensor is C * 1."); + AddAttr("epsilon", + "(float, default 1e-10) Constant " + "for numerical stability.") + .SetDefault(1.0e-10f); + AddOutput("Out", + "(Tensor) The output tensor of norm operator." + "N * M." + "M = C * H * W"); + AddComment(R"DOC( + "Input shape: $(N, C, H, W)$ + Scale shape: $(C, 1)$ + Output shape: $(N, C, H, W)$ + Where + forward + $$ + [\frac {x_{1}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{2}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{3}}{\sqrt{\sum{x_{i}^{2}}}} \cdot \cdot \cdot \frac {x_{n}}{\sqrt{\sum{x_{i}^{2}}}}] + $$ + backward + $$ + \frac{\frac{\mathrm{d}L }{\mathrm{d}y_{1}} - \frac {x_{1}\sum {\frac{\mathrm{d} L}{\mathrm{d} y_{j}}}x_{j}}{\sum x_{j}^{2}} }{\sqrt{\sum{x_{j}^{2}}}} + $$ + )DOC"); + } +}; + +class NormOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of NormOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Scale"), + "Input(Scale) of NormOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of NormOp should not be null."); + auto in_x_dims = ctx->GetInputDim("X"); + ctx->SetOutputDim("Out", in_x_dims); + } +}; + +class NormOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Input(X@GRAD) should not be null."); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(norm, ops::NormOp, ops::NormOpMaker, norm_grad, + ops::NormOpGrad); +REGISTER_OP_CPU_KERNEL( + norm, ops::NormKernel, + ops::NormKernel); +REGISTER_OP_CPU_KERNEL( + norm_grad, ops::NormGradKernel, + ops::NormGradKernel); diff --git a/paddle/operators/norm_op.cu b/paddle/operators/norm_op.cu new file mode 100644 index 0000000000..2941c89b93 --- /dev/null +++ b/paddle/operators/norm_op.cu @@ -0,0 +1,24 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#define EIGEN_USE_GPU + +#include "paddle/operators/norm_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + norm, ops::NormKernel, + ops::NormKernel); +REGISTER_OP_CUDA_KERNEL( + norm_grad, ops::NormGradKernel, + ops::NormGradKernel); diff --git a/paddle/operators/norm_op.h b/paddle/operators/norm_op.h new file mode 100644 index 0000000000..5759d6f1f0 --- /dev/null +++ b/paddle/operators/norm_op.h @@ -0,0 +1,175 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +template +class NormKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_x = context.Input("X"); + const framework::Tensor* scale = context.Input("Scale"); + auto* out = context.Output("Out"); + auto epsilon = static_cast(context.Attr("epsilon")); + out->mutable_data(context.GetPlace()); + int batch_size = in_x->dims()[0]; + int channels = in_x->dims()[1]; + int height = in_x->dims()[2]; + int width = in_x->dims()[3]; + int fea_len = height * width; + auto* place = + context.template device_context().eigen_device(); + auto x = + framework::EigenMatrix::From( + *in_x, framework::make_ddim({batch_size, fea_len * channels})); + // get square + framework::Tensor x_square; + x_square.mutable_data(in_x->dims(), context.GetPlace()); + auto x_square_eigen = + framework::EigenMatrix::From( + x_square, framework::make_ddim({batch_size, fea_len * channels})); + x_square_eigen.device(*place) = x.square(); + auto scale_eigen = + framework::EigenVector::Flatten( + *scale); + for (int n = 0; n < batch_size; ++n) { + framework::Tensor in_x_batch = in_x->Slice(n, n + 1); + auto in_x_batch_eigen = + framework::EigenMatrix::From( + in_x_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor x_square_batch = x_square.Slice(n, n + 1); + auto x_square_batch_eigen = + framework::EigenMatrix::From( + x_square_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor out_batch = out->Slice(n, n + 1); + auto out_batch_eigen = + framework::EigenMatrix::From( + out_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor tmp_tensor; + tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), + context.GetPlace()); + auto tmp = framework::EigenVector::Flatten(tmp_tensor); + // get colsum and sqrt , inverse + auto dim = Eigen::array({{0}}); + tmp.device(*place) = x_square_batch_eigen.sum(dim); + tmp.device(*place) = (tmp + epsilon).sqrt().inverse(); + Eigen::array broadcast_dim_col; + broadcast_dim_col[1] = 1; + broadcast_dim_col[0] = channels; + out_batch_eigen.device(*place) = + in_x_batch_eigen * (tmp.broadcast(broadcast_dim_col)); + Eigen::array broadcast_dim_row; + broadcast_dim_row[1] = fea_len; + broadcast_dim_row[0] = 1; + out_batch_eigen.device(*place) = + out_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row)); + } + } +}; +template +class NormGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_x = context.Input("X"); + const framework::Tensor* scale = context.Input("Scale"); + const framework::Tensor* out_grad = + context.Input(framework::GradVarName("Out")); + auto epsilon = static_cast(context.Attr("epsilon")); + framework::Tensor* in_x_grad = + context.Output(framework::GradVarName("X")); + in_x_grad->mutable_data(context.GetPlace()); + int batch_size = in_x->dims()[0]; + int channels = in_x->dims()[1]; + int height = in_x->dims()[2]; + int width = in_x->dims()[3]; + int fea_len = height * width; + auto* place = + context.template device_context().eigen_device(); + + auto scale_eigen = + framework::EigenVector::Flatten( + *scale); + auto x = + framework::EigenMatrix::From( + *in_x, framework::make_ddim({batch_size, fea_len * channels})); + // get square + framework::Tensor x_square; + x_square.mutable_data(in_x->dims(), context.GetPlace()); + auto x_square_eigen = + framework::EigenMatrix::From( + x_square, framework::make_ddim({batch_size, fea_len * channels})); + x_square_eigen.device(*place) = x.square(); + + for (int n = 0; n < batch_size; ++n) { + framework::Tensor in_x_batch = in_x->Slice(n, n + 1); + auto in_x_batch_eigen = + framework::EigenMatrix::From( + in_x_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor in_g_batch = in_x_grad->Slice(n, n + 1); + auto in_g_batch_eigen = + framework::EigenMatrix::From( + in_g_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor x_square_batch = x_square.Slice(n, n + 1); + auto x_square_batch_eigen = + framework::EigenMatrix::From( + x_square_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor outg_batch = out_grad->Slice(n, n + 1); + auto outg_batch_eigen = + framework::EigenMatrix::From( + outg_batch, framework::make_ddim({channels, fea_len})); + + framework::Tensor tmp_tensor; + tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), + context.GetPlace()); + auto tmp_eigen = + framework::EigenVector::Flatten(tmp_tensor); + auto dim = Eigen::array({{0}}); + tmp_eigen.device(*place) = (in_x_batch_eigen * outg_batch_eigen).sum(dim); + framework::Tensor norm_tmp_tensor; + norm_tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), + context.GetPlace()); + auto norm_tmp_eigen = + framework::EigenVector::Flatten(norm_tmp_tensor); + norm_tmp_eigen.device(*place) = + (x_square_batch_eigen.sum(dim) + epsilon).sqrt(); + Eigen::array broadcast_dim_col; + broadcast_dim_col[1] = 1; + broadcast_dim_col[0] = channels; + in_g_batch_eigen.device(*place) = + in_x_batch_eigen * tmp_eigen.broadcast(broadcast_dim_col); + in_g_batch_eigen.device(*place) = + in_g_batch_eigen / + (norm_tmp_eigen * norm_tmp_eigen).broadcast(broadcast_dim_col); + in_g_batch_eigen.device(*place) = outg_batch_eigen - in_g_batch_eigen; + // outg_batch_eigen + (in_g_batch_eigen * -1); + in_g_batch_eigen.device(*place) = + in_g_batch_eigen / norm_tmp_eigen.broadcast(broadcast_dim_col); + Eigen::array broadcast_dim_row; + broadcast_dim_row[1] = fea_len; + broadcast_dim_row[0] = 1; + in_g_batch_eigen.device(*place) = + in_g_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row)); + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/batch_norm_op.md b/paddle/operators/op_documentation/batch_norm_op.md similarity index 98% rename from paddle/operators/batch_norm_op.md rename to paddle/operators/op_documentation/batch_norm_op.md index 80948adf2b..d1392619c4 100644 --- a/paddle/operators/batch_norm_op.md +++ b/paddle/operators/op_documentation/batch_norm_op.md @@ -66,7 +66,7 @@ As most C++ operators do, `batch_norm_op` is defined by inputs, outputs, attribu The following graph showes the training computational process of `batch_norm_op`: - + cudnn provides APIs to finish the whole series of computation, we can use them in our GPU kernel. @@ -124,7 +124,7 @@ for pass_id in range(PASS_NUM): `is_infer` is an attribute. Once an operator is created, its attributes can not be changed. It suggests us that we shall maintain two `batch_norm_op` in the model, one's `is_infer` is `True`(we call it `infer_batch_norm_op`) and the other one's is `False`(we call it `train_batch_norm_op`). They share all parameters and variables, but be placed in two different branches. That is to say, if a network contains a `batch_norm_op`, it will fork into two branches, one go through `train_batch_norm_op` and the other one go through `infer_batch_norm_op`:
- +
Just like what is shown in the above graph, the net forks before `batch_norm_op` and will never merge again. All the operators after `batch_norm_op` will duplicate. diff --git a/paddle/operators/name_convention.md b/paddle/operators/op_documentation/name_convention.md similarity index 96% rename from paddle/operators/name_convention.md rename to paddle/operators/op_documentation/name_convention.md index b5cb176e00..a02b356f05 100644 --- a/paddle/operators/name_convention.md +++ b/paddle/operators/op_documentation/name_convention.md @@ -35,8 +35,8 @@ Here we give some examples to show how these rules will be used. ```c++ class AccumulateOpMaker : public framework::OpProtoAndCheckerMaker { public: - AccumulateOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + AccumulateOpMaker(OpProto *proto, + OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor that has to be accumulated to the output tensor. If the output size is not the same as input size, diff --git a/paddle/operators/net_op_design.md b/paddle/operators/op_documentation/net_op_design.md similarity index 100% rename from paddle/operators/net_op_design.md rename to paddle/operators/op_documentation/net_op_design.md diff --git a/paddle/operators/op_documentation/op_markdown_format.md b/paddle/operators/op_documentation/op_markdown_format.md new file mode 100644 index 0000000000..0ee804d592 --- /dev/null +++ b/paddle/operators/op_documentation/op_markdown_format.md @@ -0,0 +1,64 @@ +# Standard Markdown Format for Operators +The following should be the standard format for documentation for all the operators that will get rendered in the `html`: + +``` +Operator Name (In PaddlePaddle) + +Operator Name (Standard) + +Operator description. + +LaTeX equation of how the operator performs an update. + +The signature of the operator. +``` + +Each section mentioned above has been covered in further detail in the rest of the document. + +# PaddlePaddle Operator Name +This should be in all small letters, in case of multiple words, we separate them with an underscore. For example: +`array to lod tensor` should be written as `array_to_lod_tensor`. + +This naming convention should be standard across all PaddlePaddle operators. + +# Standard Operator Name +This is the standard name of the operator as used in the community. The general standard is usually: +- Standard abbreviations like `SGD` are written in all capital letters. +- Operator names that have multiple words inside a single word use `camelCase` (capitalize word boundaries inside of a word). +- Keep numbers inside a word as is, with no boundary delimiters. +- Follow the name of the operator with the keyword: `Activation Operator.` + +# Operator description +This section should contain the description of what the operator does, including the operation performed, the literature from where it comes and was introduced first, and other important details. The relevant paper/article including the hyperlink should be cited in this section. + +# LaTeX equation +This section should contain an overall equation of the update or operation that the operator performs. The variables used in the equation should follow the naming convention of operators as described [here](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md). Two words in the same word should be separated by an underscore (`_`). + +# The signature +This section describes the signature of the operator. A list of Inputs and Outputs, each of which have a small description of what the variable represents and the type of variable. The variable names follow the `CamelCase` naming convention. The proposed format for this is: +`Section : +VariableName : (VariableType) VariableDescription +... +... +` + + +The following example for an `sgd` operator covers the above mentioned sections as they would ideally look like in the `html`: + +``` +sgd + +SGD operator + +This operator implements one step of the stochastic gradient descent algorithm. + +param_out = param_learning_rate * grad + +Inputs: +Param : (Tensor) Input parameter +LearningRate : (Tensor) Learning rate of SGD +Grad : (Tensor) Input gradient + +Outputs: +ParamOut : (Tensor) Output parameter +``` diff --git a/paddle/operators/rnn_design.md b/paddle/operators/op_documentation/rnn_design.md similarity index 100% rename from paddle/operators/rnn_design.md rename to paddle/operators/op_documentation/rnn_design.md diff --git a/paddle/operators/pad_op.cc b/paddle/operators/pad_op.cc index adb75df6ef..90c53bd177 100644 --- a/paddle/operators/pad_op.cc +++ b/paddle/operators/pad_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/pad_op.h" @@ -48,7 +48,7 @@ class PadOp : public framework::OperatorWithKernel { class PadOpMaker : public framework::OpProtoAndCheckerMaker { public: - PadOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + PadOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of pad op. " @@ -116,14 +116,14 @@ class PadOpGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto* bind = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto* bind = new framework::OpDesc(); bind->SetInput("X", Input("X")); bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); bind->SetOutput(framework::GradVarName("X"), InputGrad("X")); bind->SetAttrMap(Attrs()); bind->SetType("pad_grad"); - return std::unique_ptr(bind); + return std::unique_ptr(bind); } }; @@ -134,6 +134,7 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(pad, ops::PadOp, ops::PadOpMaker, ops::PadOpGradMaker); REGISTER_OPERATOR(pad_grad, ops::PadOpGrad); -REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel); -REGISTER_OP_CPU_KERNEL(pad_grad, - ops::PadGradKernel); +REGISTER_OP_CPU_KERNEL( + pad, ops::PadKernel); +REGISTER_OP_CPU_KERNEL( + pad_grad, ops::PadGradKernel); diff --git a/paddle/operators/pad_op.cu b/paddle/operators/pad_op.cu index 555a7dba23..433b5f1112 100644 --- a/paddle/operators/pad_op.cu +++ b/paddle/operators/pad_op.cu @@ -1,21 +1,22 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/pad_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(pad, ops::PadKernel); -REGISTER_OP_GPU_KERNEL(pad_grad, - ops::PadGradKernel); +REGISTER_OP_CUDA_KERNEL( + pad, ops::PadKernel); +REGISTER_OP_CUDA_KERNEL( + pad_grad, ops::PadGradKernel); diff --git a/paddle/operators/pad_op.h b/paddle/operators/pad_op.h index 9534dbf545..fdf91a5776 100644 --- a/paddle/operators/pad_op.h +++ b/paddle/operators/pad_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -26,7 +26,7 @@ template using EigenTensor = framework::EigenTensor; -template +template void PadFunction(const framework::ExecutionContext& context) { auto pads = context.Attr>("paddings"); Eigen::array, D> paddings; @@ -42,33 +42,34 @@ void PadFunction(const framework::ExecutionContext& context) { auto x_tensor = EigenTensor::From(*x); auto out_tensor = EigenTensor::From(*out); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); out_tensor.device(place) = x_tensor.pad(paddings, pad_value); } -template +template class PadKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { int rank = context.Input("X")->dims().size(); switch (rank) { case 1: - PadFunction(context); + PadFunction(context); break; case 2: - PadFunction(context); + PadFunction(context); break; case 3: - PadFunction(context); + PadFunction(context); break; case 4: - PadFunction(context); + PadFunction(context); break; case 5: - PadFunction(context); + PadFunction(context); break; case 6: - PadFunction(context); + PadFunction(context); break; default: PADDLE_THROW( @@ -77,7 +78,7 @@ class PadKernel : public framework::OpKernel { } }; -template +template void PadGradFunction(const framework::ExecutionContext& context) { auto pads = context.Attr>("paddings"); Eigen::array, D> paddings; @@ -91,12 +92,13 @@ void PadGradFunction(const framework::ExecutionContext& context) { d_x->mutable_data(context.GetPlace()); auto d_x_tensor = EigenTensor::From(*d_x); auto d_out_tensor = EigenTensor::From(*d_out); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); d_x_tensor.device(place) = d_out_tensor.pad(paddings, 0); } } -template +template class PadGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -104,22 +106,22 @@ class PadGradKernel : public framework::OpKernel { context.Input(framework::GradVarName("Out"))->dims().size(); switch (rank) { case 1: - PadGradFunction(context); + PadGradFunction(context); break; case 2: - PadGradFunction(context); + PadGradFunction(context); break; case 3: - PadGradFunction(context); + PadGradFunction(context); break; case 4: - PadGradFunction(context); + PadGradFunction(context); break; case 5: - PadGradFunction(context); + PadGradFunction(context); break; case 6: - PadGradFunction(context); + PadGradFunction(context); break; default: PADDLE_THROW( diff --git a/paddle/operators/parallel_do_op.cc b/paddle/operators/parallel_do_op.cc new file mode 100644 index 0000000000..a00458ea06 --- /dev/null +++ b/paddle/operators/parallel_do_op.cc @@ -0,0 +1,328 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include + +#include "paddle/framework/executor.h" +#include "paddle/framework/op_registry.h" +#include "paddle/framework/threadpool.h" + +namespace paddle { +namespace operators { + +static constexpr char kInputs[] = "inputs"; +static constexpr char kParameters[] = "parameters"; +static constexpr char kPlaces[] = "places"; + +static constexpr char kOutputs[] = "outputs"; +static constexpr char kParallelScopes[] = "parallel_scopes"; + +static constexpr char kParallelBlock[] = "sub_block"; + +using LoDTensor = framework::LoDTensor; + +static void SplitTensorAndMoveTensorToScopes( + const framework::Scope &scope, std::vector *sub_scopes, + const std::vector &places, + const std::vector &names) { + size_t num_sub_scopes = 0; + for (auto &argu : names) { + auto *var = scope.FindVar(argu); + const auto &tensor = var->Get(); + auto lod_tensors = tensor.SplitLoDTensor(places); + + for (auto &lod : lod_tensors) { + VLOG(3) << lod.dims(); + } + if (num_sub_scopes == 0) { + num_sub_scopes = lod_tensors.size(); + } else { + PADDLE_ENFORCE_EQ(num_sub_scopes, lod_tensors.size()); + } + PADDLE_ENFORCE_NE(num_sub_scopes, 0); + if (sub_scopes->size() == 0) { + sub_scopes->reserve(num_sub_scopes); + for (size_t i = 0; i < num_sub_scopes; ++i) { + sub_scopes->emplace_back(&scope.NewScope()); + } + } + + for (size_t i = 0; i < lod_tensors.size(); ++i) { + *(*sub_scopes)[i]->Var(argu)->GetMutable() = lod_tensors[i]; + } + } +} + +void WaitOnPlace(const platform::Place place) { + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + dev_ctx.Wait(); +} + +void WaitOnPlaces(const std::vector places) { + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + + for (auto &place : places) { + auto &dev_ctx = *pool.Get(place); + dev_ctx.Wait(); + } +} + +class ParallelDoOp : public framework::OperatorBase { + public: + ParallelDoOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : framework::OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + + auto *block = Attr(kParallelBlock); + auto *program = block->Program(); + + auto &places = scope.FindVar(Input(kPlaces))->Get(); + + auto &sub_scopes = *scope.FindVar(Output(kParallelScopes)) + ->GetMutable>(); + + // split input + SplitTensorAndMoveTensorToScopes(scope, &sub_scopes, places, + Inputs(kInputs)); + + // copy parameter + for (auto ¶m : Inputs(kParameters)) { + PADDLE_ENFORCE(scope.FindVar(param)->IsType(), + "Only support parameter type as LoDTensor"); + auto &src = scope.FindVar(param)->Get(); + for (size_t i = 0; i < sub_scopes.size(); ++i) { + auto &place = places[i]; + auto *sub_scope = sub_scopes[i]; + auto *dst = sub_scope->Var(param)->GetMutable(); + framework::Copy(src, place, dst); + } + } + WaitOnPlaces(places); + + std::vector> workers; + workers.reserve(places.size()); + for (size_t place_idx = 0; place_idx < sub_scopes.size(); ++place_idx) { + auto &place = places[place_idx]; + auto *cur_scope = sub_scopes[place_idx]; + + workers.emplace_back(framework::Async([program, cur_scope, place, block] { + framework::Executor executor(place); + executor.Run(*program, cur_scope, block->ID(), + false /*create_local_scope*/); + })); + } + for (auto &worker : workers) { + worker.wait(); + } + WaitOnPlaces(places); + + // merge output + for (auto &o_name : Outputs(kOutputs)) { + std::vector lod_tensors; + lod_tensors.reserve(sub_scopes.size()); + for (auto *sub_scope : sub_scopes) { + lod_tensors.emplace_back(&sub_scope->FindVar(o_name)->Get()); + } + + auto *lod_tensor_to_be_merged = + scope.FindVar(o_name)->GetMutable(); + lod_tensor_to_be_merged->MergeLoDTensor(lod_tensors, dev_ctx.GetPlace()); + } + WaitOnPlaces(places); + } +}; + +class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + ParallelDoOpProtoMaker(OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput(kInputs, "").AsDuplicable(); + AddInput(kParameters, "").AsDuplicable(); + AddInput(kPlaces, ""); + AddOutput(kOutputs, "").AsDuplicable(); + AddOutput(kParallelScopes, ""); + AddAttr(kParallelBlock, ""); + AddComment(R"DOC( +ParallelDo Operator. +)DOC"); + } +}; + +class ParallelDoGradOp : public framework::OperatorBase { + public: + ParallelDoGradOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : framework::OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + auto *block = Attr(kParallelBlock); + auto *program = block->Program(); + + auto &sub_scopes = scope.FindVar(Input(kParallelScopes)) + ->Get>(); + + auto &places = scope.FindVar(Input(kPlaces))->Get(); + + // feed output@grad + SplitTensorAndMoveTensorToScopes( + scope, const_cast *>(&sub_scopes), + places, Inputs(framework::GradVarName(kOutputs))); + WaitOnPlaces(places); + + // exe run + std::vector> workers; + for (size_t i = 0; i < sub_scopes.size(); ++i) { + auto &place = places[i]; + auto *cur_scope = sub_scopes[i]; + + // execute + workers.emplace_back(framework::Async([program, cur_scope, place, block] { + framework::Executor executor(place); + executor.Run(*program, cur_scope, block->ID(), + false /*create_local_scope*/); + })); + } + for (auto &worker : workers) { + worker.wait(); + } + WaitOnPlaces(places); + + // merge grad + for (auto &s : Outputs(framework::GradVarName(kParameters))) { + auto &result = sub_scopes[0]->FindVar(s)->Get(); + std::string tmp_name; + auto *tmp = sub_scopes[0]->Var(&tmp_name)->GetMutable(); + + for (size_t i = 1; i < sub_scopes.size(); ++i) { + auto &tensor_to_merge = sub_scopes[i]->FindVar(s)->Get(); + if (!(places[i] == places[0])) { + framework::Copy(tensor_to_merge, places[0], tmp); + WaitOnPlace(places[0]); + } else { + tmp->ShareDataWith(tensor_to_merge); + } + + auto sum_op = framework::OpRegistry::CreateOp( + "sum", {{"X", {s, tmp_name}}}, {{"Out", {s}}}, + framework::AttributeMap{}); + sum_op->Run(*sub_scopes[0], places[0]); + WaitOnPlace(places[0]); + } + + VLOG(3) << result; + framework::Copy(result, place, scope.FindVar(s)->GetMutable()); + } + WaitOnPlaces(places); + } +}; + +std::ostream &operator<<(std::ostream &sout, + const std::vector &strs) { + std::copy(strs.begin(), strs.end(), + std::ostream_iterator(sout, ",")); + return sout; +} + +class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + virtual std::unique_ptr Apply() const { + auto *grad = new framework::OpDesc(); + grad->SetType("parallel_do_grad"); + for (auto &input_param : this->InputNames()) { + VLOG(3) << input_param; + grad->SetInput(input_param, this->Input(input_param)); + if (input_param != kPlaces) { + grad->SetOutput(framework::GradVarName(input_param), + this->InputGrad(input_param, false)); + } + } + + for (auto &output_param : this->OutputNames()) { + if (output_param == kParallelScopes) { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(framework::GradVarName(output_param), + this->Output(output_param)); + } else { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(framework::GradVarName(output_param), + this->OutputGrad(output_param)); + } + } + grad->SetAttrMap(this->Attrs()); + grad->SetBlockAttr(kParallelBlock, *grad_block_[0]); + + return std::unique_ptr(grad); + } +}; + +class ParallelDoGradOpShapeInference : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *ctx) const override { + std::vector input{kParameters, kInputs}; + std::vector output{kOutputs}; + + PADDLE_ENFORCE(ctx->HasInputs(kParameters)); + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters))); + PADDLE_ENFORCE(ctx->HasInput(kInputs)); + + for (auto &s : output) { + PADDLE_ENFORCE(ctx->HasInputs(s)); + } + + ctx->SetOutputsDim(framework::GradVarName(kParameters), + ctx->GetInputsDim(kParameters)); + + auto i_dims = ctx->GetInputsDim(kInputs); + auto ig_names = ctx->Outputs(framework::GradVarName(kInputs)); + + for (size_t i = 0; i < ig_names.size(); ++i) { + auto &ig_name = ig_names[i]; + if (ig_name == framework::kEmptyVarName) { + continue; + } + + ctx->SetDims({ig_name}, {i_dims[i]}); + } + + if (ctx->HasInputs(kParameters)) { + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters))); + ctx->SetOutputsDim(framework::GradVarName(kParameters), + ctx->GetInputsDim(kParameters)); + } + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OPERATOR(parallel_do, paddle::operators::ParallelDoOp, + paddle::operators::ParallelDoOpProtoMaker, + paddle::operators::ParallelDoGradOpDescMaker); +REGISTER_OPERATOR(parallel_do_grad, paddle::operators::ParallelDoGradOp, + paddle::operators::ParallelDoGradOpShapeInference); diff --git a/paddle/operators/pool_cudnn_op.cc b/paddle/operators/pool_cudnn_op.cc deleted file mode 100644 index be9fcc5661..0000000000 --- a/paddle/operators/pool_cudnn_op.cc +++ /dev/null @@ -1,37 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/operators/pool_cudnn_op.h" - -namespace ops = paddle::operators; - -REGISTER_OP(pool2d_cudnn, ops::PoolOp, ops::Pool2dOpMaker, pool2d_cudnn_grad, - ops::PoolOpGrad); - -REGISTER_OP_CPU_KERNEL(pool2d_cudnn, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_CPU_KERNEL(pool2d_cudnn_grad, - ops::PoolGradKernel, - ops::PoolGradKernel) - -REGISTER_OP(pool3d_cudnn, ops::PoolOp, ops::Pool3dOpMaker, pool3d_cudnn_grad, - ops::PoolOpGrad); - -REGISTER_OP_CPU_KERNEL(pool3d_cudnn, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_CPU_KERNEL(pool3d_cudnn_grad, - ops::PoolGradKernel, - ops::PoolGradKernel) diff --git a/paddle/operators/pool_cudnn_op.cu.cc b/paddle/operators/pool_cudnn_op.cu.cc index 66dd194ccd..446fb0819d 100644 --- a/paddle/operators/pool_cudnn_op.cu.cc +++ b/paddle/operators/pool_cudnn_op.cu.cc @@ -12,7 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/operators/pool_cudnn_op.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/pool_op.h" #include "paddle/platform/cudnn_helper.h" namespace paddle { @@ -25,11 +26,11 @@ using DataLayout = platform::DataLayout; using PoolingMode = platform::PoolingMode; template -class PoolCudnnOpKernel : public framework::OpKernel { +class PoolCUDNNOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); const Tensor *input = ctx.Input("X"); Tensor *output = ctx.Output("Out"); @@ -86,11 +87,11 @@ class PoolCudnnOpKernel : public framework::OpKernel { }; template -class PoolCudnnGradOpKernel : public framework::OpKernel { +class PoolCUDNNGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); const Tensor *input = ctx.Input("X"); const Tensor *output = ctx.Input("Out"); @@ -162,12 +163,16 @@ class PoolCudnnGradOpKernel : public framework::OpKernel { namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel, - ops::PoolCudnnOpKernel); -REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel, - ops::PoolCudnnGradOpKernel); - -REGISTER_OP_GPU_KERNEL(pool3d_cudnn, ops::PoolCudnnOpKernel, - ops::PoolCudnnOpKernel); -REGISTER_OP_GPU_KERNEL(pool3d_cudnn_grad, ops::PoolCudnnGradOpKernel, - ops::PoolCudnnGradOpKernel); +REGISTER_OP_KERNEL(pool2d, CUDNN, ::paddle::platform::CUDAPlace, + ops::PoolCUDNNOpKernel, + ops::PoolCUDNNOpKernel); +REGISTER_OP_KERNEL(pool2d_grad, CUDNN, ::paddle::platform::CUDAPlace, + ops::PoolCUDNNGradOpKernel, + ops::PoolCUDNNGradOpKernel); + +REGISTER_OP_KERNEL(pool3d, CUDNN, ::paddle::platform::CUDAPlace, + ops::PoolCUDNNOpKernel, + ops::PoolCUDNNOpKernel); +REGISTER_OP_KERNEL(pool3d_grad, CUDNN, ::paddle::platform::CUDAPlace, + ops::PoolCUDNNGradOpKernel, + ops::PoolCUDNNGradOpKernel); diff --git a/paddle/operators/pool_op.cc b/paddle/operators/pool_op.cc index e26ffd86e5..b97333bb1a 100644 --- a/paddle/operators/pool_op.cc +++ b/paddle/operators/pool_op.cc @@ -58,6 +58,31 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i])); } ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); + ctx->ShareLoD("X", "Out"); +} + +framework::OpKernelType PoolOp::GetExpectedKernelType( + const framework::ExecutionContext &ctx) const { + bool use_cudnn = ctx.Attr("use_cudnn"); + use_cudnn &= platform::is_gpu_place(ctx.GetPlace()); +#ifdef PADDLE_WITH_CUDA + if (platform::is_gpu_place(ctx.GetPlace())) { + auto &dev_ctx = ctx.template device_context(); + use_cudnn &= dev_ctx.cudnn_handle() != nullptr; + } +#endif + framework::LibraryType library_; + if (use_cudnn) { + library_ = framework::LibraryType::kCUDNN; + } else { + library_ = framework::LibraryType::kPlain; + } + + std::string data_format = ctx.Attr("data_format"); + framework::DataLayout layout_ = framework::StringToDataLayout(data_format); + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), ctx.GetPlace(), + layout_, library_); } void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const { @@ -67,8 +92,31 @@ void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const { ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } -Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) +framework::OpKernelType PoolOpGrad::GetExpectedKernelType( + const framework::ExecutionContext &ctx) const { + bool use_cudnn = ctx.Attr("use_cudnn"); + use_cudnn &= platform::is_gpu_place(ctx.GetPlace()); +#ifdef PADDLE_WITH_CUDA + if (platform::is_gpu_place(ctx.GetPlace())) { + auto &dev_ctx = ctx.template device_context(); + use_cudnn &= dev_ctx.cudnn_handle() != nullptr; + } +#endif + framework::LibraryType library_; + if (use_cudnn) { + library_ = framework::LibraryType::kCUDNN; + } else { + library_ = framework::LibraryType::kPlain; + } + + std::string data_format = ctx.Attr("data_format"); + framework::DataLayout layout_ = framework::StringToDataLayout(data_format); + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), ctx.GetPlace(), + layout_, library_); +} + +Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -101,15 +149,27 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, AddAttr>("strides", "(vector, default {1, 1}), strides(height, " "width) of pooling operator.") - .SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently, + .SetDefault({1, 1}); + // TODO(Chengduo): Add checker. (Currently, // TypedAttrChecker don't support vector type.) AddAttr>( "paddings", "(vector, default {0,0}), paddings(height, width) of pooling " "operator." "If global_pooling = true, paddings and ksize will be ignored.") - .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, - // TypedAttrChecker don't support vector type.) + .SetDefault({0, 0}); + AddAttr( + "use_cudnn", + "(bool, default false) Only used in cudnn kernel, need install cudnn") + .SetDefault(false); + AddAttr( + "data_format", + "(string, default NCHW) Only used in " + "An optional string from: \"NHWC\", \"NCHW\". " + "Defaults to \"NHWC\". Specify the data format of the output data, " + "the input will be transformed automatically. ") + .SetDefault("AnyLayout"); + // TODO(dzhwinter): need to registered layout transform function AddComment(R"DOC( Pool2d Operator. @@ -136,8 +196,7 @@ Example: )DOC"); } -Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) +Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor of pooling operator. " @@ -183,6 +242,19 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, // TypedAttrChecker don't support vector type.) + AddAttr( + "use_cudnn", + "(bool, default false) Only used in cudnn kernel, need install cudnn") + .SetDefault(false); + AddAttr( + "data_format", + "(string, default NCHW) Only used in " + "An optional string from: \"NHWC\", \"NCHW\". " + "Defaults to \"NHWC\". Specify the data format of the output data, " + "the input will be transformed automatically. ") + .SetDefault("AnyLayout"); + // TODO(dzhwinter): need to registered layout transform function + AddComment(R"DOC( Pool3d Operator. @@ -216,19 +288,19 @@ namespace ops = paddle::operators; REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad, ops::PoolOpGrad); -REGISTER_OP_CPU_KERNEL(pool2d, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_CPU_KERNEL(pool2d_grad, - ops::PoolGradKernel, - ops::PoolGradKernel) +REGISTER_OP_CPU_KERNEL( + pool2d, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL( + pool2d_grad, ops::PoolGradKernel, + ops::PoolGradKernel) REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad, ops::PoolOpGrad); -REGISTER_OP_CPU_KERNEL(pool3d, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_CPU_KERNEL(pool3d_grad, - ops::PoolGradKernel, - ops::PoolGradKernel); +REGISTER_OP_CPU_KERNEL( + pool3d, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL( + pool3d_grad, ops::PoolGradKernel, + ops::PoolGradKernel); diff --git a/paddle/operators/pool_op.cu.cc b/paddle/operators/pool_op.cu.cc index 1010cb7622..39a9dfbf79 100644 --- a/paddle/operators/pool_op.cu.cc +++ b/paddle/operators/pool_op.cu.cc @@ -16,16 +16,18 @@ limitations under the License. */ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(pool2d, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_GPU_KERNEL(pool2d_grad, - ops::PoolGradKernel, - ops::PoolGradKernel); +REGISTER_OP_CUDA_KERNEL( + pool2d, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CUDA_KERNEL( + pool2d_grad, + ops::PoolGradKernel, + ops::PoolGradKernel); -REGISTER_OP_GPU_KERNEL(pool3d, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_GPU_KERNEL(pool3d_grad, - ops::PoolGradKernel, - ops::PoolGradKernel); +REGISTER_OP_CUDA_KERNEL( + pool3d, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CUDA_KERNEL( + pool3d_grad, + ops::PoolGradKernel, + ops::PoolGradKernel); diff --git a/paddle/operators/pool_op.h b/paddle/operators/pool_op.h index 63492a89e8..c3d82ecbde 100644 --- a/paddle/operators/pool_op.h +++ b/paddle/operators/pool_op.h @@ -29,6 +29,10 @@ class PoolOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override; }; class PoolOpGrad : public framework::OperatorWithKernel { @@ -36,21 +40,23 @@ class PoolOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override; }; class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker { public: - Pool2dOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Pool2dOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker { public: - Pool3dOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Pool3dOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; -template +template class PoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -67,41 +73,41 @@ class PoolKernel : public framework::OpKernel { ksize[i] = static_cast(in_x->dims()[i + 2]); } } - + auto& dev_ctx = context.template device_context(); switch (ksize.size()) { case 2: { if (pooling_type == "max") { paddle::operators::math::Pool2dFunctor< - Place, paddle::operators::math::MaxPool, T> + DeviceContext, paddle::operators::math::MaxPool, T> pool2d_forward; paddle::operators::math::MaxPool pool_process; - pool2d_forward(context.device_context(), *in_x, ksize, strides, - paddings, pool_process, out); + pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, + out); } else if (pooling_type == "avg") { paddle::operators::math::Pool2dFunctor< - Place, paddle::operators::math::AvgPool, T> + DeviceContext, paddle::operators::math::AvgPool, T> pool2d_forward; paddle::operators::math::AvgPool pool_process; - pool2d_forward(context.device_context(), *in_x, ksize, strides, - paddings, pool_process, out); + pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, + out); } } break; case 3: { if (pooling_type == "max") { paddle::operators::math::Pool3dFunctor< - Place, paddle::operators::math::MaxPool, T> + DeviceContext, paddle::operators::math::MaxPool, T> pool3d_forward; paddle::operators::math::MaxPool pool_process; - pool3d_forward(context.device_context(), *in_x, ksize, strides, - paddings, pool_process, out); + pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, + out); } else if (pooling_type == "avg") { paddle::operators::math::Pool3dFunctor< - Place, paddle::operators::math::AvgPool, T> + DeviceContext, paddle::operators::math::AvgPool, T> pool3d_forward; paddle::operators::math::AvgPool pool_process; - pool3d_forward(context.device_context(), *in_x, ksize, strides, - paddings, pool_process, out); + pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, + out); } } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } @@ -109,7 +115,7 @@ class PoolKernel : public framework::OpKernel { } }; -template +template class PoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -130,42 +136,43 @@ class PoolGradKernel : public framework::OpKernel { ksize[i] = static_cast(in_x->dims()[i + 2]); } } - + auto& dev_ctx = context.template device_context(); if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); auto temp = framework::EigenVector::Flatten(*in_x_grad); - temp.device(context.GetEigenDevice()) = + temp.device( + *context.template device_context().eigen_device()) = temp.constant(static_cast(0)); switch (ksize.size()) { case 2: { if (pooling_type == "max") { - paddle::operators::math::MaxPool2dGradFunctor + paddle::operators::math::MaxPool2dGradFunctor pool2d_backward; - pool2d_backward(context.device_context(), *in_x, *out, *out_grad, - ksize, strides, paddings, in_x_grad); + pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, + paddings, in_x_grad); } else if (pooling_type == "avg") { paddle::operators::math::Pool2dGradFunctor< - Place, paddle::operators::math::AvgPoolGrad, T> + DeviceContext, paddle::operators::math::AvgPoolGrad, T> pool2d_backward; paddle::operators::math::AvgPoolGrad pool_process; - pool2d_backward(context.device_context(), *in_x, *out, *out_grad, - ksize, strides, paddings, pool_process, in_x_grad); + pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, + paddings, pool_process, in_x_grad); } } break; case 3: { if (pooling_type == "max") { - paddle::operators::math::MaxPool3dGradFunctor + paddle::operators::math::MaxPool3dGradFunctor pool3d_backward; - pool3d_backward(context.device_context(), *in_x, *out, *out_grad, - ksize, strides, paddings, in_x_grad); + pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, + paddings, in_x_grad); } else if (pooling_type == "avg") { paddle::operators::math::Pool3dGradFunctor< - Place, paddle::operators::math::AvgPoolGrad, T> + DeviceContext, paddle::operators::math::AvgPoolGrad, T> pool3d_backward; paddle::operators::math::AvgPoolGrad pool_process; - pool3d_backward(context.device_context(), *in_x, *out, *out_grad, - ksize, strides, paddings, pool_process, in_x_grad); + pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, + paddings, pool_process, in_x_grad); } } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } diff --git a/paddle/operators/pool_with_index_op.cc b/paddle/operators/pool_with_index_op.cc index b9c42a6912..1d31d813af 100644 --- a/paddle/operators/pool_with_index_op.cc +++ b/paddle/operators/pool_with_index_op.cc @@ -69,7 +69,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -90,7 +90,7 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -100,8 +100,7 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel { class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { public: - MaxPool2dWithIndexOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MaxPool2dWithIndexOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -178,8 +177,7 @@ Example: class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { public: - MaxPool3dWithIndexOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MaxPool3dWithIndexOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor of pooling operator. " @@ -266,12 +264,15 @@ REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp, REGISTER_OP_CPU_KERNEL( max_pool2d_with_index, - ops::MaxPoolWithIndexKernel, - ops::MaxPoolWithIndexKernel); + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); REGISTER_OP_CPU_KERNEL( max_pool2d_with_index_grad, - ops::MaxPoolWithIndexGradKernel, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp, ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad, @@ -279,9 +280,12 @@ REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp, REGISTER_OP_CPU_KERNEL( max_pool3d_with_index, - ops::MaxPoolWithIndexKernel, - ops::MaxPoolWithIndexKernel); + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); REGISTER_OP_CPU_KERNEL( max_pool3d_with_index_grad, - ops::MaxPoolWithIndexGradKernel, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) diff --git a/paddle/operators/pool_with_index_op.cu.cc b/paddle/operators/pool_with_index_op.cu.cc index 335064a7ee..4c9804da63 100644 --- a/paddle/operators/pool_with_index_op.cu.cc +++ b/paddle/operators/pool_with_index_op.cu.cc @@ -16,20 +16,28 @@ limitations under the License. */ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( max_pool2d_with_index, - ops::MaxPoolWithIndexKernel, - ops::MaxPoolWithIndexKernel); -REGISTER_OP_GPU_KERNEL( + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); +REGISTER_OP_CUDA_KERNEL( max_pool2d_with_index_grad, - ops::MaxPoolWithIndexGradKernel, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( max_pool3d_with_index, - ops::MaxPoolWithIndexKernel, - ops::MaxPoolWithIndexKernel); -REGISTER_OP_GPU_KERNEL( + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); +REGISTER_OP_CUDA_KERNEL( max_pool3d_with_index_grad, - ops::MaxPoolWithIndexGradKernel, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) diff --git a/paddle/operators/pool_with_index_op.h b/paddle/operators/pool_with_index_op.h index 40766c7e82..4f4087d1dd 100644 --- a/paddle/operators/pool_with_index_op.h +++ b/paddle/operators/pool_with_index_op.h @@ -24,7 +24,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class MaxPoolWithIndexKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -35,6 +35,8 @@ class MaxPoolWithIndexKernel : public framework::OpKernel { std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); + + auto& dev_ctx = context.template device_context(); if (context.Attr("global_pooling")) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[i] = 0; @@ -44,23 +46,23 @@ class MaxPoolWithIndexKernel : public framework::OpKernel { switch (ksize.size()) { case 2: { - paddle::operators::math::MaxPool2dWithIndexFunctor + paddle::operators::math::MaxPool2dWithIndexFunctor pool2d_forward; - pool2d_forward(context.device_context(), *in_x, ksize, strides, - paddings, out, mask); + pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, out, mask); } break; case 3: { - paddle::operators::math::MaxPool3dWithIndexFunctor + paddle::operators::math::MaxPool3dWithIndexFunctor pool3d_forward; - pool3d_forward(context.device_context(), *in_x, ksize, strides, - paddings, out, mask); + pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, out, mask); } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } } } }; -template +template class MaxPoolWithIndexGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -81,18 +83,20 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel { if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); - auto& device_ctx = context.device_context(); + auto& device_ctx = context.template device_context(); math::set_constant(device_ctx, in_x_grad, 0); switch (ksize.size()) { case 2: { - paddle::operators::math::MaxPool2dWithIndexGradFunctor + paddle::operators::math::MaxPool2dWithIndexGradFunctor pool2d_backward; pool2d_backward(device_ctx, *out_grad, *mask, ksize, strides, paddings, in_x_grad); } break; case 3: { - paddle::operators::math::MaxPool3dWithIndexGradFunctor + paddle::operators::math::MaxPool3dWithIndexGradFunctor pool3d_backward; pool3d_backward(device_ctx, *out_grad, *mask, ksize, strides, paddings, in_x_grad); diff --git a/paddle/operators/positive_negative_pair_op.cc b/paddle/operators/positive_negative_pair_op.cc index 4ba40a62ec..5aa5167dbb 100644 --- a/paddle/operators/positive_negative_pair_op.cc +++ b/paddle/operators/positive_negative_pair_op.cc @@ -85,7 +85,7 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Score")->type()), @@ -95,8 +95,7 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel { class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker { public: - PositiveNegativePairOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + PositiveNegativePairOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Score", "(Tensor, float) Model Score on an item (with " @@ -155,13 +154,14 @@ class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker { "Noting that reducing on the first dim will make the LoD info lost.") .SetDefault(0); AddComment(R"DOC( - PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) - model performance. - Within some context, e.g. the "query", a LTR model generates scores - for a list of items, which gives a partial order of the items. - PositiveNegativePairOp takes a list of reference rank order - (Input("Label")) and the model generated scores (Input(Score)) as - inputs and counts the pairs that ranked correctly and incorrectly. +PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model's +performance. + +Within some context, e.g. the "query", a LTR model generates scores for a list +of items, which gives a partial order of the items. PositiveNegativePairOp +takes a list of reference rank order (Input("Label")) and the model generated +scores (Input(Score)) as inputs and counts the pairs that ranked correctly +and incorrectly. )DOC"); } }; diff --git a/paddle/operators/positive_negative_pair_op.h b/paddle/operators/positive_negative_pair_op.h index 2efd3777e0..977e59b7d2 100644 --- a/paddle/operators/positive_negative_pair_op.h +++ b/paddle/operators/positive_negative_pair_op.h @@ -22,7 +22,7 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template +template class PositiveNegativePairKernel : public framework::OpKernel { public: struct PredictionResult { diff --git a/paddle/operators/precision_recall_op.cc b/paddle/operators/precision_recall_op.cc index 1ace4f2a59..f1598d53ca 100644 --- a/paddle/operators/precision_recall_op.cc +++ b/paddle/operators/precision_recall_op.cc @@ -80,7 +80,7 @@ class PrecisionRecallOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("MaxProbs")->type()), @@ -90,8 +90,7 @@ class PrecisionRecallOp : public framework::OperatorWithKernel { class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker { public: - PrecisionRecallOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + PrecisionRecallOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("MaxProbs", "(Tensor, default Tensor) A 2-D tensor with shape N x 1, " diff --git a/paddle/operators/precision_recall_op.h b/paddle/operators/precision_recall_op.h index 4a871ce674..c0d55405a3 100644 --- a/paddle/operators/precision_recall_op.h +++ b/paddle/operators/precision_recall_op.h @@ -26,7 +26,7 @@ using EigenMatrix = framework::EigenMatrix; enum StateVariable { TP = 0, FP, TN, FN }; -template +template class PrecisionRecallKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/prelu_op.cc b/paddle/operators/prelu_op.cc index 055c471b45..ddc21a6570 100644 --- a/paddle/operators/prelu_op.cc +++ b/paddle/operators/prelu_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/prelu_op.h" #include "paddle/operators/net_op.h" @@ -38,7 +38,7 @@ class PReluOp : public framework::OperatorWithKernel { class PReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - PReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + PReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of prelu operator."); AddInput("Alpha", "The alpha weight of prelu operator."); @@ -85,7 +85,8 @@ namespace ops = paddle::operators; REGISTER_OP(prelu, ops::PReluOp, ops::PReluOpMaker, prelu_grad, ops::PReluGradOp); -REGISTER_OP_CPU_KERNEL(prelu, - ops::PReluKernel); -REGISTER_OP_CPU_KERNEL(prelu_grad, - ops::PReluGradKernel); +REGISTER_OP_CPU_KERNEL( + prelu, ops::PReluKernel); +REGISTER_OP_CPU_KERNEL( + prelu_grad, + ops::PReluGradKernel); diff --git a/paddle/operators/prelu_op.cu b/paddle/operators/prelu_op.cu index 9e391dabae..1718bb5cd6 100644 --- a/paddle/operators/prelu_op.cu +++ b/paddle/operators/prelu_op.cu @@ -1,21 +1,22 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/prelu_op.h" -REGISTER_OP_GPU_KERNEL( - prelu, paddle::operators::PReluKernel); -REGISTER_OP_GPU_KERNEL( - prelu_grad, - paddle::operators::PReluGradKernel); +REGISTER_OP_CUDA_KERNEL( + prelu, + paddle::operators::PReluKernel); +REGISTER_OP_CUDA_KERNEL(prelu_grad, + paddle::operators::PReluGradKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/prelu_op.h b/paddle/operators/prelu_op.h index 5ad31c2203..56f9a553ec 100644 --- a/paddle/operators/prelu_op.h +++ b/paddle/operators/prelu_op.h @@ -39,7 +39,7 @@ class PReluFunctor { const T* alpha_; }; -template +template class PReluKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -54,9 +54,9 @@ class PReluKernel : public framework::OpKernel { int numel = x->numel(); - Transform trans; - trans(context.device_context(), x_ptr, x_ptr + numel, o_ptr, - PReluFunctor(alpha_ptr)); + Transform trans; + trans(context.template device_context(), x_ptr, + x_ptr + numel, o_ptr, PReluFunctor(alpha_ptr)); } }; @@ -76,7 +76,7 @@ class PReluGradFunctor { const T* alpha_; }; -template +template class PReluGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -92,9 +92,9 @@ class PReluGradKernel : public framework::OpKernel { const T* out_ptr = out->data(); int numel = dx->numel(); - Transform trans; - trans(context.device_context(), out_ptr, out_ptr + numel, dout_ptr, dx_ptr, - PReluGradFunctor(alpha_ptr)); + Transform trans; + trans(context.template device_context(), out_ptr, + out_ptr + numel, dout_ptr, dx_ptr, PReluGradFunctor(alpha_ptr)); // TODO(Zhuoyuan): add dalpha upgrade when GPU kernels ready } diff --git a/paddle/operators/print_op.cc b/paddle/operators/print_op.cc new file mode 100644 index 0000000000..8b233d64c9 --- /dev/null +++ b/paddle/operators/print_op.cc @@ -0,0 +1,283 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include +#include + +#include "paddle/framework/op_registry.h" +#include "paddle/framework/variable.h" + +namespace paddle { +namespace operators { + +#define CLOG std::cout + +const std::string kForward = "FORWARD"; +const std::string kBackward = "BACKWARD"; +const std::string kBoth = "BOTH"; + +struct Formater { + std::string message; + std::string name; + std::vector dims; + std::type_index dtype{typeid(char)}; + framework::LoD lod; + int summarize; + void* data{nullptr}; + + void operator()(size_t size) { + PrintMessage(); + PrintName(); + PrintDims(); + PrintDtype(); + PrintLod(); + PrintData(size); + } + + private: + void PrintMessage() { CLOG << std::time(nullptr) << "\t" << message; } + void PrintName() { + if (!name.empty()) { + CLOG << "Tensor[" << name << "]" << std::endl; + } + } + void PrintDims() { + if (!dims.empty()) { + CLOG << "\tshape: ["; + for (auto i : dims) { + CLOG << i << ","; + } + CLOG << "]" << std::endl; + } + } + void PrintDtype() { + if (dtype.hash_code() != typeid(char).hash_code()) { + CLOG << "\tdtype: " << dtype.name() << std::endl; + } + } + void PrintLod() { + if (!lod.empty()) { + CLOG << "\tLoD: ["; + for (auto level : lod) { + CLOG << "[ "; + for (auto i : level) { + CLOG << i << ","; + } + CLOG << " ]"; + } + CLOG << "]" << std::endl; + } + } + + void PrintData(size_t size) { + PADDLE_ENFORCE_NOT_NULL(data); + // print float + if (dtype.hash_code() == typeid(float).hash_code()) { + Display(size); + } + if (dtype.hash_code() == typeid(double).hash_code()) { + Display(size); + } + if (dtype.hash_code() == typeid(int).hash_code()) { + Display(size); + } + if (dtype.hash_code() == typeid(int64_t).hash_code()) { + Display(size); + } + } + + template + void Display(size_t size) { + auto* d = (T*)data; + CLOG << "\tdata: "; + if (summarize != -1) { + summarize = std::min(size, (size_t)summarize); + for (int i = 0; i < summarize; i++) { + CLOG << d[i] << ","; + } + } else { + for (size_t i = 0; i < size; i++) { + CLOG << d[i] << ","; + } + } + CLOG << std::endl; + } +}; + +// TODO(ChunweiYan) there should be some other printers for TensorArray +class TensorPrintOp : public framework::OperatorBase { + public: + TensorPrintOp(const std::string& type, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + TensorPrintOp(const TensorPrintOp& o) + : framework::OperatorBase( + static_cast(o)) { + PADDLE_THROW("Not implemented."); + } + + void Run(const framework::Scope& scope, + const platform::Place& place) const override { + const framework::Variable* in_var_ptr = nullptr; + std::string phase = kForward; + std::string printed_var_name = ""; + + auto& inputs = Inputs(); + if (inputs.find("In") != inputs.end() && !Inputs("In").empty()) { + in_var_ptr = scope.FindVar(Input("In")); + printed_var_name = Inputs("In").front(); + } else if (inputs.find("In@GRAD") != inputs.end() && + !Inputs("In@GRAD").empty()) { + in_var_ptr = scope.FindVar(Input("In@GRAD")); + printed_var_name = Inputs("In@GRAD").front(); + phase = kBackward; + } else { + PADDLE_THROW("Unknown phase, should be forward or backward."); + } + + PADDLE_ENFORCE_NOT_NULL(in_var_ptr); + + auto& in_tensor = in_var_ptr->Get(); + auto* out_var_ptr = scope.FindVar(Output("Out")); + auto& out_tensor = *out_var_ptr->GetMutable(); + + // Just copy data from input tensor to output tensor + // output tensor share same memory with input tensor + out_tensor.ShareDataWith(in_tensor); + out_tensor.set_lod(in_tensor.lod()); + + std::string print_phase = Attr("print_phase"); + if (print_phase != phase && print_phase != kBoth) { + return; + } + + int first_n = Attr("first_n"); + if (first_n > 0 && ++times_ > first_n) return; + + framework::LoDTensor printed_tensor; + printed_tensor.set_lod(in_tensor.lod()); + printed_tensor.Resize(in_tensor.dims()); + + if (platform::is_cpu_place(in_tensor.place())) { + printed_tensor.ShareDataWith(in_tensor); + } else { + // copy data to cpu to print + platform::CPUPlace place; + framework::Copy(in_tensor, place, &printed_tensor); + } + + Formater formater; + if (Attr("print_tensor_name")) { + formater.name = printed_var_name; + } + if (Attr("print_tensor_type")) { + formater.dtype = printed_tensor.type(); + } + if (Attr("print_tensor_shape")) { + auto& dims = printed_tensor.dims(); + formater.dims.resize(dims.size()); + for (int i = 0; i < dims.size(); ++i) formater.dims[i] = dims[i]; + } + if (Attr("print_tensor_lod")) { + formater.lod = printed_tensor.lod(); + } + formater.summarize = Attr("summarize"); + formater.data = (void*)printed_tensor.data(); + formater(printed_tensor.numel()); + } + + private: + mutable int times_{0}; +}; + +class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker { + public: + PrintOpProtoAndCheckMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("In", "Input tensor to be displayed."); + AddAttr("first_n", "Only log `first_n` number of times."); + AddAttr("message", "A string message to print as a prefix."); + AddAttr("summarize", "Number of elements printed."); + AddAttr("print_tensor_name", "Whether to print the tensor name."); + AddAttr("print_tensor_type", "Whether to print the tensor's dtype."); + AddAttr("print_tensor_shape", "Whether to print the tensor's shape."); + AddAttr("print_tensor_lod", "Whether to print the tensor's lod."); + AddAttr( + "print_phase", + "(string, default 'BOTH') Which phase to display including 'FORWARD' " + "'BACKWARD' and 'BOTH'.") + .SetDefault(kBoth) + .InEnum({kForward, kBackward, kBoth}); + AddOutput("Out", "Output tensor with same data as input tensor."); + AddComment(R"DOC( +Creates a print op that will print when a tensor is accessed. + +Wraps the tensor passed in so that whenever that a tensor is accessed, +the message `message` is printed, along with the current value of the +tensor `t`.)DOC"); + } +}; + +class InferShapeForward : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext* context) const override { + PADDLE_ENFORCE(context->HasInput("In"), "Input(In) should not be null."); + context->ShareLoD("In", /*->*/ "Out"); + context->SetOutputDim("Out", context->GetInputDim("In")); + } +}; + +class InferShapeBackward : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext* context) const override { + PADDLE_ENFORCE(context->HasInput("In@GRAD"), + "Input(In@GRAD) should not be null."); + context->ShareLoD("In@GRAD", /*->*/ "Out"); + context->SetOutputDim("Out", context->GetInputDim("In@GRAD")); + } +}; + +class InferVarType : public framework::VarTypeInference { + public: + void operator()(const framework::OpDesc& op_desc, + framework::BlockDesc* block) const override {} +}; + +class PrintOpProtoAndCheckGradOpMaker + : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto* op_desc_ptr = new framework::OpDesc(); + op_desc_ptr->SetType("print_grad"); + op_desc_ptr->SetInput("In@GRAD", OutputGrad("Out")); + op_desc_ptr->SetOutput("Out", InputGrad("In")); + op_desc_ptr->SetAttrMap(Attrs()); + return std::unique_ptr(op_desc_ptr); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(print, ops::TensorPrintOp, ops::PrintOpProtoAndCheckMaker, + ops::PrintOpProtoAndCheckGradOpMaker, ops::InferShapeForward, + ops::InferVarType); +REGISTER_OPERATOR(print_grad, ops::TensorPrintOp, ops::InferShapeBackward); diff --git a/paddle/operators/proximal_adagrad_op.cc b/paddle/operators/proximal_adagrad_op.cc index 36e460103a..b92f46b5bd 100644 --- a/paddle/operators/proximal_adagrad_op.cc +++ b/paddle/operators/proximal_adagrad_op.cc @@ -59,8 +59,7 @@ class ProximalAdagradOp : public framework::OperatorWithKernel { class ProximalAdagradOpMaker : public framework::OpProtoAndCheckerMaker { public: - ProximalAdagradOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ProximalAdagradOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -114,4 +113,4 @@ REGISTER_OP_WITHOUT_GRADIENT(proximal_adagrad, ops::ProximalAdagradOp, ops::ProximalAdagradOpMaker); REGISTER_OP_CPU_KERNEL( proximal_adagrad, - ops::ProximalAdagradOpKernel); + ops::ProximalAdagradOpKernel); diff --git a/paddle/operators/proximal_adagrad_op.cu b/paddle/operators/proximal_adagrad_op.cu index d0ae039518..42a178f94b 100644 --- a/paddle/operators/proximal_adagrad_op.cu +++ b/paddle/operators/proximal_adagrad_op.cu @@ -15,6 +15,6 @@ specific language governing permissions and limitations under the License. */ #include "paddle/operators/proximal_adagrad_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( proximal_adagrad, - ops::ProximalAdagradOpKernel); + ops::ProximalAdagradOpKernel); diff --git a/paddle/operators/proximal_adagrad_op.h b/paddle/operators/proximal_adagrad_op.h index 7a1560e8cb..523924d80e 100644 --- a/paddle/operators/proximal_adagrad_op.h +++ b/paddle/operators/proximal_adagrad_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class ProximalAdagradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -45,20 +45,20 @@ class ProximalAdagradOpKernel : public framework::OpKernel { auto p_out = EigenVector::Flatten(*param_out); auto m_out = EigenVector::Flatten(*moment_out); - auto place = ctx.GetEigenDevice(); + auto* place = ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); - m_out.device(place) = m + g * g; + m_out.device(*place) = m + g * g; auto prox_param = p - lr.broadcast(grad_dsize) * g / m_out.sqrt(); if (l1 > static_cast(0)) { - p_out.device(place) = + p_out.device(*place) = prox_param.sign() * (((prox_param.abs() - (lr * l1).broadcast(grad_dsize)) .cwiseMax(static_cast(0.0))) / (static_cast(1.0) + (lr * l2).broadcast(grad_dsize))); } else { - p_out.device(place) = + p_out.device(*place) = prox_param / (static_cast(1.0) + (lr * l2).broadcast(grad_dsize)); } } diff --git a/paddle/operators/proximal_gd_op.cc b/paddle/operators/proximal_gd_op.cc index 5693d0ec9e..2d3bbdaf32 100644 --- a/paddle/operators/proximal_gd_op.cc +++ b/paddle/operators/proximal_gd_op.cc @@ -47,8 +47,7 @@ class ProximalGDOp : public framework::OperatorWithKernel { class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker { public: - ProximalGDOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ProximalGDOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -94,4 +93,5 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(proximal_gd, ops::ProximalGDOp, ops::ProximalGDOpMaker); REGISTER_OP_CPU_KERNEL( - proximal_gd, ops::ProximalGDOpKernel); + proximal_gd, + ops::ProximalGDOpKernel); diff --git a/paddle/operators/proximal_gd_op.cu b/paddle/operators/proximal_gd_op.cu index 26f4ebaa0f..b7dd840d19 100644 --- a/paddle/operators/proximal_gd_op.cu +++ b/paddle/operators/proximal_gd_op.cu @@ -15,5 +15,6 @@ specific language governing permissions and limitations under the License. */ #include "paddle/operators/proximal_gd_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - proximal_gd, ops::ProximalGDOpKernel); +REGISTER_OP_CUDA_KERNEL( + proximal_gd, + ops::ProximalGDOpKernel); diff --git a/paddle/operators/proximal_gd_op.h b/paddle/operators/proximal_gd_op.h index bebda02041..64648b3cca 100644 --- a/paddle/operators/proximal_gd_op.h +++ b/paddle/operators/proximal_gd_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class ProximalGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -42,7 +42,7 @@ class ProximalGDOpKernel : public framework::OpKernel { auto lr = EigenVector::Flatten(*ctx.Input("LearningRate")); auto p_out = EigenVector::Flatten(*param_out); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); diff --git a/paddle/operators/rank_loss_op.cc b/paddle/operators/rank_loss_op.cc index 912f88f455..f2164a0f80 100644 --- a/paddle/operators/rank_loss_op.cc +++ b/paddle/operators/rank_loss_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/rank_loss_op.h" @@ -45,8 +45,7 @@ class RankLossOp : public framework::OperatorWithKernel { class RankLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - RankLossOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RankLossOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Label", "(2-D Tensor with shape [batch_size x 1]) " @@ -123,7 +122,8 @@ namespace ops = paddle::operators; REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad, ops::RankLossGradOp); -REGISTER_OP_CPU_KERNEL(rank_loss, - ops::RankLossKernel); REGISTER_OP_CPU_KERNEL( - rank_loss_grad, ops::RankLossGradKernel); + rank_loss, ops::RankLossKernel); +REGISTER_OP_CPU_KERNEL( + rank_loss_grad, + ops::RankLossGradKernel); diff --git a/paddle/operators/rank_loss_op.cu b/paddle/operators/rank_loss_op.cu index 5382e3a629..294b227383 100644 --- a/paddle/operators/rank_loss_op.cu +++ b/paddle/operators/rank_loss_op.cu @@ -1,22 +1,22 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/rank_loss_op.h" -REGISTER_OP_GPU_KERNEL( - rank_loss, - paddle::operators::RankLossKernel); -REGISTER_OP_GPU_KERNEL( - rank_loss_grad, - paddle::operators::RankLossGradKernel); +REGISTER_OP_CUDA_KERNEL(rank_loss, + paddle::operators::RankLossKernel< + paddle::platform::CUDADeviceContext, float>); +REGISTER_OP_CUDA_KERNEL(rank_loss_grad, + paddle::operators::RankLossGradKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/rank_loss_op.h b/paddle/operators/rank_loss_op.h index 703c77a0b2..bd0c49ca6e 100644 --- a/paddle/operators/rank_loss_op.h +++ b/paddle/operators/rank_loss_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -20,7 +20,7 @@ namespace paddle { namespace operators { -template +template class RankLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -35,13 +35,13 @@ class RankLossKernel : public framework::OpKernel { auto left = framework::EigenVector::Flatten(*left_t); auto right = framework::EigenVector::Flatten(*right_t); - auto& dev = ctx.GetEigenDevice(); + auto& dev = *ctx.template device_context().eigen_device(); out.device(dev) = (1. + (left - right).exp()).log() - label * (left - right); } }; -template +template class RankLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -55,7 +55,7 @@ class RankLossGradKernel : public framework::OpKernel { auto* left_t = ctx.Input("Left"); auto* right_t = ctx.Input("Right"); - auto& dev = ctx.GetEigenDevice(); + auto& dev = *ctx.template device_context().eigen_device(); auto d_out = framework::EigenVector::Flatten(*d_out_t); auto label = framework::EigenVector::Flatten(*label_t); auto left = framework::EigenVector::Flatten(*left_t); diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index 8b60b9c912..a136c5b447 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include "paddle/framework/executor.h" @@ -25,7 +25,7 @@ constexpr char kOutputs[] = "outputs"; constexpr char kStepScopes[] = "step_scopes"; constexpr char kExStates[] = "ex_states"; constexpr char kStates[] = "states"; -constexpr char kStepBlock[] = "step_block"; +constexpr char kStepBlock[] = "sub_block"; constexpr char kReverse[] = "reverse"; constexpr char kIsTrain[] = "is_train"; #define GRAD_SUFFIX "@GRAD" @@ -227,14 +227,15 @@ class RecurrentOp : public RecurrentBase { : RecurrentBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto seq_len = static_cast(this->GetSequenceLength(scope)); VLOG(3) << "Static RNN input sequence length = " << seq_len; StepScopes scopes = CreateStepScopes(scope, seq_len); auto reverse = Attr(kReverse); - framework::Executor executor(dev_ctx); - auto *block = Attr(kStepBlock); + framework::Executor executor(place); + auto *block = Attr(kStepBlock); + auto *program = block->Program(); for (size_t i = 0; i < seq_len; ++i) { @@ -270,6 +271,11 @@ class RecurrentOp : public RecurrentBase { executor.Run(*program, &cur_scope, block->ID(), false /*create_local_scope*/); + // get device context from pool + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + // Copy inside::output -> outside::output // outside::output[seq_offset: seq_offset + 1] = inside::output this->LinkTensorWithCallback( @@ -278,14 +284,13 @@ class RecurrentOp : public RecurrentBase { framework::LoDTensor *dst_tensor) { if (i == 0) { // create output tensor at begin dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims())); - dst_tensor->mutable_data(dev_ctx.GetPlace(), src_tensor.type()); + dst_tensor->mutable_data(place, src_tensor.type()); } auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1); // Explicit copy output since the local RNN scope can be destroyed // early. - framework::CopyFrom(src_tensor, dev_ctx.GetPlace(), dev_ctx, - &dst_out); + framework::Copy(src_tensor, place, dev_ctx, &dst_out); }); scopes.Next(); @@ -311,15 +316,20 @@ class RecurrentGradOp : public RecurrentBase { : RecurrentBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto seq_len = static_cast(GetSequenceLength(scope)); StepScopes scopes = CreateStepScopes(scope, seq_len); auto reverse = Attr(kReverse); - framework::Executor executor(dev_ctx); - auto *block = Attr(kStepBlock); + framework::Executor executor(place); + auto *block = Attr(kStepBlock); + auto *program = block->Program(); + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + for (size_t step_id = 0; step_id < seq_len; ++step_id) { size_t seq_offset = reverse ? step_id : seq_len - step_id - 1; VLOG(3) << "Recurrent backward operate at the time step " << seq_offset; @@ -366,8 +376,7 @@ class RecurrentGradOp : public RecurrentBase { auto *cur_grad_var = cur_scope.Var(cur_grad); auto cur_grad_tensor = cur_grad_var->GetMutable(); - framework::CopyFrom(ex_tensor, dev_ctx.GetPlace(), dev_ctx, - cur_grad_tensor); + framework::Copy(ex_tensor, place, dev_ctx, cur_grad_tensor); } } @@ -408,8 +417,9 @@ class RecurrentGradOp : public RecurrentBase { attrs["value"] = 0.0f; auto zero_op = framework::OpRegistry::CreateOp( - "fill_constant", {}, {{"Out", {pg_names[param_id]}}}, attrs); - zero_op->Run(scope, dev_ctx); + "fill_constant", framework::VariableNameMap{}, + {{"Out", {pg_names[param_id]}}}, attrs); + zero_op->Run(scope, place); } auto new_inside_name = cur_scope.Rename(inside_grad_name); @@ -417,8 +427,8 @@ class RecurrentGradOp : public RecurrentBase { auto sum_op = framework::OpRegistry::CreateOp( "sum", {{"X", {pg_names[param_id], new_inside_name}}}, - {{"Out", {pg_names[param_id]}}}, {}); - sum_op->Run(cur_scope, dev_ctx); + {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{}); + sum_op->Run(cur_scope, place); cur_scope.Rename(new_inside_name, inside_grad_name); } @@ -436,11 +446,11 @@ class RecurrentGradOp : public RecurrentBase { } if (step_id == 0) { // alloc memory outside->Resize(PrependDims(seq_len, inside.dims())); - outside->mutable_data(dev_ctx.GetPlace(), inside.type()); + outside->mutable_data(place, inside.type()); } auto dst = outside->Slice(seq_offset, seq_offset + 1); - framework::CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx, &dst); + framework::Copy(inside, place, dev_ctx, &dst); }); VLOG(5) << "Link outside gradient finished "; @@ -452,8 +462,8 @@ class RecurrentGradOp : public RecurrentBase { [&](const framework::LoDTensor &inside, framework::LoDTensor *outside) { outside->Resize(inside.dims()); - outside->mutable_data(dev_ctx.GetPlace(), inside.type()); - framework::CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx, outside); + outside->mutable_data(place, inside.type()); + framework::Copy(inside, place, dev_ctx, outside); }); VLOG(5) << "Link initialize state gradient finished "; } @@ -482,7 +492,7 @@ class RecurrentGradOp : public RecurrentBase { std::unordered_set LocalVarNames( const framework::Scope &scope) const { - return this->List2Set(scope.GetAllNames(false)); + return this->List2Set(scope.LocalVarNames()); } static std::vector GradVarLists( const std::vector &var_names) { @@ -496,8 +506,7 @@ class RecurrentGradOp : public RecurrentBase { class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - RecurrentOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RecurrentOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput(kInputs, "rnn inputs").AsDuplicable(); AddInput(kInitialStates, "rnn initial states").AsDuplicable(); @@ -522,8 +531,7 @@ The ex-state means the state value in the ex-timestep or the previous time step string::Sprintf( "The state variable names. [%s, %s, %s] must be the same order", kExStates, kStates, kInitStateGrads)); - AddAttr(kStepBlock, - "The step block inside RNN"); + AddAttr(kStepBlock, "The step block inside RNN"); AddAttr(kReverse, R"DOC(Calculate RNN reversely or not. By default reverse=False @@ -565,13 +573,13 @@ class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - virtual std::unique_ptr Apply() const { - auto *grad = new framework::OpDescBind(); + virtual std::unique_ptr Apply() const { + auto *grad = new framework::OpDesc(); grad->SetType("recurrent_grad"); for (auto &input_param : this->InputNames()) { grad->SetInput(input_param, this->Input(input_param)); grad->SetOutput(framework::GradVarName(input_param), - this->InputGrad(input_param)); + this->InputGrad(input_param, false)); } for (auto &output_param : this->OutputNames()) { @@ -588,7 +596,7 @@ class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker { grad->SetAttrMap(this->Attrs()); grad->SetBlockAttr(kStepBlock, *grad_block_[0]); - return std::unique_ptr(grad); + return std::unique_ptr(grad); } }; diff --git a/paddle/operators/recv_op.cc b/paddle/operators/recv_op.cc index c69e416e10..8d1479bdd6 100644 --- a/paddle/operators/recv_op.cc +++ b/paddle/operators/recv_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include @@ -19,27 +19,42 @@ #include -#include "paddle/framework/data_type.h" #include "paddle/framework/executor.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" -#include "paddle/operators/detail/send_recv_impl.h" +#include "paddle/framework/proto_desc.h" +#include "paddle/operators/detail/grpc_server.h" +#include "paddle/operators/detail/sendrecvop_utils.h" #include "paddle/operators/detail/simple_block_queue.h" +#include "paddle/string/printf.h" + +#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV" namespace paddle { namespace operators { -void RunServer(Server **rpc_server, - std::shared_ptr service, - const std::string &server_address) { - ServerBuilder builder; - builder.AddListeningPort(server_address, grpc::InsecureServerCredentials()); - builder.RegisterService(service.get()); - std::unique_ptr server(builder.BuildAndStart()); - *rpc_server = server.get(); - LOG(INFO) << "Server listening on " << server_address << std::endl; - server->Wait(); +constexpr int kCondStart = 0; +constexpr int kCondRunning = 1; +constexpr int kCondDone = 2; + +void RunServer(std::shared_ptr service) { + service->RunSyncUpdate(); + VLOG(4) << "RunServer thread end"; +} + +static void CreateTensorFromMessageType(framework::Variable *var, + sendrecv::VarType var_type) { + if (var_type == sendrecv::VarType::LOD_TENSOR) { + var->GetMutable(); + } else if (var_type == sendrecv::VarType::SELECTED_ROWS) { + var->GetMutable(); + } else { + PADDLE_THROW( + "VraibleMessage type %d is not in " + "[LoDTensor, SelectedRows]", + var_type); + } } class RecvOp : public framework::OperatorBase { @@ -49,55 +64,107 @@ class RecvOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) { if (!rpc_service_) { - rpc_service_.reset(new detail::SendRecvServerImpl()); std::string endpoint = Attr("endpoint"); - server_thread_.reset( - new std::thread(RunServer, &rpc_server_, rpc_service_, endpoint)); + rpc_service_.reset(new detail::AsyncGRPCServer(endpoint)); + server_thread_.reset(new std::thread(RunServer, rpc_service_)); } } - virtual ~RecvOp() { - rpc_server_->Shutdown(); + void Stop() override { + detail::MessageWithName term_msg; + term_msg.first = LISTEN_TERMINATE_MESSAGE; + rpc_service_->Push(term_msg); + rpc_service_->ShutDown(); server_thread_->join(); } + std::string GetGradVarNameForTrainer(const std::string &varname) const { + if (grads_counter_.find(varname) == grads_counter_.end()) { + grads_counter_[varname] = 0; + } + return string::Sprintf("%s.trainer_%d", varname, grads_counter_[varname]++); + } + void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { - // blocking get one var from client. - const framework::LoDTensor &t = rpc_service_->Get(); + const platform::Place &dev_place) const override { + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); framework::Scope &recv_scope = scope.NewScope(); - // set graph input var - auto *var = recv_scope.Var(Input("RX")); - auto *tensor = var->GetMutable(); - // FIXME(typhoonzero): do not copy - framework::CopyFrom(t, dev_ctx.GetPlace(), dev_ctx, tensor); - - auto *block = Attr("OptimizeBlock"); - auto *program = block->Program(); - framework::Executor executor(dev_ctx); - // Run sub graph to get optimized tensor - executor.Run(*program, &recv_scope, block->ID(), - false /*create_local_scope*/); - - auto *out_var = recv_scope.FindVar("Out"); - // push back - rpc_service_->Push(out_var->Get()); + + // FIXME(Yancey1989): initialize rpc server with laze mode. + rpc_service_->SetScope(&recv_scope); + rpc_service_->SetDevCtx(&dev_ctx); + auto param_list = Attr>("ParamList"); + auto grad_list = Attr>("GradList"); + auto fan_in = Attr("Fanin"); + size_t param_count = param_list.size(); + + std::string program_str = Attr("OptimizeProgram"); + framework::proto::ProgramDesc program_desc; + program_desc.ParseFromString(program_str); + framework::ProgramDesc program(program_desc); + framework::Executor executor(dev_place); + + // TODO(typhoonzero): change this to a while_op for every cluster-batch. + bool exit_flag = false; + int64_t barrier_size = param_count * fan_in; + while (!exit_flag) { + // Get from multiple trainers, we don't care about the order in which + // the gradients arrives, just add suffix 0~n and merge the gradient. + rpc_service_->SetCond(0); + for (size_t i = 0; i < barrier_size; ++i) { + const detail::MessageWithName &v = rpc_service_->Get(); + auto grad_var_name = v.first; + if (grad_var_name == LISTEN_TERMINATE_MESSAGE) { + LOG(INFO) << "received terminate message and exit"; + exit_flag = true; + break; + } + auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name); + std::string param_var_name; + if (it != grad_list.end()) { + param_var_name = param_list[it - grad_list.begin()]; + } else { + LOG(ERROR) << "grad have no paired param:" << grad_var_name; + } + VLOG(3) << "recved grad: " << grad_var_name + << " updating param: " << param_var_name; + if (fan_in > 1) { + grad_var_name = this->GetGradVarNameForTrainer(grad_var_name); + } + auto *var = recv_scope.FindVar(grad_var_name); + if (var == nullptr) { + LOG(ERROR) << "can not find server side var: " << grad_var_name; + PADDLE_THROW("can not find server side var"); + } + detail::DeserializeFromMessage(v.second, dev_ctx, var); + } + if (exit_flag) { + break; + } + try { + executor.Run(program, &recv_scope, 0, /*global_block*/ + false /*create_local_scope*/, false /*create_vars*/); + } catch (std::exception &e) { + LOG(ERROR) << "run sub program error " << e.what(); + } + rpc_service_->SetCond(1); + rpc_service_->WaitClientGet(barrier_size); + grads_counter_.clear(); + } // while(true) } protected: - // grpc server instance to track status and gracefully shutdown. - // borrow an pointer from server thread. - Server *rpc_server_{nullptr}; - // grpc send/recv service implement to register. - std::shared_ptr rpc_service_; + std::shared_ptr rpc_service_; std::shared_ptr server_thread_; + mutable std::unordered_map grads_counter_; }; class RecvOpMaker : public framework::OpProtoAndCheckerMaker { public: - RecvOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("RX", "(Tensor) Input tensor to be saved"); + AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable(); AddComment(R"DOC( Recv operator @@ -108,8 +175,19 @@ This operator will recv tensor from send_op "IP address to listen on.") .SetDefault("127.0.0.1:6164") .AddCustomChecker([](const std::string &ip) { return !ip.empty(); }); - AddAttr("OptimizeBlock", "type BlockDescBind*", - "optimize network run in server"); + AddAttr("OptimizeProgram", "type string", + "Serialized ProgramDesc string for recv to run."); + AddAttr>( + "ParamList", "type list of string", + "grad->param name mapping to find which param to optimize.") + .SetDefault({}); + AddAttr>( + "GradList", "type list of string", + "grad->param name mapping to find which param to optimize.") + .SetDefault({}); + AddAttr("Fanin", "type int", + "Number of trainers in the current cluster job") + .SetDefault(1); } }; diff --git a/paddle/operators/reduce_op.cc b/paddle/operators/reduce_op.cc index 2589a54cfc..09b7091358 100644 --- a/paddle/operators/reduce_op.cc +++ b/paddle/operators/reduce_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/reduce_op.h" #include "paddle/operators/net_op.h" @@ -37,18 +37,23 @@ class ReduceOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_LT( dim, x_rank, "The dim should be in the range [-rank(input), rank(input))."); - bool keep_dim = ctx->Attrs().Get("keep_dim"); - auto dims_vector = vectorize(x_dims); - if (keep_dim || x_rank == 1) { - dims_vector[dim] = 1; + bool reduce_all = ctx->Attrs().Get("reduce_all"); + if (reduce_all) { + ctx->SetOutputDim("Out", {1}); } else { - dims_vector.erase(dims_vector.begin() + dim); - } - auto out_dims = framework::make_ddim(dims_vector); - ctx->SetOutputDim("Out", out_dims); - if (dim != 0) { - // Only pass LoD when not reducing on the first dim. - ctx->ShareLoD("X", /*->*/ "Out"); + bool keep_dim = ctx->Attrs().Get("keep_dim"); + auto dims_vector = vectorize(x_dims); + if (keep_dim || x_rank == 1) { + dims_vector[dim] = 1; + } else { + dims_vector.erase(dims_vector.begin() + dim); + } + auto out_dims = framework::make_ddim(dims_vector); + ctx->SetOutputDim("Out", out_dims); + if (dim != 0) { + // Only pass LoD when not reducing on the first dim. + ctx->ShareLoD("X", /*->*/ "Out"); + } } } }; @@ -72,13 +77,14 @@ class ReduceGradOp : public framework::OperatorWithKernel { auto x_grad_name = framework::GradVarName("X"); if (ctx->HasOutput(x_grad_name)) { ctx->SetOutputDim(x_grad_name, x_dims); + ctx->ShareLoD("X", /*->*/ x_grad_name); } } }; class ReduceOpMaker : public framework::OpProtoAndCheckerMaker { public: - ReduceOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor. Tensors with rank at most 6 are " @@ -95,11 +101,16 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker { "(bool, default false) " "If true, retain the reduced dimension with length 1.") .SetDefault(false); + AddAttr("reduce_all", + "(bool, default false) " + "If true, output a scalar reduced along all dimensions.") + .SetDefault(false); comment_ = R"DOC( {ReduceOp} Operator. This operator computes the {reduce} of input tensor along the given dimension. The result tensor has 1 fewer dimension than the input unless keep_dim is true. +If reduce_all is true, just reduce along all dimensions and output a scalar. )DOC"; AddComment(comment_); @@ -118,15 +129,14 @@ The result tensor has 1 fewer dimension than the input unless keep_dim is true. } void SetComment(std::string name, std::string op) { - Replace(comment_, "{ReduceOP}", name); + Replace(comment_, "{ReduceOp}", name); Replace(comment_, "{reduce}", op); } }; class ReduceSumOpMaker : public ReduceOpMaker { public: - ReduceSumOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReduceSumOpMaker(OpProto *proto, OpAttrChecker *op_checker) : ReduceOpMaker(proto, op_checker) { SetComment("ReduceSum", "sum"); AddComment(comment_); @@ -135,8 +145,7 @@ class ReduceSumOpMaker : public ReduceOpMaker { class ReduceMeanOpMaker : public ReduceOpMaker { public: - ReduceMeanOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReduceMeanOpMaker(OpProto *proto, OpAttrChecker *op_checker) : ReduceOpMaker(proto, op_checker) { SetComment("ReduceMean", "mean"); AddComment(comment_); @@ -145,8 +154,7 @@ class ReduceMeanOpMaker : public ReduceOpMaker { class ReduceMaxOpMaker : public ReduceOpMaker { public: - ReduceMaxOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReduceMaxOpMaker(OpProto *proto, OpAttrChecker *op_checker) : ReduceOpMaker(proto, op_checker) { SetComment("ReduceMax", "max"); AddComment(comment_); @@ -155,8 +163,7 @@ class ReduceMaxOpMaker : public ReduceOpMaker { class ReduceMinOpMaker : public ReduceOpMaker { public: - ReduceMinOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReduceMinOpMaker(OpProto *proto, OpAttrChecker *op_checker) : ReduceOpMaker(proto, op_checker) { SetComment("ReduceMin", "min"); AddComment(comment_); @@ -180,12 +187,13 @@ REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad, REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad, ops::ReduceGradOp); -#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \ - REGISTER_OP_CPU_KERNEL( \ - reduce_type, \ - ops::ReduceKernel); \ - REGISTER_OP_CPU_KERNEL(reduce_type##_grad, \ - ops::ReduceGradKernel); +#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \ + REGISTER_OP_CPU_KERNEL(reduce_type, \ + ops::ReduceKernel); \ + REGISTER_OP_CPU_KERNEL( \ + reduce_type##_grad, \ + ops::ReduceGradKernel); FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL); diff --git a/paddle/operators/reduce_op.cu b/paddle/operators/reduce_op.cu index d306e1a240..1dd948ed8a 100644 --- a/paddle/operators/reduce_op.cu +++ b/paddle/operators/reduce_op.cu @@ -1,28 +1,29 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/reduce_op.h" namespace ops = paddle::operators; -#define REGISTER_REDUCE_GPU_KERNEL(reduce_type, functor, grad_functor) \ - REGISTER_OP_GPU_KERNEL( \ - reduce_type, \ - ops::ReduceKernel); \ - REGISTER_OP_GPU_KERNEL(reduce_type##_grad, \ - ops::ReduceGradKernel); +#define REGISTER_REDUCE_GPU_KERNEL(reduce_type, functor, grad_functor) \ + REGISTER_OP_CUDA_KERNEL( \ + reduce_type, ops::ReduceKernel); \ + REGISTER_OP_CUDA_KERNEL( \ + reduce_type##_grad, \ + ops::ReduceGradKernel); FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_GPU_KERNEL); diff --git a/paddle/operators/reduce_op.h b/paddle/operators/reduce_op.h index dd6547542d..da5f397776 100644 --- a/paddle/operators/reduce_op.h +++ b/paddle/operators/reduce_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -26,61 +26,63 @@ using DDim = framework::DDim; template using EigenTensor = framework::EigenTensor; - template using EigenScalar = framework::EigenScalar; +template +using EigenVector = framework::EigenVector; struct SumFunctor { - template - void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + template + void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.sum(dim); } }; struct SumGradFunctor { - template - void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + template + void operator()(const DeviceContext& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { dx.device(place) = dy.broadcast(dim); } }; struct MeanFunctor { - template - void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + template + void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.mean(dim); } }; struct MeanGradFunctor { - template - void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + template + void operator()(const DeviceContext& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { dx.device(place) = dy.broadcast(dim) / dx.constant(size); } }; struct MaxFunctor { - template - void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + template + void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.maximum(dim); } }; struct MinFunctor { - template - void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + template + void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.minimum(dim); } }; struct MaxOrMinGradFunctor { - template - void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + template + void operator()(const DeviceContext& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { auto equals = x == y.broadcast(dim); auto ones = dx.constant(1); @@ -91,30 +93,45 @@ struct MaxOrMinGradFunctor { } }; -template +template class ReduceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - int rank = context.Input("X")->dims().size(); - switch (rank) { - case 1: - ReduceCompute<1>(context); - break; - case 2: - ReduceCompute<2>(context); - break; - case 3: - ReduceCompute<3>(context); - break; - case 4: - ReduceCompute<4>(context); - break; - case 5: - ReduceCompute<5>(context); - break; - case 6: - ReduceCompute<6>(context); - break; + bool reduce_all = context.Attr("reduce_all"); + if (reduce_all) { + // Flatten and reduce 1-D tensor + auto* input = context.Input("X"); + auto* output = context.Output("Out"); + output->mutable_data(context.GetPlace()); + auto x = EigenVector::Flatten(*input); + auto out = EigenScalar::From(*output); + auto& place = + *context.template device_context().eigen_device(); + auto reduce_dim = Eigen::array({{0}}); + Functor functor; + functor(place, x, out, reduce_dim); + } else { + int rank = context.Input("X")->dims().size(); + switch (rank) { + case 1: + ReduceCompute<1>(context); + break; + case 2: + ReduceCompute<2>(context); + break; + case 3: + ReduceCompute<3>(context); + break; + case 4: + ReduceCompute<4>(context); + break; + case 5: + ReduceCompute<5>(context); + break; + case 6: + ReduceCompute<6>(context); + break; + } } } @@ -139,7 +156,8 @@ class ReduceKernel : public framework::OpKernel { dims = framework::make_ddim(dims_vector); } - auto& place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); Functor functor; if (D == 1) { @@ -152,30 +170,50 @@ class ReduceKernel : public framework::OpKernel { } }; -template +template class ReduceGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - int rank = context.Input("X")->dims().size(); - switch (rank) { - case 1: - ReduceGradCompute<1>(context); - break; - case 2: - ReduceGradCompute<2>(context); - break; - case 3: - ReduceGradCompute<3>(context); - break; - case 4: - ReduceGradCompute<4>(context); - break; - case 5: - ReduceGradCompute<5>(context); - break; - case 6: - ReduceGradCompute<6>(context); - break; + bool reduce_all = context.Attr("reduce_all"); + if (reduce_all) { + auto* input0 = context.Input("X"); + auto* input1 = context.Input("Out"); + auto* input2 = context.Input(framework::GradVarName("Out")); + auto* output = context.Output(framework::GradVarName("X")); + output->mutable_data(context.GetPlace()); + auto x = EigenVector::Flatten(*input0); + auto x_reduce = EigenVector::From(*input1); + auto x_reduce_grad = EigenVector::From(*input2); + auto x_grad = EigenVector::Flatten(*output); + auto& place = + *context.template device_context().eigen_device(); + auto broadcast_dim = + Eigen::array({{static_cast(input0->numel())}}); + Functor functor; + functor(place, x, x_reduce, x_grad, x_reduce_grad, broadcast_dim, + broadcast_dim[0]); + } else { + int rank = context.Input("X")->dims().size(); + switch (rank) { + case 1: + ReduceGradCompute<1>(context); + break; + case 2: + ReduceGradCompute<2>(context); + break; + case 3: + ReduceGradCompute<3>(context); + break; + case 4: + ReduceGradCompute<4>(context); + break; + case 5: + ReduceGradCompute<5>(context); + break; + case 6: + ReduceGradCompute<6>(context); + break; + } } } @@ -201,7 +239,8 @@ class ReduceGradKernel : public framework::OpKernel { Eigen::array broadcast_dim; for (size_t i = 0; i < D; ++i) broadcast_dim[i] = 1; broadcast_dim[dim] = input0->dims()[dim]; - auto& place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); Functor functor; functor(place, x, x_reduce, x_grad, x_reduce_grad, broadcast_dim, broadcast_dim[dim]); diff --git a/paddle/operators/reorder_lod_tensor_by_rank_op.cc b/paddle/operators/reorder_lod_tensor_by_rank_op.cc new file mode 100644 index 0000000000..3c30447949 --- /dev/null +++ b/paddle/operators/reorder_lod_tensor_by_rank_op.cc @@ -0,0 +1,270 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/lod_rank_table.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { + +class ReorderLoDTensorByRankTableOpProtoMaker + : public framework::OpProtoAndCheckerMaker { + public: + ReorderLoDTensorByRankTableOpProtoMaker(OpProto *proto, + OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(LoDTensor), the input lod tensor to be reordered according to " + "Input(RankTable)."); + AddInput("RankTable", + "(LoDRankTable), the rank table according to which Input(X) is " + "reordered."); + AddOutput("Out", "(LoDTensor), the reordered lod tensor."); + AddComment(R"DOC(ReorderLoDTensorByRankTable operator. + +Input(X) is a batch of sequences. Input(RankTable) stores new orders of the +input sequence batch. The reorder_lod_tensor_by_rank operator reorders the +Input(X) according to the information provided by Input(RankTable). + +For example: + +If the indices stored in the Input(RankTable) are [3, 0, 2, 1], the +Input(X) will be reordered that the fourth sequence in Input(X) will become the +first one, and then followed by the original first, third, and the second one. + +This is: +X = [Seq0, Seq1, Seq2, Seq3]. The indices in RankTable are [3, 0, 2, 1]. +Out = [Seq3, Seq0, Seq2, Seq1] with a new LoD information. + +If the LoD information of Input(X) is empty, this means Input(X) is not sequence +data. This is also identical to a batch of sequences where each sequence has a +fixed length 1. In this case, the reorder_lod_tensor_by_rank operator reorders +each slice of Input(X) along the first axis according to Input(RankTable). + +This is: +X = [Slice0, Slice1, Slice2, Slice3] and its LoD information is empty. The +indices in RankTable are [3, 0, 2, 1]. +Out = [Slice3, Slice0, Slice2, Slice1] with no LoD information is appended. + +NOTE: This operator sorts Input(X) according to a given LoDRankTable which does +not need to be calculated according to Input(X). It can be calculated according +to another different sequence, and then this operator sorts Input(X) according +to the given LoDRankTable. + +)DOC"); + } +}; + +class ReorderLoDTensorByRankTableBase : public framework::OperatorBase { + public: + ReorderLoDTensorByRankTableBase(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + auto &x = + detail::Ref(scope.FindVar(Input("X")), + "Cannot find input lod tensor variable %s", Input("X")) + .Get(); + auto &rank_table = detail::Ref(scope.FindVar(Input("RankTable")), + "Cannot find input rank table variable %s", + Input("RankTable")) + .Get(); + auto &out = + *detail::Ref(scope.FindVar(Output("Out")), + "Cannot find output lod tensor variable %s", Output("Out")) + .GetMutable(); + + out.Resize(x.dims()); + out.mutable_data(x.place(), x.type()); + this->process(place, x, rank_table, &out); + } + + protected: + virtual void process(const platform::Place &place, + const framework::LoDTensor &x, + const framework::LoDRankTable &rank_table, + framework::LoDTensor *out) const = 0; + + struct AbsoluteRankTableItem { + size_t offset; // the absolute/accumulated offset. + size_t length; // the length + framework::LoD lod; + }; + + std::vector GetAbsoluteOffsetAndLengthByLoDRankTable( + const framework::LoDTensor &x) const { + std::vector absolute_table; + + if (x.lod().empty()) { + // For Tensor without lod, such as the output of sequence_pool_op + size_t size = x.dims()[0]; + absolute_table.reserve(size); + for (size_t i = 0; i < size; ++i) { + absolute_table.emplace_back(); + absolute_table.back().length = 1; + absolute_table.back().offset = i; + } + } else { + size_t level = 0; + size_t size = x.lod()[level].size(); + + for (size_t i = 0; i < size - 1; ++i) { + auto lod_offset = + framework::GetSubLoDAndAbsoluteOffset(x.lod(), i, i + 1, level); + + auto &offset = lod_offset.second; + + absolute_table.emplace_back(); + absolute_table.back().length = offset.second - offset.first; + absolute_table.back().offset = offset.first; + absolute_table.back().lod = lod_offset.first; + } + } + + return absolute_table; + } + + size_t CopyTensorAndLod(const platform::Place &place, + const AbsoluteRankTableItem &item, + const framework::LoDTensor &x, + framework::LoDTensor *out, size_t out_offset) const { + auto &out_lod = *out->mutable_lod(); + auto len = item.length; + auto x_offset = item.offset; + + if (out_lod.empty()) { + for (size_t i = 0; i < item.lod.size(); ++i) { + out_lod.push_back(std::vector({0})); + } + } + + for (size_t i = 0; i < out_lod.size(); ++i) { + auto &out_v = out_lod[i]; + auto &new_lod_v = item.lod[i]; + + for (auto &detail : new_lod_v) { + out_v.push_back(out_v.back() + detail); + } + } + + auto x_sliced = x.Slice(x_offset, x_offset + len); + auto out_sliced = out->Slice(out_offset, out_offset + len); + + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + framework::Copy(x_sliced, out_sliced.place(), dev_ctx, &out_sliced); + out_offset += len; + return out_offset; + } +}; + +class ReorderLoDTensorByRankTableOp : public ReorderLoDTensorByRankTableBase { + public: + ReorderLoDTensorByRankTableOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : ReorderLoDTensorByRankTableBase(type, inputs, outputs, attrs) {} + + protected: + void process(const platform::Place &place, const framework::LoDTensor &x, + const framework::LoDRankTable &rank_table, + framework::LoDTensor *out) const override { + auto absolute_table = GetAbsoluteOffsetAndLengthByLoDRankTable(x); + size_t out_offset = 0; + out->mutable_lod()->clear(); + for (auto &item : rank_table.items()) { + PADDLE_ENFORCE_LT(item.index, absolute_table.size()); + out_offset = CopyTensorAndLod(place, absolute_table[item.index], x, out, + out_offset); + } + } +}; + +class IdentityInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + context->SetOutputDim("Out", context->GetInputDim("X")); + } +}; + +class ReorderLodTensorByRankGradOpMaker + : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); + grad_op->SetType("reorder_lod_tensor_by_rank_grad"); + grad_op->SetInput("X", OutputGrad("Out")); + grad_op->SetOutput("Out", InputGrad("X")); + grad_op->SetInput("RankTable", Input("RankTable")); + return std::unique_ptr(grad_op); + } +}; + +class ReorderLoDTensorByRankGradOp : public ReorderLoDTensorByRankTableBase { + public: + ReorderLoDTensorByRankGradOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : ReorderLoDTensorByRankTableBase(type, inputs, outputs, attrs) {} + + protected: + void process(const platform::Place &place, const framework::LoDTensor &x, + const framework::LoDRankTable &rank_table, + framework::LoDTensor *out) const override { + auto absolute_table = GetAbsoluteOffsetAndLengthByLoDRankTable(x); + + // offsets = enumerate([item.index for item in rank_table.items()]) + std::vector> offsets; + offsets.reserve(rank_table.items().size()); + for (size_t i = 0; i < rank_table.items().size(); ++i) { + offsets.push_back({i, rank_table.items()[i].index}); + } + + // offsets.sort(key=lambda x: x[1]) + std::sort( + offsets.begin(), offsets.end(), + [](const std::pair &a, + const std::pair &b) { return a.second < b.second; }); + + // Copy TensorAndLod + size_t out_offset = 0; + for (auto &offset : offsets) { + out_offset = this->CopyTensorAndLod(place, absolute_table[offset.first], + x, out, out_offset); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(reorder_lod_tensor_by_rank, + ops::ReorderLoDTensorByRankTableOp, + ops::ReorderLodTensorByRankGradOpMaker, + ops::ReorderLoDTensorByRankTableOpProtoMaker, + ops::IdentityInferShape); +REGISTER_OPERATOR(reorder_lod_tensor_by_rank_grad, + ops::ReorderLoDTensorByRankGradOp, ops::IdentityInferShape); diff --git a/paddle/operators/reshape_op.cc b/paddle/operators/reshape_op.cc index 39bf2118d6..58e8fd6124 100644 --- a/paddle/operators/reshape_op.cc +++ b/paddle/operators/reshape_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/reshape_op.h" @@ -34,21 +34,33 @@ class ReshapeOp : public framework::OperatorWithKernel { auto shape = ctx->Attrs().Get>("shape"); PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty."); auto x_dims = ctx->GetInputDim("X"); - // TODO(qiao) change batch_size - for (size_t i = 1; i < shape.size(); ++i) { - PADDLE_ENFORCE(shape[i] > 0, - "Each dimension of Attr(shape) " - "must be positive except the first one."); - } - if (shape[0] < 0) { - shape[0] = x_dims[0]; + + std::vector neg_dims_idx; + // set some dimension to -1 if it is unknown + const int unknown_size = -1; + for (size_t i = 0; i < shape.size(); ++i) { + PADDLE_ENFORCE(shape[i] > 0 || shape[i] == unknown_size, + "Each dimension of Attr(shape) must be positive or %d.", + unknown_size); + if (shape[i] == unknown_size) { + neg_dims_idx.push_back(i); + PADDLE_ENFORCE(neg_dims_idx.size() <= 1, + "Only one dimension of Attr(shape) can be unknown."); + } } - // capacity check + int64_t capacity = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()); int64_t in_size = framework::product(x_dims); - PADDLE_ENFORCE_EQ(capacity, in_size, - "The size of Input(X) mismatches with Attr(shape)."); + if (neg_dims_idx.size() == 1) { + // dim infer + shape[neg_dims_idx[0]] = in_size / (-capacity); + // recalculate capacity + capacity = shape[neg_dims_idx[0]] * (-capacity); + } + // capacity check + PADDLE_ENFORCE(capacity == in_size, + "The size of Input(X) mismatches with Attr(shape)."); // resize output std::vector shape_int64(shape.size(), 0); std::transform(shape.begin(), shape.end(), shape_int64.begin(), @@ -65,8 +77,7 @@ class ReshapeOp : public framework::OperatorWithKernel { class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker { public: - ReshapeOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of reshape operator."); AddOutput("Out", "The output tensor of reshape operator."); @@ -84,10 +95,13 @@ Given a 2-D tensor X with 2 rows and 2 columns [[1, 2], [3, 4]] and target shape = [1, 4], the reshape operator will transform -the tensor X into a 1-D tensor: +the tensor X into a 2-D tensor: - [1, 2, 3, 4] + [[1, 2, 3, 4]] +One dimension in the target shape can be set -1, representing that its +size is unknown. In this case, the real dimension will be infered from +the original shape of Input(X) and other dimensions in the target shape. )DOC"); } }; diff --git a/paddle/operators/reshape_op.cu b/paddle/operators/reshape_op.cu index dca6c15007..f487e43b99 100644 --- a/paddle/operators/reshape_op.cu +++ b/paddle/operators/reshape_op.cu @@ -1,22 +1,22 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/reshape_op.h" -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( reshape, - paddle::operators::ReshapeKernel); -REGISTER_OP_GPU_KERNEL( + paddle::operators::ReshapeKernel); +REGISTER_OP_CUDA_KERNEL( reshape_grad, - paddle::operators::ReshapeGradKernel); + paddle::operators::ReshapeGradKernel); diff --git a/paddle/operators/reshape_op.h b/paddle/operators/reshape_op.h index 73fd1da642..d884b03cad 100644 --- a/paddle/operators/reshape_op.h +++ b/paddle/operators/reshape_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -20,7 +20,7 @@ namespace paddle { namespace operators { -template +template class ReshapeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -28,12 +28,12 @@ class ReshapeKernel : public framework::OpKernel { auto* in = ctx.Input("X"); auto out_dims = out->dims(); out->mutable_data(ctx.GetPlace()); - framework::CopyFrom(*in, ctx.GetPlace(), ctx.device_context(), out); + framework::Copy(*in, ctx.GetPlace(), ctx.device_context(), out); out->Resize(out_dims); } }; -template +template class ReshapeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -42,7 +42,7 @@ class ReshapeGradKernel : public framework::OpKernel { d_x->mutable_data(ctx.GetPlace()); auto in_dims = d_x->dims(); - framework::CopyFrom(*d_out, ctx.GetPlace(), ctx.device_context(), d_x); + framework::Copy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x); d_x->Resize(in_dims); } }; diff --git a/paddle/operators/rmsprop_op.cc b/paddle/operators/rmsprop_op.cc index a9c45f639c..f7c250bf91 100644 --- a/paddle/operators/rmsprop_op.cc +++ b/paddle/operators/rmsprop_op.cc @@ -63,8 +63,7 @@ class RmspropOp : public framework::OperatorWithKernel { class RmspropOpMaker : public framework::OpProtoAndCheckerMaker { public: - RmspropOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RmspropOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -116,5 +115,5 @@ http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker); -REGISTER_OP_CPU_KERNEL(rmsprop, - ops::RmspropOpKernel); +REGISTER_OP_CPU_KERNEL( + rmsprop, ops::RmspropOpKernel); diff --git a/paddle/operators/rmsprop_op.cu b/paddle/operators/rmsprop_op.cu index 52634a5481..0295dc262f 100644 --- a/paddle/operators/rmsprop_op.cu +++ b/paddle/operators/rmsprop_op.cu @@ -1,20 +1,20 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/rmsprop_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(rmsprop, - ops::RmspropOpKernel); +REGISTER_OP_CUDA_KERNEL( + rmsprop, ops::RmspropOpKernel); diff --git a/paddle/operators/rmsprop_op.h b/paddle/operators/rmsprop_op.h index 7bf2129010..16a561835d 100644 --- a/paddle/operators/rmsprop_op.h +++ b/paddle/operators/rmsprop_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class RmspropOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -51,7 +51,7 @@ class RmspropOpKernel : public framework::OpKernel { auto p_out = EigenVector::Flatten(*param_out); auto mom_out = EigenVector::Flatten(*moment_out); auto ms_out = EigenVector::Flatten(*mean_square_out); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); diff --git a/paddle/operators/rnn_memory_helper_op.cc b/paddle/operators/rnn_memory_helper_op.cc index 3a035f0b9a..eb55ed6a05 100644 --- a/paddle/operators/rnn_memory_helper_op.cc +++ b/paddle/operators/rnn_memory_helper_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" @@ -25,7 +25,7 @@ class RNNMemoryHelperOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { auto mem_var_name = Input("X"); auto *mem_var = scope.FindVar(mem_var_name); PADDLE_ENFORCE(mem_var != nullptr, @@ -57,15 +57,14 @@ class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase { class RNNMemoryHelperOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: - RNNMemoryHelperOpInfoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RNNMemoryHelperOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", ""); AddOutput("Out", ""); AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddComment(""); } }; @@ -78,7 +77,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { auto out_grad_var_name = Input(framework::GradVarName("Out")); auto *out_grad_var = scope.FindVar(out_grad_var_name); @@ -101,7 +100,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase { auto zero_op = framework::OpRegistry::CreateOp( "fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs); - zero_op->Run(scope, dev_ctx); + zero_op->Run(scope, dev_place); } else { auto &out_grad_tensor = out_grad_var->Get(); auto *in_grad_tensor = in_grad_var->GetMutable(); @@ -114,8 +113,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase { class RNNMemoryHelperGradOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: - RNNMemoryHelperGradOpInfoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RNNMemoryHelperGradOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput(framework::GradVarName("Out"), ""); AddInput("X", ""); @@ -124,7 +122,7 @@ class RNNMemoryHelperGradOpInfoMaker AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddComment(""); } }; diff --git a/paddle/operators/roi_pool_op.cc b/paddle/operators/roi_pool_op.cc index 2b5e66c96b..a7351f11c5 100644 --- a/paddle/operators/roi_pool_op.cc +++ b/paddle/operators/roi_pool_op.cc @@ -68,7 +68,7 @@ class ROIPoolOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -89,7 +89,7 @@ class ROIPoolGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -99,8 +99,7 @@ class ROIPoolGradOp : public framework::OperatorWithKernel { class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker { public: - ROIPoolOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ROIPoolOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor), " @@ -157,9 +156,10 @@ namespace ops = paddle::operators; REGISTER_OP(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker, roi_pool_grad, ops::ROIPoolGradOp); REGISTER_OP_CPU_KERNEL( - roi_pool, ops::CPUROIPoolOpKernel, - ops::CPUROIPoolOpKernel); + roi_pool, + ops::CPUROIPoolOpKernel, + ops::CPUROIPoolOpKernel); REGISTER_OP_CPU_KERNEL( roi_pool_grad, - ops::CPUROIPoolGradOpKernel, - ops::CPUROIPoolOpKernel); + ops::CPUROIPoolGradOpKernel, + ops::CPUROIPoolOpKernel); diff --git a/paddle/operators/roi_pool_op.cu b/paddle/operators/roi_pool_op.cu index 9a4c8ca752..a874befe4d 100644 --- a/paddle/operators/roi_pool_op.cu +++ b/paddle/operators/roi_pool_op.cu @@ -177,7 +177,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel { if (x_grad) { x_grad->mutable_data(ctx.GetPlace()); math::SetConstant set_zero; - set_zero(ctx.device_context(), x_grad, static_cast(0)); + set_zero(ctx.cuda_device_context(), x_grad, static_cast(0)); int output_grad_size = out_grad->numel(); int blocks = NumBlocks(output_grad_size); @@ -199,10 +199,11 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - roi_pool, ops::GPUROIPoolOpKernel, - ops::GPUROIPoolOpKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + roi_pool, + ops::GPUROIPoolOpKernel, + ops::GPUROIPoolOpKernel); +REGISTER_OP_CUDA_KERNEL( roi_pool_grad, - ops::GPUROIPoolGradOpKernel, - ops::GPUROIPoolOpKernel); + ops::GPUROIPoolGradOpKernel, + ops::GPUROIPoolOpKernel); diff --git a/paddle/operators/roi_pool_op.h b/paddle/operators/roi_pool_op.h index 3812c66c65..09a9d3d870 100644 --- a/paddle/operators/roi_pool_op.h +++ b/paddle/operators/roi_pool_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class CPUROIPoolOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -126,7 +126,7 @@ class CPUROIPoolOpKernel : public framework::OpKernel { } }; -template +template class CPUROIPoolGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -145,8 +145,9 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel { const T* out_grad_data = out_grad->data(); const int64_t* argmax_data = argmax->data(); T* in_grad_data = in_grad->mutable_data(ctx.GetPlace()); - math::SetConstant set_zero; - set_zero(ctx.device_context(), in_grad, static_cast(0)); + math::SetConstant set_zero; + set_zero(ctx.template device_context(), in_grad, + static_cast(0)); auto in_stride = framework::stride(in->dims()); auto argmax_stride = framework::stride(argmax->dims()); diff --git a/paddle/operators/row_conv_op.cc b/paddle/operators/row_conv_op.cc new file mode 100644 index 0000000000..68f4e35315 --- /dev/null +++ b/paddle/operators/row_conv_op.cc @@ -0,0 +1,259 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/row_conv_op.h" +#include "paddle/framework/eigen.h" + +namespace paddle { +namespace operators { + +using LoDTensor = framework::LoDTensor; +using framework::Tensor; + +template +using EigenMatrix = framework::EigenMatrix; + +class RowConvOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of RowConvOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Filter"), + "Input(Filter) of RowConvOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of RowConvOp should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + auto filter_dims = ctx->GetInputDim("Filter"); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); + PADDLE_ENFORCE_EQ(filter_dims.size(), 2, "Input(Y)'s rank should be 2."); + PADDLE_ENFORCE_EQ( + x_dims[1], filter_dims[1], + "The 2nd dimension of Input(X) and Input(Filter) should be same."); + ctx->SetOutputDim("Out", x_dims); + ctx->ShareLoD("X", "Out"); + } +}; + +class RowConvGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Filter"), + "Input(Filter) should not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Gradient of output(Out) should not be null."); + + auto x_grad_name = framework::GradVarName("X"); + if (ctx->HasOutput(x_grad_name)) { + auto x_dims = ctx->GetInputDim("X"); + ctx->SetOutputDim(x_grad_name, x_dims); + } + + auto filter_grad_name = framework::GradVarName("Filter"); + if (ctx->HasOutput(filter_grad_name)) { + auto filter_dims = ctx->GetInputDim("Filter"); + ctx->SetOutputDim(filter_grad_name, filter_dims); + } + } +}; + +class RowConvOpMaker : public framework::OpProtoAndCheckerMaker { + public: + RowConvOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(LoDTensor), the input(X) is a LodTensor, which supports " + "variable time-length input sequences. The underlying tensor " + "in this LoDTensor is a matrix with shape (T x N), where T " + "is the total time steps in this mini-batch and N is the input " + "data dimension."); + AddInput("Filter", + "(Tensor), the input(Filter) is a learnable parameter. It " + "is a 2-D tensor with shape (future_context x N), where, " + "future_context is the future context length and N is the data " + "dimension."); + AddOutput("Out", + "(LoDTensor), the output(Out) is a LodTensor, which supports " + "variable time-length input sequences. The underlying tensor " + "in this LodTensor is a matrix with shape T x N, i.e., the " + "same shape as X."); + AddComment(R"DOC( +Row-convolution Operator. + +The row convolution is called lookahead convolution. This operator was +introduced in the following paper for DeepSpeech2: +http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf + +The main motivation is that a bidirectional RNN, useful in DeepSpeech +like speech models, learns representation for a sequence by performing a +forward and a backward pass through the entire sequence. However, unlike +unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online +and low-latency setting. The lookahead convolution incorporates information +from future subsequences in a computationally efficient manner to improve +unidirectional recurrent neural networks. The row convolution operator is +different from the 1D sequence convolution, and is computed as follows: + +Given an input sequence $in$ of length $t$ and input dimension $d$, +and a filter ($W$) of size $context \times d$, +the output sequence is convolved as: + +$$ +out_{i, :} = \sum_{j=i}^{i + context} in_{j,:} \dot W_{i-j, :} +$$ + +)DOC"); + } +}; + +template +class RowConvKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + auto *x = context.Input("X"); + auto *filter = context.Input("Filter"); + auto *out = context.Output("Out"); + + out->mutable_data(context.GetPlace()); + + auto batch_indices = x->lod()[0]; + auto input_dim = x->dims()[1]; // 'in' is of size T x N + size_t num_sequence = batch_indices.size() - 1; + + auto future_context = filter->dims()[0]; + auto weights = EigenMatrix::From(*filter); + + for (size_t i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + Tensor cur_input_sequence = + x->Slice(start, end); // Current input sequence + Tensor cur_output_sequence = + out->Slice(start, end); // Current output sequence + auto cip_seq = EigenMatrix::From(cur_input_sequence); + auto cot_seq = EigenMatrix::From(cur_output_sequence); + + for (int k = 0; k < current_timesteps; + k++) { // For different time steps in the same sequence + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + for (int d = 0; d < input_dim; d++) { + if (w == 0) { + cot_seq(k, d) = weights(w, d) * cip_seq(k + w, d); + } else { + cot_seq(k, d) += weights(w, d) * cip_seq(k + w, d); + } + } + } + } + } + } +}; + +template +class RowConvGradKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + auto *x = context.Input("X"); + auto *filter = context.Input("Filter"); + auto *d_out = context.Input(framework::GradVarName("Out")); + auto *dx = context.Output(framework::GradVarName("X")); + auto *d_filter = context.Output(framework::GradVarName("Filter")); + + auto input_dim = x->dims()[1]; // 'x' is of size T x N + auto batch_indices = x->lod()[0]; + size_t num_sequence = batch_indices.size() - 1; + auto future_context = filter->dims()[0]; + + if (d_filter) { + d_filter->mutable_data(context.GetPlace()); + auto dweights = + EigenMatrix::From(*d_filter); // Gradient of weight matrix + dweights.setZero(); + + for (size_t i = 0; i < num_sequence; i++) { // For different sequences + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + + Tensor cur_input = x->Slice(start, end); // Current input sequence + Tensor cur_doutput = + d_out->Slice(start, end); // Current output grad sequence + + auto cur_ip = EigenMatrix::From(cur_input); + auto cur_dout = EigenMatrix::From(cur_doutput); + int current_timesteps = end - start; + + for (int k = 0; k < current_timesteps; + k++) { // For different time steps in the same sequence + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + // For dweights (Updating the gradient of weight matrix) + for (int d = 0; d < input_dim; d++) { + dweights(w, d) += cur_ip(k + w, d) * cur_dout(k, d); + } + } + } + } + } + + if (dx) { + dx->mutable_data(context.GetPlace()); + auto weights = EigenMatrix::From(*filter); + for (size_t i = 0; i < num_sequence; i++) { // For different sequences + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + + Tensor cur_doutput = + d_out->Slice(start, end); // Current output grad sequence + Tensor cur_dinput = + dx->Slice(start, end); // Current input grad sequence + + auto cur_dout = EigenMatrix::From(cur_doutput); + auto cur_dip = EigenMatrix::From(cur_dinput); + cur_dip.setZero(); + int current_timesteps = end - start; + + for (int k = 0; k < current_timesteps; + k++) { // For different time steps in the same sequence + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + // For dinput (Updating the gradient wrt input) + for (int d = 0; d < input_dim; d++) { + cur_dip(k + w, d) += weights(w, d) * cur_dout(k, d); + } + } + } + } + } + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(row_conv, ops::RowConvOp, ops::RowConvOpMaker, row_conv_grad, + ops::RowConvGradOp); +REGISTER_OP_CPU_KERNEL( + row_conv, ops::RowConvKernel); +REGISTER_OP_CPU_KERNEL( + row_conv_grad, + ops::RowConvGradKernel); diff --git a/paddle/operators/row_conv_op.cu b/paddle/operators/row_conv_op.cu new file mode 100644 index 0000000000..41f2c5b9de --- /dev/null +++ b/paddle/operators/row_conv_op.cu @@ -0,0 +1,410 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/row_conv_op.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { + +using LoDTensor = framework::LoDTensor; +using framework::Tensor; + +namespace { + +inline int DivUp(int x, int y) { return (x + y - 1) / y; } + +// Forward prop (shared memory version, for small future_context) +template +__global__ void RowConvForwardSharedMemory(const T *in, const T *wt, + int num_sequence, int input_dim, + int future_context, + const size_t *batch_indices, + T *out) { + int blx = blockDim.x; + int bly = blockDim.y; + int thx = threadIdx.x; + int thy = threadIdx.y; + int d = blockIdx.x * blx + thx; // index along input dim + + extern __shared__ T mem[]; + T *sw = mem; + + if (thy < future_context) { + sw[thy * blx + thx] = + (d < input_dim) ? wt[thy * input_dim + d] : static_cast(0); + } + __syncthreads(); + + for (size_t i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + for (int k = thy; k < current_timesteps; k += bly) { + T sum = 0; + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + sum += (d < input_dim) + ? sw[w * blx + thx] * in[(start + k + w) * input_dim + d] + : static_cast(0); + } + if (d < input_dim) { + out[(start + k) * input_dim + d] = sum; + } + } + } +} + +// Forward prop (naive version) +template +__global__ void RowConvForward(const T *in, const T *wt, int num_sequence, + int input_dim, int future_context, + const size_t *batch_indices, T *out) { + int d = blockIdx.x * blockDim.x + threadIdx.x; // index along input_dim + int bly = blockDim.y; + int thy = threadIdx.y; + + if (d >= input_dim) return; + + for (size_t i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + for (int k = thy; k < current_timesteps; k += bly) { + T sum = 0; + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + sum += (wt[w * input_dim + d] * in[(start + k + w) * input_dim + d]); + } + out[(start + k) * input_dim + d] = sum; + } + } +} + +// Compute input gradient (shared memory version, for small future_context) +template +__global__ void RowConvGradInputSharedMemory(const T *dout, const T *wt, + int num_sequence, int input_dim, + int future_context, + const size_t *batch_indices, + T *din) { + int blx = blockDim.x; + int bly = blockDim.y; + int thx = threadIdx.x; + int thy = threadIdx.y; + int d = blockIdx.x * blx + thx; // index along input dim + + extern __shared__ T mem[]; + T *sw = mem; + if (thy < future_context) { + sw[thy * blx + thx] = + (d < input_dim) ? wt[thy * input_dim + d] : static_cast(0); + } + __syncthreads(); + + for (int i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + for (int k = thy; k < current_timesteps; k += bly) { + T sum = 0; + for (int w = 0; (w < future_context) && ((k - w) >= 0); w++) { + sum += (d < input_dim) + ? (sw[w * blx + thx] * dout[(k + start - w) * input_dim + d]) + : static_cast(0); + } + if (d < input_dim) { + din[(k + start) * input_dim + d] = sum; + } + } + } +} + +// Compute input gradient (Naive version) +template +__global__ void RowConvGradInput(const T *dout, const T *wt, int num_sequence, + int input_dim, int future_context, + const size_t *batch_indices, T *din) { + int d = blockIdx.x * blockDim.x + threadIdx.x; // index along input_dim + int bly = blockDim.y; + int thy = threadIdx.y; + + if (d >= input_dim) return; + for (int i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + for (int k = thy; k < current_timesteps; k += bly) { + T sum = 0; + for (int w = 0; (w < future_context) && ((k - w) >= 0); w++) { + sum += (wt[w * input_dim + d] * dout[(k + start - w) * input_dim + d]); + } + din[(k + start) * input_dim + d] = sum; + } + } +} + +// Compute W gradient (small future_context version) +template +__global__ void RowConvGradFilterImproved(const T *in, const T *dout, + int num_sequence, int input_dim, + int future_context, int block_x, + int block_y, + const size_t *batch_indices, + T *dfilter) { + int blx = blockDim.x; + int bly = blockDim.y; + int thx = threadIdx.x; + int thy = threadIdx.y; + int gx = blockIdx.x * blx; + int d = gx + thx; // index along input dim + + extern __shared__ T mem[]; + + int xdim_sh_in = block_y; + int xdim_sh_dout = block_y; + // int xdim_sh_dfilter = future_context; + int ydim_sh_in = block_x; + int ydim_sh_dout = block_x + future_context - 1; + int ydim_sh_dfilter = block_y; + + T *sh_in = mem; + T *sh_dout = &mem[xdim_sh_in * ydim_sh_in]; + T *sh_dfilter = &mem[xdim_sh_in * ydim_sh_in + xdim_sh_dout * ydim_sh_dout]; + + if (thy < future_context) { + sh_dfilter[thy * ydim_sh_dfilter + thx] = static_cast(0); + } + __syncthreads(); + + for (int i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + int scaled_cur_steps = + ((current_timesteps + block_x - 1) / block_x) * block_x; + + for (int k = thy; k < scaled_cur_steps; k += block_x) { + int pos = start + k; + sh_in[thx * ydim_sh_in + thy] = + (d < input_dim && pos < end) ? in[pos * input_dim + d] : T(0); + sh_dout[thx * ydim_sh_dout + thy + future_context - 1] = + (d < input_dim && pos < end) ? dout[pos * input_dim + d] : T(0); + __syncthreads(); + + if (thy < future_context - 1) { + int pos_offset = pos - future_context + 1; + sh_dout[thx * ydim_sh_dout + thy] = + (d < input_dim && pos_offset >= start) + ? dout[pos_offset * input_dim + d] + : T(0); + } + __syncthreads(); + + for (int w = 0; w < future_context; w++) { + T val = sh_in[thy * ydim_sh_in + thx] * + sh_dout[thy * ydim_sh_dout + thx + future_context - 1 - w]; + __syncthreads(); + + for (int offset = 16; offset > 0; + offset = offset / 2) { // blockDim.x is 32. + val += __shfl_down(val, offset); + } + __syncthreads(); + + if (thx == 0) { + sh_dfilter[w * ydim_sh_dfilter + thy] += val; + } + __syncthreads(); + } + } + } + for (int w = thy; (w < future_context) && (d < input_dim); w += bly) { + dfilter[w * input_dim + d] += sh_dfilter[w * ydim_sh_dfilter + thx]; + } +} + +// Compute weight(filter) gradient +template +__global__ void RowConvGradFilter(const T *in, const T *dout, int num_sequence, + int input_dim, int future_context, + int block_x, int block_y, + const size_t *batch_indices, T *dfilter) { + int blx = blockDim.x; + int thx = threadIdx.x; + int thy = threadIdx.y; + int gx = blockIdx.x * blx; + int d = gx + thx; // index along input dim + extern __shared__ T mem[]; + T *sh_in = mem; + T *sh_dout = &mem[block_x * block_y]; + + for (int i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + int scaled_cur_steps = + ((current_timesteps + block_x - 1) / block_x) * block_x; + + for (int k = thy; k < scaled_cur_steps; k += block_x) { + int pos = start + k; + sh_in[thx * block_y + thy] = + (d < input_dim && pos < end) ? in[pos * input_dim + d] : 0.0; + __syncthreads(); + + for (int w = 0; w < future_context; w++) { + sh_dout[thx * block_y + thy] = + (d < input_dim && (k - w) >= 0 && (k - w) < current_timesteps) + ? dout[(pos - w) * input_dim + d] + : 0.0; + __syncthreads(); + + T val = sh_in[thy * block_y + thx] * sh_dout[thy * block_y + thx]; + __syncthreads(); + + for (int offset = 16; offset > 0; + offset = offset / 2) { // blockDim.x is 32. + val += __shfl_down(val, offset); + } + __syncthreads(); + + if (thx == 0 && (gx + thy) < input_dim) { + dfilter[w * input_dim + gx + thy] += val; + } + } + } + } +} + +} // namespace + +template +class RowConvKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + auto *X = context.Input("X"); + auto *Filter = context.Input("Filter"); + auto *Out = context.Output("Out"); + + const T *in = X->data(); + const T *weight = Filter->data(); + T *out = Out->mutable_data(context.GetPlace()); + + auto batch_indices = X->lod()[0]; + int input_dim = X->dims()[1]; + int num_sequence = batch_indices.size() - 1; + int future_context = Filter->dims()[0]; + size_t *idx = batch_indices.data(); + auto stream = context.cuda_device_context().stream(); + + if (future_context <= 32) { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + int mem_per_block = (future_context * block_dim.x) * sizeof(T); + RowConvForwardSharedMemory< + T><<>>( + in, weight, num_sequence, input_dim, future_context, idx, out); + } else { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + RowConvForward<<>>( + in, weight, num_sequence, input_dim, future_context, idx, out); + } + } +}; + +template +class RowConvGradKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + auto *X = context.Input("X"); + auto *Filter = context.Input("Filter"); + auto *dOut = context.Input(framework::GradVarName("Out")); + const T *in = X->data(); + const T *weights = Filter->data(); + const T *dout = dOut->data(); + + Tensor *dX = context.Output(framework::GradVarName("X")); + Tensor *dFilter = context.Output(framework::GradVarName("Filter")); + + auto batch_indices = X->lod()[0]; + int input_dim = X->dims()[1]; + int num_sequence = batch_indices.size() - 1; + int future_context = Filter->dims()[0]; + size_t *idx = batch_indices.data(); + + auto &device_ctx = context.cuda_device_context(); + math::SetConstant zero; + + if (dFilter) { + T *dfilter = dFilter->mutable_data(context.GetPlace()); + zero(device_ctx, dFilter, static_cast(0.0)); + + if (future_context <= 32) { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + int block_x = block_dim.x; + int block_y = block_dim.y; + int mem_per_block = + (block_y * block_x + block_y * (block_x + future_context - 1) + + future_context * block_y) * + sizeof(T); + RowConvGradFilterImproved< + T><<>>( + in, dout, num_sequence, input_dim, future_context, block_x, block_y, + idx, dfilter); + } else { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + int block_x = block_dim.x; + int block_y = block_dim.y; + int mem_per_block = + (block_x * block_y * 2) * sizeof(T); // For 2 arrays of size 32x32 + RowConvGradFilter< + T><<>>( + in, dout, num_sequence, input_dim, future_context, block_x, block_y, + idx, dfilter); + } + } + + if (dX) { + T *din = dX->mutable_data(context.GetPlace()); + if (future_context <= 32) { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + int mem_per_block = (future_context * block_dim.x) * sizeof(T); + RowConvGradInputSharedMemory< + T><<>>( + dout, weights, num_sequence, input_dim, future_context, idx, din); + } else { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + RowConvGradInput<<>>( + dout, weights, num_sequence, input_dim, future_context, idx, din); + } + } + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + row_conv, ops::RowConvKernel); +REGISTER_OP_CUDA_KERNEL( + row_conv_grad, + ops::RowConvGradKernel); diff --git a/paddle/operators/row_conv_op.h b/paddle/operators/row_conv_op.h new file mode 100644 index 0000000000..10d435ab08 --- /dev/null +++ b/paddle/operators/row_conv_op.h @@ -0,0 +1,33 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class RowConvKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override; +}; + +template +class RowConvGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override; +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/save_load_op_test.cc b/paddle/operators/save_load_op_test.cc index a57466a48d..40103d864f 100644 --- a/paddle/operators/save_load_op_test.cc +++ b/paddle/operators/save_load_op_test.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "gtest/gtest.h" #include "paddle/framework/op_registry.h" @@ -21,7 +21,7 @@ USE_NO_KERNEL_OP(load); TEST(SaveLoadOp, CPU) { paddle::framework::Scope scope; paddle::platform::CPUPlace place; - paddle::platform::CPUDeviceContext ctx(place); + auto var = scope.Var("test_var"); auto tensor = var->GetMutable(); tensor->Resize({10, 10}); @@ -42,13 +42,13 @@ TEST(SaveLoadOp, CPU) { auto save_op = paddle::framework::OpRegistry::CreateOp( "save", {{"X", {"test_var"}}}, {}, attrs); - save_op->Run(scope, ctx); + save_op->Run(scope, place); auto load_var = scope.Var("out_var"); auto target = load_var->GetMutable(); auto load_op = paddle::framework::OpRegistry::CreateOp( "load", {}, {{"Out", {"out_var"}}}, attrs); - load_op->Run(scope, ctx); + load_op->Run(scope, place); int* actual = target->data(); for (int64_t i = 0; i < tensor->numel(); ++i) { EXPECT_EQ(expect[i], actual[i]); diff --git a/paddle/operators/save_op.cc b/paddle/operators/save_op.cc index d4921cb80c..4b1cbe8883 100644 --- a/paddle/operators/save_op.cc +++ b/paddle/operators/save_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include @@ -21,6 +21,7 @@ #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -62,7 +63,7 @@ class SaveOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto filename = Attr("file_path"); auto overwrite = Attr("overwrite"); @@ -88,14 +89,18 @@ class SaveOp : public framework::OperatorBase { "SaveOp only support LoDTensor, %s has wrong type", iname); auto &tensor = var->Get(); + + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + framework::SerializeToStream(fout, tensor, dev_ctx); } }; class SaveOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - SaveOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + SaveOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor ) Input tensor to be saved"); AddComment(R"DOC( diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc index e5c10fec4d..f634ebe9a2 100644 --- a/paddle/operators/scale_op.cc +++ b/paddle/operators/scale_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/scale_op.h" #include "paddle/operators/net_op.h" @@ -38,7 +38,7 @@ class ScaleOp : public framework::OperatorWithKernel { template class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ScaleOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input tensor of scale operator."); AddOutput("Out", "(Tensor) Output tensor of scale operator."); @@ -58,13 +58,13 @@ class ScaleGradMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("scale"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttr("scale", GetAttr("scale")); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -75,8 +75,8 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker, ops::ScaleGradMaker); -REGISTER_OP_CPU_KERNEL(scale, - ops::ScaleKernel, - ops::ScaleKernel, - ops::ScaleKernel, - ops::ScaleKernel); +REGISTER_OP_CPU_KERNEL( + scale, ops::ScaleKernel, + ops::ScaleKernel, + ops::ScaleKernel, + ops::ScaleKernel); diff --git a/paddle/operators/scale_op.cu b/paddle/operators/scale_op.cu index 0d70775159..7202c0de70 100644 --- a/paddle/operators/scale_op.cu +++ b/paddle/operators/scale_op.cu @@ -1,21 +1,23 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/scale_op.h" -REGISTER_OP_GPU_KERNEL( - scale, paddle::operators::ScaleKernel, - paddle::operators::ScaleKernel, - paddle::operators::ScaleKernel, - paddle::operators::ScaleKernel); +REGISTER_OP_CUDA_KERNEL( + scale, + paddle::operators::ScaleKernel, + paddle::operators::ScaleKernel, + paddle::operators::ScaleKernel, + paddle::operators::ScaleKernel); diff --git a/paddle/operators/scale_op.h b/paddle/operators/scale_op.h index 4931294c9d..395268c2ee 100644 --- a/paddle/operators/scale_op.h +++ b/paddle/operators/scale_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -19,7 +19,7 @@ namespace paddle { namespace operators { -template +template class ScaleKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& context) const { @@ -31,7 +31,8 @@ class ScaleKernel : public framework::OpKernel { auto eigen_out = framework::EigenVector::Flatten(*tensor); auto eigen_in = framework::EigenVector::Flatten(*in); - auto& dev = context.GetEigenDevice(); + auto& dev = + *context.template device_context().eigen_device(); eigen_out.device(dev) = scale * eigen_in; } }; diff --git a/paddle/operators/scatter.cu.h b/paddle/operators/scatter.cu.h index d95436be4f..55555300fc 100644 --- a/paddle/operators/scatter.cu.h +++ b/paddle/operators/scatter.cu.h @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/tensor.h" diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc index 573bbcd187..b653348906 100644 --- a/paddle/operators/scatter_op.cc +++ b/paddle/operators/scatter_op.cc @@ -49,7 +49,7 @@ class ScatterOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Ref")->type()), @@ -68,7 +68,7 @@ class ScatterGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Ref")->type()), @@ -78,8 +78,7 @@ class ScatterGradOp : public framework::OperatorWithKernel { class ScatterOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScatterOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ScatterOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Ref", "The source input of scatter op"); AddInput("Index", diff --git a/paddle/operators/scatter_op.cu b/paddle/operators/scatter_op.cu index 3b32ae2fb7..0c198d2258 100644 --- a/paddle/operators/scatter_op.cu +++ b/paddle/operators/scatter_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "gather.cu.h" #include "paddle/operators/gather_op.h" @@ -59,5 +59,5 @@ class ScatterGradOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(scatter, ops::ScatterOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(scatter_grad, ops::ScatterGradOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(scatter, ops::ScatterOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(scatter_grad, ops::ScatterGradOpCUDAKernel); diff --git a/paddle/operators/send_op.cc b/paddle/operators/send_op.cc index a3059847f2..a38d8b7a6f 100644 --- a/paddle/operators/send_op.cc +++ b/paddle/operators/send_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include @@ -19,60 +19,66 @@ #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" -#include "paddle/operators/detail/send_recv_impl.h" -#include "paddle/operators/detail/simple_block_queue.h" +#include +#include "paddle/operators/detail/grpc_client.h" namespace paddle { namespace operators { -// TODO(typhoonzero): this is a simple implementation which only send -// one tensor class SendOp : public framework::OperatorBase { public: - SendOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : OperatorBase(type, inputs, outputs, attrs) { - // init client when the operator is created at runtime. - if (!client_) { - std::string endpoint = Attr("endpoint"); - client_.reset(new detail::RPCClient( - grpc::CreateChannel(endpoint, grpc::InsecureChannelCredentials()))); - // TODO(typhoonzero): how to call InitVariables + SendOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope& scope, + const platform::Place& place) const override { + auto ins = Inputs("X"); + auto outs = Outputs("Out"); + std::vector epmap = Attr>("epmap"); + + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto& ctx = *pool.Get(place); + for (size_t i = 0; i < ins.size(); i++) { + VLOG(3) << "sending " << ins[i]; + client_.AsyncSendVariable(epmap[i], ctx, scope, ins[i]); } - } - void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { - auto iname = Input("X"); - auto oname = Output("Out"); - // TODO(typhoonzero): currently it's non-blocking, - // should block until server responds. - bool ret = client_->SendVariable(scope, iname, oname); - if (!ret) { - LOG(ERROR) << "send variable error"; + PADDLE_ENFORCE(client_.Wait()); + + for (size_t i = 0; i < outs.size(); i++) { + VLOG(3) << "getting " << outs[i]; + client_.AsyncGetVariable(epmap[i], ctx, scope, outs[i]); } + + PADDLE_ENFORCE(client_.Wait()); } - protected: - std::shared_ptr client_{nullptr}; + private: + mutable detail::RPCClient client_; }; class SendOpMaker : public framework::OpProtoAndCheckerMaker { public: - SendOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SendOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "(Tensor) Input tensor to be saved"); - AddOutput("Out", "(Tensor) Output fetched from server"); + AddInput("X", "(Tensor) Input tensor to be send").AsDuplicable(); + AddOutput("Out", "(Tensor) Output tensor to get from server") + .AsDuplicable(); AddComment(R"DOC( Recv operator -This operator will recv tensor from send_op +This operator will send tensor to recv_op. )DOC"); - AddAttr("endpoint", - "(string, default 127.0.0.1:6164)" - "IP address to listen on.") - .SetDefault("127.0.0.1:6164") - .AddCustomChecker([](const std::string &ip) { return !ip.empty(); }); + AddAttr>("endpoints", + "(string vector, default 127.0.0.1:6164)" + "Server endpoints to send variables to.") + .SetDefault({}); + AddAttr>("epmap", + "(string vector, default 127.0.0.1:6164)" + "Server endpoints in the order of input " + "variables for mapping") + .SetDefault({}); } }; diff --git a/paddle/operators/send_recv_op_test.cc b/paddle/operators/send_recv_op_test.cc index ac03eb3752..ea09169479 100644 --- a/paddle/operators/send_recv_op_test.cc +++ b/paddle/operators/send_recv_op_test.cc @@ -1,62 +1,101 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -// TODO(typhoonzero): add python bindings for this test as -// a RemoteOptimizer. +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include +#include #include #include "gtest/gtest.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" #include "paddle/framework/program_desc.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/selected_rows_functor.h" +#include "paddle/string/printf.h" USE_NO_KERNEL_OP(send); USE_NO_KERNEL_OP(recv); USE_OP(sum); +namespace f = paddle::framework; +namespace p = paddle::platform; +namespace m = paddle::operators::math; + // global for simplicity. -std::unique_ptr recv_op; - -void InitTensorsInScope(paddle::framework::Scope &scope, - paddle::platform::CPUPlace &place) { - paddle::platform::CPUDeviceContext ctx(place); - auto var = scope.Var("X"); - auto tensor = var->GetMutable(); - tensor->Resize({10, 10}); - float *expect = tensor->mutable_data(place); - for (int64_t i = 0; i < tensor->numel(); ++i) { - expect[i] = static_cast(i); +std::unique_ptr recv_op; + +void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) { + p::CPUDeviceContext ctx(place); + for (int i = 0; i < 2; ++i) { + auto var_name = paddle::string::Sprintf("x%d", i); + auto var = scope.Var(var_name); + auto tensor = var->GetMutable(); + tensor->Resize({10, 10}); + float *expect = tensor->mutable_data(place); + for (int64_t i = 0; i < tensor->numel(); ++i) { + expect[i] = static_cast(i); + } } auto out_var = scope.Var("Out"); - auto out_tensor = out_var->GetMutable(); + auto out_tensor = out_var->GetMutable(); out_tensor->Resize({10, 10}); - tensor->mutable_data(place); // allocate + out_tensor->mutable_data(place); // allocate } -void AddOp(const std::string &type, - const paddle::framework::VariableNameMap &inputs, - const paddle::framework::VariableNameMap &outputs, - paddle::framework::AttributeMap attrs, - paddle::framework::BlockDescBind *block) { +void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) { + p::CPUDeviceContext ctx(place); + int64_t height = 10; + int64_t row_numel = 10; + m::SetConstant set_one; + // init x0 + std::vector rows0{0, 4, 7}; + auto x0_var = scope.Var("x0"); + auto x0 = x0_var->GetMutable(); + x0->set_rows(rows0); + x0->set_height(height); + auto x0_value = x0->mutable_value(); + x0_value->mutable_data( + f::make_ddim({static_cast(rows0.size()), row_numel}), place); + set_one(ctx, x0_value, 1.0); + + // init x1 + std::vector rows1{2, 9}; + auto x1_var = scope.Var("x1"); + auto x1 = x1_var->GetMutable(); + x1->set_rows(rows1); + x1->set_height(height); + auto x1_value = x1->mutable_value(); + x1_value->mutable_data( + f::make_ddim({static_cast(rows1.size()), row_numel}), place); + set_one(ctx, x1_value, 1.0); + + auto out_var = scope.Var("Out"); + auto out = out_var->GetMutable(); + auto out_value = out->mutable_value(); + out->set_height(height); + out_value->mutable_data(f::make_ddim({5, 10}), place); +} + +void AddOp(const std::string &type, const f::VariableNameMap &inputs, + const f::VariableNameMap &outputs, f::AttributeMap attrs, + f::BlockDesc *block) { // insert output for (auto kv : outputs) { for (auto v : kv.second) { auto var = block->Var(v); - var->SetDataType(paddle::framework::DataType::FP32); + var->SetDataType(f::proto::DataType::FP32); } } @@ -72,54 +111,99 @@ void AddOp(const std::string &type, op->SetAttrMap(attrs); } -void StartServerNet() { - paddle::framework::Scope scope; - paddle::platform::CPUPlace place; - InitTensorsInScope(scope, place); +void StartServerNet(bool is_sparse) { + f::Scope scope; + p::CPUPlace place; + if (is_sparse) { + InitSelectedRowsInScope(scope, place); + } else { + InitTensorsInScope(scope, place); + } // sub program run in recv_op, for simple test we use sum - paddle::framework::ProgramDescBind program; - paddle::framework::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); // X for server side tensors, RX for received tensers, must be of same shape. - AddOp("sum", {{"X", {"X", "RX"}}}, {{"Out", {"Out"}}}, {}, block); + AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, block); - paddle::framework::AttributeMap attrs; + f::AttributeMap attrs; attrs.insert({"endpoint", std::string("127.0.0.1:6174")}); - attrs.insert({"OptimizeBlock", block}); - recv_op = paddle::framework::OpRegistry::CreateOp("recv", {{"RX", {"RX"}}}, - {{"Out", {"Out"}}}, attrs); - paddle::platform::CPUDeviceContext ctx(place); - recv_op->Run(scope, ctx); + attrs.insert({"ParamList", std::vector({"Out"})}); + attrs.insert({"GradList", std::vector({"x1"})}); + std::string program_proto; + PADDLE_ENFORCE(program.Proto()->SerializeToString(&program_proto)); + + attrs.insert({"OptimizeProgram", program_proto}); + recv_op = f::OpRegistry::CreateOp("recv", {{"RX", {"x1"}}}, {}, attrs); + recv_op->Run(scope, place); } -TEST(SendRecvOp, CPU) { - std::thread server_thread(StartServerNet); - sleep(5); // wait server to start +TEST(SendRecvOp, CPUDense) { + std::thread server_thread(StartServerNet, false); + sleep(10); // wait server to start // local net - paddle::framework::Scope scope; - paddle::platform::CPUPlace place; + f::Scope scope; + p::CPUPlace place; InitTensorsInScope(scope, place); - paddle::framework::AttributeMap attrs; - attrs.insert({"endpoint", std::string("127.0.0.1:6174")}); - - auto send_op = paddle::framework::OpRegistry::CreateOp( - "send", {{"X", {"X"}}}, {{"Out", {"Out"}}}, attrs); - paddle::platform::CPUDeviceContext ctx(place); - send_op->Run(scope, ctx); + f::AttributeMap attrs; + attrs.insert({"endpoints", std::vector({"127.0.0.1:6174"})}); + attrs.insert({"epmap", std::vector({"127.0.0.1:6174"})}); + auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}}, + {{"Out", {"Out"}}}, attrs); + send_op->Run(scope, place); - auto in_var = scope.Var("X"); - auto tensor = in_var->GetMutable(); + auto in_var = scope.Var("x1"); + auto tensor = in_var->GetMutable(); float *expected = tensor->data(); - auto out_var = scope.Var("Out"); - auto target = out_var->GetMutable(); - // send fail cause output is none. + auto target = out_var->GetMutable(); + // x1 * 2 == x0 EXPECT_NE(target->memory_size(), size_t(0)); float *actual = target->data(); for (int64_t i = 0; i < target->numel(); ++i) { EXPECT_EQ(expected[i] * 2, actual[i]); } - recv_op.reset(); // dtor can shutdown and join server thread. + recv_op->Stop(); + server_thread.join(); + recv_op.reset(nullptr); +} + +TEST(SendRecvOp, CPUSparse) { + std::thread server_thread(StartServerNet, true); + sleep(3); // wait server to start + // local net + f::Scope scope; + p::CPUPlace place; + p::CPUDeviceContext ctx(place); + InitSelectedRowsInScope(scope, place); + f::AttributeMap attrs; + attrs.insert({"endpoints", std::vector({"127.0.0.1:6174"})}); + attrs.insert({"epmap", std::vector({"127.0.0.1:6174"})}); + auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}}, + {{"Out", {"Out"}}}, attrs); + send_op->Run(scope, place); + + auto x0 = scope.Var("x0")->GetMutable(); + auto x1 = scope.Var("x1")->GetMutable(); + auto out = scope.Var("Out")->GetMutable(); + auto actual = out->mutable_value(); + + std::unique_ptr expect{new f::SelectedRows()}; + auto expect_value = expect->mutable_value(); + expect_value->mutable_data(f::make_ddim({5, 10}), place); + + m::SelectedRowsAdd add_functor; + add_functor(ctx, *x0, *x1, expect.get()); + + EXPECT_EQ(actual->numel(), expect_value->numel()); + EXPECT_EQ(out->rows().size(), x0->rows().size() + x1->rows().size()); + + for (int64_t i = 0; i < expect_value->numel(); ++i) { + EXPECT_EQ(expect_value->mutable_data(place)[i], + actual->mutable_data(place)[i]); + } + recv_op->Stop(); server_thread.join(); + recv_op.reset(); } diff --git a/paddle/operators/sequence_concat_op.cc b/paddle/operators/sequence_concat_op.cc index d1de0b4447..2f0aad2003 100644 --- a/paddle/operators/sequence_concat_op.cc +++ b/paddle/operators/sequence_concat_op.cc @@ -43,8 +43,7 @@ class SequenceConcatOp : public framework::OperatorWithKernel { class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequenceConcatOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceConcatOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LodTensorArray) Input is a vector of LoDTensor, " @@ -68,12 +67,12 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { "The level should be less than the level number of inputs.") .SetDefault(0); AddComment(R"DOC( -The sequence_concat operator concatenates multiple LoDTensors. -It only supports sequence (LoD Tensor with level number is 1) +The sequence_concat operator concatenates multiple LoDTensors. +It only supports sequence (LoD Tensor with level number is 1) or a nested sequence (LoD tensor with level number is 2) as its input. - Case1: If the axis is other than 0(here, axis is 1 and level is 1), - each input should have the same LoD information and the LoD + each input should have the same LoD information and the LoD information of the output keeps the same as the input. LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) @@ -81,7 +80,7 @@ or a nested sequence (LoD tensor with level number is 2) as its input. LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4) - Case2: - If the axis is 0(here, leve is 0), the inputs are concatenated along + If the axis is 0(here, leve is 0), the inputs are concatenated along time steps, the LoD information of the output need to re-compute. The LoD information of level-1 should be same. @@ -125,11 +124,12 @@ class SequenceConcatGradOp : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(sequence_concat, ops::SequenceConcatOp, ops::SequenceConcatOpMaker, - sequence_concat_grad, ops::SequenceConcatGradOp); +REGISTER_OP_EX(sequence_concat, ops::SequenceConcatOp, + ops::SequenceConcatOpMaker, sequence_concat_grad, + ops::SequenceConcatGradOp, false); REGISTER_OP_CPU_KERNEL( sequence_concat, - ops::SequenceConcatOpKernel); + ops::SequenceConcatOpKernel); REGISTER_OP_CPU_KERNEL( sequence_concat_grad, - ops::SequenceConcatGradOpKernel); + ops::SequenceConcatGradOpKernel); diff --git a/paddle/operators/sequence_concat_op.cu.cc b/paddle/operators/sequence_concat_op.cu.cc index 9ca99c2258..144bdb5af6 100644 --- a/paddle/operators/sequence_concat_op.cu.cc +++ b/paddle/operators/sequence_concat_op.cu.cc @@ -15,9 +15,9 @@ limitations under the License. */ #include "paddle/operators/sequence_concat_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( sequence_concat, - ops::SequenceConcatOpKernel); -REGISTER_OP_GPU_KERNEL( - sequence_concat_grad, - ops::SequenceConcatGradOpKernel); + ops::SequenceConcatOpKernel); +REGISTER_OP_CUDA_KERNEL(sequence_concat_grad, + ops::SequenceConcatGradOpKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/sequence_concat_op.h b/paddle/operators/sequence_concat_op.h index 09212070aa..8445224f46 100644 --- a/paddle/operators/sequence_concat_op.h +++ b/paddle/operators/sequence_concat_op.h @@ -59,7 +59,7 @@ LoD ConcatLoD(const std::vector ins, const size_t level) { return out_lod; } -template +template class SequenceConcatOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -119,7 +119,7 @@ class SequenceConcatOpKernel : public framework::OpKernel { } }; -template +template class SequenceConcatGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/sequence_conv_op.cc b/paddle/operators/sequence_conv_op.cc index c5533732d4..c5b7c81bd7 100644 --- a/paddle/operators/sequence_conv_op.cc +++ b/paddle/operators/sequence_conv_op.cc @@ -100,8 +100,7 @@ class SequenceConvGradOp : public framework::OperatorWithKernel { class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequenceConvOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceConvOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -179,9 +178,10 @@ REGISTER_OP(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker, sequence_conv_grad, ops::SequenceConvGradOp); REGISTER_OP_CPU_KERNEL( - sequence_conv, ops::SequenceConvKernel, - ops::SequenceConvKernel); + sequence_conv, + ops::SequenceConvKernel, + ops::SequenceConvKernel); REGISTER_OP_CPU_KERNEL( sequence_conv_grad, - ops::SequenceConvGradKernel, - ops::SequenceConvGradKernel); + ops::SequenceConvGradKernel, + ops::SequenceConvGradKernel); diff --git a/paddle/operators/sequence_conv_op.cu.cc b/paddle/operators/sequence_conv_op.cu.cc index c8136dbcb3..0b8f2c6955 100644 --- a/paddle/operators/sequence_conv_op.cu.cc +++ b/paddle/operators/sequence_conv_op.cu.cc @@ -1,24 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/sequence_conv_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - sequence_conv, ops::SequenceConvKernel, - ops::SequenceConvKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + sequence_conv, + ops::SequenceConvKernel, + ops::SequenceConvKernel); +REGISTER_OP_CUDA_KERNEL( sequence_conv_grad, - ops::SequenceConvGradKernel, - ops::SequenceConvGradKernel); + ops::SequenceConvGradKernel, + ops::SequenceConvGradKernel); diff --git a/paddle/operators/sequence_conv_op.h b/paddle/operators/sequence_conv_op.h index b8fbe2647c..bb584b7bfa 100644 --- a/paddle/operators/sequence_conv_op.h +++ b/paddle/operators/sequence_conv_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template +template class SequenceConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -56,21 +56,23 @@ class SequenceConvKernel : public framework::OpKernel { Tensor col; col.mutable_data(col_shape, context.GetPlace()); // Because if padding_trainable is false, padding data should be zeros. - math::SetConstant set_zero; - set_zero(context.device_context(), &col, static_cast(0)); + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); + set_zero(dev_ctx, &col, static_cast(0)); - math::ContextProjectFunctor seq_project_functor; + math::ContextProjectFunctor seq_project_functor; - seq_project_functor(context.device_context(), *in, *padding_data, - padding_trainable, context_start, context_length, - context_stride, up_pad, down_pad, &col); + seq_project_functor(dev_ctx, *in, *padding_data, padding_trainable, + context_start, context_length, context_stride, up_pad, + down_pad, &col); - math::matmul(context.device_context(), col, false, filter, false, - static_cast(1.0), out, static_cast(0.0)); + math::matmul(dev_ctx, col, false, filter, false, + static_cast(1.0), out, + static_cast(0.0)); } }; -template +template class SequenceConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -95,7 +97,8 @@ class SequenceConvGradKernel : public framework::OpKernel { int down_pad = std::max(0, context_start + context_length - 1); int sequence_width = static_cast(in->dims()[1]); - math::SetConstant set_zero; + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); // use col_shape in the im2col calculation framework::DDim col_shape = {in->dims()[0], sequence_width * context_length}; @@ -104,38 +107,36 @@ class SequenceConvGradKernel : public framework::OpKernel { if (in_g || filter_g || (padding_trainable && padding_data_g)) { col.mutable_data(col_shape, context.GetPlace()); // Because if padding_trainable is false, padding data should be zeros. - set_zero(context.device_context(), &col, static_cast(0)); - math::matmul(context.device_context(), *out_g, false, *filter, - true, T(1.0), &col, T(1.0)); + set_zero(dev_ctx, &col, static_cast(0)); + math::matmul(dev_ctx, *out_g, false, *filter, true, + T(1.0), &col, T(1.0)); } - math::ContextProjectFunctor seq_project_functor; - math::ContextProjectGradFunctor seq_project_grad_functor; + math::ContextProjectFunctor seq_project_functor; + math::ContextProjectGradFunctor seq_project_grad_functor; if (in_g) { in_g->mutable_data(context.GetPlace()); in_g->set_lod(in->lod()); - set_zero(context.device_context(), in_g, static_cast(0)); + set_zero(dev_ctx, in_g, static_cast(0)); - seq_project_grad_functor(context.device_context(), *in_g, - padding_trainable, context_start, context_length, - context_stride, up_pad, down_pad, false, true, - padding_data_g, &col); + seq_project_grad_functor(dev_ctx, *in_g, padding_trainable, context_start, + context_length, context_stride, up_pad, down_pad, + false, true, padding_data_g, &col); } if (padding_trainable && padding_data_g) { padding_data_g->mutable_data(context.GetPlace()); - set_zero(context.device_context(), padding_data_g, static_cast(0)); + set_zero(dev_ctx, padding_data_g, static_cast(0)); LoDTensor* input = const_cast(in); - seq_project_grad_functor(context.device_context(), *input, - padding_trainable, context_start, context_length, - context_stride, up_pad, down_pad, true, false, - padding_data_g, &col); + seq_project_grad_functor( + dev_ctx, *input, padding_trainable, context_start, context_length, + context_stride, up_pad, down_pad, true, false, padding_data_g, &col); } if (filter_g) { filter_g->mutable_data(context.GetPlace()); - set_zero(context.device_context(), filter_g, static_cast(0)); + set_zero(dev_ctx, filter_g, static_cast(0)); Tensor filter_grad = *filter_g; LoDTensor out_grad = *out_g; @@ -145,12 +146,12 @@ class SequenceConvGradKernel : public framework::OpKernel { padding_data = context.Input("PaddingData"); } - seq_project_functor(context.device_context(), *in, *padding_data, - padding_trainable, context_start, context_length, - context_stride, up_pad, down_pad, &col); + seq_project_functor(dev_ctx, *in, *padding_data, padding_trainable, + context_start, context_length, context_stride, up_pad, + down_pad, &col); - math::matmul(context.device_context(), col, true, out_grad, - false, T(1.0), &filter_grad, T(1.0)); + math::matmul(dev_ctx, col, true, out_grad, false, + T(1.0), &filter_grad, T(1.0)); } } }; diff --git a/paddle/operators/sequence_erase_op.cc b/paddle/operators/sequence_erase_op.cc new file mode 100644 index 0000000000..aa0c00aa6f --- /dev/null +++ b/paddle/operators/sequence_erase_op.cc @@ -0,0 +1,90 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/sequence_erase_op.h" + +namespace paddle { +namespace operators { + +class SequenceEraseOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SequenceEraseOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SequenceEraseOp should not be null."); + auto x_dims = ctx->GetInputDim("X"); + PADDLE_ENFORCE(x_dims.size() == 2 && x_dims[1] == 1, + "Input(X) of SequenceEraseOp should be a 2-D LoDTensor " + "with the 2nd dimension equal to 1."); + ctx->SetOutputDim("Out", x_dims); + } +}; + +class SequenceEraseOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SequenceEraseOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(2-D LoDTensor with the 2nd dim. equal to 1) " + "Input LoDTensor of SequenceEraseOp."); + AddOutput("Out", + "(2-D LoDTensor with the 2nd dim. equal to 1) " + "Output LoDTensor of SequenceEraseOp."); + AddAttr>("tokens", + "(vector) Tokens need to be erased from " + "input sequences."); + AddComment(R"DOC( +Sequence Erase Operator. + +Sequence erase operator erases tokens specified by Attr(tokens) from the input +sequences Input(X), and outputs the remaining data and modifies the LoD +information at the same time. For example, given a 2-D LoDTensor + + X = [[2, 2, 6, 1, 3, 9, 6, 1, 0, 1]]^T + +with lod = [[0, 3, 6, 10]], there are three sequences in the input: + + X1 = [[2, 2, 6]]^T, X2 = [[1, 3, 9]]^T and X3 = [[6, 1, 0, 1]]^T. + +If the tokens to be erased are Attr(tokens) = [2, 3, 5], after the erasing +operation, the three sequences become + + X1' = [[6]]^T, X2' = [[1, 9]]^T and X3' = [[6, 1, 0, 1]]^T. + +Hence the LoDTensor Output(Out) should be + + Out = [[6, 1, 9, 6, 1, 0, 1]]^T, + +with lod = [[0, 1, 3, 7]]. + +An example usage for this operator is to remove the special tokens when +computing the edit distance between two strings, such as blank, start token, +and end token. +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(sequence_erase, ops::SequenceEraseOp, + ops::SequenceEraseOpMaker); +REGISTER_OP_CPU_KERNEL( + sequence_erase, + ops::SequenceEraseKernel, + ops::SequenceEraseKernel); diff --git a/paddle/operators/sequence_erase_op.cu b/paddle/operators/sequence_erase_op.cu new file mode 100644 index 0000000000..f1e3b96acd --- /dev/null +++ b/paddle/operators/sequence_erase_op.cu @@ -0,0 +1,120 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include "paddle/operators/sequence_erase_op.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { +using platform::PADDLE_CUDA_NUM_THREADS; +using LoDTensor = framework::LoDTensor; + +template +__global__ void LabelErasedIdx(const T* in_dat, const int64_t in_len, + const int* tokens, const size_t tokens_len, + size_t* num_erased) { + int index = blockIdx.x * blockDim.x + threadIdx.x; + if (index < in_len) { + for (size_t i = 0; i < tokens_len; ++i) { + if (in_dat[index] == tokens[i]) { + num_erased[index + 1] = 1; + break; + } + } + } +} + +__global__ void GetOutLod(const size_t* num_erased, const size_t* in_lod, + const size_t lod_len, size_t* out_lod0) { + int index = blockIdx.x * blockDim.x + threadIdx.x; + if (index < lod_len) { + out_lod0[index] = in_lod[index] - num_erased[in_lod[index]]; + } +} + +template +__global__ void SetOutput(const T* in_dat, const int64_t in_len, + const size_t* num_erased, T* out_dat) { + int index = blockIdx.x * blockDim.x + threadIdx.x; + if (index < in_len) { + if (num_erased[index] == num_erased[index + 1]) { + out_dat[index - num_erased[index]] = in_dat[index]; + } + } +} + +template +class SequenceEraseOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in = ctx.Input("X"); + auto* out = ctx.Output("Out"); + + auto lod = in->lod(); + PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); + PADDLE_ENFORCE_EQ(lod[0].back(), (size_t)in->numel(), + "The actual size mismatches with the LoD information."); + auto tokens = ctx.Attr>("tokens"); + auto in_len = in->numel(); + auto in_dat = in->data(); + // Copy tokens to GPU + thrust::device_vector dev_tokens(tokens.begin(), tokens.end()); + int* dev_tokens_ptr = thrust::raw_pointer_cast(dev_tokens.data()); + + // Count number of elements to be erased + thrust::device_vector num_erased(in_len + 1, 0); + size_t* num_erased_ptr = thrust::raw_pointer_cast(num_erased.data()); + auto stream = ctx.cuda_device_context().stream(); + LabelErasedIdx<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1, + PADDLE_CUDA_NUM_THREADS, 0, stream>>>( + in_dat, in_len, dev_tokens_ptr, tokens.size(), num_erased_ptr); + thrust::inclusive_scan(num_erased.begin() + 1, num_erased.end(), + num_erased.begin() + 1); + + // Copy LoD to GPU + auto lod0 = lod[0]; + auto lod_len = lod0.size(); + thrust::device_vector dev_in_lod = lod0; + size_t* dev_in_lod_ptr = thrust::raw_pointer_cast(dev_in_lod.data()); + + // Calc output LoD + thrust::device_vector dev_out_lod(lod_len); + size_t* dev_out_lod_ptr = thrust::raw_pointer_cast(dev_out_lod.data()); + GetOutLod<<<(lod_len - 1) / PADDLE_CUDA_NUM_THREADS + 1, + PADDLE_CUDA_NUM_THREADS, 0, stream>>>( + num_erased_ptr, dev_in_lod_ptr, lod_len, dev_out_lod_ptr); + + // Set LoD for output + thrust::host_vector out_lod0 = dev_out_lod; + framework::LoD out_lod; + out_lod.push_back(out_lod0); + out->set_lod(out_lod); + + // Set output + out->Resize({static_cast(out_lod0.back()), 1}); + auto out_dat = out->mutable_data(ctx.GetPlace()); + SetOutput<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1, + PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_dat, in_len, + num_erased_ptr, out_dat); + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OP_CUDA_KERNEL(sequence_erase, + paddle::operators::SequenceEraseOpCUDAKernel, + paddle::operators::SequenceEraseOpCUDAKernel); diff --git a/paddle/operators/sequence_erase_op.h b/paddle/operators/sequence_erase_op.h new file mode 100644 index 0000000000..cb2d7be009 --- /dev/null +++ b/paddle/operators/sequence_erase_op.h @@ -0,0 +1,70 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class SequenceEraseKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in = ctx.Input("X"); + auto* out = ctx.Output("Out"); + + auto lod = in->lod(); + PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); + PADDLE_ENFORCE_EQ(lod[0].back(), (size_t)in->numel(), + "The actual size mismatches with the LoD information."); + auto tokens = ctx.Attr>("tokens"); + auto in_len = in->numel(); + auto in_dat = in->data(); + auto lod0 = lod[0]; + + std::vector num_erased(in_len + 1, 0); + std::vector out_lod0(1, 0); + for (size_t i = 0; i < lod0.size() - 1; ++i) { + size_t num_out = 0; + for (auto j = lod0[i] + 1; j <= lod0[i + 1]; ++j) { + num_erased[j] = num_erased[j - 1]; + if (std::find(tokens.begin(), tokens.end(), in_dat[j - 1]) != + tokens.end()) { + num_erased[j] += 1; + } else { + num_out += 1; + } + } + out_lod0.push_back(out_lod0.back() + num_out); + } + + auto out_len = in_len - num_erased[in_len]; + out->Resize({static_cast(out_len), 1}); + auto out_dat = out->mutable_data(ctx.GetPlace()); + + for (int64_t i = 0; i < in_len; ++i) { + if (num_erased[i] == num_erased[i + 1]) { + out_dat[i - num_erased[i]] = in_dat[i]; + } + } + framework::LoD out_lod; + out_lod.push_back(out_lod0); + out->set_lod(out_lod); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/seq_expand_op.cc b/paddle/operators/sequence_expand_op.cc similarity index 69% rename from paddle/operators/seq_expand_op.cc rename to paddle/operators/sequence_expand_op.cc index b862056ad4..d34dbd35b6 100644 --- a/paddle/operators/seq_expand_op.cc +++ b/paddle/operators/sequence_expand_op.cc @@ -1,25 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ -#include "paddle/operators/seq_expand_op.h" +#include "paddle/operators/sequence_expand_op.h" namespace paddle { namespace operators { using framework::Tensor; -class SeqExpandOp : public framework::OperatorWithKernel { +class SequenceExpandOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; @@ -35,31 +35,30 @@ class SeqExpandOp : public framework::OperatorWithKernel { } }; -class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker { +class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker { public: - SeqExpandOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor or LoDTensor) The input(X) of this operator can be a " "LoDTensor or a base Tensor."); AddInput("Y", - "(LoDTensor)The reference input(Y) of seq_expand op." + "(LoDTensor)The reference input(Y) of sequence_expand op." "It must be a LoDTensor with k-level(k>0)." "The input(X) will be expanded according to LOD of input(Y)." "The element numbers of last level in input(Y) " "must be equal to dims[0] of input(X)."); AddOutput("Out", - "(LodTensor)The output of seq_expand op." + "(LodTensor)The output of sequence_expand op." "The lod of output will be as same as input(Y)'s lod."); AddComment(R"DOC( -Seq Expand Operator. +Sequence Expand Operator. This operator expands input(X) according to LOD of input(Y). Following are cases to better explain how this works: Case 1: -Given 2-level a LoDTensor input(X) +Given a 2-level LoDTensor input(X) X.lod = [[0, 2, 3], [0, 1, 3, 4]] X.data = [a, b, c, d] @@ -76,9 +75,8 @@ then we get 2-level LoDTensor Case 2: -Given a 0-level LoDTensor input(X) +Given a common Tensor input(X) X.data = [a, b, c] - X.lod = NULL X.dims = [3, 1] and input(Y) Y.lod = [[0, 2, 3, 6]] @@ -90,9 +88,8 @@ then we get 1-level LoDTensor Case 3: -Given a 0-level LoDTensor input(X) +Given a common Tensor input(X) X.data = [[a, b], [c, d], [e, f]] - X.lod = NULL X.dims = [3, 2] and input(Y) Y.lod = [[0, 2, 3, 6]] @@ -124,7 +121,7 @@ then we get 2-level LoDTensor } }; -class SeqExpandOpGrad : public framework::OperatorWithKernel { +class SequenceExpandOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; @@ -146,10 +143,11 @@ class SeqExpandOpGrad : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(seq_expand, ops::SeqExpandOp, ops::SeqExpandOpMaker, - seq_expand_grad, ops::SeqExpandOpGrad); -REGISTER_OP_CPU_KERNEL(seq_expand, - ops::SeqExpandKernel); +REGISTER_OP(sequence_expand, ops::SequenceExpandOp, ops::SequenceExpandOpMaker, + sequence_expand_grad, ops::SequenceExpandOpGrad); +REGISTER_OP_CPU_KERNEL( + sequence_expand, + ops::SequenceExpandKernel); REGISTER_OP_CPU_KERNEL( - seq_expand_grad, - ops::SeqExpandGradKernel); + sequence_expand_grad, + ops::SequenceExpandGradKernel); diff --git a/paddle/operators/sequence_expand_op.cu b/paddle/operators/sequence_expand_op.cu new file mode 100644 index 0000000000..0b9638b2ce --- /dev/null +++ b/paddle/operators/sequence_expand_op.cu @@ -0,0 +1,24 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/sequence_expand_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + sequence_expand, + ops::SequenceExpandKernel); +REGISTER_OP_CUDA_KERNEL( + sequence_expand_grad, + ops::SequenceExpandGradKernel); diff --git a/paddle/operators/seq_expand_op.h b/paddle/operators/sequence_expand_op.h similarity index 73% rename from paddle/operators/seq_expand_op.h rename to paddle/operators/sequence_expand_op.h index 4ef0d02cf8..2ba628e9c3 100644 --- a/paddle/operators/seq_expand_op.h +++ b/paddle/operators/sequence_expand_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -23,8 +23,8 @@ namespace operators { using LoDTensor = framework::LoDTensor; -template -class SeqExpandKernel : public framework::OpKernel { +template +class SequenceExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* x = context.Input("X"); @@ -37,7 +37,8 @@ class SeqExpandKernel : public framework::OpKernel { "The size of last lod level in Input(Y)" "must be equal to dims[0] of Input(X)."); out->set_lod(y->lod()); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); size_t element_len = framework::product(x_dims) / x_dims[0]; T* out_data = out->mutable_data(context.GetPlace()); auto out_starts = out->lod().back(); @@ -50,7 +51,7 @@ class SeqExpandKernel : public framework::OpKernel { Eigen::TensorMap> out_t(out_data, scale, element_len); Eigen::array cast({{scale, 1}}); - out_t.device(place) = x_t.broadcast(cast); + out_t.device(*place) = x_t.broadcast(cast); x_data += element_len; out_data += element_len * scale; } @@ -69,8 +70,8 @@ class SeqExpandKernel : public framework::OpKernel { * Grad(X).lod = Input(X).lod * * */ -template -class SeqExpandGradKernel : public framework::OpKernel { +template +class SequenceExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* d_out = context.Input(framework::GradVarName("Out")); @@ -89,8 +90,9 @@ class SeqExpandGradKernel : public framework::OpKernel { d_out_t(d_out_data, static_cast(repeat), element_len); Eigen::TensorMap> d_x_t(d_x_data, static_cast(element_len)); - auto place = context.GetEigenDevice(); - d_x_t.device(place) = d_out_t.sum(Eigen::array({{0}})); + auto place = + context.template device_context().eigen_device(); + d_x_t.device(*place) = d_out_t.sum(Eigen::array({{0}})); d_out_data += (repeat * element_len); d_x_data += element_len; } diff --git a/paddle/operators/sequence_pool_op.cc b/paddle/operators/sequence_pool_op.cc index bfda8649cd..549d9620ef 100644 --- a/paddle/operators/sequence_pool_op.cc +++ b/paddle/operators/sequence_pool_op.cc @@ -37,8 +37,7 @@ class SequencePoolOp : public framework::OperatorWithKernel { class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequencePoolOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequencePoolOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp"); AddOutput("Out", @@ -50,7 +49,7 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker { .AsIntermediate(); AddAttr( "pooltype", - "(int, default AVERAGE) the pooling pooltype of SequencePoolOp.") + "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.") .SetDefault("AVERAGE") .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"}); AddComment(R"DOC( @@ -108,7 +107,7 @@ class SequencePoolGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -116,14 +115,35 @@ class SequencePoolGradOp : public framework::OperatorWithKernel { } }; +class SequencePoolGradOpMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* op_desc_ptr = new framework::OpDesc(); + op_desc_ptr->SetType("sequence_pool_grad"); + op_desc_ptr->SetInput("X", Input("X")); + if (boost::get(GetAttr("pooltype")) == "MAX") { + op_desc_ptr->SetInput("MaxIndex", Output("MaxIndex")); + } + op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X")); + op_desc_ptr->SetAttrMap(Attrs()); + return std::unique_ptr(op_desc_ptr); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker, - sequence_pool_grad, ops::SequencePoolGradOp); +REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker, + ops::SequencePoolGradOpMaker); +REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp); REGISTER_OP_CPU_KERNEL( - sequence_pool, ops::SequencePoolKernel); + sequence_pool, + ops::SequencePoolKernel); REGISTER_OP_CPU_KERNEL( sequence_pool_grad, - ops::SequencePoolGradKernel); + ops::SequencePoolGradKernel); diff --git a/paddle/operators/sequence_pool_op.cu b/paddle/operators/sequence_pool_op.cu index 66850772d5..265f695935 100644 --- a/paddle/operators/sequence_pool_op.cu +++ b/paddle/operators/sequence_pool_op.cu @@ -1,24 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/sequence_pool_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - sequence_pool, ops::SequencePoolKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + sequence_pool, + ops::SequencePoolKernel); +REGISTER_OP_CUDA_KERNEL( sequence_pool_grad, - ops::SequencePoolGradKernel); + ops::SequencePoolGradKernel); diff --git a/paddle/operators/sequence_pool_op.h b/paddle/operators/sequence_pool_op.h index 7f136d8cf0..7519aa1d72 100644 --- a/paddle/operators/sequence_pool_op.h +++ b/paddle/operators/sequence_pool_op.h @@ -30,7 +30,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class SequencePoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -54,17 +54,18 @@ class SequencePoolKernel : public framework::OpKernel { auto lod_level_0 = lod[0]; out->mutable_data(context.GetPlace()); - + auto& dev_ctx = context.template device_context(); if (pooltype == "MAX") { - math::MaxSeqPoolFunctor max_pool; + math::MaxSeqPoolFunctor max_pool; auto* index = context.Output("MaxIndex"); index->Resize({dims}); index->mutable_data(context.GetPlace()); - max_pool(context.device_context(), *in, out, index); + max_pool(dev_ctx, *in, out, index); return; } - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { Tensor in_t = in->Slice(static_cast(lod_level_0[i]), static_cast(lod_level_0[i + 1])); @@ -91,7 +92,7 @@ class SequencePoolKernel : public framework::OpKernel { } }; -template +template class SequencePoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -105,20 +106,23 @@ class SequencePoolGradKernel : public framework::OpKernel { int64_t w = in->numel() / dims[0]; in_g->mutable_data(context.GetPlace()); + auto& dev_ctx = context.template device_context(); if (pooltype == "MAX") { - math::MaxSeqPoolGradFunctor max_pool_grad; + math::MaxSeqPoolGradFunctor max_pool_grad; auto* index = context.Input("MaxIndex"); - max_pool_grad(context.device_context(), *out_g, *index, in_g); + max_pool_grad(dev_ctx, *out_g, *index, in_g); return; } if (pooltype == "LAST" || pooltype == "FIRST") { // set X@Grad be zero at first when pooltype is LAST/FIRST - math::SetConstant functor; - functor(context.device_context(), in_g, 0); + math::SetConstant functor; + functor(dev_ctx, in_g, 0); } - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); + for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { auto in_g_t = in_g->Slice(static_cast(lod[i]), static_cast(lod[i + 1])); diff --git a/paddle/operators/sequence_reshape_op.cc b/paddle/operators/sequence_reshape_op.cc new file mode 100644 index 0000000000..884c49276c --- /dev/null +++ b/paddle/operators/sequence_reshape_op.cc @@ -0,0 +1,130 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/sequence_reshape_op.h" +#include "paddle/framework/ddim.h" + +namespace paddle { +namespace operators { + +class SequenceReshapeOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SequenceReshapeOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SequenceReshapeOp should not be null."); + auto x_dims = ctx->GetInputDim("X"); + auto x_numel = product(x_dims); + PADDLE_ENFORCE_EQ(x_dims.size(), 2U, "Rank of Input(X) should be 2."); + int new_dim = ctx->Attrs().Get("new_dim"); + ctx->SetOutputDim("Out", + {x_numel / new_dim, static_cast(new_dim)}); + } +}; + +class SequenceReshapeOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SequenceReshapeOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(LoDTensor, default LoDTensor) A 2-D LoDTensor with shape " + "being [N, M]."); + AddOutput("Out", + "(LoDTensor, default LoDTensor) A 2-D LoDTensor with " + "shape [T, new_dim] where T is calculated based on X.lod, M and " + "new_dim."); + AddAttr("new_dim", "Sequence dimension of the output LoDTensor."); + AddComment(R"DOC( +Sequence Reshape Operator. + +This operator will rearrange the input sequences. The new dimension is set by +attribute and length of each sequence may change longer or shorter which is +decided by original length, original dimension and new dimension. The following +example will help to illustrate the function of this operator: + +x is a LoDTensor: + x.lod = [[0, 2, 6]] + x.data = [[1, 2], [3, 4], + [5, 6], [7, 8], [9, 10], [11, 12]] + x.dims = [6, 2] + +set new_dim = 4 + +then out is a LoDTensor: + out.lod = [[0, 1, 3]] + out.data = [[1, 2, 3, 4], + [5, 6, 7, 8], [9, 10, 11, 12]] + out.dims = [3, 4] + +Currently, only 1-level LoDTensor is supported and please make sure (original +length * original dimension) can be divided by new_dim with no remainder for +each sequence. + +)DOC"); + } +}; + +class SequenceReshapeGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE( + ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) of SequenceReshapeGradOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SequenceReshapeGradOp should not be null."); + + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ framework::GradVarName("X")); + } +}; + +class SequenceReshapeGradOpMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* op_desc_ptr = new framework::OpDesc(); + op_desc_ptr->SetType("sequence_reshape_grad"); + op_desc_ptr->SetInput("X", Input("X")); + op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X")); + op_desc_ptr->SetAttrMap(Attrs()); + return std::unique_ptr(op_desc_ptr); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(sequence_reshape, ops::SequenceReshapeOp, + ops::SequenceReshapeOpMaker, ops::SequenceReshapeGradOpMaker); +REGISTER_OPERATOR(sequence_reshape_grad, ops::SequenceReshapeGradOp); +REGISTER_OP_CPU_KERNEL( + sequence_reshape, + ops::SequenceReshapeKernel, + ops::SequenceReshapeKernel, + ops::SequenceReshapeKernel, + ops::SequenceReshapeKernel); +REGISTER_OP_CPU_KERNEL( + sequence_reshape_grad, + ops::SequenceReshapeGradKernel, + ops::SequenceReshapeGradKernel, + ops::SequenceReshapeGradKernel, + ops::SequenceReshapeGradKernel); diff --git a/paddle/operators/sequence_reshape_op.cu b/paddle/operators/sequence_reshape_op.cu new file mode 100644 index 0000000000..d9c2f7e9a4 --- /dev/null +++ b/paddle/operators/sequence_reshape_op.cu @@ -0,0 +1,30 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/sequence_reshape_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + sequence_reshape, + ops::SequenceReshapeKernel, + ops::SequenceReshapeKernel, + ops::SequenceReshapeKernel, + ops::SequenceReshapeKernel); +REGISTER_OP_CUDA_KERNEL( + sequence_reshape_grad, + ops::SequenceReshapeGradKernel, + ops::SequenceReshapeGradKernel, + ops::SequenceReshapeGradKernel, + ops::SequenceReshapeGradKernel); diff --git a/paddle/operators/sequence_reshape_op.h b/paddle/operators/sequence_reshape_op.h new file mode 100644 index 0000000000..dd9b611250 --- /dev/null +++ b/paddle/operators/sequence_reshape_op.h @@ -0,0 +1,86 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +using LoDTensor = framework::LoDTensor; +template +class SequenceReshapeKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* in = context.Input("X"); + auto* out = context.Output("Out"); + int out_width = context.Attr("new_dim"); + + auto in_dims = in->dims(); + int64_t in_width = in_dims[1]; + auto& in_lod = in->lod(); + + PADDLE_ENFORCE_EQ(in_lod.size(), 1UL, + "Only support one level sequence now."); + PADDLE_ENFORCE_EQ( + in_dims[0], in_lod[0].back(), + "Inconsistent size between X.shape[0] and X.lod()[0].back()."); + + auto in_lod_l0 = in_lod[0]; + int seq_num = in_lod_l0.size() - 1; + + if (in_width == out_width) { + out->set_lod(in->lod()); + } else { + auto& out_lod = *out->mutable_lod(); + out_lod.resize(1); + out_lod[0].resize(seq_num + 1); + out_lod[0][0] = 0; + for (int i = 0; i < seq_num; ++i) { + size_t seq_len = in_lod_l0[i + 1] - in_lod_l0[i]; + size_t offset = 0; + offset = (seq_len * in_width) / out_width; + PADDLE_ENFORCE_EQ(offset * out_width, seq_len * in_width, + "Please make sure (sequence_length * dimension) can " + "be divided by new_dim with no remainder for each " + "sequence. The %dth sequence is invalid.", + i + 1); + out_lod[0][i + 1] = out_lod[0][i] + offset; + } + } + + framework::Copy(*in, context.GetPlace(), out); + out->Resize({static_cast(out->lod()[0].back()), out_width}); + } +}; + +template +class SequenceReshapeGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x_tensor_ptr = context.Input("X"); + auto* outg_tensor_ptr = + context.Input(framework::GradVarName("Out")); + auto* xg_tensor_ptr = + context.Output(framework::GradVarName("X")); + + xg_tensor_ptr->mutable_data(context.GetPlace()); + framework::Copy(*outg_tensor_ptr, context.GetPlace(), xg_tensor_ptr); + xg_tensor_ptr->Resize(x_tensor_ptr->dims()); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/sequence_slice_op.cc b/paddle/operators/sequence_slice_op.cc index 255683a572..f79106ff0f 100644 --- a/paddle/operators/sequence_slice_op.cc +++ b/paddle/operators/sequence_slice_op.cc @@ -48,7 +48,7 @@ class SequenceSliceOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -69,7 +69,7 @@ class SequenceSliceGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -79,8 +79,7 @@ class SequenceSliceGradOp : public framework::OperatorWithKernel { class SequenceSliceOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequenceSliceOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceSliceOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor), " @@ -125,7 +124,7 @@ REGISTER_OP(sequence_slice, ops::SequenceSliceOp, ops::SequenceSliceOpMaker, sequence_slice_grad, ops::SequenceSliceGradOp); REGISTER_OP_CPU_KERNEL( sequence_slice, - ops::SequenceSliceOpKernel); + ops::SequenceSliceOpKernel); REGISTER_OP_CPU_KERNEL( sequence_slice_grad, - ops::SequenceSliceGradOpKernel); + ops::SequenceSliceGradOpKernel); diff --git a/paddle/operators/sequence_slice_op.cu b/paddle/operators/sequence_slice_op.cu index a9f59dadba..43a21d619f 100755 --- a/paddle/operators/sequence_slice_op.cu +++ b/paddle/operators/sequence_slice_op.cu @@ -15,9 +15,9 @@ limitations under the License. */ #include "paddle/operators/sequence_slice_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( sequence_slice, - ops::SequenceSliceOpKernel); -REGISTER_OP_GPU_KERNEL( + ops::SequenceSliceOpKernel); +REGISTER_OP_CUDA_KERNEL( sequence_slice_grad, - ops::SequenceSliceGradOpKernel); + ops::SequenceSliceGradOpKernel); diff --git a/paddle/operators/sequence_slice_op.h b/paddle/operators/sequence_slice_op.h index 428ef556da..0e4e4cf65f 100644 --- a/paddle/operators/sequence_slice_op.h +++ b/paddle/operators/sequence_slice_op.h @@ -39,7 +39,7 @@ inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data, return out_lod; } -template +template class SequenceSliceOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -66,13 +66,13 @@ class SequenceSliceOpKernel : public framework::OpKernel { if (platform::is_gpu_place(ctx.GetPlace())) { offset_cpu.mutable_data(offset->dims(), platform::CPUPlace()); - framework::CopyFrom(*offset, platform::CPUPlace(), ctx.device_context(), - &offset_cpu); + framework::Copy(*offset, platform::CPUPlace(), ctx.device_context(), + &offset_cpu); offset_data = offset_cpu.data(); length_cpu.mutable_data(length->dims(), platform::CPUPlace()); - framework::CopyFrom(*length, platform::CPUPlace(), ctx.device_context(), - &length_cpu); + framework::Copy(*length, platform::CPUPlace(), ctx.device_context(), + &length_cpu); length_data = length_cpu.data(); } @@ -108,7 +108,7 @@ class SequenceSliceOpKernel : public framework::OpKernel { } }; -template +template class SequenceSliceGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -127,13 +127,13 @@ class SequenceSliceGradOpKernel : public framework::OpKernel { if (platform::is_gpu_place(ctx.GetPlace())) { offset_cpu.mutable_data(offset->dims(), platform::CPUPlace()); - framework::CopyFrom(*offset, platform::CPUPlace(), ctx.device_context(), - &offset_cpu); + framework::Copy(*offset, platform::CPUPlace(), ctx.device_context(), + &offset_cpu); offset_data = offset_cpu.data(); length_cpu.mutable_data(length->dims(), platform::CPUPlace()); - framework::CopyFrom(*length, platform::CPUPlace(), ctx.device_context(), - &length_cpu); + framework::Copy(*length, platform::CPUPlace(), ctx.device_context(), + &length_cpu); length_data = length_cpu.data(); } @@ -143,8 +143,9 @@ class SequenceSliceGradOpKernel : public framework::OpKernel { if (x_grad) { x_grad->mutable_data(ctx.GetPlace()); x_grad->set_lod(in->lod()); - math::SetConstant set_zero; - set_zero(ctx.device_context(), x_grad, static_cast(0)); + math::SetConstant set_zero; + set_zero(ctx.template device_context(), x_grad, + static_cast(0)); auto out_grad_stride = framework::stride(out_grad->dims()); diff --git a/paddle/operators/sequence_softmax_op.cc b/paddle/operators/sequence_softmax_op.cc index 32c1502566..b74766f012 100644 --- a/paddle/operators/sequence_softmax_op.cc +++ b/paddle/operators/sequence_softmax_op.cc @@ -33,8 +33,7 @@ class SequenceSoftmaxOp : public framework::OperatorWithKernel { class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequenceSoftmaxOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceSoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension " @@ -51,10 +50,14 @@ input Tensor can be either [N, 1] or [N], where N is the sum of the length of all sequences. The algorithm works as follows: + for i-th sequence in a mini-batch: - $$Out(X[lod[i]:lod[i+1]], :) = - \frac{\exp(X[lod[i]:lod[i+1], :])} - {\sum(\exp(X[lod[i]:lod[i+1], :]))}$$ + +$$ +Out(X[lod[i]:lod[i+1]], :) = \ +\frac{\exp(X[lod[i]:lod[i+1], :])} \ +{\sum(\exp(X[lod[i]:lod[i+1], :]))} +$$ For example, for a mini-batch of 3 sequences with variable-length, each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], @@ -99,7 +102,7 @@ REGISTER_OP(sequence_softmax, ops::SequenceSoftmaxOp, ops::SequenceSoftmaxGradOp); REGISTER_OP_CPU_KERNEL( sequence_softmax, - ops::SequenceSoftmaxKernel); + ops::SequenceSoftmaxKernel); REGISTER_OP_CPU_KERNEL( sequence_softmax_grad, - ops::SequenceSoftmaxGradKernel); + ops::SequenceSoftmaxGradKernel); diff --git a/paddle/operators/sequence_softmax_op.cu.cc b/paddle/operators/sequence_softmax_op.cu.cc index 7023795a3b..5f65b4daf9 100644 --- a/paddle/operators/sequence_softmax_op.cu.cc +++ b/paddle/operators/sequence_softmax_op.cu.cc @@ -15,9 +15,9 @@ limitations under the License. */ #include "paddle/operators/sequence_softmax_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( sequence_softmax, - ops::SequenceSoftmaxKernel) -REGISTER_OP_GPU_KERNEL( + ops::SequenceSoftmaxKernel) +REGISTER_OP_CUDA_KERNEL( sequence_softmax_grad, - ops::SequenceSoftmaxGradKernel); + ops::SequenceSoftmaxGradKernel); diff --git a/paddle/operators/sequence_softmax_op.h b/paddle/operators/sequence_softmax_op.h index 1b68dd0662..e889e88cb3 100644 --- a/paddle/operators/sequence_softmax_op.h +++ b/paddle/operators/sequence_softmax_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template +template class SequenceSoftmaxKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -52,12 +52,13 @@ class SequenceSoftmaxKernel : public framework::OpKernel { framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos}); x_i.Resize(dims_i); out_i.Resize(dims_i); - math::SoftmaxFunctor()(ctx.device_context(), &x_i, &out_i); + math::SoftmaxFunctor()( + ctx.template device_context(), &x_i, &out_i); } } }; -template +template class SequenceSoftmaxGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -83,8 +84,9 @@ class SequenceSoftmaxGradKernel : public framework::OpKernel { out_i.Resize(dims_i); out_grad_i.Resize(dims_i); x_grad_i.Resize(dims_i); - math::SoftmaxGradFunctor()(ctx.device_context(), &out_i, - &out_grad_i, &x_grad_i); + math::SoftmaxGradFunctor()( + ctx.template device_context(), &out_i, &out_grad_i, + &x_grad_i); } } }; diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index 5576d7b8be..a11c9624ce 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -43,7 +43,7 @@ class SGDOp : public framework::OperatorWithKernel { class SGDOpMaker : public framework::OpProtoAndCheckerMaker { public: - SGDOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + SGDOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("LearningRate", "(Tensor) Learning rate of SGD"); @@ -61,42 +61,9 @@ $$param\_out = param - learning\_rate * grad$$ } }; -template -struct SparseSGDFunctor { - void operator()(const platform::DeviceContext& context, - const framework::SelectedRows& input, - const framework::Tensor& learning_rate, - framework::Tensor* output) { - auto in_height = input.height(); - auto out_dims = output->dims(); - PADDLE_ENFORCE_EQ(in_height, out_dims[0]); - - auto& in_value = input.value(); - auto& in_rows = input.rows(); - - int64_t in_row_numel = in_value.numel() / in_rows.size(); - PADDLE_ENFORCE_EQ(in_row_numel, output->numel() / in_height); - - auto* in_data = in_value.data(); - auto* out_data = output->data(); - auto* lr = learning_rate.data(); - - for (size_t i = 0; i < in_rows.size(); i++) { - for (int64_t j = 0; j < in_row_numel; j++) { - out_data[in_rows[i] * in_row_numel + j] -= - lr[0] * in_data[i * in_row_numel + j]; - } - } - } -}; - -template struct SparseSGDFunctor; -template struct SparseSGDFunctor; - } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(sgd, ops::SGDOp, ops::SGDOpMaker); -REGISTER_OP_CPU_KERNEL(sgd, ops::SGDOpKernel, - ops::SGDOpKernel); +REGISTER_OP_CPU_KERNEL(sgd, ops::SGDOpKernel, ops::SGDOpKernel); diff --git a/paddle/operators/sgd_op.cu b/paddle/operators/sgd_op.cu index 7b6c5ec306..42f8f8b2f0 100644 --- a/paddle/operators/sgd_op.cu +++ b/paddle/operators/sgd_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/sgd_op.h" @@ -20,6 +20,19 @@ namespace paddle { namespace operators { namespace { + +template +__global__ void SGDKernel(const T* g, const T* p, const T* learning_rate, + const int num, T* p_out) { + T lr = learning_rate[0]; + int grid_size = blockDim.x * gridDim.x; + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num; i += grid_size) { + T g_data = g[i]; + T p_data = p[i]; + p_out[i] = p_data - lr * g_data; + } +} + template __global__ void SparseSGDFunctorKernel(const T* selected_rows, const int64_t* rows, @@ -41,42 +54,65 @@ __global__ void SparseSGDFunctorKernel(const T* selected_rows, } // namespace template -struct SparseSGDFunctor { - void operator()(const platform::DeviceContext& context, - const framework::SelectedRows& input, - const framework::Tensor& learning_rate, - framework::Tensor* output) { - auto in_height = input.height(); - auto out_dims = output->dims(); - PADDLE_ENFORCE_EQ(in_height, out_dims[0]); - - auto& in_value = input.value(); - auto& in_rows = input.rows(); - - int64_t in_row_numel = in_value.numel() / in_rows.size(); - PADDLE_ENFORCE_EQ(in_row_numel, output->numel() / in_height); - - auto* in_data = in_value.data(); - auto* out_data = output->data(); - - const int block_size = 256; - dim3 threads(block_size, 1); - dim3 grid(1, in_rows.size()); - SparseSGDFunctorKernel< - T, 256><<(context) - .stream()>>>(in_data, in_rows.data(), - learning_rate.data(), out_data, - in_row_numel); +class SGDOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* param = ctx.Input("Param"); + auto* param_out = ctx.Output("ParamOut"); + auto* learning_rate = ctx.Input("LearningRate"); + + auto* grad_var = ctx.InputVar("Grad"); + // Actually, all tensors are LoDTensor except SelectedRows. + if (grad_var->IsType()) { + param_out->mutable_data(ctx.GetPlace()); + auto* grad = ctx.Input("Grad"); + auto* grad_data = grad->data(); + auto* param_data = param->data(); + auto* param_out_data = param_out->data(); + + int block = 512; + int grid = (param->numel() + block - 1) / block; + + SGDKernel<<>>( + grad_data, param_data, learning_rate->data(), param->numel(), + param_out_data); + + } else if (grad_var->IsType()) { + // TODO(qijun): In Sparse SGD operator, in-place update is enforced. + // This manual optimization brings difficulty to track data dependency. + // It's better to find a more elegant solution. + PADDLE_ENFORCE_EQ(param, param_out); + auto* grad = ctx.Input("Grad"); + + auto in_height = grad->height(); + auto out_dims = param_out->dims(); + PADDLE_ENFORCE_EQ(in_height, out_dims[0]); + + auto& in_value = grad->value(); + auto& in_rows = grad->rows(); + + int64_t in_row_numel = in_value.numel() / in_rows.size(); + PADDLE_ENFORCE_EQ(in_row_numel, param_out->numel() / in_height); + + auto* in_data = in_value.data(); + auto* out_data = param_out->data(); + + const int block_size = 256; + dim3 threads(block_size, 1); + dim3 grid(1, in_rows.size()); + SparseSGDFunctorKernel< + T, 256><<>>( + in_data, in_rows.data(), learning_rate->data(), out_data, + in_row_numel); + + } else { + PADDLE_THROW("Unsupported Variable Type of Grad"); + } } }; - -template struct SparseSGDFunctor; -template struct SparseSGDFunctor; - } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(sgd, ops::SGDOpKernel, - ops::SGDOpKernel); +REGISTER_OP_CUDA_KERNEL(sgd, ops::SGDOpCUDAKernel, + ops::SGDOpCUDAKernel); diff --git a/paddle/operators/sgd_op.h b/paddle/operators/sgd_op.h index 78b595fc6c..a6c544591e 100644 --- a/paddle/operators/sgd_op.h +++ b/paddle/operators/sgd_op.h @@ -20,15 +20,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template -struct SparseSGDFunctor { - void operator()(const platform::DeviceContext& context, - const framework::SelectedRows& input, - const framework::Tensor& learning_rate, - framework::Tensor* output); -}; - -template +template class SGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -45,19 +37,36 @@ class SGDOpKernel : public framework::OpKernel { auto p = framework::EigenVector::Flatten(*param); auto g = framework::EigenVector::Flatten(*grad); auto o = framework::EigenVector::Flatten(*param_out); - auto lr = framework::EigenVector::Flatten(*learning_rate); - auto place = ctx.GetEigenDevice(); + auto* lr = learning_rate->data(); - Eigen::DSizes grad_dsize(grad->numel()); - o.device(place) = p - lr.broadcast(grad_dsize) * g; + o = p - lr[0] * g; } else if (grad_var->IsType()) { // TODO(qijun): In Sparse SGD operator, in-place update is enforced. // This manual optimization brings difficulty to track data dependency. // It's better to find a more elegant solution. PADDLE_ENFORCE_EQ(param, param_out); auto* grad = ctx.Input("Grad"); - SparseSGDFunctor functor; - functor(ctx.device_context(), *grad, *learning_rate, param_out); + + auto in_height = grad->height(); + auto out_dims = param_out->dims(); + PADDLE_ENFORCE_EQ(in_height, out_dims[0]); + + auto& in_value = grad->value(); + auto& in_rows = grad->rows(); + + int64_t in_row_numel = in_value.numel() / in_rows.size(); + PADDLE_ENFORCE_EQ(in_row_numel, param_out->numel() / in_height); + + auto* in_data = in_value.data(); + auto* out_data = param_out->data(); + auto* lr = learning_rate->data(); + + for (size_t i = 0; i < in_rows.size(); i++) { + for (int64_t j = 0; j < in_row_numel; j++) { + out_data[in_rows[i] * in_row_numel + j] -= + lr[0] * in_data[i * in_row_numel + j]; + } + } } else { PADDLE_THROW("Unsupported Variable Type of Grad"); } diff --git a/paddle/operators/shrink_rnn_memory_op.cc b/paddle/operators/shrink_rnn_memory_op.cc index c380e60686..bf870115a4 100644 --- a/paddle/operators/shrink_rnn_memory_op.cc +++ b/paddle/operators/shrink_rnn_memory_op.cc @@ -1,17 +1,18 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/lod_rank_table.h" +#include "paddle/framework/lod_tensor.h" #include "paddle/operators/array_operator.h" #include "paddle/operators/math/math_function.h" @@ -27,11 +28,11 @@ class ShrinkRNNMemoryOp : public ArrayOp { : ArrayOp(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto *x_var = scope.FindVar(Input("X")); PADDLE_ENFORCE(x_var != nullptr, "Input X must be set"); auto &x_tensor = x_var->Get(); - size_t offset = this->GetOffset(scope, dev_ctx); + size_t offset = this->GetOffset(scope, place); auto *rank_table_var = scope.FindVar(Input("RankTable")); PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set"); auto &rank_table = rank_table_var->Get(); @@ -44,18 +45,30 @@ class ShrinkRNNMemoryOp : public ArrayOp { rank_items.begin(); auto *out_var = scope.FindVar(Output("Out")); - PADDLE_ENFORCE(out_var != nullptr, "Output Out must be set"); + PADDLE_ENFORCE(out_var != nullptr, "Output(Out) must be set."); auto &out_tensor = *out_var->GetMutable(); + + size_t height = dst_num_rows; + + // do shrink for the top level LoD + if (x_tensor.lod().size() > 0 && + x_tensor.lod()[0].size() > static_cast(dst_num_rows)) { + auto lod_offset = framework::GetSubLoDAndAbsoluteOffset(x_tensor.lod(), 0, + dst_num_rows, 0); + height = lod_offset.second.second; + auto out_lod = out_tensor.mutable_lod(); + framework::AppendLoD(out_lod, lod_offset.first); + } + if (dst_num_rows != 0) { - out_tensor.ShareDataWith(x_tensor.Slice(0, dst_num_rows)); + out_tensor.ShareDataWith(x_tensor.Slice(0, height)); } } }; class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - ShrinkRNNMemoryOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ShrinkRNNMemoryOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) The RNN step memory to be shrinked."); AddInput("RankTable", "(LoDRankTable) The lod_rank_table of dynamic RNN."); @@ -63,15 +76,17 @@ class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker { "(LoDTensor) The step index. The RNN step memory 'X' will be " "shrinked to match the size of the input of the index'th step."); AddOutput("Out", "(LoDTensor) The shrinked RNN step memory."); - AddComment( - R"DOC( - In dynamic RNN, we are able to handle sequences of different lengths. - Because of the multiple lengths, the size of each step input can be - different, which may lead to a mismatching between the input of - the current step and the memory generated by the previous one. This - operator shrinks memory according to the size of the next step input, - to make sure that they can match each other. - )DOC"); + AddComment(R"DOC( +This operator is used to shrink output batch of memory defined in dynamic RNN. + +Dynamic RNN is able to handle variable-length sequences, in which, sequences in +a mini-batch are sorted by their lengths first. After that, the longest sequence +becomes the first one in the sorted batch, followed by the second longest, the +third longest, and so on. Dynamic RNN then slices a batch input timestep by +timestep from the sorted input. Once any sequence in the input batch reaches its +end, memory defined in dynamicRNN has to shrink its outputs to adapt to the input +batch size for the next time step. +)DOC"); } }; @@ -94,7 +109,7 @@ class ShrinkRNNMemoryGradOp : public ArrayOp { : ArrayOp(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out"))); auto *dx_var = scope.FindVar(Output(framework::GradVarName("X"))); PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr"); @@ -106,19 +121,24 @@ class ShrinkRNNMemoryGradOp : public ArrayOp { dx_tensor.Resize(x_tensor.dims()); dx_tensor.mutable_data(x_tensor.place(), x_tensor.type()); + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + if (dout_var == nullptr) { // dx_tensor fill zero math::set_constant(dev_ctx, &dx_tensor, 0.0f); } else { auto &dout_tensor = dout_var->Get(); auto height = dout_tensor.dims()[0]; auto slice = dx_tensor.Slice(0, static_cast(height)); - framework::CopyFrom(dout_tensor, dout_tensor.place(), dev_ctx, &slice); - if (dx_tensor.dims()[0] < height) { + framework::Copy(dout_tensor, dout_tensor.place(), dev_ctx, &slice); + if (dx_tensor.dims()[0] > height) { auto rest_tensor = dx_tensor.Slice( - static_cast(height), static_cast(dout_tensor.dims()[0])); + static_cast(height), static_cast(dx_tensor.dims()[0])); math::set_constant(dev_ctx, &rest_tensor, 0.0f); } } + dx_tensor.set_lod(x_tensor.lod()); } }; @@ -129,6 +149,7 @@ class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase { PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X"))); context->SetOutputDim(framework::GradVarName("X"), context->GetInputDim("X")); + context->ShareLoD("X", framework::GradVarName("X")); } }; @@ -137,14 +158,14 @@ class ShrinkRNNGradOpMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *op = new framework::OpDesc(); op->SetType("shrink_rnn_memory_grad"); op->SetInput("X", Input("X")); op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), InputGrad("X")); op->SetAttrMap(Attrs()); - return std::unique_ptr(op); + return std::unique_ptr(op); } }; diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc index 782f4c7936..c526a88a12 100644 --- a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/sigmoid_cross_entropy_with_logits_op.h" @@ -86,8 +86,8 @@ class SigmoidCrossEntropyWithLogitsGradOp class SigmoidCrossEntropyWithLogitsOpMaker : public framework::OpProtoAndCheckerMaker { public: - SigmoidCrossEntropyWithLogitsOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SigmoidCrossEntropyWithLogitsOpMaker(OpProto* proto, + OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor, default Tensor), a 2-D tensor with shape N x D, " @@ -142,7 +142,7 @@ REGISTER_OP(sigmoid_cross_entropy_with_logits, ops::SigmoidCrossEntropyWithLogitsGradOp); REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits, ops::SigmoidCrossEntropyWithLogitsKernel< - paddle::platform::CPUPlace, float>); + paddle::platform::CPUDeviceContext, float>); REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits_grad, ops::SigmoidCrossEntropyWithLogitsGradKernel< - paddle::platform::CPUPlace, float>); + paddle::platform::CPUDeviceContext, float>); diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu index 32a39956a1..3f393265f4 100644 --- a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu @@ -1,24 +1,24 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/sigmoid_cross_entropy_with_logits_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(sigmoid_cross_entropy_with_logits, - ops::SigmoidCrossEntropyWithLogitsKernel< - paddle::platform::GPUPlace, float>); -REGISTER_OP_GPU_KERNEL(sigmoid_cross_entropy_with_logits_grad, - ops::SigmoidCrossEntropyWithLogitsGradKernel< - paddle::platform::GPUPlace, float>); +REGISTER_OP_CUDA_KERNEL(sigmoid_cross_entropy_with_logits, + ops::SigmoidCrossEntropyWithLogitsKernel< + paddle::platform::CUDADeviceContext, float>); +REGISTER_OP_CUDA_KERNEL(sigmoid_cross_entropy_with_logits_grad, + ops::SigmoidCrossEntropyWithLogitsGradKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.h b/paddle/operators/sigmoid_cross_entropy_with_logits_op.h index 2a9d9bbc77..b78bcc436e 100644 --- a/paddle/operators/sigmoid_cross_entropy_with_logits_op.h +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" @@ -20,7 +20,7 @@ namespace paddle { namespace operators { // Out = max(X, 0) - X * Labels + log(1 + exp(-abs(X))) -template +template class SigmoidCrossEntropyWithLogitsKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -32,7 +32,7 @@ class SigmoidCrossEntropyWithLogitsKernel : public framework::OpKernel { auto x = framework::EigenVector::Flatten(*X); auto labels = framework::EigenVector::Flatten(*Labels); auto out = framework::EigenVector::Flatten(*Out); - auto place = context.GetEigenDevice(); + auto &place = *context.device_context().eigen_device(); // term1 = max(x, 0) auto term1 = x.cwiseMax(static_cast(0)); @@ -46,7 +46,7 @@ class SigmoidCrossEntropyWithLogitsKernel : public framework::OpKernel { }; // dX = sigmoid(X) - labels -template +template class SigmoidCrossEntropyWithLogitsGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -62,7 +62,8 @@ class SigmoidCrossEntropyWithLogitsGradKernel : public framework::OpKernel { auto labels = framework::EigenVector::Flatten(*Labels); auto dout = framework::EigenVector::Flatten(*dOut); auto dx = framework::EigenVector::Flatten(*dX); - auto place = context.GetEigenDevice(); + auto &place = + *context.template device_context().eigen_device(); auto sigmoid_x = static_cast(1) / (static_cast(1) + (-x).exp()); dx.device(place) = dout * (sigmoid_x - labels); diff --git a/paddle/operators/sign_op.cc b/paddle/operators/sign_op.cc index 08bf2e4e7c..f63eaa4464 100644 --- a/paddle/operators/sign_op.cc +++ b/paddle/operators/sign_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/sign_op.h" @@ -34,7 +34,7 @@ class SignOp : public framework::OperatorWithKernel { template class SignOpMaker : public framework::OpProtoAndCheckerMaker { public: - SignOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SignOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input tensor of sign operator."); AddOutput("Out", "(Tensor) Output tensor of sign operator."); @@ -50,13 +50,13 @@ class SignGradMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("scale"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttr("scale", 0.0f); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -67,5 +67,5 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(sign, ops::SignOp, ops::SignOpMaker, ops::SignGradMaker); -REGISTER_OP_CPU_KERNEL(sign, - ops::SignKernel); +REGISTER_OP_CPU_KERNEL( + sign, ops::SignKernel); diff --git a/paddle/operators/sign_op.cu b/paddle/operators/sign_op.cu index 4d0638cb97..f224880cff 100644 --- a/paddle/operators/sign_op.cu +++ b/paddle/operators/sign_op.cu @@ -1,18 +1,19 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/sign_op.h" -REGISTER_OP_GPU_KERNEL( - sign, paddle::operators::SignKernel); +REGISTER_OP_CUDA_KERNEL( + sign, + paddle::operators::SignKernel); diff --git a/paddle/operators/sign_op.h b/paddle/operators/sign_op.h index ab5cd4bac0..9fe49ae1a2 100644 --- a/paddle/operators/sign_op.h +++ b/paddle/operators/sign_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -19,7 +19,7 @@ namespace paddle { namespace operators { -template +template class SignKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& context) const { @@ -29,7 +29,8 @@ class SignKernel : public framework::OpKernel { auto eigen_out = framework::EigenVector::Flatten(*out); auto eigen_in = framework::EigenVector::Flatten(*in); - auto& place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); eigen_out.device(place) = eigen_in.sign(); } }; diff --git a/paddle/operators/smooth_l1_loss_op.cc b/paddle/operators/smooth_l1_loss_op.cc index 50543fcc14..dcb18d729d 100644 --- a/paddle/operators/smooth_l1_loss_op.cc +++ b/paddle/operators/smooth_l1_loss_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/smooth_l1_loss_op.h" @@ -47,8 +47,7 @@ class SmoothL1LossOp : public framework::OperatorWithKernel { template class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker { public: - SmoothL1LossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SmoothL1LossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor, default Tensor) A tensor with rank at least 2. " @@ -138,7 +137,8 @@ REGISTER_OP(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker, smooth_l1_loss_grad, ops::SmoothL1LossGradOp); REGISTER_OP_CPU_KERNEL( - smooth_l1_loss, ops::SmoothL1LossKernel); + smooth_l1_loss, + ops::SmoothL1LossKernel); REGISTER_OP_CPU_KERNEL( smooth_l1_loss_grad, - ops::SmoothL1LossGradKernel); + ops::SmoothL1LossGradKernel); diff --git a/paddle/operators/smooth_l1_loss_op.cu b/paddle/operators/smooth_l1_loss_op.cu index 1c3172f438..213429bc37 100644 --- a/paddle/operators/smooth_l1_loss_op.cu +++ b/paddle/operators/smooth_l1_loss_op.cu @@ -1,24 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/smooth_l1_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - smooth_l1_loss, ops::SmoothL1LossKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + smooth_l1_loss, + ops::SmoothL1LossKernel); +REGISTER_OP_CUDA_KERNEL( smooth_l1_loss_grad, - ops::SmoothL1LossGradKernel); + ops::SmoothL1LossGradKernel); diff --git a/paddle/operators/smooth_l1_loss_op.h b/paddle/operators/smooth_l1_loss_op.h index 39d0070b6c..3facfae116 100644 --- a/paddle/operators/smooth_l1_loss_op.h +++ b/paddle/operators/smooth_l1_loss_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" @@ -44,7 +44,7 @@ struct SmoothL1LossForward { T sigma2; }; -template +template class SmoothL1LossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -57,7 +57,8 @@ class SmoothL1LossKernel : public framework::OpKernel { out0->mutable_data(context.GetPlace()); out1->mutable_data(context.GetPlace()); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); auto sigma = static_cast(context.Attr("sigma")); T sigma2 = sigma * sigma; @@ -67,12 +68,12 @@ class SmoothL1LossKernel : public framework::OpKernel { auto y = EigenVector::Flatten(*in1); auto diff = EigenVector::Flatten(*out0); - diff.device(place) = x - y; + diff.device(*place) = x - y; // multiply inside weight if (has_weight) { auto inside_weight = EigenVector::Flatten(*in2); // cache diff, reused in bp - diff.device(place) = diff * inside_weight; + diff.device(*place) = diff * inside_weight; } auto in_counts = in0->numel(); @@ -81,12 +82,12 @@ class SmoothL1LossKernel : public framework::OpKernel { context.GetPlace()); auto errors = EigenVector::Flatten(ptensor_errors); // apply smooth l1 forward - errors.device(place) = diff.unaryExpr(SmoothL1LossForward(sigma2)); + errors.device(*place) = diff.unaryExpr(SmoothL1LossForward(sigma2)); // multiply outside weight if (has_weight) { auto outside_weight = EigenVector::Flatten(*in3); - errors.device(place) = errors * outside_weight; + errors.device(*place) = errors * outside_weight; } auto loss = EigenVector::Flatten(*out1); // first dimension of 'X' is the number of samples @@ -94,7 +95,7 @@ class SmoothL1LossKernel : public framework::OpKernel { framework::make_ddim({static_cast(in0->dims()[0]), static_cast(in_counts / in0->dims()[0])}); auto errors_mat_view = EigenMatrix::From(ptensor_errors, mat_dims); - loss.device(place) = errors_mat_view.sum(Eigen::array({{1}})); + loss.device(*place) = errors_mat_view.sum(Eigen::array({{1}})); } }; @@ -114,7 +115,7 @@ struct SmoothL1LossBackward { T sigma2; }; -template +template class SmoothL1LossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -126,7 +127,8 @@ class SmoothL1LossGradKernel : public framework::OpKernel { T sigma2 = sigma * sigma; bool has_weight = (in0 != nullptr) && (in1 != nullptr); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); auto in_dims = in2->dims(); auto counts = in2->numel(); @@ -139,7 +141,7 @@ class SmoothL1LossGradKernel : public framework::OpKernel { context.GetPlace()); auto diff = EigenVector::Flatten(ptensor_diff); // apply smooth l1 backwoard - diff.device(place) = EigenVector::Flatten(*in2).unaryExpr( + diff.device(*place) = EigenVector::Flatten(*in2).unaryExpr( SmoothL1LossBackward(sigma2)); // compute weights @@ -147,11 +149,11 @@ class SmoothL1LossGradKernel : public framework::OpKernel { ptensor_weights.mutable_data(mat_dims, context.GetPlace()); auto weights = EigenMatrix::From(ptensor_weights); // initialize to 1.0 - weights.device(place) = weights.constant(static_cast(1.0)); + weights.device(*place) = weights.constant(static_cast(1.0)); if (has_weight) { auto inside_weight = EigenMatrix::From(*in0, mat_dims); auto outside_weight = EigenMatrix::From(*in1, mat_dims); - weights.device(place) = inside_weight * outside_weight; + weights.device(*place) = inside_weight * outside_weight; } // compute gradients @@ -167,13 +169,13 @@ class SmoothL1LossGradKernel : public framework::OpKernel { if (out0) { out0->mutable_data(context.GetPlace()); auto x_grad = EigenMatrix::From(*out0, mat_dims); - x_grad.device(place) = gradients; + x_grad.device(*place) = gradients; } if (out1) { out1->mutable_data(context.GetPlace()); auto y_grad = EigenMatrix::From(*out1, mat_dims); - y_grad.device(place) = -1 * gradients; + y_grad.device(*place) = -1 * gradients; } } }; diff --git a/paddle/operators/softmax_op.cc b/paddle/operators/softmax_op.cc index 93e0525bad..cef1f1fc99 100644 --- a/paddle/operators/softmax_op.cc +++ b/paddle/operators/softmax_op.cc @@ -24,25 +24,25 @@ class SoftmaxOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of SoftmaxOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Y"), - "Output(Y) of SoftmaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SoftmaxOp should not be null."); auto x_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE(x_dims.size() == 2UL, "The input of softmax op must be a matrix."); - ctx->SetOutputDim("Y", x_dims); + ctx->SetOutputDim("Out", x_dims); + ctx->ShareLoD("X", /*->*/ "Out"); } }; class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftmaxOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of softmax. " "2-D with shape [batch_size, input_feature_dimensions]."); - AddOutput("Y", "The normalized values with the same shape as X."); + AddOutput("Out", "The normalized values with the same shape as X."); AddComment(R"DOC( Softmax Operator. @@ -60,7 +60,7 @@ exponential values of all the other dimensions is the output of the softmax operator. For each row $i$ and each column $j$ in Input(X), we have: - $$Y[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$ + $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$ )DOC"); } @@ -71,12 +71,12 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should be not null."); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), - "Input(Y@GRAD) should be not null."); - PADDLE_ENFORCE_EQ(ctx->GetInputDim("Y"), - ctx->GetInputDim(framework::GradVarName("Y")), - "Input(Y) and its gradients should have a same shape."); + PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should be not null."); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"), + ctx->GetInputDim(framework::GradVarName("Out")), + "Input(Out) and its gradients should have a same shape."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } @@ -89,7 +89,8 @@ namespace ops = paddle::operators; REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad, ops::SoftmaxOpGrad); -REGISTER_OP_CPU_KERNEL(softmax, - ops::SoftmaxKernel); REGISTER_OP_CPU_KERNEL( - softmax_grad, ops::SoftmaxGradKernel); + softmax, ops::SoftmaxKernel); +REGISTER_OP_CPU_KERNEL( + softmax_grad, + ops::SoftmaxGradKernel); diff --git a/paddle/operators/softmax_op.cu.cc b/paddle/operators/softmax_op.cu.cc index 013ace19ae..e7da40f3e8 100644 --- a/paddle/operators/softmax_op.cu.cc +++ b/paddle/operators/softmax_op.cu.cc @@ -1,22 +1,23 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/softmax_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(softmax, - ops::SoftmaxKernel); -REGISTER_OP_GPU_KERNEL( - softmax_grad, ops::SoftmaxGradKernel); +REGISTER_OP_CUDA_KERNEL( + softmax, ops::SoftmaxKernel); +REGISTER_OP_CUDA_KERNEL( + softmax_grad, + ops::SoftmaxGradKernel); diff --git a/paddle/operators/softmax_op.h b/paddle/operators/softmax_op.h index 44d1e63f1b..63e379a3b3 100644 --- a/paddle/operators/softmax_op.h +++ b/paddle/operators/softmax_op.h @@ -21,32 +21,34 @@ namespace operators { using Tensor = framework::Tensor; -template +template class SoftmaxKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* X = context.Input("X"); - auto* Y = context.Output("Y"); + auto* Out = context.Output("Out"); // allocate memory on device. - Y->mutable_data(context.GetPlace()); + Out->mutable_data(context.GetPlace()); - math::SoftmaxFunctor()(context.device_context(), X, Y); + math::SoftmaxFunctor()( + context.template device_context(), X, Out); } }; -template +template class SoftmaxGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* Y = context.Input("Y"); - auto* dY = context.Input(framework::GradVarName("Y")); + auto* Out = context.Input("Out"); + auto* dOut = context.Input(framework::GradVarName("Out")); auto* dX = context.Output(framework::GradVarName("X")); // allocate memory on device. dX->mutable_data(context.GetPlace()); - math::SoftmaxGradFunctor()(context.device_context(), Y, dY, dX); + math::SoftmaxGradFunctor()( + context.template device_context(), Out, dOut, dX); } }; diff --git a/paddle/operators/softmax_with_cross_entropy_op.cc b/paddle/operators/softmax_with_cross_entropy_op.cc index 0c30228863..7135780c92 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/operators/softmax_with_cross_entropy_op.cc @@ -1,10 +1,10 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, @@ -20,8 +20,7 @@ namespace operators { class SoftmaxWithCrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SoftmaxWithCrossEntropyOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Logits", "(Tensor, default: Tensor), The unscaled log probabilities " @@ -119,7 +118,7 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Logits")->type()), @@ -160,7 +159,7 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType( @@ -174,8 +173,8 @@ class SoftmaxGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto* grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto* grad_op = new framework::OpDesc(); grad_op->SetType("softmax_with_cross_entropy_grad"); grad_op->SetInput("Label", Input("Label")); grad_op->SetInput("Softmax", Output("Softmax")); @@ -184,7 +183,7 @@ class SoftmaxGradMaker : public framework::SingleGradOpDescMaker { grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss")); grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/softmax_with_cross_entropy_op.cu b/paddle/operators/softmax_with_cross_entropy_op.cu index b1faddac3f..61583c6161 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cu +++ b/paddle/operators/softmax_with_cross_entropy_op.cu @@ -1,10 +1,10 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, @@ -69,10 +69,10 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel { softmax->mutable_data(context.GetPlace()); loss->mutable_data(context.GetPlace()); - math::SoftmaxFunctor()(context.device_context(), - logits, softmax); - math::CrossEntropyFunctor()( - context.device_context(), loss, softmax, labels, + math::SoftmaxFunctor()( + context.cuda_device_context(), logits, softmax); + math::CrossEntropyFunctor()( + context.cuda_device_context(), loss, softmax, labels, context.Attr("soft_label")); } }; @@ -98,18 +98,18 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { if (context.Attr("soft_label")) { const T* label_data = labels->data(); - SoftCrossEntropyGradientKernel<<< - grid, block, 0, reinterpret_cast( - context.device_context()) - .stream()>>>(logit_grad_data, loss_grad_data, - label_data, batch_size, class_num); + SoftCrossEntropyGradientKernel< + T><<() + .stream()>>>(logit_grad_data, loss_grad_data, label_data, + batch_size, class_num); } else { const int64_t* label_data = labels->data(); - CrossEntropyGrad<<< - grid, block, 0, reinterpret_cast( - context.device_context()) - .stream()>>>(logit_grad_data, loss_grad_data, - label_data, batch_size, class_num); + CrossEntropyGrad< + T><<() + .stream()>>>(logit_grad_data, loss_grad_data, label_data, + batch_size, class_num); } } }; @@ -118,9 +118,9 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(softmax_with_cross_entropy, - ops::SoftmaxWithCrossEntropyCUDAKernel, - ops::SoftmaxWithCrossEntropyCUDAKernel); -REGISTER_OP_GPU_KERNEL(softmax_with_cross_entropy_grad, - ops::SoftmaxWithCrossEntropyGradCUDAKernel, - ops::SoftmaxWithCrossEntropyGradCUDAKernel); +REGISTER_OP_CUDA_KERNEL(softmax_with_cross_entropy, + ops::SoftmaxWithCrossEntropyCUDAKernel, + ops::SoftmaxWithCrossEntropyCUDAKernel); +REGISTER_OP_CUDA_KERNEL(softmax_with_cross_entropy_grad, + ops::SoftmaxWithCrossEntropyGradCUDAKernel, + ops::SoftmaxWithCrossEntropyGradCUDAKernel); diff --git a/paddle/operators/softmax_with_cross_entropy_op.h b/paddle/operators/softmax_with_cross_entropy_op.h index c4ab3f74b4..6bde0f37e0 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.h +++ b/paddle/operators/softmax_with_cross_entropy_op.h @@ -1,10 +1,10 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, @@ -40,11 +40,12 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel { softmax->mutable_data(context.GetPlace()); loss->mutable_data(context.GetPlace()); - math::SoftmaxFunctor()(context.device_context(), - logits, softmax); - math::CrossEntropyFunctor()( - context.device_context(), loss, softmax, labels, - context.Attr("soft_label")); + auto& dev_ctx = + context.template device_context(); + math::SoftmaxFunctor()(dev_ctx, logits, + softmax); + math::CrossEntropyFunctor()( + dev_ctx, loss, softmax, labels, context.Attr("soft_label")); } }; @@ -62,14 +63,15 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel { const int class_num = logit_grad->dims()[1]; auto out_grad_mat = EigenMatrix::From(*out_grad); auto logit_grad_mat = EigenMatrix::From(*logit_grad); - + auto& place = *context.template device_context() + .eigen_device(); if (context.Attr("soft_label")) { auto lbl_mat = EigenMatrix::From(*labels); - logit_grad_mat.device(context.GetEigenDevice()) = + logit_grad_mat.device(place) = out_grad_mat.broadcast(Eigen::DSizes(1, class_num)) * (logit_grad_mat - lbl_mat); } else { - logit_grad_mat.device(context.GetEigenDevice()) = + logit_grad_mat.device(place) = logit_grad_mat * out_grad_mat.broadcast(Eigen::DSizes(1, class_num)); diff --git a/paddle/operators/split_lod_tensor_op.cc b/paddle/operators/split_lod_tensor_op.cc index f164a47711..bd93c49201 100644 --- a/paddle/operators/split_lod_tensor_op.cc +++ b/paddle/operators/split_lod_tensor_op.cc @@ -14,6 +14,7 @@ limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/memory/memcpy.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace operators { @@ -33,7 +34,7 @@ class SplitLoDTensorOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { auto &x = scope.FindVar(Input("X"))->Get(); auto &mask = scope.FindVar(Input("Mask"))->Get(); auto *out_true = @@ -44,12 +45,15 @@ class SplitLoDTensorOp : public framework::OperatorBase { auto &x_lod = x.lod(); auto &mask_dim = mask.dims(); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); + std::unique_ptr cpu_mask{new framework::LoDTensor()}; if (platform::is_cpu_place(mask.place())) { cpu_mask->ShareDataWith(mask); } else if (platform::is_gpu_place(mask.place())) { #ifdef PADDLE_WITH_CUDA - framework::CopyFrom(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get()); + framework::Copy(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get()); #else PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option"); #endif @@ -107,9 +111,9 @@ class SplitLoDTensorOp : public framework::OperatorBase { // out[offset: offset+len] = x[each_range.begin: each_range.end] auto slice = out->Slice(static_cast(offset), static_cast(offset + len)); - framework::CopyFrom(x.Slice(static_cast(each_range.begin), - static_cast(each_range.end)), - x.place(), dev_ctx, &slice); + framework::Copy(x.Slice(static_cast(each_range.begin), + static_cast(each_range.end)), + x.place(), dev_ctx, &slice); offset += len; } } @@ -118,8 +122,7 @@ class SplitLoDTensorOp : public framework::OperatorBase { class SplitLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - SplitLoDTensorOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + SplitLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input LoDTensor"); AddInput("Mask", "A bool column vector which mask the input"); @@ -164,8 +167,8 @@ class SplitLoDTensorArrayGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("merge_lod_tensor"); grad_op->SetInput("InTrue", OutputGrad("OutTrue")); grad_op->SetInput("InFalse", OutputGrad("OutFalse")); @@ -173,7 +176,7 @@ class SplitLoDTensorArrayGradMaker : public framework::SingleGradOpDescMaker { grad_op->SetInput("X", Input("X")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/split_op.cc b/paddle/operators/split_op.cc index 275b25e96a..8d55ae5dd7 100644 --- a/paddle/operators/split_op.cc +++ b/paddle/operators/split_op.cc @@ -60,12 +60,18 @@ class SplitOp : public framework::OperatorWithKernel { } } ctx->SetOutputsDim("Out", outs_dims); + if (axis != 0) { + // Only pass LoD when not spliting along the first dim. + for (size_t i = 0; i < outs_number; ++i) { + ctx->ShareLoD("X", "Out", 0, i); + } + } } }; class SplitOpMaker : public framework::OpProtoAndCheckerMaker { public: - SplitOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SplitOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input tensor of the split operator."); AddOutput("Out", "(Tensor) Output tensors of the split operator.") @@ -108,13 +114,13 @@ class SplitGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto op = new framework::OpDesc(); op->SetType("concat"); op->SetInput("X", OutputGrad("Out")); op->SetOutput("Out", InputGrad("X")); op->SetAttrMap(Attrs()); - return std::unique_ptr(op); + return std::unique_ptr(op); } }; diff --git a/paddle/operators/split_op.cu.cc b/paddle/operators/split_op.cu.cc index 93d1fc3c44..dbad0bbf68 100644 --- a/paddle/operators/split_op.cu.cc +++ b/paddle/operators/split_op.cu.cc @@ -14,5 +14,5 @@ limitations under the License. */ #include "paddle/operators/split_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(split, - ops::SplitOpKernel); +REGISTER_OP_CUDA_KERNEL( + split, ops::SplitOpKernel); diff --git a/paddle/operators/split_op.h b/paddle/operators/split_op.h index fa26e5f677..a38c435d53 100644 --- a/paddle/operators/split_op.h +++ b/paddle/operators/split_op.h @@ -21,7 +21,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class SplitOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/split_selected_rows_op.cc b/paddle/operators/split_selected_rows_op.cc new file mode 100644 index 0000000000..d9a023987b --- /dev/null +++ b/paddle/operators/split_selected_rows_op.cc @@ -0,0 +1,114 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/split_selected_rows_op.h" + +namespace paddle { +namespace operators { + +class SplitSelectedRowsOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SplitSelectedRowsOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input SelectedRows."); + AddOutput("Out", "The outputs of input SelectedRows.").AsDuplicable(); + AddAttr>("rows_sections", "Rows section for output.") + .SetDefault(std::vector({})); + AddAttr>("height_sections", + "Height for each output SelectedRows.") + .SetDefault(std::vector({})); + + AddComment(R"DOC( +Split a SelectedRows with a specified rows section. +height_sections is only needed when need to split the dims of the original tensor. + +Example: + Input: + X.rows = {0, 7, 5} + X.height = 12 + Attr: + rows_sections = {1, 2} + height_sections = {} + Out: + out0.rows = {0} + out0.height = 12 + out1.rows = {7, 5} + out2.height = 12 + +)DOC"); + } +}; + +class SplitSelectedRowsOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "SplitSelectedRowsOp must has input X."); + PADDLE_ENFORCE(ctx->HasOutputs("Out"), + "SplitSelectedRowsOp must has output Out."); + + std::vector height_sections = + ctx->Attrs().Get>("height_sections"); + std::vector rows_sections = + ctx->Attrs().Get>("rows_sections"); + PADDLE_ENFORCE_EQ( + rows_sections.size(), ctx->Outputs("Out").size(), + "The size of rows section should be the same with Outputs size."); + int64_t n = ctx->Outputs("Out").size(); + + std::vector outs_dims; + outs_dims.reserve(n); + + // make output dims + for (int64_t i = 0; i < n; ++i) { + auto dims = ctx->GetInputDim("X"); + if (height_sections.size()) { + PADDLE_ENFORCE_EQ( + height_sections.size(), static_cast(n), + "The size of height section should be the same with height" + " section size."); + dims[0] = height_sections[i]; + } + outs_dims.push_back(dims); + } + ctx->SetOutputsDim("Out", outs_dims); + } +}; + +class SplitSelectedRowsGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); + grad_op->SetType("sum"); + grad_op->SetInput("X", OutputGrad("Out")); + grad_op->SetOutput("Out", InputGrad("X")); + grad_op->SetAttrMap(Attrs()); + return std::unique_ptr(grad_op); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(split_selected_rows, ops::SplitSelectedRowsOp, + ops::SplitSelectedRowsOpMaker, + ops::SplitSelectedRowsGradMaker); +REGISTER_OP_CPU_KERNEL( + split_selected_rows, + ops::SplitSelectedRowsOpKernel); diff --git a/paddle/operators/split_selected_rows_op.cu b/paddle/operators/split_selected_rows_op.cu new file mode 100644 index 0000000000..983285480f --- /dev/null +++ b/paddle/operators/split_selected_rows_op.cu @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/split_selected_rows_op.h" +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + split_selected_rows, + ops::SplitSelectedRowsOpKernel); diff --git a/paddle/operators/split_selected_rows_op.h b/paddle/operators/split_selected_rows_op.h new file mode 100644 index 0000000000..1cae53f1af --- /dev/null +++ b/paddle/operators/split_selected_rows_op.h @@ -0,0 +1,58 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class SplitSelectedRowsOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* x = ctx.Input("X"); + auto outs = ctx.MultiOutput("Out"); + + auto rows_sections = ctx.Attr>("rows_sections"); + auto height_sections = ctx.Attr>("height_sections"); + + int64_t n = outs.size(); + int offset = 0; + + for (int64_t i = 0; i < n; ++i) { + framework::Vector out_rows; + for (int64_t j = 0; j < rows_sections[i]; ++j) { + out_rows.push_back(x->rows()[offset + j]); + } + + auto& out = outs[i]; + auto x_dims = x->GetCompleteDims(); + x_dims[0] = rows_sections[i]; + out->mutable_value()->mutable_data(x_dims, ctx.GetPlace()); + framework::Copy(x->value().Slice(offset, rows_sections[i] + offset), + x->place(), ctx.device_context(), out->mutable_value()); + outs[i]->set_rows(out_rows); + if (height_sections.size()) { + outs[i]->set_height(height_sections[i]); + } + offset += rows_sections[i]; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/spp_op.cc b/paddle/operators/spp_op.cc new file mode 100644 index 0000000000..c0aa87b0f0 --- /dev/null +++ b/paddle/operators/spp_op.cc @@ -0,0 +1,99 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/spp_op.h" +namespace paddle { +namespace operators { + +class SppOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SppOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "X", + "(Tensor) The input tensor of spp operator. " + "The format of input tensor is NCHW. Where N is batch size, C is the " + "number of channels, H and W is the height and width of feature."); + AddOutput("Out", + "(Tensor) The output tensor of spp operator." + "N * M." + "M = C * H * W"); + AddAttr("pyramid_height", "(int), multi level pooling"); + AddAttr( + "pooling_type", + "(string), pooling type, can be \"max\" for max-pooling " + "and \"avg\" for average-pooling.") + .InEnum({"max", "avg"}); + AddComment(R"DOC( + "With spatial pyramid pooling, the input image can + be of any sizes. This not only allows arbitrary aspect + ratios, but also allows arbitrary scales. We can resize + the input image to any scale (e.g., min(w, h)=180, 224, + ...) and apply the same deep network. When the + input image is at different scales, the network (with + the same filter sizes) will extract features at different + scales. The scales play important roles in traditional + methods. + Input shape: $(N, C_{in}, H_{in}, W_{in})$ + Output shape: $(H_{out}, W_{out})$ + Where + $$ + H_{out} = N \\ + W_{out} = (((4^pyramid_height) - 1) / (4 - 1))$ * C_{in} + $$ + paper https://arxiv.org/pdf/1406.4729v4.pdf + )DOC"); + } +}; + +class SppOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SppOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SppOp should not be null."); + auto in_x_dims = ctx->GetInputDim("X"); + int pyramid_height = ctx->Attrs().Get("pyramid_height"); + PADDLE_ENFORCE(in_x_dims.size() == 4, + "Spping intput must be of 4-dimensional."); + int outlen = ((std::pow(4, pyramid_height) - 1) / (4 - 1)) * in_x_dims[1]; + std::vector output_shape({in_x_dims[0], outlen}); + ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); + } +}; + +class SppOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Input(X@GRAD) should not be null."); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(spp, ops::SppOp, ops::SppOpMaker, spp_grad, ops::SppOpGrad); +REGISTER_OP_CPU_KERNEL( + spp, ops::SppKernel, + ops::SppKernel); +REGISTER_OP_CPU_KERNEL( + spp_grad, ops::SppGradKernel, + ops::SppGradKernel); diff --git a/paddle/operators/spp_op.cu.cc b/paddle/operators/spp_op.cu.cc new file mode 100644 index 0000000000..761e4d6c4a --- /dev/null +++ b/paddle/operators/spp_op.cu.cc @@ -0,0 +1,23 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/spp_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + spp, ops::SppKernel, + ops::SppKernel); +REGISTER_OP_CUDA_KERNEL( + spp_grad, ops::SppGradKernel, + ops::SppGradKernel); diff --git a/paddle/operators/spp_op.h b/paddle/operators/spp_op.h new file mode 100644 index 0000000000..f35b305d02 --- /dev/null +++ b/paddle/operators/spp_op.h @@ -0,0 +1,161 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/pooling.h" +#include "paddle/operators/strided_memcpy.h" + +namespace paddle { +namespace operators { +template +class SppKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_x = context.Input("X"); + auto* out = context.Output("Out"); + int pyramid_height = context.template Attr("pyramid_height"); + std::string pooling_type = + context.template Attr("pooling_type"); + out->mutable_data(context.GetPlace()); + auto out_stride = framework::stride(out->dims()); + int input_h = in_x->dims()[2]; + int input_w = in_x->dims()[3]; + size_t output_offset = 0; + for (int p = 0; p < pyramid_height; ++p) { + int bins = std::pow(2, p); + int kernel_size_h = std::ceil(input_h / static_cast(bins)); + int kernel_size_w = std::ceil(input_w / static_cast(bins)); + int padding_h = (kernel_size_h * bins - input_h + 1) / 2; + int padding_w = (kernel_size_w * bins - input_w + 1) / 2; + std::vector kernel_size({kernel_size_h, kernel_size_w}); + std::vector strides({kernel_size_h, kernel_size_w}); + std::vector paddings({padding_h, padding_w}); + // pooling output shape + framework::Tensor out_level; + std::vector output_shape_vec( + {in_x->dims()[0], in_x->dims()[1], bins, bins}); + framework::DDim output_shape(framework::make_ddim(output_shape_vec)); + out_level.mutable_data(output_shape, context.GetPlace()); + // pooling + if (pooling_type == "max") { + math::Pool2dFunctor, T> pool_forward; + math::MaxPool max_process; + pool_forward(context.template device_context(), *in_x, + kernel_size, strides, paddings, max_process, &out_level); + } else if (pooling_type == "avg") { + math::Pool2dFunctor, T> pool_forward; + math::AvgPool avg_process; + pool_forward(context.template device_context(), *in_x, + kernel_size, strides, paddings, avg_process, &out_level); + } + // flatten pooling output shape + int output_flatten_w = in_x->dims()[1] * bins * bins; + std::vector output_flatten_shape_vec( + {in_x->dims()[0], output_flatten_w}); + framework::DDim output_flatten_shape( + framework::make_ddim(output_flatten_shape_vec)); + out_level.Resize(output_flatten_shape); + // concat + auto out_level_stride = framework::stride(out_level.dims()); + StridedMemcpy(context.template device_context(), + out_level.data(), out_level_stride, out_level.dims(), + out_stride, out->data() + output_offset); + output_offset += out_level.dims()[1] * out_level_stride[1]; + } + } +}; +template +class SppGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_x = context.Input("X"); + const framework::Tensor* out = context.Input("Out"); + const framework::Tensor* out_grad = + context.Input(framework::GradVarName("Out")); + framework::Tensor* in_x_grad = + context.Output(framework::GradVarName("X")); + int pyramid_height = context.template Attr("pyramid_height"); + std::string pooling_type = + context.template Attr("pooling_type"); + auto& device_ctx = context.template device_context(); + math::SetConstant zero; + in_x_grad->mutable_data(context.GetPlace()); + zero(device_ctx, in_x_grad, static_cast(0)); + auto out_stride = framework::stride(out->dims()); + int input_h = in_x->dims()[2]; + int input_w = in_x->dims()[3]; + size_t out_offset = 0; + for (int p = 0; p < pyramid_height; ++p) { + int bins = std::pow(2, p); + int kernel_size_h = std::ceil(input_h / static_cast(bins)); + int kernel_size_w = std::ceil(input_w / static_cast(bins)); + int padding_h = (kernel_size_h * bins - input_h + 1) / 2; + int padding_w = (kernel_size_w * bins - input_w + 1) / 2; + std::vector kernel_size({kernel_size_h, kernel_size_w}); + std::vector strides({kernel_size_h, kernel_size_w}); + std::vector paddings({padding_h, padding_w}); + // split out and outgrad ... to flatten + framework::Tensor out_level; + framework::Tensor outgrad_level; + int out_flatten_w = in_x->dims()[1] * bins * bins; + std::vector out_flatten_shape_vec( + {in_x->dims()[0], out_flatten_w}); + framework::DDim out_flatten_shape( + framework::make_ddim(out_flatten_shape_vec)); + out_level.mutable_data(out_flatten_shape, context.GetPlace()); + outgrad_level.mutable_data(out_flatten_shape, context.GetPlace()); + auto flatten_stride = framework::stride(out_level.dims()); + // memcpy + StridedMemcpy(context.template device_context(), + out->data() + out_offset, out_stride, + out_level.dims(), flatten_stride, out_level.data()); + + StridedMemcpy(context.template device_context(), + out_grad->data() + out_offset, out_stride, + outgrad_level.dims(), flatten_stride, + outgrad_level.data()); + out_offset += out_level.dims()[1] * out_stride[1]; + // flatten backward to nchw + + std::vector out_shape_vec({in_x->dims()[0], in_x->dims()[1]}); + out_shape_vec.push_back( + (input_h - kernel_size_h + 2 * padding_h) / kernel_size_h + 1); + out_shape_vec.push_back( + (input_w - kernel_size_w + 2 * padding_w) / kernel_size_w + 1); + framework::DDim out_shape(framework::make_ddim(out_shape_vec)); + out_level.ShareDataWith(out_level); + out_level.Resize(out_shape); + outgrad_level.ShareDataWith(outgrad_level); + outgrad_level.Resize(out_shape); + // pooling backward + if (pooling_type == "max") { + math::MaxPool2dGradFunctor pool2d_backward; + pool2d_backward(context.template device_context(), *in_x, + *&out_level, *&outgrad_level, kernel_size, strides, + paddings, in_x_grad); + } else if (pooling_type == "avg") { + math::Pool2dGradFunctor, T> + pool_backward; + math::AvgPoolGrad avg_process; + pool_backward(context.template device_context(), *in_x, + *&out_level, *&outgrad_level, kernel_size, strides, + paddings, avg_process, in_x_grad); + } + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/squared_l2_distance_op.cc b/paddle/operators/squared_l2_distance_op.cc index bec2a2c18a..9e097176f3 100644 --- a/paddle/operators/squared_l2_distance_op.cc +++ b/paddle/operators/squared_l2_distance_op.cc @@ -56,8 +56,7 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel { class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker { public: - SquaredL2DistanceOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SquaredL2DistanceOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input of SquaredL2DistanceOp."); AddInput("Y", "(Tensor) Target of SquaredL2DistanceOp."); @@ -115,7 +114,7 @@ REGISTER_OP(squared_l2_distance, ops::SquaredL2DistanceOp, ops::SquaredL2DistanceGradOp); REGISTER_OP_CPU_KERNEL( squared_l2_distance, - ops::SquaredL2DistanceKernel); -REGISTER_OP_CPU_KERNEL( - squared_l2_distance_grad, - ops::SquaredL2DistanceGradKernel); + ops::SquaredL2DistanceKernel); +REGISTER_OP_CPU_KERNEL(squared_l2_distance_grad, + ops::SquaredL2DistanceGradKernel< + paddle::platform::CPUDeviceContext, float>); diff --git a/paddle/operators/squared_l2_distance_op.cu b/paddle/operators/squared_l2_distance_op.cu index 3fe62f1a9c..f2648dde5e 100644 --- a/paddle/operators/squared_l2_distance_op.cu +++ b/paddle/operators/squared_l2_distance_op.cu @@ -1,25 +1,25 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/squared_l2_distance_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( squared_l2_distance, - ops::SquaredL2DistanceKernel); -REGISTER_OP_GPU_KERNEL( - squared_l2_distance_grad, - ops::SquaredL2DistanceGradKernel); + ops::SquaredL2DistanceKernel); +REGISTER_OP_CUDA_KERNEL(squared_l2_distance_grad, + ops::SquaredL2DistanceGradKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/squared_l2_distance_op.h b/paddle/operators/squared_l2_distance_op.h index 259ef40296..5bd5f4819a 100644 --- a/paddle/operators/squared_l2_distance_op.h +++ b/paddle/operators/squared_l2_distance_op.h @@ -27,7 +27,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class SquaredL2DistanceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -51,7 +51,8 @@ class SquaredL2DistanceKernel : public framework::OpKernel { auto sub_result = EigenMatrix::From(*out0); auto z = EigenVector::Flatten(*out1); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto x_dims = x.dimensions(); auto y_dims = y.dimensions(); // buffer the substraction result @@ -67,7 +68,7 @@ class SquaredL2DistanceKernel : public framework::OpKernel { } }; -template +template class SquaredL2DistanceGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -89,7 +90,8 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel { sub_result; // propagate back to input - auto eigen_place = context.GetEigenDevice(); + auto& eigen_place = + *context.template device_context().eigen_device(); if (x_g) { x_g->mutable_data(context.GetPlace()); // eigen matrix diff --git a/paddle/operators/squared_l2_norm_op.cc b/paddle/operators/squared_l2_norm_op.cc index 3c10e6159f..6626bf0375 100644 --- a/paddle/operators/squared_l2_norm_op.cc +++ b/paddle/operators/squared_l2_norm_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/squared_l2_norm_op.h" @@ -48,8 +48,7 @@ class SquaredL2NormGradOp : public framework::OperatorWithKernel { class SquaredL2NormOpMaker : public framework::OpProtoAndCheckerMaker { public: - SquaredL2NormOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SquaredL2NormOpMaker(OpProto* proto, OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of squared_l2_norm op."); AddOutput("Out", "(Scalar) The output of squared_l2_norm op."); @@ -72,7 +71,7 @@ REGISTER_OP(squared_l2_norm, ops::SquaredL2NormOp, ops::SquaredL2NormOpMaker, squared_l2_norm_grad, ops::SquaredL2NormGradOp); REGISTER_OP_CPU_KERNEL( squared_l2_norm, - ops::SquaredL2NormKernel); + ops::SquaredL2NormKernel); REGISTER_OP_CPU_KERNEL( squared_l2_norm_grad, - ops::SquaredL2NormGradKernel); + ops::SquaredL2NormGradKernel); diff --git a/paddle/operators/squared_l2_norm_op.cu b/paddle/operators/squared_l2_norm_op.cu index d384e9c28c..b222113a8c 100644 --- a/paddle/operators/squared_l2_norm_op.cu +++ b/paddle/operators/squared_l2_norm_op.cu @@ -1,24 +1,24 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/operators/squared_l2_norm_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( squared_l2_norm, - ops::SquaredL2NormKernel); -REGISTER_OP_GPU_KERNEL( + ops::SquaredL2NormKernel); +REGISTER_OP_CUDA_KERNEL( squared_l2_norm_grad, - ops::SquaredL2NormGradKernel); + ops::SquaredL2NormGradKernel); diff --git a/paddle/operators/squared_l2_norm_op.h b/paddle/operators/squared_l2_norm_op.h index 48d7b1c2d5..1ce26c775e 100644 --- a/paddle/operators/squared_l2_norm_op.h +++ b/paddle/operators/squared_l2_norm_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" @@ -20,7 +20,7 @@ namespace paddle { namespace operators { // Out = sum(square(X)) -template +template class SquaredL2NormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -30,14 +30,15 @@ class SquaredL2NormKernel : public framework::OpKernel { auto x = framework::EigenVector::Flatten(*X); auto out = framework::EigenScalar::From(*Out); - auto place = context.GetEigenDevice(); + auto *place = + context.template device_context().eigen_device(); - out.device(place) = x.square().sum(); + out.device(*place) = x.square().sum(); } }; // dX = X -template +template class SquaredL2NormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -53,10 +54,11 @@ class SquaredL2NormGradKernel : public framework::OpKernel { auto x = framework::EigenVector::Flatten(*X); auto dout = framework::EigenVector::Flatten(*dOut); auto dx = framework::EigenVector::Flatten(*dX); - auto place = context.GetEigenDevice(); + auto *place = + context.template device_context().eigen_device(); Eigen::DSizes x_dsize(X->numel()); - dx.device(place) = (dout.broadcast(x_dsize) * x) * static_cast(2.0); + dx.device(*place) = (dout.broadcast(x_dsize) * x) * static_cast(2.0); } }; diff --git a/paddle/operators/strided_memcpy.h b/paddle/operators/strided_memcpy.h index c9dd805184..735cabcd97 100644 --- a/paddle/operators/strided_memcpy.h +++ b/paddle/operators/strided_memcpy.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/operators/detail/strided_memcpy.h" diff --git a/paddle/operators/strided_memcpy_test.cc b/paddle/operators/strided_memcpy_test.cc index 68f064eaee..06d8118855 100644 --- a/paddle/operators/strided_memcpy_test.cc +++ b/paddle/operators/strided_memcpy_test.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/strided_memcpy.h" #include "gtest/gtest.h" @@ -82,11 +82,13 @@ TEST(StridedMemcpy, GPUCrop) { }; // clang-format on - platform::GPUPlace gpu0(0); + platform::CUDAPlace gpu0(0); platform::CPUPlace cpu; + platform::CUDADeviceContext ctx(gpu0); + int* gpu_src = reinterpret_cast(memory::Alloc(gpu0, sizeof(src))); - memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src)); + memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src), ctx.stream()); framework::DDim src_stride({5, 1}); @@ -96,7 +98,6 @@ TEST(StridedMemcpy, GPUCrop) { framework::DDim dst_dim({2, 2}); framework::DDim dst_stride({2, 1}); - platform::CUDADeviceContext ctx(gpu0); StridedMemcpy(ctx, gpu_src + 1, src_stride, dst_dim, dst_stride, gpu_dst); @@ -120,11 +121,12 @@ TEST(StridedMemcpy, GPUConcat) { }; // clang-format on - platform::GPUPlace gpu0(0); + platform::CUDAPlace gpu0(0); platform::CPUPlace cpu; + platform::CUDADeviceContext ctx(gpu0); int* gpu_src = reinterpret_cast(memory::Alloc(gpu0, sizeof(src))); - memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src)); + memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src), ctx.stream()); int dst[8]; int* gpu_dst = reinterpret_cast(memory::Alloc(gpu0, sizeof(dst))); @@ -132,7 +134,6 @@ TEST(StridedMemcpy, GPUConcat) { framework::DDim src_stride({2, 1}); framework::DDim dst_dim({2, 2}); framework::DDim dst_stride({4, 1}); - platform::CUDADeviceContext ctx(gpu0); StridedMemcpy(ctx, gpu_src, src_stride, dst_dim, dst_stride, gpu_dst); StridedMemcpy(ctx, gpu_src, src_stride, dst_dim, dst_stride, diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index 744b2fe3f2..88ed67f7ba 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -29,7 +29,7 @@ class SumOp : public framework::OperatorWithKernel { "Output(Out) of SumOp should not be null."); if (ctx->IsRuntime() && ctx->GetOutputsVarType("Out")[0] == - framework::VarDesc::LOD_TENSOR_ARRAY) { + framework::proto::VarDesc::LOD_TENSOR_ARRAY) { return; // skip runtime infershape when is tensor array; } @@ -53,7 +53,7 @@ class SumOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto x_vars = ctx.MultiInputVar("X"); if (x_vars[0]->IsType()) { @@ -72,8 +72,8 @@ class SumOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_NE(dtype, -1, "Sum operator should have at least one tensor"); - return framework::OpKernelType(static_cast(dtype), - ctx.device_context()); + return framework::OpKernelType( + static_cast(dtype), ctx.device_context()); } else if (x_vars[0]->IsType()) { return framework::OpKernelType( framework::ToDataType( @@ -98,7 +98,7 @@ class SumOp : public framework::OperatorWithKernel { class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: - SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + SumOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(vector) The input tensors of sum operator.") .AsDuplicable(); @@ -106,8 +106,8 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( Sum operator. -This operators sums the input tensors. All the inputs can carry the -LoD (Level of Details) information. However, the output only shares +This operators sums the input tensors. All the inputs can carry the +LoD (Level of Details) information. However, the output only shares the LoD information with the first input. )DOC"); } @@ -115,25 +115,25 @@ the LoD information with the first input. class SumOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind& op_desc, - framework::BlockDescBind* block) const override { + void operator()(const framework::OpDesc& op_desc, + framework::BlockDesc* block) const override { auto& inputs = op_desc.Input("X"); - auto var_type = framework::VarDesc::SELECTED_ROWS; + auto var_type = framework::proto::VarDesc::SELECTED_ROWS; for (auto& name : op_desc.Input("X")) { VLOG(10) << name << " " - << block->FindRecursiveOrCreateVar(name)->GetType(); + << block->FindRecursiveOrCreateVar(name).GetType(); } bool any_input_is_lod_tensor = std::any_of( inputs.begin(), inputs.end(), [block](const std::string& name) { - return block->FindRecursiveOrCreateVar(name)->GetType() == - framework::VarDesc::LOD_TENSOR; + return block->FindRecursiveOrCreateVar(name).GetType() == + framework::proto::VarDesc::LOD_TENSOR; }); auto is_tensor_array = [block](const std::string& name) { - return detail::Ref(block->FindRecursiveOrCreateVar(name)).GetType() == - framework::VarDesc::LOD_TENSOR_ARRAY; + return block->FindRecursiveOrCreateVar(name).GetType() == + framework::proto::VarDesc::LOD_TENSOR_ARRAY; }; bool any_input_is_tensor_array = @@ -146,19 +146,18 @@ class SumOpVarTypeInference : public framework::VarTypeInference { std::ostringstream os; for (auto& each : inputs) { os << " " << each << " type is " - << detail::Ref(block->FindRecursiveOrCreateVar(each)).GetType() - << "\n"; + << block->FindRecursiveOrCreateVar(each).GetType() << "\n"; } PADDLE_ENFORCE(all_inputs_are_tensor_array, "Not all inputs are tensor array:\n%s", os.str()); } - var_type = framework::VarDesc::LOD_TENSOR_ARRAY; + var_type = framework::proto::VarDesc::LOD_TENSOR_ARRAY; } else if (any_input_is_lod_tensor) { - var_type = framework::VarDesc::LOD_TENSOR; + var_type = framework::proto::VarDesc::LOD_TENSOR; } auto out_var_name = op_desc.Output("Out").front(); - auto& out_var = detail::Ref(block->FindRecursiveOrCreateVar(out_var_name)); + auto& out_var = block->FindRecursiveOrCreateVar(out_var_name); out_var.SetType(var_type); auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front())); out_var.SetDataType(in_var.GetDataType()); @@ -169,20 +168,19 @@ class SumGradMaker : public framework::GradOpDescMakerBase { public: using framework::GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() - const override { - auto x_grads = InputGrad("X"); - std::vector> grad_ops; + std::vector> operator()() const override { + auto x_grads = InputGrad("X", false); + std::vector> grad_ops; grad_ops.reserve(x_grads.size()); auto og = OutputGrad("Out"); std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops), [&og](const std::string& x_grad) { - auto* grad_op = new framework::OpDescBind(); + auto* grad_op = new framework::OpDesc(); grad_op->SetType("scale"); grad_op->SetInput("X", og); grad_op->SetOutput("Out", {x_grad}); grad_op->SetAttr("scale", 1.0f); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); }); return grad_ops; } @@ -195,7 +193,8 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker, ops::SumOpVarTypeInference); -REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel, - ops::SumKernel, - ops::SumKernel, - ops::SumKernel); +REGISTER_OP_CPU_KERNEL( + sum, ops::SumKernel, + ops::SumKernel, + ops::SumKernel, + ops::SumKernel); diff --git a/paddle/operators/sum_op.cu b/paddle/operators/sum_op.cu index 5c30dd4d47..873155076c 100644 --- a/paddle/operators/sum_op.cu +++ b/paddle/operators/sum_op.cu @@ -13,7 +13,8 @@ limitations under the License. */ #include "paddle/operators/sum_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel, - ops::SumKernel, - ops::SumKernel, - ops::SumKernel); +REGISTER_OP_CUDA_KERNEL( + sum, ops::SumKernel, + ops::SumKernel, + ops::SumKernel, + ops::SumKernel); diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h index ed6c80ce60..48201b344d 100644 --- a/paddle/operators/sum_op.h +++ b/paddle/operators/sum_op.h @@ -26,7 +26,7 @@ template using EigenVector = framework::EigenVector; -template +template class SumKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -37,18 +37,20 @@ class SumKernel : public framework::OpKernel { bool in_place = out_var == in_vars[0]; if (out_var->IsType()) { - auto *out = context.Output("Out"); - out->mutable_data(context.GetPlace()); - + auto *out = context.Output("Out"); + if (!in_place) { + out->mutable_data(context.GetPlace()); + } auto result = EigenVector::Flatten(*out); - if (!in_place) { - math::SetConstant constant_functor; - constant_functor(context.device_context(), out, 0.0); + math::SetConstant constant_functor; + constant_functor(context.template device_context(), out, + 0.0); } - math::SelectedRowsAddToTensor functor; - auto place = context.GetEigenDevice(); + math::SelectedRowsAddToTensor functor; + auto &place = + *context.template device_context().eigen_device(); // If in_place, just skip the first tensor for (int i = in_place ? 1 : 0; i < N; i++) { if (in_vars[i]->IsType()) { @@ -60,7 +62,7 @@ class SumKernel : public framework::OpKernel { result.device(place) = result + in; } else if (in_vars[i]->IsType()) { auto &in_t = in_vars[i]->Get(); - functor(context.device_context(), in_t, out); + functor(context.template device_context(), in_t, out); } else { PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); } @@ -68,6 +70,7 @@ class SumKernel : public framework::OpKernel { } else if (out_var->IsType()) { PADDLE_ENFORCE(!in_place, "SelectedRows not support inplace sum now"); auto *out = context.Output("Out"); + out->mutable_rows()->clear(); auto *out_value = out->mutable_value(); // Runtime InferShape @@ -82,14 +85,14 @@ class SumKernel : public framework::OpKernel { out_value->Resize(framework::make_ddim(in_dim_vec)); out_value->mutable_data(context.GetPlace()); - math::SelectedRowsAddTo functor; + math::SelectedRowsAddTo functor; int64_t offset = 0; for (int i = 0; i < N; i++) { PADDLE_ENFORCE_EQ(out->height(), in_vars[i]->Get().height()); - functor(context.device_context(), in_vars[i]->Get(), - offset, out); + functor(context.template device_context(), + in_vars[i]->Get(), offset, out); offset += in_vars[i]->Get().value().numel(); } } else if (out_var->IsType()) { @@ -105,14 +108,15 @@ class SumKernel : public framework::OpKernel { out_array.resize(i + 1); } if (out_array[i].numel() == 0) { - framework::CopyFrom(in_array[i], in_array[i].place(), - context.device_context(), &out_array[i]); + framework::Copy(in_array[i], in_array[i].place(), + context.device_context(), &out_array[i]); out_array[i].set_lod(in_array[i].lod()); } else { PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod()); auto in = EigenVector::Flatten(in_array[i]); auto result = EigenVector::Flatten(out_array[i]); - result.device(context.GetEigenDevice()) = result + in; + result.device(*context.template device_context() + .eigen_device()) = result + in; } } } diff --git a/paddle/operators/tensor.save b/paddle/operators/tensor.save deleted file mode 100644 index c24308a7d0..0000000000 Binary files a/paddle/operators/tensor.save and /dev/null differ diff --git a/paddle/operators/tensor_array_read_write_op.cc b/paddle/operators/tensor_array_read_write_op.cc index 2835b84f75..a70be8b875 100644 --- a/paddle/operators/tensor_array_read_write_op.cc +++ b/paddle/operators/tensor_array_read_write_op.cc @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/array_operator.h" #include "paddle/operators/detail/safe_ref.h" namespace paddle { @@ -25,11 +25,11 @@ class WriteToArrayOp : public ArrayOp { : ArrayOp(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto *x = scope.FindVar(Input("X")); if (x == nullptr) return; auto &x_tensor = x->Get(); - size_t offset = GetOffset(scope, dev_ctx); + size_t offset = GetOffset(scope, place); auto *out = scope.FindVar(Output("Out"))->GetMutable(); if (offset >= out->size()) { @@ -39,7 +39,12 @@ class WriteToArrayOp : public ArrayOp { } if (x_tensor.memory_size() > 0) { auto *out_tensor = &out->at(offset); - CopyFrom(x_tensor, dev_ctx.GetPlace(), dev_ctx, out_tensor); + + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + + Copy(x_tensor, place, dev_ctx, out_tensor); out_tensor->set_lod(x_tensor.lod()); } else { VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so " @@ -51,8 +56,7 @@ class WriteToArrayOp : public ArrayOp { class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - WriteToArrayOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + WriteToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) the tensor will be written to tensor array"); AddInput( @@ -97,14 +101,13 @@ class WriteToArrayInferShape : public framework::InferShapeBase { class WriteToArrayInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind &op_desc, - framework::BlockDescBind *block) const override { + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { auto x_name = op_desc.Input("X")[0]; auto out_name = op_desc.Output("Out")[0]; VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY"; - auto &out = detail::Ref(block->FindRecursiveOrCreateVar(out_name), - "Cannot found %s", out_name); - out.SetType(framework::VarDesc::LOD_TENSOR_ARRAY); + auto &out = block->FindRecursiveOrCreateVar(out_name); + out.SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY); auto *x = block->FindVarRecursive(x_name); if (x != nullptr) { out.SetDataType(x->GetDataType()); @@ -120,17 +123,19 @@ class ReadFromArrayOp : public ArrayOp { const framework::AttributeMap &attrs) : ArrayOp(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &place) const override { auto *x = scope.FindVar(Input("X")); PADDLE_ENFORCE(x != nullptr, "X must be set"); auto &x_array = x->Get(); auto *out = scope.FindVar(Output("Out")); PADDLE_ENFORCE(out != nullptr, "Out must be set"); - auto *out_tensor = out->GetMutable(); - size_t offset = GetOffset(scope, dev_ctx); + size_t offset = GetOffset(scope, place); if (offset < x_array.size()) { - framework::CopyFrom(x_array[offset], dev_ctx.GetPlace(), dev_ctx, - out_tensor); + auto *out_tensor = out->GetMutable(); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + framework::Copy(x_array[offset], place, dev_ctx, out_tensor); out_tensor->set_lod(x_array[offset].lod()); } else { VLOG(10) << "offset " << offset << " >= " << x_array.size(); @@ -140,8 +145,7 @@ class ReadFromArrayOp : public ArrayOp { class ReadFromArrayProtoMaker : public framework::OpProtoAndCheckerMaker { public: - ReadFromArrayProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReadFromArrayProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(TensorArray) the array will be read from."); AddInput("I", @@ -177,14 +181,14 @@ class WriteToArrayGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("read_from_array"); grad_op->SetInput("I", Input("I")); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -193,14 +197,14 @@ class ReadFromArrayGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("write_to_array"); grad_op->SetInput("I", Input("I")); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/top_k_op.cc b/paddle/operators/top_k_op.cc index 16ae925eb5..a8ddd72973 100644 --- a/paddle/operators/top_k_op.cc +++ b/paddle/operators/top_k_op.cc @@ -41,12 +41,14 @@ class TopkOp : public framework::OperatorWithKernel { dims[dims.size() - 1] = k; ctx->SetOutputDim("Out", dims); ctx->SetOutputDim("Indices", dims); + ctx->ShareLoD("X", "Out"); + ctx->ShareLoD("X", "Indices"); } }; class TopkOpMaker : public framework::OpProtoAndCheckerMaker { public: - TopkOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + TopkOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of Topk op"); AddOutput("Out", "(Tensor) The output tensor of Topk op"); diff --git a/paddle/operators/top_k_op.cu b/paddle/operators/top_k_op.cu index 7851c71bbe..f7bf58e721 100644 --- a/paddle/operators/top_k_op.cu +++ b/paddle/operators/top_k_op.cu @@ -1,16 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/platform/assert.h" @@ -283,7 +283,7 @@ class TopkOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "It must use CUDAPlace."); auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); auto* indices = ctx.Output("Indices"); @@ -317,4 +317,4 @@ class TopkOpCUDAKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel); diff --git a/paddle/operators/top_k_op.h b/paddle/operators/top_k_op.h index bc8563717a..e9cd9bbd4d 100644 --- a/paddle/operators/top_k_op.h +++ b/paddle/operators/top_k_op.h @@ -27,7 +27,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class TopkKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/transpose_op.cc b/paddle/operators/transpose_op.cc index 94de3d5069..11615d806a 100644 --- a/paddle/operators/transpose_op.cc +++ b/paddle/operators/transpose_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/transpose_op.h" @@ -55,8 +55,7 @@ class TransposeOp : public framework::OperatorWithKernel { class TransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: - TransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + TransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -71,18 +70,31 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker { Transpose Operator. The input tensor will be permuted according to the axis values given. -The op functions similar to how numpy.transpose works in python. +The op functions is similar to how numpy.transpose works in python. + For example: - >> input = numpy.arange(6).reshape((2,3)) - >> input - array([[0, 1, 2], - [3, 4, 5]]) - >> axis = [1, 0] - >> output = input.transpose(axis) - >> output - array([[0, 3], - [1, 4], - [2, 5]]) + + .. code-block:: text + + input = numpy.arange(6).reshape((2,3)) + + the input is: + + array([[0, 1, 2], + [3, 4, 5]]) + + given axis is: + + [1, 0] + + output = input.transpose(axis) + + then the output is: + + array([[0, 3], + [1, 4], + [2, 5]]) + So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1}, the output tensor shape will be (N, H, W, C) @@ -112,8 +124,8 @@ class TransposeOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad, ops::TransposeOpGrad); -REGISTER_OP_CPU_KERNEL(transpose, - ops::TransposeKernel); +REGISTER_OP_CPU_KERNEL( + transpose, ops::TransposeKernel); REGISTER_OP_CPU_KERNEL( transpose_grad, - ops::TransposeGradKernel); + ops::TransposeGradKernel); diff --git a/paddle/operators/transpose_op.cu.cc b/paddle/operators/transpose_op.cu.cc index af3f581462..281c4468cc 100644 --- a/paddle/operators/transpose_op.cu.cc +++ b/paddle/operators/transpose_op.cu.cc @@ -1,22 +1,23 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/transpose_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(transpose, - ops::TransposeKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + transpose, + ops::TransposeKernel); +REGISTER_OP_CUDA_KERNEL( transpose_grad, - ops::TransposeGradKernel); + ops::TransposeGradKernel); diff --git a/paddle/operators/transpose_op.h b/paddle/operators/transpose_op.h index e296032f41..b9686a2db3 100644 --- a/paddle/operators/transpose_op.h +++ b/paddle/operators/transpose_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -20,33 +20,33 @@ namespace paddle { namespace operators { -template -inline void TransCompute(const int dim, const platform::DeviceContext& dev_ctx, +template +inline void TransCompute(const int dim, const DeviceContext& dev_ctx, const framework::Tensor& in, framework::Tensor* out, const std::vector& axis) { switch (dim) { case 1: - math::Transpose trans1; + math::Transpose trans1; trans1(dev_ctx, in, out, axis); break; case 2: - math::Transpose trans2; + math::Transpose trans2; trans2(dev_ctx, in, out, axis); break; case 3: - math::Transpose trans3; + math::Transpose trans3; trans3(dev_ctx, in, out, axis); break; case 4: - math::Transpose trans4; + math::Transpose trans4; trans4(dev_ctx, in, out, axis); break; case 5: - math::Transpose trans5; + math::Transpose trans5; trans5(dev_ctx, in, out, axis); break; case 6: - math::Transpose trans6; + math::Transpose trans6; trans6(dev_ctx, in, out, axis); break; default: @@ -54,7 +54,7 @@ inline void TransCompute(const int dim, const platform::DeviceContext& dev_ctx, } } -template +template class TransposeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -64,12 +64,12 @@ class TransposeKernel : public framework::OpKernel { std::vector axis = context.Attr>("axis"); int ndims = axis.size(); - auto& dev_ctx = context.device_context(); - TransCompute(ndims, dev_ctx, *x, out, axis); + auto& dev_ctx = context.template device_context(); + TransCompute(ndims, dev_ctx, *x, out, axis); } }; -template +template class TransposeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -88,8 +88,9 @@ class TransposeGradKernel : public framework::OpKernel { } int ndims = axis.size(); - auto& dev_ctx = context.device_context(); - TransCompute(ndims, dev_ctx, *out_grad, x_grad, reversed_axis); + auto& dev_ctx = context.template device_context(); + TransCompute(ndims, dev_ctx, *out_grad, x_grad, + reversed_axis); } }; diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index fff1dc7ccd..3a314bdb9b 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ -#include -#include +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" @@ -63,18 +63,17 @@ class UniformRandomOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( - static_cast(ctx.Attr("dtype")), - ctx.device_context()); + static_cast(ctx.Attr("dtype")), + ctx.GetPlace()); } }; class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker { public: - UniformRandomOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + UniformRandomOpMaker(OpProto* proto, OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Out", "(Tensor) The output tensor of uniform random op"); AddComment(R"DOC( @@ -100,7 +99,7 @@ uniform distribution. "0 means use a seed generated by the system.") .SetDefault(0); AddAttr("dtype", "(int, default 5(FP32)) Output tensor data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); } }; } // namespace operators diff --git a/paddle/operators/uniform_random_op.cu b/paddle/operators/uniform_random_op.cu index 8b20bb8287..719d0872a7 100644 --- a/paddle/operators/uniform_random_op.cu +++ b/paddle/operators/uniform_random_op.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ -#include -#include +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include #include "paddle/framework/op_registry.h" @@ -63,6 +63,6 @@ class GPUUniformRandomKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(uniform_random, - paddle::operators::GPUUniformRandomKernel, - paddle::operators::GPUUniformRandomKernel); +REGISTER_OP_CUDA_KERNEL(uniform_random, + paddle::operators::GPUUniformRandomKernel, + paddle::operators::GPUUniformRandomKernel); diff --git a/paddle/operators/unpool_op.cc b/paddle/operators/unpool_op.cc index 89c48e071c..50cee11a7a 100644 --- a/paddle/operators/unpool_op.cc +++ b/paddle/operators/unpool_op.cc @@ -18,8 +18,7 @@ namespace operators { class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker { public: - Unpool2dOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + Unpool2dOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -54,16 +53,14 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker { "(string), unpooling type, can be \"max\" for max-unpooling ") .InEnum({"max"}); AddComment(R"DOC( - "Input shape: $(N, C_{in}, H_{in}, W_{in})$ - Output shape: $(N, C_{out}, H_{out}, W_{out})$ - Where - $$ - H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\ - W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1] - $$ - Paper: http://www.matthewzeiler.com/wp-content/uploads/2017 - /07/iccv2011.pdf - )DOC"); +Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is: +$(N, C_{out}, H_{out}, W_{out})$, where +$$ +H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\ +W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1] +$$ +Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf +)DOC"); } }; @@ -74,7 +71,7 @@ int OutputSize(int input_size, int ksize, int padding, int stride) { class UnpoolOp : public framework::OperatorWithKernel { protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -113,7 +110,7 @@ class UnpoolOp : public framework::OperatorWithKernel { class UnpoolOpGrad : public framework::OperatorWithKernel { protected: - framework::OpKernelType GetKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -135,9 +132,10 @@ class UnpoolOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad, ops::UnpoolOpGrad); -REGISTER_OP_CPU_KERNEL(unpool, - ops::UnpoolKernel, - ops::UnpoolKernel); REGISTER_OP_CPU_KERNEL( - unpool_grad, ops::UnpoolGradKernel, - ops::UnpoolGradKernel); + unpool, ops::UnpoolKernel, + ops::UnpoolKernel); +REGISTER_OP_CPU_KERNEL( + unpool_grad, + ops::UnpoolGradKernel, + ops::UnpoolGradKernel); diff --git a/paddle/operators/unpool_op.cu.cc b/paddle/operators/unpool_op.cu.cc index 18aafb7dc7..9b002e35c4 100644 --- a/paddle/operators/unpool_op.cu.cc +++ b/paddle/operators/unpool_op.cu.cc @@ -15,9 +15,10 @@ limitations under the License. */ #include "paddle/operators/unpool_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(unpool, - ops::UnpoolKernel, - ops::UnpoolKernel); -REGISTER_OP_GPU_KERNEL( - unpool_grad, ops::UnpoolGradKernel, - ops::UnpoolGradKernel); +REGISTER_OP_CUDA_KERNEL( + unpool, ops::UnpoolKernel, + ops::UnpoolKernel); +REGISTER_OP_CUDA_KERNEL( + unpool_grad, + ops::UnpoolGradKernel, + ops::UnpoolGradKernel); diff --git a/paddle/operators/unpool_op.h b/paddle/operators/unpool_op.h index 243eb7e532..ee18b118c9 100644 --- a/paddle/operators/unpool_op.h +++ b/paddle/operators/unpool_op.h @@ -20,7 +20,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class UnpoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -32,15 +32,16 @@ class UnpoolKernel : public framework::OpKernel { std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); T* output_data = out->mutable_data(context.GetPlace()); + auto& dev_ctx = context.template device_context(); if (output_data) { - math::SetConstant set_zero; - set_zero(context.device_context(), out, static_cast(0)); + math::SetConstant set_zero; + set_zero(dev_ctx, out, static_cast(0)); } - math::Unpool2dMaxFunctor unpool2d_max_forward; - unpool2d_max_forward(context.device_context(), *in_x, *in_y, out); + math::Unpool2dMaxFunctor unpool2d_max_forward; + unpool2d_max_forward(dev_ctx, *in_x, *in_y, out); } }; -template +template class UnpoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -56,15 +57,14 @@ class UnpoolGradKernel : public framework::OpKernel { std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); - auto& device_ctx = context.device_context(); - math::SetConstant zero; + auto& device_ctx = context.template device_context(); + math::SetConstant zero; if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); zero(device_ctx, in_x_grad, static_cast(0)); } - math::Unpool2dMaxGradFunctor unpool2d_max_backward; - unpool2d_max_backward(context.device_context(), *in_x, *in_y, *out, - *out_grad, in_x_grad); + math::Unpool2dMaxGradFunctor unpool2d_max_backward; + unpool2d_max_backward(device_ctx, *in_x, *in_y, *out, *out_grad, in_x_grad); } }; } // namespace operators diff --git a/paddle/operators/warpctc_op.cc b/paddle/operators/warpctc_op.cc new file mode 100644 index 0000000000..bd0c5f9957 --- /dev/null +++ b/paddle/operators/warpctc_op.cc @@ -0,0 +1,141 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/warpctc_op.h" + +namespace paddle { +namespace operators { + +class WarpCTCOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Logits"), + "Input(Logits) of WarpCTCOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), + "Input(Label) of WarpCTCOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("WarpCTCGrad"), + "Output(WarpCTCGrad) of WarpCTCOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Loss"), + "Output(Loss) of WarpCTCOp should not be null."); + + auto logits_dims = ctx->GetInputDim("Logits"); + int sequence_width = + static_cast(framework::product(logits_dims) / logits_dims[0]); + int blank = ctx->Attrs().Get("blank"); + PADDLE_ENFORCE((blank >= 0) && (blank < sequence_width), + "The value of Attr(blank) should be in interval [0, %d).", + sequence_width); + // TODO(liuyiqun): it is tricky to set the wrong dimension here. + ctx->SetOutputDim("Loss", {logits_dims[0], 1}); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Logits")->type()), + ctx.device_context()); + } +}; + +class WarpCTCOpMaker : public framework::OpProtoAndCheckerMaker { + public: + WarpCTCOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Logits", + "(LodTensor, default: LoDTensor), the unscaled " + "probabilities of variable-length sequences, which is a 2-D " + "Tensor with LoD information. It's shape is " + "[Lp, num_classes + 1], where Lp is the sum of all input " + "sequences' length and num_classes is the true number of classes " + "(not including the blank label)."); + AddInput("Label", + "(LodTensor, default: LoDTensor), the ground truth " + "of variable-length sequence, which is a 2-D Tensor with LoD " + "information. It is of the shape [Lg, 1], where Lg is th sum of " + "all labels' length."); + AddOutput("WarpCTCGrad", + "(Tensor, default: Tensor), a temporary " + "output Tensor to store the gradients of warp-ctc, which is " + "computed with loss together in one call. It is a 3-D Tensor of " + "the shape [max_sequence_length, batch_size, num_classes + 1].") + .AsIntermediate(); + AddOutput("Loss", + "(Tensor, default: Tensor), the Connectionist " + "Temporal Classification (CTC) loss, which is a 2-D Tensor of " + "the shape [batch_size, 1]"); + AddAttr("blank", + "(int, default: 0), the blank label of Connectionist " + "Temporal Classification (CTC) loss, which is in the " + "half-opened interval [0, num_classes + 1).") + .SetDefault(0); + AddAttr("norm_by_times", + "(bool, default: false), whether to " + "normalize the gradients by the number of time-step, " + "which is also the sequence's length.") + .SetDefault(false); + AddComment(R"DOC( +An operator integrating the open-source +[warp-ctc](https://github.com/baidu-research/warp-ctc) library, which is used in +[Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin]( +https://arxiv.org/pdf/1512.02595v1.pdf), +to compute Connectionist Temporal Classification (CTC) loss. +It can be aliased as softmax with ctc, since a native softmax activation is +interated to the warp-ctc library, to to normlize values for each row of the +input tensor. + +More detail of CTC loss can be found by refering to +[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with +Recurrent Neural Networks]( +http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf). +)DOC"); + } +}; + +class WarpCTCGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("WarpCTCGrad"), + "Input(WarpCTCGrad) of WarpCTCGradOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")), + "Output(Logits@GRAD) of WarpCTCGradOp should not be null."); + ctx->SetOutputDim(framework::GradVarName("Logits"), + ctx->GetInputDim("Logits")); + ctx->ShareLoD("Logits", /*->*/ framework::GradVarName("Logits")); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Logits")->type()), + ctx.device_context()); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(warpctc, ops::WarpCTCOp, ops::WarpCTCOpMaker, warpctc_grad, + ops::WarpCTCGradOp); +REGISTER_OP_CPU_KERNEL( + warpctc, ops::WarpCTCKernel); +REGISTER_OP_CPU_KERNEL( + warpctc_grad, + ops::WarpCTCGradKernel); diff --git a/paddle/operators/warpctc_op.cu.cc b/paddle/operators/warpctc_op.cu.cc new file mode 100644 index 0000000000..7d8527ac75 --- /dev/null +++ b/paddle/operators/warpctc_op.cu.cc @@ -0,0 +1,22 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/warpctc_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + warpctc, ops::WarpCTCKernel); +REGISTER_OP_CUDA_KERNEL( + warpctc_grad, + ops::WarpCTCGradKernel); diff --git a/paddle/operators/warpctc_op.h b/paddle/operators/warpctc_op.h new file mode 100644 index 0000000000..8aea061c00 --- /dev/null +++ b/paddle/operators/warpctc_op.h @@ -0,0 +1,229 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/sequence_padding.h" +#include "paddle/operators/math/sequence_scale.h" +#include "paddle/platform/dynload/warpctc.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; + +template +class WarpCTCFunctor { + public: + /* + * \brief Compute the connectionist temporal classification loss, + * and optionally compute the gradient with respect to the inputs. + * + * If gradient is nullptr, it only computes the ctc loss, + * or computes both ctc loss and gradient. + * + * \param ctx execution context of this functor + * \param input batch matrix of input probabilities, in + * max_sequence_length x num_sequences x + * sequence_width, (row-major) format + * \param gradient batch matrix of gradient, with the same shape as + * input. + * \param cpu_labels labels always in CPU memory. + * \param cpu_label_lengths length of all labels in CPU memory. + * \param cpu_input_lengths length of all sequences in CPU memory. + * \param sequence_width number of possible output symbols. + * \param num_sequences number of sequence. + * \param blank blank label used in ctc loss function. + * \param cpu_losss cost of each sequence in CPU memory. + */ + void operator()(const framework::ExecutionContext& ctx, const float* input, + float* gradient, const int* cpu_labels, + const int* cpu_label_lengths, const int* cpu_input_lengths, + const size_t sequence_width, const size_t num_sequences, + const size_t blank, float* cpu_loss) { + // Init warp-ctc options + init(ctx, blank); + + // Compute the required workspace size. + // There is no memory allocated operations within warp-ctc. + size_t workspace_bytes = 0; + ctcStatus_t status = platform::dynload::get_workspace_size( + cpu_label_lengths, cpu_input_lengths, static_cast(sequence_width), + static_cast(num_sequences), options_, &workspace_bytes); + PADDLE_ENFORCE_EQ(CTC_STATUS_SUCCESS, status, + "warp-ctc [version %d] Error in get_workspace_size: ", + warpctc_version_, + platform::dynload::ctcGetStatusString(status)); + PADDLE_ENFORCE_GT(workspace_bytes, 0UL, + "Bytes of workspace got by warp-ctc function, " + "get_workspace_size(), should be larger than 0."); + + Tensor workspace; + size_t workspace_elements = workspace_bytes / sizeof(float) + 1UL; + float* workspace_data = workspace.mutable_data( + framework::make_ddim({static_cast(workspace_elements)}), + ctx.GetPlace()); + math::SetConstant()( + ctx.template device_context(), &workspace, + static_cast(0)); + + // compute loss and gradient + status = platform::dynload::compute_ctc_loss( + input, gradient, cpu_labels, cpu_label_lengths, cpu_input_lengths, + static_cast(sequence_width), static_cast(num_sequences), + cpu_loss, workspace_data, options_); + PADDLE_ENFORCE_EQ(CTC_STATUS_SUCCESS, status, + "warp-ctc [version %d] Error in compute_ctc_loss: ", + warpctc_version_, + platform::dynload::ctcGetStatusString(status)); + } + + protected: + void init(const framework::ExecutionContext& ctx, const size_t blank) { + warpctc_version_ = platform::dynload::get_warpctc_version(); + + if (platform::is_gpu_place(ctx.GetPlace())) { +#ifdef PADDLE_WITH_CUDA + options_.loc = CTC_GPU; + options_.stream = reinterpret_cast( + ctx.device_context()) + .stream(); +#else + PADDLE_THROW("[warpctc init] GPU is not enabled."); +#endif + } else { + options_.loc = CTC_CPU; + options_.num_threads = 1; + } + + options_.blank_label = blank; + } + + private: + int warpctc_version_; + ctcOptions options_; +}; + +template +class WarpCTCKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* logits = ctx.Input("Logits"); + auto* label = ctx.Input("Label"); + auto* warpctc_grad = ctx.Output("WarpCTCGrad"); + auto* loss = ctx.Output("Loss"); + + const size_t level = 0; + + auto logits_lod = framework::ToAbsOffset(logits->lod()); + auto logits_dims = logits->dims(); + PADDLE_ENFORCE_EQ(logits_dims[0], + static_cast(logits_lod[level].back()), + "The first dimension of Input(Logits) should be equal to " + "the sum of all sequences' lengths."); + + auto label_lod = framework::ToAbsOffset(label->lod()); + auto label_dims = label->dims(); + PADDLE_ENFORCE_EQ( + label_dims[0], label->numel(), + "The width of each timestep in Input(Label) should be 1."); + + const size_t num_sequences = logits_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(num_sequences, label_lod[level].size() - 1, + "The number of sequences of Input(Logits) should be " + "equal to that of Input(Label)."); + + const size_t sequence_width = logits->numel() / logits_dims[0]; + auto loss_dims = + framework::make_ddim({static_cast(num_sequences), 1}); + + // warpctc needs sequences data stored in transposed padding format + Tensor warpctc_logits; + const size_t max_sequence_length = + math::MaximumSequenceLength(logits_lod, level); + auto warpctc_logits_dims = + framework::make_ddim({static_cast(max_sequence_length), + static_cast(num_sequences), + static_cast(sequence_width)}); + warpctc_logits.mutable_data(warpctc_logits_dims, ctx.GetPlace()); + math::PaddingLoDTensorFunctor()( + ctx.template device_context(), *logits, warpctc_logits, + false); + const T* warpctc_logits_data = warpctc_logits.data(); + + std::vector warpctc_label_lengths(num_sequences); + std::vector warpctc_logits_lengths(num_sequences); + + for (size_t i = 0; i < num_sequences; ++i) { + warpctc_label_lengths[i] = label_lod[level][i + 1] - label_lod[level][i]; + warpctc_logits_lengths[i] = + logits_lod[level][i + 1] - logits_lod[level][i]; + } + + // warpctc computes loss and gradient in one call, gradient data also stored + // in batch format + T* warpctc_grad_data = + warpctc_grad->mutable_data(warpctc_logits.dims(), ctx.GetPlace()); + + math::SetConstant()( + ctx.template device_context(), warpctc_grad, + static_cast(0)); + + // warpctc accesses labels in CPU memory + Tensor warpctc_label; + Copy(*label, platform::CPUPlace(), ctx.device_context(), &warpctc_label); + const int* warpctc_label_data = warpctc_label.data(); + // warpctc stores loss in CPU memory + Tensor warpctc_loss; + T* warpctc_loss_data = + warpctc_loss.mutable_data(loss_dims, platform::CPUPlace()); + + const size_t blank = static_cast(ctx.Attr("blank")); + + WarpCTCFunctor()( + ctx, warpctc_logits_data, warpctc_grad_data, warpctc_label_data, + warpctc_label_lengths.data(), warpctc_logits_lengths.data(), + sequence_width, num_sequences, blank, warpctc_loss_data); + + // Copy the loss back + Copy(warpctc_loss, ctx.GetPlace(), ctx.device_context(), loss); + } +}; + +template +class WarpCTCGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* warpctc_grad = ctx.Input("WarpCTCGrad"); + auto* logits_grad = ctx.Output(framework::GradVarName("Logits")); + const Tensor* loss_grad = ctx.Input(framework::GradVarName("Loss")); + + logits_grad->mutable_data(ctx.GetPlace()); + bool norm_by_times = ctx.Attr("norm_by_times"); + math::UnpaddingLoDTensorFunctor()( + ctx.template device_context(), *logits_grad, + *warpctc_grad, norm_by_times); + + const T* loss_grad_data = loss_grad->data(); + math::ScaleLoDTensorFunctor()( + ctx.template device_context(), *logits_grad, + loss_grad_data); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/while_op.cc b/paddle/operators/while_op.cc index 9b3f21cf94..2fdd25dbbe 100644 --- a/paddle/operators/while_op.cc +++ b/paddle/operators/while_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include "paddle/framework/executor.h" @@ -25,12 +25,12 @@ namespace operators { using StepScopeVar = std::vector; using LoDTensor = framework::LoDTensor; -constexpr char kStepBlock[] = "step_block"; -constexpr char kCondition[] = "Condition"; -constexpr char kStepScopes[] = "StepScopes"; -constexpr char kParameters[] = "X"; -constexpr char kParamGrads[] = "X@GRAD"; -constexpr char kOutputs[] = "Out"; +static constexpr char kStepBlock[] = "sub_block"; +static constexpr char kCondition[] = "Condition"; +static constexpr char kStepScopes[] = "StepScopes"; +static constexpr char kX[] = "X"; +static constexpr char kXGRAD[] = "X@GRAD"; +static constexpr char kOutputs[] = "Out"; class WhileOp : public framework::OperatorBase { public: @@ -40,13 +40,14 @@ class WhileOp : public framework::OperatorBase { : framework::OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { + const platform::Place &dev_place) const override { PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition))); auto &cond = scope.FindVar(Input(kCondition))->Get(); PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1})); - framework::Executor executor(dev_ctx); - auto *block = Attr(kStepBlock); + framework::Executor executor(dev_place); + auto *block = Attr(kStepBlock); + auto *program = block->Program(); auto step_scopes = @@ -64,9 +65,9 @@ class WhileOp : public framework::OperatorBase { class WhileOpMaker : public framework::OpProtoAndCheckerMaker { public: - WhileOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput(kParameters, + AddInput(kX, "A set of variables, which are required by operators inside the " "block of While Op.") .AsDuplicable(); @@ -82,8 +83,8 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker { "(StepScopeVar) A vector of local scope, which size equals the " "step number of While Op. The i'th scope storages temporary " "variables generated in the i'th step."); - AddAttr(kStepBlock, - "The step block inside WhileOp"); + AddAttr(kStepBlock, + "The step block inside WhileOp"); AddComment(R"DOC( )DOC"); } @@ -97,9 +98,9 @@ class WhileGradOp : public framework::OperatorBase { : framework::OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, - const platform::DeviceContext &dev_ctx) const override { - framework::Executor executor(dev_ctx); - auto *block = Attr(kStepBlock); + const platform::Place &dev_place) const override { + framework::Executor executor(dev_place); + auto *block = Attr(kStepBlock); auto *program = block->Program(); auto *step_scopes = @@ -120,8 +121,8 @@ class WhileGradOp : public framework::OperatorBase { for (size_t i = 0; i < outside_og_names.size(); ++i) { auto outside_og_name = outside_og_names[i]; auto inside_og_name = inside_og_names[i]; - VLOG(10) << "Linking outside " << outside_og_name << " --> inside " - << inside_og_name; + VLOG(8) << "Linking outside " << outside_og_name << " --> inside " + << inside_og_name; auto &og_outside = detail::Ref(scope.FindVar(outside_og_name), "Cannot find Outside Gradient %s", outside_og_name); @@ -140,11 +141,11 @@ class WhileGradOp : public framework::OperatorBase { auto &outside_array = og_outside.Get(); auto &inside_array = detail::Ref(og_inside.GetMutable()); - VLOG(10) << outside_og_name << " size = " << outside_array.size(); + VLOG(8) << outside_og_name << " size = " << outside_array.size(); inside_array.resize(outside_array.size()); for (size_t j = 0; j < inside_array.size(); ++j) { - VLOG(10) << j << " " << outside_array[j].numel(); + VLOG(8) << j << " " << outside_array[j].numel(); if (outside_array[j].numel() != 0) { inside_array[j].set_lod(outside_array[j].lod()); inside_array[j].ShareDataWith(outside_array[j]); @@ -157,8 +158,8 @@ class WhileGradOp : public framework::OperatorBase { executor.Run(*program, *cur_scope_iter, block->ID(), false); - auto &pg_names = Outputs(kParamGrads); - auto &p_names = Inputs(kParameters); + auto &pg_names = Outputs(kXGRAD); + auto &p_names = Inputs(kX); PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size()); for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) { if (pg_names[param_id] == framework::kEmptyVarName) { @@ -186,17 +187,22 @@ class WhileGradOp : public framework::OperatorBase { attrs["shape"] = framework::vectorize2int(inside_tensor.dims()); attrs["value"] = 0.0f; + auto var_name = pg_names[param_id]; auto zero_op = framework::OpRegistry::CreateOp( - "fill_constant", {}, {{"Out", {pg_names[param_id]}}}, attrs); - zero_op->Run(scope, dev_ctx); + "fill_constant", framework::VariableNameMap{}, + {{"Out", {var_name}}}, attrs); + zero_op->Run(scope, dev_place); + scope.FindVar(var_name) + ->GetMutable() + ->set_lod(inside_tensor.lod()); } } auto new_inside_name = cur_scope.Rename(inside_grad_name); auto sum_op = framework::OpRegistry::CreateOp( "sum", {{"X", {pg_names[param_id], new_inside_name}}}, - {{"Out", {pg_names[param_id]}}}, {}); - sum_op->Run(cur_scope, dev_ctx); + {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{}); + sum_op->Run(cur_scope, dev_place); cur_scope.Rename(new_inside_name, inside_grad_name); } } @@ -208,60 +214,55 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad = new framework::OpDescBind(); - grad->SetType("while_grad"); - grad->SetInput(kParameters, Input(kParameters)); + std::unique_ptr Apply() const override { + auto *while_grad = new framework::OpDesc(); + while_grad->SetType("while_grad"); + while_grad->SetInput(kX, Input(kX)); + while_grad->SetInput(kOutputs, Output(kOutputs)); + while_grad->SetInput(kStepScopes, Output(kStepScopes)); + + auto *grad_block = this->grad_block_[0]; + auto *fwd_block = grad_block->ParentBlock(); // Not all of IGs will be generated by inner gradient operators of while op. // Ignore IGs that is not generated by the inside block. - auto igs = InputGrad(kParameters, /*do not drop empty gradient*/ false); - std::unordered_set all_outs; - for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) { - for (auto &oname : grad_block_[0]->Op(i)->OutputArgumentNames()) { - all_outs.insert(oname); + std::unordered_set inner_op_outputs; + for (const auto *op : grad_block->AllOps()) { + for (auto &oname : op->OutputArgumentNames()) { + inner_op_outputs.insert(oname); } } + auto igs = InputGrad(kX, /*do not drop empty gradient*/ false); for (auto &each_ig : igs) { - if (all_outs.find(each_ig) == all_outs.end()) { - VLOG(10) << "Ignore " << each_ig; + if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) { + VLOG(8) << "Ignore " << each_ig; each_ig = framework::kEmptyVarName; } } - - grad->SetOutput(framework::GradVarName(kParameters), igs); - - grad->SetInput(kOutputs, Output(kOutputs)); + while_grad->SetOutput(framework::GradVarName(kX), igs); // OG should be re-calculated by step blocks, since many outputs of while op // do not need to calculate gradients. std::unordered_set block_ins; - auto *fwd_block = this->grad_block_[0]->ParentBlock(); - { - for (auto &p : Input(kParameters)) { - block_ins.insert(p); - } - for (auto &o : Output(kOutputs)) { - block_ins.insert(o); - } + block_ins.reserve(Input(kX).size() + Output(kOutputs).size()); + for (auto &p : Input(kX)) { + block_ins.insert(p); + } + for (auto &o : Output(kOutputs)) { + block_ins.insert(o); } std::unordered_set extra_inputs; - for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) { - for (auto &input_name : grad_block_[0]->Op(i)->InputArgumentNames()) { - if (block_ins.find(input_name) != block_ins.end()) { + for (const auto *op : grad_block->AllOps()) { + for (auto &input_name : op->InputArgumentNames()) { + // If the input of Op has been recorded or is generated by the forward + // block, do not make it as input again. + if (block_ins.find(input_name) != block_ins.end() || + fwd_block->FindVar(input_name) != nullptr) { continue; } - - // If the input of Op is generated by the forward block, do not make it - // as input again. - if (fwd_block->FindVar(input_name) != nullptr) { - continue; - } - extra_inputs.insert(input_name); } - - for (auto &output_name : grad_block_[0]->Op(i)->OutputArgumentNames()) { + for (auto &output_name : op->OutputArgumentNames()) { block_ins.insert(output_name); } } @@ -270,24 +271,24 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { extra_inputs_list.resize(extra_inputs.size()); std::copy(extra_inputs.begin(), extra_inputs.end(), extra_inputs_list.begin()); - grad->SetInput(framework::GradVarName(kOutputs), extra_inputs_list); - grad->SetInput(kStepScopes, Output(kStepScopes)); - grad->SetAttrMap(this->Attrs()); - grad->SetBlockAttr(kStepBlock, *grad_block_[0]); + while_grad->SetInput(framework::GradVarName(kOutputs), extra_inputs_list); + + while_grad->SetAttrMap(this->Attrs()); + while_grad->SetBlockAttr(kStepBlock, *grad_block); // record the original output gradient names, since the gradient name of // while operator could be renamed. - grad->SetAttr("original_output_grad", extra_inputs_list); + while_grad->SetAttr("original_output_grad", extra_inputs_list); - return std::unique_ptr(grad); + return std::unique_ptr(while_grad); } }; class WhileGradOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind &op_desc, - framework::BlockDescBind *block) const override { - auto p_names = op_desc.Input(kParameters); - auto pg_names = op_desc.Output(framework::GradVarName(kParameters)); + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { + auto p_names = op_desc.Input(kX); + auto pg_names = op_desc.Output(framework::GradVarName(kX)); for (size_t i = 0; i < p_names.size(); ++i) { auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i])); @@ -305,25 +306,25 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference { class WhileGradOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { - ctx->HasInputs(kParameters); - ctx->HasOutputs(framework::GradVarName(kParameters)); + ctx->HasInputs(kX); + ctx->HasOutputs(framework::GradVarName(kX)); ctx->HasInputs(kOutputs); ctx->HasInputs(framework::GradVarName(kOutputs)); - auto p_names = ctx->Inputs(kParameters); - auto pg_names = ctx->Outputs(kParamGrads); - auto var_types = ctx->GetInputsVarType(kParameters); + auto p_names = ctx->Inputs(kX); + auto pg_names = ctx->Outputs(kXGRAD); + auto var_types = ctx->GetInputsVarType(kX); std::vector names_to_set; std::vector dims_to_set; for (size_t i = 0; i < p_names.size(); ++i) { if (pg_names[i] == framework::kEmptyVarName) { continue; } - auto dims = ctx->GetInputsElementDim(kParameters, i); - if (var_types[i] == framework::VarDesc::LOD_TENSOR) { + auto dims = ctx->GetInputsElementDim(kX, i); + if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR) { names_to_set.push_back(pg_names[i]); dims_to_set.push_back(dims); - } else if (var_types[i] == framework::VarDesc::LOD_TENSOR_ARRAY) { + } else if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR_ARRAY) { // not sure how to set the dim of LOD_TENSOR_ARRAY names_to_set.push_back(pg_names[i]); dims_to_set.push_back(dims); diff --git a/paddle/optimizer/adadelta_optimizer.cc b/paddle/optimizer/adadelta_optimizer.cc index 5cc7c47d44..8ca048257e 100644 --- a/paddle/optimizer/adadelta_optimizer.cc +++ b/paddle/optimizer/adadelta_optimizer.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "adadelta_optimizer.h" #include diff --git a/paddle/optimizer/adadelta_optimizer.h b/paddle/optimizer/adadelta_optimizer.h index 6aab1ad553..48f1ae1750 100644 --- a/paddle/optimizer/adadelta_optimizer.h +++ b/paddle/optimizer/adadelta_optimizer.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/optimizer/adagrad_optimizer.cc b/paddle/optimizer/adagrad_optimizer.cc index c981996bab..c6d39a366a 100644 --- a/paddle/optimizer/adagrad_optimizer.cc +++ b/paddle/optimizer/adagrad_optimizer.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include diff --git a/paddle/optimizer/adagrad_optimizer.h b/paddle/optimizer/adagrad_optimizer.h index 447b7c7547..b0cff061f5 100644 --- a/paddle/optimizer/adagrad_optimizer.h +++ b/paddle/optimizer/adagrad_optimizer.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/optimizer/adam_optimizer.cc b/paddle/optimizer/adam_optimizer.cc index 6dc2d74970..8a384b59c4 100644 --- a/paddle/optimizer/adam_optimizer.cc +++ b/paddle/optimizer/adam_optimizer.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "adam_optimizer.h" #include diff --git a/paddle/optimizer/adam_optimizer.h b/paddle/optimizer/adam_optimizer.h index 37ab53afc3..7df40064df 100644 --- a/paddle/optimizer/adam_optimizer.h +++ b/paddle/optimizer/adam_optimizer.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/optimizer/lr_policy.h b/paddle/optimizer/lr_policy.h index bbb1ee4821..9a44a776f2 100644 --- a/paddle/optimizer/lr_policy.h +++ b/paddle/optimizer/lr_policy.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #pragma once #include diff --git a/paddle/optimizer/optimizer.cc b/paddle/optimizer/optimizer.cc index faa2376452..3af4448436 100644 --- a/paddle/optimizer/optimizer.cc +++ b/paddle/optimizer/optimizer.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "optimizer.h" #include diff --git a/paddle/optimizer/optimizer.h b/paddle/optimizer/optimizer.h index e6fa12a4d2..516e612167 100644 --- a/paddle/optimizer/optimizer.h +++ b/paddle/optimizer/optimizer.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/optimizer/parameter_optimizer.cc b/paddle/optimizer/parameter_optimizer.cc index da92c2d01c..1603e5fdc8 100644 --- a/paddle/optimizer/parameter_optimizer.cc +++ b/paddle/optimizer/parameter_optimizer.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include "adadelta_optimizer.h" diff --git a/paddle/optimizer/parameter_optimizer.h b/paddle/optimizer/parameter_optimizer.h index 99d0416e75..1f501c49e1 100644 --- a/paddle/optimizer/parameter_optimizer.h +++ b/paddle/optimizer/parameter_optimizer.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/optimizer/parameter_optimizer_test.cc b/paddle/optimizer/parameter_optimizer_test.cc index 83757a3917..795d2de1d6 100644 --- a/paddle/optimizer/parameter_optimizer_test.cc +++ b/paddle/optimizer/parameter_optimizer_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. diff --git a/paddle/optimizer/serialization_test.cc b/paddle/optimizer/serialization_test.cc index 940e941e90..0f1b14eec1 100644 --- a/paddle/optimizer/serialization_test.cc +++ b/paddle/optimizer/serialization_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. diff --git a/paddle/optimizer/sgd_optimizer.cc b/paddle/optimizer/sgd_optimizer.cc index c150144ac2..ee80f543fc 100644 --- a/paddle/optimizer/sgd_optimizer.cc +++ b/paddle/optimizer/sgd_optimizer.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "sgd_optimizer.h" #include "serialization.h" diff --git a/paddle/optimizer/sgd_optimizer.h b/paddle/optimizer/sgd_optimizer.h index 0b1da0aa27..16a4df9973 100644 --- a/paddle/optimizer/sgd_optimizer.h +++ b/paddle/optimizer/sgd_optimizer.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/optimizer/tensor.h b/paddle/optimizer/tensor.h index 86fa625e01..e999e9bda1 100644 --- a/paddle/optimizer/tensor.h +++ b/paddle/optimizer/tensor.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #pragma once /** * @brief tensor used by optimizer diff --git a/paddle/parameter/FirstOrderOptimizer.h b/paddle/parameter/FirstOrderOptimizer.h index f157188a4f..5b0c52a30d 100644 --- a/paddle/parameter/FirstOrderOptimizer.h +++ b/paddle/parameter/FirstOrderOptimizer.h @@ -38,7 +38,7 @@ public: real torch_learningRate = optConfig_.learning_method() == "torch_momentum" ? 1.0 - paraConfig.momentum() : 1.0; -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN sgdUpdate(learningRate_ * paraConfig.learning_rate() * (firstTime_ ? 1.0 : torch_learningRate), paraConfig.momentum(), diff --git a/paddle/parameter/ParameterUpdateFunctions.cpp b/paddle/parameter/ParameterUpdateFunctions.cpp index 1898598e49..d60cb36383 100644 --- a/paddle/parameter/ParameterUpdateFunctions.cpp +++ b/paddle/parameter/ParameterUpdateFunctions.cpp @@ -30,7 +30,7 @@ void sgdUpdateCpu(real learningRate, const real* grad, real* momentumVec) { decayRate *= learningRate; -#ifdef PADDLE_USE_MKLML +#ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (size_t i = 0; i < size; ++i) { diff --git a/paddle/platform/CMakeLists.txt b/paddle/platform/CMakeLists.txt index 88df28a966..44f6d85cd1 100644 --- a/paddle/platform/CMakeLists.txt +++ b/paddle/platform/CMakeLists.txt @@ -21,12 +21,21 @@ ELSE() set(GPU_CTX_DEPS) ENDIF() +IF(WITH_MKLDNN) + set(MKLDNN_CTX_DEPS mkldnn) +ELSE() + set(MKLDNN_CTX_DEPS) +ENDIF() + # memcpy deoends on device_context, here add deps individually for # avoiding cycle dependencies cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator - system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS}) -nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info) + system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS}) +nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_info) nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda) nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context) nv_test(nccl_test SRCS nccl_test.cu DEPS dynload_cuda gpu_info device_context) + +cc_library(profiler SRCS profiler.cc DEPS device_context) +cc_test(profiler_test SRCS profiler_test.cc DEPS profiler) diff --git a/paddle/platform/call_once.h b/paddle/platform/call_once.h index d9f49527dc..00337a7f05 100644 --- a/paddle/platform/call_once.h +++ b/paddle/platform/call_once.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once diff --git a/paddle/platform/cpu_info_test.cc b/paddle/platform/cpu_info_test.cc index 8fb195aa7c..1bfe62c1fb 100644 --- a/paddle/platform/cpu_info_test.cc +++ b/paddle/platform/cpu_info_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include "paddle/platform/cpu_info.h" #include "paddle/string/printf.h" diff --git a/paddle/platform/cuda_profiler.h b/paddle/platform/cuda_profiler.h index b6311cb23d..67d5f626d4 100644 --- a/paddle/platform/cuda_profiler.h +++ b/paddle/platform/cuda_profiler.h @@ -22,23 +22,7 @@ namespace paddle { namespace platform { void CudaProfilerInit(std::string output_file, std::string output_mode, - std::vector config_flags) { - std::array buf; - std::string tmpl = "/tmp/cuda_profile_config.XXXXXX"; - PADDLE_ENFORCE_LT(tmpl.size(), buf.size()); - memcpy(buf.data(), tmpl.data(), tmpl.size()); - auto result = mktemp(buf.data()); - PADDLE_ENFORCE(strlen(result) != 0); - std::string config_file = result; - - { - std::ofstream ofs(config_file, std::ios::out | std::ios::trunc); - PADDLE_ENFORCE(ofs.is_open(), "ofstream: ", ofs.rdstate()); - for (const auto& line : config_flags) { - ofs << line << std::endl; - } - } - + std::string config_file) { PADDLE_ENFORCE(output_mode == "kvp" || output_mode == "csv"); cudaOutputMode_t mode = output_mode == "csv" ? cudaCSV : cudaKeyValuePair; PADDLE_ENFORCE( diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index 7afcdfce93..9d9348079a 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -15,17 +15,46 @@ limitations under the License. */ namespace paddle { namespace platform { -template <> -Eigen::DefaultDevice* DeviceContext::GetEigenDevice< - platform::CPUPlace, Eigen::DefaultDevice>() const { - return reinterpret_cast(this)->eigen_device(); +DeviceContextPool* DeviceContextPool::pool = nullptr; + +const platform::DeviceContext* DeviceContextPool::Get( + const platform::Place& place) { + auto it = device_contexts_.find(place); + if (it == device_contexts_.end()) { + PADDLE_THROW( + "'Place' is not supported, Please re-compile with WITH_GPU " + "option"); + } + return it->second; +} + +DeviceContextPool::DeviceContextPool( + const std::vector& places) { + PADDLE_ENFORCE_GT(places.size(), 0); + for (size_t i = 0; i < places.size(); i++) { + if (platform::is_cpu_place(places[i])) { + device_contexts_.emplace(places[i], + new platform::CPUDeviceContext( + boost::get(places[i]))); + } else if (platform::is_gpu_place(places[i])) { +#ifdef PADDLE_WITH_CUDA + device_contexts_.emplace(places[i], + new platform::CUDADeviceContext( + boost::get(places[i]))); +#else + PADDLE_THROW( + "'CUDAPlace' is not supported, Please re-compile with WITH_GPU " + "option"); +#endif + } + } } CPUDeviceContext::CPUDeviceContext() { eigen_device_.reset(new Eigen::DefaultDevice()); } -CPUDeviceContext::CPUDeviceContext(CPUPlace place) { +CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) { eigen_device_.reset(new Eigen::DefaultDevice()); } @@ -33,16 +62,10 @@ Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const { return eigen_device_.get(); } -Place CPUDeviceContext::GetPlace() const { return CPUPlace(); } +Place CPUDeviceContext::GetPlace() const { return place_; } #ifdef PADDLE_WITH_CUDA -template <> -Eigen::GpuDevice* -DeviceContext::GetEigenDevice() const { - return reinterpret_cast(this)->eigen_device(); -} - class EigenCudaStreamDevice : public Eigen::StreamInterface { public: EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) { @@ -50,7 +73,7 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface { } ~EigenCudaStreamDevice() override {} - void Reinitialize(const cudaStream_t* cuda_stream, GPUPlace place) { + void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) { stream_ = cuda_stream; place_ = place; device_prop_ = &Eigen::m_deviceProperties[place.device]; @@ -89,14 +112,14 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface { } private: - GPUPlace place_; + CUDAPlace place_; const cudaStream_t* stream_; // not owned; const cudaDeviceProp* device_prop_; // not owned; mutable void* scratch_; mutable unsigned int* semaphore_; }; -CUDADeviceContext::CUDADeviceContext(GPUPlace place) : place_(place) { +CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) { SetDeviceId(place_.device); PADDLE_ENFORCE(cudaStreamCreate(&stream_)); eigen_stream_.reset(new EigenCudaStreamDevice()); @@ -104,15 +127,21 @@ CUDADeviceContext::CUDADeviceContext(GPUPlace place) : place_(place) { eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_)); PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_)); - PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); - PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_)); + if (dynload::HasCUDNN()) { + PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); + PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_)); + } else { + cudnn_handle_ = nullptr; + } } CUDADeviceContext::~CUDADeviceContext() { SetDeviceId(place_.device); Wait(); PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_)); - PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); + if (cudnn_handle_ != nullptr) { + PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); + } eigen_stream_.reset(); eigen_device_.reset(); PADDLE_ENFORCE(cudaStreamDestroy(stream_)); @@ -122,10 +151,6 @@ Place CUDADeviceContext::GetPlace() const { return place_; } void CUDADeviceContext::Wait() const { PADDLE_ENFORCE(cudaStreamSynchronize(stream_)); -} - -void CUDADeviceContext::Finish() const { - Wait(); PADDLE_ENFORCE(cudaGetLastError()); } @@ -143,5 +168,69 @@ cudaStream_t CUDADeviceContext::stream() const { return stream_; } #endif +#ifdef PADDLE_WITH_MKLDNN +MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place) + : CPUDeviceContext(place), ready_(false) { + stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager)); + engine_.reset(new mkldnn::engine(mkldnn::engine::cpu, 0)); +} + +template +void MKLDNNDeviceContext::AddElement(const std::string& op_key, + const T& value) { + if (GetElement(op_key)) { + return; + } + GetElementPool().emplace(op_key, std::move(value)); +} + +template +const T& MKLDNNDeviceContext::GetElement(const std::string& op_key) const { + auto it = GetElementPool().find(op_key); + return it == GetElementPool().end() ? nullptr : it->second; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return memory_pool_; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return primitive_pool_; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return primitive_desc_pool_; +} + +void MKLDNNDeviceContext::Execute(bool block) { + if (pipeline_.empty()) { + return; + } + ResetStream(); + stream_->submit(pipeline_).wait(block); + ready_ = false; + pipeline_.clear(); +} + +void MKLDNNDeviceContext::ResetStream() { + if (ready_) { + return; + } + // TODO(TJ): change me when mkldnn have specific method to reset this state + stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager)); + ready_ = true; +} + +#endif + } // namespace platform } // namespace paddle diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index 526d089e35..9826a64276 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -11,8 +11,8 @@ limitations under the License. */ #pragma once -#include "paddle/platform/enforce.h" -#include "paddle/platform/place.h" +#include +#include #ifdef PADDLE_WITH_CUDA #include "paddle/platform/dynload/cublas.h" @@ -20,34 +20,26 @@ limitations under the License. */ #include "paddle/platform/gpu_info.h" #define EIGEN_USE_GPU #endif -#include + +#ifdef PADDLE_WITH_MKLDNN +#include "paddle/platform/mkldnn_helper.h" +#endif + +#include "paddle/platform/enforce.h" #include "paddle/platform/place.h" #include "unsupported/Eigen/CXX11/Tensor" +#include "glog/logging.h" + namespace paddle { namespace platform { -template -struct EigenDeviceConverter; - -template <> -struct EigenDeviceConverter { - using EigenDeviceType = Eigen::DefaultDevice; -}; - class DeviceContext { public: virtual ~DeviceContext() {} virtual Place GetPlace() const = 0; - template ::EigenDeviceType> - DeviceType* GetEigenDevice() const; - virtual void Wait() const {} - - virtual void Finish() const {} }; class CPUDeviceContext : public DeviceContext { @@ -60,28 +52,30 @@ class CPUDeviceContext : public DeviceContext { Place GetPlace() const override; private: + CPUPlace place_; std::unique_ptr eigen_device_; }; -#ifdef PADDLE_WITH_CUDA +template +struct DefaultDeviceContextType; + template <> -struct EigenDeviceConverter { - using EigenDeviceType = Eigen::GpuDevice; +struct DefaultDeviceContextType { + using TYPE = CPUDeviceContext; }; +#ifdef PADDLE_WITH_CUDA + class EigenCudaStreamDevice; class CUDADeviceContext : public DeviceContext { public: - explicit CUDADeviceContext(GPUPlace place); + explicit CUDADeviceContext(CUDAPlace place); virtual ~CUDADeviceContext(); /*! \brief Wait for all operations completion in the stream. */ void Wait() const override; - /*! \brief Check potential errors for the cuda kernel calls. */ - void Finish() const override; - /*! \brief Return place in the device context. */ Place GetPlace() const override; @@ -98,7 +92,7 @@ class CUDADeviceContext : public DeviceContext { cudaStream_t stream() const; private: - GPUPlace place_; + CUDAPlace place_; std::unique_ptr eigen_device_; std::unique_ptr eigen_stream_; @@ -108,7 +102,109 @@ class CUDADeviceContext : public DeviceContext { cublasHandle_t cublas_handle_; }; +template <> +struct DefaultDeviceContextType { + using TYPE = CUDADeviceContext; +}; + #endif +#ifdef PADDLE_WITH_MKLDNN +class MKLDNNDeviceContext : public CPUDeviceContext { + public: + explicit MKLDNNDeviceContext(CPUPlace place); + + /* \brief Add new element: memory, primitive or primitive desc */ + template + void AddElement(const std::string& op_key, const T& value); + + /* \brief Get existed element: memory, primitive or primitive desc */ + template + const T& GetElement(const std::string& op_key) const; + + /* \brief Get element pool: memory, primitive or primitive desc pool */ + template + const std::unordered_map>& + GetElementPool() const; + + /* \brief Get the active engine */ + const MKLDNNEngine& engine() const { return *engine_; } + + /* \brief Submit primitive to pipeline */ + void Submit(const MKLDNNPrimitivePtr& p) { pipeline_.push_back(*p); } + + /*! \brief Execute all submitted primitives in pipeline */ + void Execute(bool block = true); + + protected: + /*! \brief Reset the stream to prepare next exectue */ + void ResetStream(); + + private: + std::unordered_map> + memory_pool_; + std::unordered_map> + primitive_pool_; + std::unordered_map> + primitive_desc_pool_; + std::vector pipeline_; + MKLDNNStreamPtr stream_; + MKLDNNEnginePtr engine_; + bool ready_; +}; +#endif + +/*! \brief device context pool singleton */ +class DeviceContextPool { + public: + explicit DeviceContextPool(const std::vector& places); + + static DeviceContextPool& Instance() { + PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!"); + return *pool; + } + + /*! \brief Create should only called by Init function */ + static DeviceContextPool& Init(const std::vector& places) { + if (pool == nullptr) { + pool = new DeviceContextPool(places); + } + return *pool; + } + + /*! \brief Return handle of single device context. */ + const platform::DeviceContext* Get(const platform::Place& place); + + template + const typename DefaultDeviceContextType::TYPE* GetByPlace( + const Place& place) { + return reinterpret_cast< + const typename DefaultDeviceContextType::TYPE*>(Get(place)); + } + + size_t size() const { return device_contexts_.size(); } + + private: + static DeviceContextPool* pool; + constexpr static int LEFT_SHIFT = 8; + struct Hash { + std::hash hash_; + size_t operator()(const platform::Place& place) const { + int pre_hash = place.which() << LEFT_SHIFT; + if (platform::is_gpu_place(place)) { + pre_hash += boost::get(place).GetDeviceId(); + } + return hash_(pre_hash); + } + }; + std::unordered_map + device_contexts_; + DISABLE_COPY_AND_ASSIGN(DeviceContextPool); +}; + } // namespace platform } // namespace paddle diff --git a/paddle/platform/device_context_test.cc b/paddle/platform/device_context_test.cu similarity index 51% rename from paddle/platform/device_context_test.cc rename to paddle/platform/device_context_test.cu index 8bf5174c4a..767fe9b24a 100644 --- a/paddle/platform/device_context_test.cc +++ b/paddle/platform/device_context_test.cu @@ -12,19 +12,20 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/platform/device_context.h" #include "gtest/gtest.h" +#include "paddle/platform/device_context.h" + +#include "glog/logging.h" TEST(Device, Init) { using paddle::platform::DeviceContext; using paddle::platform::CUDADeviceContext; - using paddle::platform::GPUPlace; + using paddle::platform::CUDAPlace; int count = paddle::platform::GetCUDADeviceCount(); for (int i = 0; i < count; i++) { - DeviceContext* device_context = new CUDADeviceContext(GPUPlace(i)); - Eigen::GpuDevice* gpu_device = - device_context->template GetEigenDevice(); + CUDADeviceContext* device_context = new CUDADeviceContext(CUDAPlace(i)); + Eigen::GpuDevice* gpu_device = device_context->eigen_device(); ASSERT_NE(nullptr, gpu_device); delete device_context; } @@ -32,11 +33,11 @@ TEST(Device, Init) { TEST(Device, CUDADeviceContext) { using paddle::platform::CUDADeviceContext; - using paddle::platform::GPUPlace; + using paddle::platform::CUDAPlace; int count = paddle::platform::GetCUDADeviceCount(); for (int i = 0; i < count; i++) { - CUDADeviceContext* device_context = new CUDADeviceContext(GPUPlace(i)); + CUDADeviceContext* device_context = new CUDADeviceContext(CUDAPlace(i)); Eigen::GpuDevice* gpu_device = device_context->eigen_device(); ASSERT_NE(nullptr, gpu_device); cudnnHandle_t cudnn_handle = device_context->cudnn_handle(); @@ -47,3 +48,39 @@ TEST(Device, CUDADeviceContext) { delete device_context; } } + +TEST(Device, DeviceContextPool) { + using paddle::platform::DeviceContextPool; + using paddle::platform::CUDADeviceContext; + using paddle::platform::Place; + using paddle::platform::CPUPlace; + using paddle::platform::CUDAPlace; + + DeviceContextPool& pool = DeviceContextPool::Instance(); + auto cpu_dev_ctx1 = pool.Get(CPUPlace()); + auto cpu_dev_ctx2 = pool.Get(CPUPlace()); + ASSERT_EQ(cpu_dev_ctx2, cpu_dev_ctx1); + + std::vector gpu_places; + int count = paddle::platform::GetCUDADeviceCount(); + for (int i = 0; i < count; ++i) { + auto dev_ctx = pool.Get(CUDAPlace(i)); + ASSERT_NE(dev_ctx, nullptr); + } +} + +int main(int argc, char** argv) { + std::vector places; + + places.emplace_back(paddle::platform::CPUPlace()); + int count = paddle::platform::GetCUDADeviceCount(); + for (int i = 0; i < count; ++i) { + places.emplace_back(paddle::platform::CUDAPlace(i)); + } + + VLOG(0) << " DeviceCount " << count; + paddle::platform::DeviceContextPool::Init(places); + + testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} diff --git a/paddle/platform/dynload/CMakeLists.txt b/paddle/platform/dynload/CMakeLists.txt index f4fda65907..cf2081b434 100644 --- a/paddle/platform/dynload/CMakeLists.txt +++ b/paddle/platform/dynload/CMakeLists.txt @@ -1,3 +1,4 @@ cc_library(dynamic_loader SRCS dynamic_loader.cc DEPS glog gflags enforce) nv_library(dynload_cuda SRCS cublas.cc cudnn.cc curand.cc nccl.cc DEPS dynamic_loader nccl) +cc_library(dynload_warpctc SRCS warpctc.cc DEPS dynamic_loader warpctc) diff --git a/paddle/platform/dynload/cublas.cc b/paddle/platform/dynload/cublas.cc index 9cd2a1f565..6aca716657 100644 --- a/paddle/platform/dynload/cublas.cc +++ b/paddle/platform/dynload/cublas.cc @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include +#include "paddle/platform/dynload/cublas.h" namespace paddle { namespace platform { diff --git a/paddle/platform/dynload/cudnn.cc b/paddle/platform/dynload/cudnn.cc index 76ec82e108..701f6240fe 100644 --- a/paddle/platform/dynload/cudnn.cc +++ b/paddle/platform/dynload/cudnn.cc @@ -44,7 +44,7 @@ CUDNN_DNN_ROUTINE_EACH_R7(DEFINE_WRAP); #ifdef PADDLE_USE_DSO bool HasCUDNN() { - std::call_once(cudnn_dso_flag, GetCudnnDsoHandle, &cudnn_dso_handle); + std::call_once(cudnn_dso_flag, GetCUDNNDsoHandle, &cudnn_dso_handle); return cudnn_dso_handle != nullptr; } diff --git a/paddle/platform/dynload/cudnn.h b/paddle/platform/dynload/cudnn.h index 8c937b37d7..b926347949 100644 --- a/paddle/platform/dynload/cudnn.h +++ b/paddle/platform/dynload/cudnn.h @@ -36,7 +36,7 @@ extern void EnforceCUDNNLoaded(const char* fn_name); auto operator()(Args... args) -> decltype(__name(args...)) { \ using cudnn_func = decltype(__name(args...)) (*)(Args...); \ std::call_once(cudnn_dso_flag, \ - paddle::platform::dynload::GetCudnnDsoHandle, \ + paddle::platform::dynload::GetCUDNNDsoHandle, \ &cudnn_dso_handle); \ EnforceCUDNNLoaded(#__name); \ void* p_##__name = dlsym(cudnn_dso_handle, #__name); \ diff --git a/paddle/platform/dynload/dynamic_loader.cc b/paddle/platform/dynload/dynamic_loader.cc index 7a82d06a0a..c8c09ae608 100644 --- a/paddle/platform/dynload/dynamic_loader.cc +++ b/paddle/platform/dynload/dynamic_loader.cc @@ -134,7 +134,7 @@ void GetCublasDsoHandle(void** dso_handle) { #endif } -void GetCudnnDsoHandle(void** dso_handle) { +void GetCUDNNDsoHandle(void** dso_handle) { #if defined(__APPLE__) || defined(__OSX__) GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.dylib", dso_handle, false); diff --git a/paddle/platform/dynload/dynamic_loader.h b/paddle/platform/dynload/dynamic_loader.h index c0e5452e5a..7b0c8c16d7 100644 --- a/paddle/platform/dynload/dynamic_loader.h +++ b/paddle/platform/dynload/dynamic_loader.h @@ -32,7 +32,7 @@ void GetCublasDsoHandle(void** dso_handle); * @param **dso_handle dso handler * */ -void GetCudnnDsoHandle(void** dso_handle); +void GetCUDNNDsoHandle(void** dso_handle); /** * @brief load the DSO of CURAND diff --git a/paddle/platform/dynload/nccl.cc b/paddle/platform/dynload/nccl.cc index 8f92b8d94d..4cec829a8a 100644 --- a/paddle/platform/dynload/nccl.cc +++ b/paddle/platform/dynload/nccl.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/platform/dynload/nccl.h" @@ -25,6 +25,11 @@ void *nccl_dso_handle; NCCL_RAND_ROUTINE_EACH(DEFINE_WRAP); +void LoadNCCLDSO() { + platform::call_once(nccl_dso_flag, + [] { GetNCCLDsoHandle(&nccl_dso_handle); }); +} + } // namespace dynload } // namespace platform } // namespace paddle diff --git a/paddle/platform/dynload/nccl.h b/paddle/platform/dynload/nccl.h index 981b2ab258..6c776afc97 100644 --- a/paddle/platform/dynload/nccl.h +++ b/paddle/platform/dynload/nccl.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -28,18 +28,18 @@ extern std::once_flag nccl_dso_flag; extern void* nccl_dso_handle; #ifdef PADDLE_USE_DSO -#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \ - struct DynLoad__##__name { \ - template \ - auto operator()(Args... args) -> decltype(__name(args...)) { \ - using nccl_func = decltype(__name(args...)) (*)(Args...); \ - platform::call_once(nccl_dso_flag, \ - paddle::platform::dynload::GetNCCLDsoHandle, \ - &nccl_dso_handle); \ - void* p_##__name = dlsym(nccl_dso_handle, #__name); \ - return reinterpret_cast(p_##__name)(args...); \ - } \ - }; \ +extern void LoadNCCLDSO(); + +#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \ + struct DynLoad__##__name { \ + template \ + auto operator()(Args... args) -> decltype(__name(args...)) { \ + using nccl_func = decltype(__name(args...)) (*)(Args...); \ + paddle::platform::dynload::LoadNCCLDSO(); \ + void* p_##__name = dlsym(nccl_dso_handle, #__name); \ + return reinterpret_cast(p_##__name)(args...); \ + } \ + }; \ extern DynLoad__##__name __name #else #define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \ @@ -63,6 +63,8 @@ extern void* nccl_dso_handle; __macro(ncclAllReduce); \ __macro(ncclBcast); \ __macro(ncclAllGather); \ + __macro(ncclGroupStart); \ + __macro(ncclGroupEnd); \ __macro(ncclReduce); \ __macro(ncclGetErrorString); diff --git a/paddle/platform/dynload/warpctc.cc b/paddle/platform/dynload/warpctc.cc new file mode 100644 index 0000000000..9b7d01a6e8 --- /dev/null +++ b/paddle/platform/dynload/warpctc.cc @@ -0,0 +1,30 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/platform/dynload/warpctc.h" + +namespace paddle { +namespace platform { +namespace dynload { + +std::once_flag warpctc_dso_flag; +void* warpctc_dso_handle = nullptr; + +#define DEFINE_WRAP(__name) DynLoad__##__name __name + +WARPCTC_ROUTINE_EACH(DEFINE_WRAP); + +} // namespace dynload +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/dynload/warpctc.h b/paddle/platform/dynload/warpctc.h new file mode 100644 index 0000000000..acafcaff2c --- /dev/null +++ b/paddle/platform/dynload/warpctc.h @@ -0,0 +1,63 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include "ctc.h" +#include "paddle/platform/dynload/dynamic_loader.h" + +namespace paddle { +namespace platform { +namespace dynload { + +extern std::once_flag warpctc_dso_flag; +extern void* warpctc_dso_handle; + +/** + * The following macro definition can generate structs + * (for each function) to dynamic load warpctc routine + * via operator overloading. + */ +#define DYNAMIC_LOAD_WARPCTC_WRAP(__name) \ + struct DynLoad__##__name { \ + template \ + auto operator()(Args... args) -> decltype(__name(args...)) { \ + using warpctcFunc = decltype(__name(args...)) (*)(Args...); \ + std::call_once(warpctc_dso_flag, \ + paddle::platform::dynload::GetWarpCTCDsoHandle, \ + &warpctc_dso_handle); \ + void* p_##_name = dlsym(warpctc_dso_handle, #__name); \ + return reinterpret_cast(p_##_name)(args...); \ + } \ + }; \ + extern DynLoad__##__name __name + +#define DECLARE_DYNAMIC_LOAD_WARPCTC_WRAP(__name) \ + DYNAMIC_LOAD_WARPCTC_WRAP(__name) + +#define WARPCTC_ROUTINE_EACH(__macro) \ + __macro(get_warpctc_version); \ + __macro(ctcGetStatusString); \ + __macro(compute_ctc_loss); \ + __macro(get_workspace_size) + +WARPCTC_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_WARPCTC_WRAP); + +#undef DYNAMIC_LOAD_WARPCTC_WRAP + +} // namespace dynload +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h index 5abd4d4a34..d1c7be0790 100644 --- a/paddle/platform/enforce.h +++ b/paddle/platform/enforce.h @@ -22,6 +22,7 @@ limitations under the License. */ #include #include +#include "paddle/platform/macros.h" #include "paddle/string/printf.h" #include "paddle/string/to_string.h" diff --git a/paddle/platform/for_range.h b/paddle/platform/for_range.h new file mode 100644 index 0000000000..694a66d9ac --- /dev/null +++ b/paddle/platform/for_range.h @@ -0,0 +1,85 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace platform { + +template +struct ForRange { + ForRange(const DeviceContext& dev_ctx, size_t limit); + + template + void operator()(Function func) const; +}; + +template <> +struct ForRange { + ForRange(const CPUDeviceContext& dev_ctx, size_t limit) : limit_(limit) {} + + template + void operator()(Function func) const { + for (size_t i = 0; i < limit_; ++i) { + func(i); + } + } + + size_t limit_; +}; + +#ifdef __NVCC__ +template +__global__ static void ForRangeElemwiseOpGridIsOne(Function func) { + size_t idx = static_cast(threadIdx.x); + func(idx); +} + +template +__global__ static void ForRangeElemwiseOp(Function func, int limit) { + size_t idx = static_cast(blockIdx.x * blockDim.x + threadIdx.x); + if (idx < limit) { + func(idx); + } +} + +template <> +struct ForRange { + ForRange(const CUDADeviceContext& dev_ctx, size_t limit) + : dev_ctx_(dev_ctx), limit_(static_cast(limit)) {} + + template + inline void operator()(Function func) const { + constexpr int num_threads = 1024; + int block_size = limit_ <= num_threads ? limit_ : num_threads; + int grid_size = (limit_ + num_threads - 1) / num_threads; + + if (grid_size == 1) { + ForRangeElemwiseOpGridIsOne<<<1, block_size, 0, dev_ctx_.stream()>>>( + func); + } else { + ForRangeElemwiseOp<<>>( + func, limit_); + } + } + + const CUDADeviceContext& dev_ctx_; + int limit_; +}; + +#endif + +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/gpu_info.cc b/paddle/platform/gpu_info.cc index 4fa2eaed31..7037551d75 100644 --- a/paddle/platform/gpu_info.cc +++ b/paddle/platform/gpu_info.cc @@ -73,19 +73,20 @@ size_t GpuMaxChunkSize() { size_t available = 0; GpuMemoryUsage(available, total); - - // Reserving the rest memory for page tables, etc. - size_t reserving = 0.05 * total; - + VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/" + << total / 1024 / 1024 << "M"; + size_t reserving = static_cast(0.05 * total); // If available less than minimum chunk size, no usable memory exists. available = - std::max(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(), - reserving) - - reserving; + std::min(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(), + total - reserving); + + // Reserving the rest memory for page tables, etc. - size_t allocating = FLAGS_fraction_of_gpu_memory_to_use * total; + size_t allocating = static_cast(FLAGS_fraction_of_gpu_memory_to_use * + (total - reserving)); - PADDLE_ENFORCE_LT(allocating, available); + PADDLE_ENFORCE_LE(allocating, available); return allocating; } @@ -96,17 +97,6 @@ void GpuMemcpyAsync(void *dst, const void *src, size_t count, "cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync"); } -void GpuMemcpySync(void *dst, const void *src, size_t count, - enum cudaMemcpyKind kind) { - PADDLE_ENFORCE(cudaMemcpy(dst, src, count, kind), - "cudaMemcpy failed in paddle::platform::GpuMemcpySync"); - // note: cudaMemcpy may actually be asynchronous with respect to the caller, - // block on stream 0 to make sure the copy has completed - PADDLE_ENFORCE( - cudaStreamSynchronize(0), - "cudaStreamSynchronize failed in paddle::platform::GpuMemcpySync"); -} - void GpuMemcpyPeer(void *dst, int dst_device, const void *src, int src_device, size_t count, cudaStream_t stream) { PADDLE_ENFORCE( diff --git a/paddle/platform/gpu_info.h b/paddle/platform/gpu_info.h index db961f3838..d05131fa41 100644 --- a/paddle/platform/gpu_info.h +++ b/paddle/platform/gpu_info.h @@ -52,10 +52,6 @@ size_t GpuMaxChunkSize(); void GpuMemcpyAsync(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream); -//! Copy memory from address src to dst synchronously. -void GpuMemcpySync(void *dst, const void *src, size_t count, - enum cudaMemcpyKind kind); - //! Copy memory from one device to another device. void GpuMemcpyPeer(void *dst, int dst_device, const void *src, int src_device, size_t count, cudaStream_t stream); diff --git a/paddle/platform/hostdevice.h b/paddle/platform/hostdevice.h index eb2df291cc..fa4659ed29 100644 --- a/paddle/platform/hostdevice.h +++ b/paddle/platform/hostdevice.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #pragma once #ifdef __CUDACC__ diff --git a/paddle/platform/mkldnn_helper.h b/paddle/platform/mkldnn_helper.h new file mode 100644 index 0000000000..cd52a8b4c4 --- /dev/null +++ b/paddle/platform/mkldnn_helper.h @@ -0,0 +1,35 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include + +namespace paddle { +namespace platform { + +using MKLDNNStream = mkldnn::stream; +using MKLDNNEngine = mkldnn::engine; +using MKLDNNMemory = mkldnn::memory; +using MKLDNNPrimitive = mkldnn::primitive; +using MKLDNNPrimitiveDesc = mkldnn::handle; + +typedef std::unique_ptr MKLDNNStreamPtr; +typedef std::unique_ptr MKLDNNEnginePtr; +typedef std::unique_ptr MKLDNNMemoryPtr; +typedef std::unique_ptr MKLDNNPrimitivePtr; +typedef std::unique_ptr MKLDNNPrimitiveDescPtr; + +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/nccl_test.cu b/paddle/platform/nccl_test.cu index c99dae68be..ef6d845874 100644 --- a/paddle/platform/nccl_test.cu +++ b/paddle/platform/nccl_test.cu @@ -1,28 +1,30 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include #include "glog/logging.h" #include "gtest/gtest.h" + +#include "paddle/framework/init.h" #include "paddle/platform/device_context.h" #include "paddle/platform/dynload/nccl.h" #include "paddle/platform/enforce.h" #include "paddle/platform/gpu_info.h" -#include -#include -#include - static int dev_count = 0; namespace paddle { @@ -32,6 +34,7 @@ TEST(NCCL, init) { std::vector comms; comms.resize(dev_count); PADDLE_ENFORCE(dynload::ncclCommInitAll(comms.data(), dev_count, nullptr)); + for (int i = 0; i < dev_count; ++i) { dynload::ncclCommDestroy(comms[i]); } @@ -47,7 +50,7 @@ struct PerThreadData { T* RecvBuff() { return thrust::raw_pointer_cast(recv_buff.data()); } - PerThreadData(int gpu_id, size_t size) : dev_ctx(GPUPlace(gpu_id)) { + PerThreadData(int gpu_id, size_t size) : dev_ctx(CUDAPlace(gpu_id)) { send_buff.resize(size); for (size_t i = 0; i < size; ++i) { send_buff[i] = static_cast(i); @@ -62,7 +65,7 @@ TEST(NCCL, all_reduce) { std::vector comms; comms.resize(dev_count); VLOG(1) << "Initializing ncclComm"; - PADDLE_ENFORCE(dynload::ncclCommInitAll(comms.data(), dev_count, nullptr)); + dynload::ncclCommInitAll(comms.data(), dev_count, nullptr); VLOG(1) << "ncclComm initialized"; VLOG(1) << "Creating thread data"; std::vector>> data; @@ -131,6 +134,18 @@ int main(int argc, char** argv) { << dev_count; return 0; } + + std::vector places; + + places.emplace_back(paddle::platform::CPUPlace()); + int count = paddle::platform::GetCUDADeviceCount(); + for (int i = 0; i < count; ++i) { + places.emplace_back(paddle::platform::CUDAPlace(i)); + } + + VLOG(0) << " DeviceCount " << count; + paddle::platform::DeviceContextPool::Init(places); + testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } diff --git a/paddle/platform/place.cc b/paddle/platform/place.cc index 856e54df89..f05260ccac 100644 --- a/paddle/platform/place.cc +++ b/paddle/platform/place.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/platform/place.h" @@ -23,7 +23,9 @@ class PlacePrinter : public boost::static_visitor<> { public: explicit PlacePrinter(std::ostream &os) : os_(os) {} void operator()(const CPUPlace &) { os_ << "CPUPlace"; } - void operator()(const GPUPlace &p) { os_ << "GPUPlace(" << p.device << ")"; } + void operator()(const CUDAPlace &p) { + os_ << "CUDAPlace(" << p.device << ")"; + } private: std::ostream &os_; @@ -36,20 +38,31 @@ static Place the_default_place; void set_place(const Place &place) { the_default_place = place; } const Place &get_place() { return the_default_place; } -const GPUPlace default_gpu() { return GPUPlace(0); } +const CUDAPlace default_gpu() { return CUDAPlace(0); } const CPUPlace default_cpu() { return CPUPlace(); } bool is_gpu_place(const Place &p) { - return boost::apply_visitor(IsGPUPlace(), p); -} -bool is_cpu_place(const Place &p) { - return !boost::apply_visitor(IsGPUPlace(), p); + return boost::apply_visitor(IsCUDAPlace(), p); } +bool is_cpu_place(const Place &p) { return !is_gpu_place(p); } + bool places_are_same_class(const Place &p1, const Place &p2) { return p1.which() == p2.which(); } +bool is_same_place(const Place &p1, const Place &p2) { + if (places_are_same_class(p1, p2)) { + if (is_cpu_place(p1)) { + return true; + } else { + return boost::get(p1) == boost::get(p2); + } + } else { + return false; + } +} + std::ostream &operator<<(std::ostream &os, const Place &p) { detail::PlacePrinter printer(os); boost::apply_visitor(printer, p); diff --git a/paddle/platform/place.h b/paddle/platform/place.h index 5370360a7d..fbb43fa043 100644 --- a/paddle/platform/place.h +++ b/paddle/platform/place.h @@ -15,7 +15,7 @@ limitations under the License. */ #pragma once #include - +#include "paddle/platform/enforce.h" #include "paddle/platform/variant.h" namespace paddle { @@ -31,46 +31,67 @@ struct CPUPlace { inline bool operator!=(const CPUPlace &) const { return false; } }; -struct GPUPlace { - GPUPlace() : GPUPlace(0) {} - explicit GPUPlace(int d) : device(d) {} +struct CUDAPlace { + CUDAPlace() : CUDAPlace(0) {} + explicit CUDAPlace(int d) : device(d) {} inline int GetDeviceId() const { return device; } // needed for variant equality comparison - inline bool operator==(const GPUPlace &o) const { return device == o.device; } - inline bool operator!=(const GPUPlace &o) const { return !(*this == o); } + inline bool operator==(const CUDAPlace &o) const { + return device == o.device; + } + inline bool operator!=(const CUDAPlace &o) const { return !(*this == o); } int device; }; -struct IsGPUPlace : public boost::static_visitor { +struct IsCUDAPlace : public boost::static_visitor { bool operator()(const CPUPlace &) const { return false; } - bool operator()(const GPUPlace &gpu) const { return true; } + bool operator()(const CUDAPlace &gpu) const { return true; } }; -// Define the max number of Place in bit length. i.e., the max number of places -// should be less equal than 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT) -#define NUM_PLACE_TYPE_LIMIT_IN_BIT 4 - -typedef boost::variant Place; +typedef boost::variant Place; -// static check number of place types is less equal than -// 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT) -BOOST_MPL_ASSERT((boost::mpl::less_equal< - Place::types::size, - boost::mpl::long_<1 << NUM_PLACE_TYPE_LIMIT_IN_BIT>>)); +using PlaceList = std::vector; void set_place(const Place &); const Place &get_place(); -const GPUPlace default_gpu(); +const CUDAPlace default_gpu(); const CPUPlace default_cpu(); bool is_gpu_place(const Place &); bool is_cpu_place(const Place &); bool places_are_same_class(const Place &, const Place &); +bool is_same_place(const Place &, const Place &); std::ostream &operator<<(std::ostream &, const Place &); +template +struct PlaceVisitorWrapper + : public boost::static_visitor { + const Visitor &visitor_; + explicit PlaceVisitorWrapper(const Visitor &visitor) : visitor_(visitor) {} + + typename Visitor::result_type operator()(const CPUPlace &cpu) const { + return visitor_(cpu); + } + + typename Visitor::result_type operator()(const CUDAPlace &cuda) const { +#ifdef PADDLE_WITH_CUDA + return visitor_(cuda); +#else + PADDLE_THROW("Paddle is not compiled with CUDA. Cannot visit cuda device"); + return typename Visitor::result_type(); +#endif + } +}; + +template +typename Visitor::result_type VisitPlace(const Place &place, + const Visitor &visitor) { + return boost::apply_visitor(PlaceVisitorWrapper(visitor), place); +} + } // namespace platform } // namespace paddle diff --git a/paddle/platform/place_test.cc b/paddle/platform/place_test.cc index 33e2e5a439..150b2d3b1f 100644 --- a/paddle/platform/place_test.cc +++ b/paddle/platform/place_test.cc @@ -1,10 +1,23 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include "paddle/platform/place.h" #include #include "gtest/gtest.h" TEST(Place, Equality) { paddle::platform::CPUPlace cpu; - paddle::platform::GPUPlace g0(0), g1(1), gg0(0); + paddle::platform::CUDAPlace g0(0), g1(1), gg0(0); EXPECT_EQ(cpu, cpu); EXPECT_EQ(g0, g0); @@ -22,6 +35,7 @@ TEST(Place, Default) { EXPECT_TRUE(paddle::platform::is_gpu_place(paddle::platform::default_gpu())); EXPECT_TRUE(paddle::platform::is_cpu_place(paddle::platform::default_cpu())); + EXPECT_FALSE(paddle::platform::is_cpu_place(paddle::platform::get_place())); paddle::platform::set_place(paddle::platform::CPUPlace()); EXPECT_TRUE(paddle::platform::is_cpu_place(paddle::platform::get_place())); } @@ -29,8 +43,8 @@ TEST(Place, Default) { TEST(Place, Print) { { std::stringstream ss; - ss << paddle::platform::GPUPlace(1); - EXPECT_EQ("GPUPlace(1)", ss.str()); + ss << paddle::platform::CUDAPlace(1); + EXPECT_EQ("CUDAPlace(1)", ss.str()); } { std::stringstream ss; diff --git a/paddle/platform/profiler.cc b/paddle/platform/profiler.cc new file mode 100644 index 0000000000..7e2e2d968e --- /dev/null +++ b/paddle/platform/profiler.cc @@ -0,0 +1,329 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/platform/profiler.h" +#include +#include +#include "glog/logging.h" + +namespace paddle { +namespace platform { + +// The profiler state, the initial value is ProfilerState::kDisabled +static ProfilerState g_state = ProfilerState::kDisabled; +// To record which timer the profiler used, CUDA or CPU. +static std::string g_profiler_place = ""; +// The thread local event list only can be accessed by the specific thread +// The thread index of each thread +static thread_local int32_t g_thread_id; +// The g_next_thread_id is a global counter for threads, by the g_thread_id and +// g_next_thread_id, we can know how many threads have created EventList. +static uint32_t g_next_thread_id = 0; +// The global mutex +static std::mutex g_all_event_lists_mutex; +// The total event lists of all threads +static std::list> g_all_event_lists; +// The thread local event list only can be accessed by the specific thread +static thread_local std::shared_ptr g_event_list; + +inline uint64_t GetTimeInNsec() { + using clock = std::conditional::type; + return std::chrono::duration_cast( + clock::now().time_since_epoch()) + .count(); +} + +Event::Event(EventKind kind, std::string name, uint32_t thread_id, + DeviceContext* dev_ctx) + : kind_(kind), name_(name), thread_id_(thread_id), has_cuda_(false) { +#ifdef PADDLE_WITH_CUDA + auto* cuda_dev_ctx = static_cast(dev_ctx); + if (cuda_dev_ctx) { + PADDLE_ENFORCE(cudaGetDevice(&device_)); + PADDLE_ENFORCE(cudaEventCreate(&event_)); + auto stream = cuda_dev_ctx->stream(); + PADDLE_ENFORCE(cudaEventRecord(event_, stream)); + has_cuda_ = true; + } +#endif + cpu_ns_ = GetTimeInNsec(); +} + +std::string Event::kind() const { + switch (kind_) { + case EventKind::kMark: + return "mark"; + case EventKind::kPushRange: + return "push"; + case EventKind::kPopRange: + return "pop"; + } + PADDLE_THROW("Unknown EventKind."); +} + +double Event::CpuElapsedMs(const Event& e) const { + return (e.cpu_ns_ - cpu_ns_) / (1000000.0); +} + +double Event::CudaElapsedMs(const Event& e) const { +#ifdef PADDLE_WITH_CUDA + PADDLE_ENFORCE(e.has_cuda() && has_cuda()); + PADDLE_ENFORCE(e.device() == device()); + PADDLE_ENFORCE(cudaEventSynchronize(event_)); + PADDLE_ENFORCE(cudaEventSynchronize(e.event())); + float ms; + PADDLE_ENFORCE(cudaEventElapsedTime(&ms, event_, e.event())); + return ms; +#else + PADDLE_THROW("CUDA is not enabled"); +#endif +} + +#ifdef PADDLE_WITH_CUDA +static void ForEachDevice(std::function func) { + auto original_device = GetCurrentDeviceId(); + int count = GetCUDADeviceCount(); + for (int i = 0; i < count; i++) { + SetDeviceId(i); + func(i); + } + SetDeviceId(original_device); +} +#endif + +inline EventList& GetEventList() { + if (!g_event_list) { + std::lock_guard guard(g_all_event_lists_mutex); + g_event_list = std::make_shared(); + g_thread_id = g_next_thread_id++; + g_all_event_lists.emplace_front(g_event_list); + } + return *g_event_list; +} + +void Mark(const std::string& name, DeviceContext* dev_ctx) { + GetEventList().Record(EventKind::kMark, name, g_thread_id, dev_ctx); +} + +void PushEvent(const std::string& name, DeviceContext* dev_ctx) { + GetEventList().Record(EventKind::kPushRange, name, g_thread_id, dev_ctx); +} + +void PopEvent(const std::string& name, DeviceContext* dev_ctx) { + GetEventList().Record(EventKind::kPopRange, name, g_thread_id, dev_ctx); +} + +RecordEvent::RecordEvent(const std::string& name, DeviceContext* dev_ctx) { + if (g_state == ProfilerState::kDisabled) return; + dev_ctx_ = dev_ctx; + name_ = name; + PushEvent(name_, dev_ctx_); +} + +RecordEvent::~RecordEvent() { + if (g_state == ProfilerState::kDisabled) return; + PopEvent(name_, dev_ctx_); +} + +void EnableProfiler(ProfilerState state) { + PADDLE_ENFORCE(state != ProfilerState::kDisabled, + "Can't enbale profling, since the input state is ", + "ProfilerState::kDisabled"); + PADDLE_ENFORCE(g_state == ProfilerState::kDisabled, + "The profiling state should be disabled when calling ", + "EnableProfiler."); + g_state = state; + g_profiler_place = (g_state == ProfilerState::kCUDA) ? "CUDA" : "CPU"; +#ifdef PADDLE_WITH_CUDA + if (g_state == ProfilerState::kCUDA) { + // Generate some dummy evenets first to reduce the startup overhead. + for (int i = 0; i < 5; i++) { + ForEachDevice([](int d) { + DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(d)); + Mark("_cuda_startup_", dev_ctx); + dev_ctx->Wait(); + }); + } + } +#endif + // Mark the profiling start. + Mark("_start_profiler_", nullptr); +} + +std::vector> DisableProfiler() { + PADDLE_ENFORCE(g_state != ProfilerState::kDisabled, + "Can't disable profiling, since it's not starting."); + // Mark the profiling stop. + Mark("_stop_profiler_", nullptr); + g_state = ProfilerState::kDisabled; + std::vector> result; + std::lock_guard guard(g_all_event_lists_mutex); + for (auto it = g_all_event_lists.begin(); it != g_all_event_lists.end(); + ++it) { + result.emplace_back((*it)->Reduce()); + } + return result; +} + +void ParseEvents(std::vector>& events, + EventSortingKey sorted_by) { + if (g_profiler_place == "") return; + + std::string sorted_domain; + std::function sorted_func; + switch (sorted_by) { + case EventSortingKey::kCalls: + sorted_domain = "number of calls"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.calls > b.calls; + }; + break; + case EventSortingKey::kTotal: + sorted_domain = "total time"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.total_time > b.total_time; + }; + break; + case EventSortingKey::kMin: + sorted_domain = "minimum time"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.min_time > b.min_time; + }; + break; + case EventSortingKey::kMax: + sorted_domain = "maximum time"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.max_time > b.max_time; + }; + break; + case EventSortingKey::kAve: + sorted_domain = "average time"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.ave_time > b.ave_time; + }; + break; + default: + sorted_domain = "event end time"; + } + + std::vector> events_table; + size_t max_name_width = 0; + for (size_t i = 0; i < events.size(); i++) { + std::list pushed_events; + std::vector event_items; + std::unordered_map event_idx; + + for (size_t j = 0; j < events[i].size(); j++) { + if (events[i][j].kind() == "push") { + pushed_events.push_back(events[i][j]); + } else if (events[i][j].kind() == "pop") { + std::list::reverse_iterator rit = pushed_events.rbegin(); + while (rit != pushed_events.rend() && + rit->name() != events[i][j].name()) { + ++rit; + } + + if (rit != pushed_events.rend()) { + double event_time = (g_profiler_place == "CUDA") + ? rit->CudaElapsedMs(events[i][j]) + : rit->CpuElapsedMs(events[i][j]); + std::string event_name = + "thread" + std::to_string(rit->thread_id()) + "::" + rit->name(); + max_name_width = std::max(max_name_width, event_name.size()); + + if (event_idx.find(event_name) == event_idx.end()) { + event_idx[event_name] = event_items.size(); + EventItem event_item = {event_name, 1, event_time, + event_time, event_time, event_time}; + event_items.push_back(event_item); + } else { + int index = event_idx[event_name]; + event_items[index].calls += 1; + // total time + event_items[index].total_time += event_time; + // min time + event_items[index].min_time = + std::min(event_time, event_items[index].min_time); + // max time + event_items[index].max_time = + std::max(event_time, event_items[index].max_time); + } + + // remove the push marker from the list + pushed_events.erase((++rit).base()); + } else { + LOG(WARNING) << "Cannot find the push marker of event \'" + << events[i][j].name() + << "\', which will be ignored in profiling report."; + } + } + } + // average time + for (auto& item : event_items) { + item.ave_time = item.total_time / item.calls; + } + // sort + if (sorted_by != EventSortingKey::kDefault) { + std::sort(event_items.begin(), event_items.end(), sorted_func); + } + + events_table.push_back(event_items); + // log warning if there are events with `push` but without `pop` + std::list::reverse_iterator rit = pushed_events.rbegin(); + while (rit != pushed_events.rend()) { + LOG(WARNING) << "Cannot find the pop marker of event \'" << rit->name() + << "\', which will be ignored in profiling report."; + ++rit; + } + } + + // Print report + PrintProfilingReport(events_table, sorted_domain, max_name_width + 4, 12); +} + +void PrintProfilingReport(std::vector>& events_table, + std::string& sorted_domain, const size_t name_width, + const size_t data_width) { + // Output header information + std::cout << "\n------------------------->" + << " Profiling Report " + << "<-------------------------\n\n"; + std::cout << "Place: " << g_profiler_place << std::endl; + std::cout << "Time unit: ms" << std::endl; + std::cout << "Sorted by " << sorted_domain + << " in descending order in the same thread\n\n"; + // Output events table + std::cout.setf(std::ios::left); + std::cout << std::setw(name_width) << "Event" << std::setw(data_width) + << "Calls" << std::setw(data_width) << "Total" + << std::setw(data_width) << "Min." << std::setw(data_width) + << "Max." << std::setw(data_width) << "Ave." << std::endl; + for (size_t i = 0; i < events_table.size(); ++i) { + for (size_t j = 0; j < events_table[i].size(); ++j) { + EventItem& event_item = events_table[i][j]; + std::cout << std::setw(name_width) << event_item.name + << std::setw(data_width) << event_item.calls + << std::setw(data_width) << event_item.total_time + << std::setw(data_width) << event_item.min_time + << std::setw(data_width) << event_item.max_time + << std::setw(data_width) << event_item.ave_time << std::endl; + } + } + std::cout << std::endl; +} + +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/profiler.h b/paddle/platform/profiler.h new file mode 100644 index 0000000000..6df48ef880 --- /dev/null +++ b/paddle/platform/profiler.h @@ -0,0 +1,142 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include +#include +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace platform { + +enum EventKind { kMark, kPushRange, kPopRange }; + +class Event { + public: + // The DeviceContext is used to get the cuda stream. + // If CPU profiling mode, can pass nullptr. + Event(EventKind kind, std::string name, uint32_t thread_id, + DeviceContext* dev_ctx); + + std::string kind() const; + std::string name() const { return name_; } + uint32_t thread_id() const { return thread_id_; } + bool has_cuda() const { return has_cuda_; } + +#ifdef PADDLE_WITH_CUDA + cudaEvent_t event() const { return event_; } + int device() const { return device_; } +#endif + + double CpuElapsedMs(const Event& e) const; + double CudaElapsedMs(const Event& e) const; + + private: + EventKind kind_; + std::string name_; + uint32_t thread_id_; + int64_t cpu_ns_; + bool has_cuda_; +#ifdef PADDLE_WITH_CUDA + cudaEvent_t event_ = nullptr; + int device_ = -1; +#endif +}; + +struct EventList { + constexpr static size_t kMB = 1024 * 1024; + constexpr static size_t kEventBlockSize = 16 * kMB; + constexpr static size_t kEventSize = sizeof(Event); + constexpr static size_t kEventAlign = alignof(Event); + constexpr static size_t kNumBlock = + kEventBlockSize / + ((kEventSize + kEventAlign - 1) / kEventAlign * kEventAlign); + + template + void Record(Args&&... args) { + if (event_blocks.empty() || event_blocks.front().size() == kNumBlock) { + event_blocks.emplace_front(); + event_blocks.front().reserve(kNumBlock); + } + event_blocks.front().emplace_back(std::forward(args)...); + } + + std::vector Reduce() { + std::vector result; + for (auto& block : event_blocks) { + result.insert(result.begin(), std::make_move_iterator(block.begin()), + std::make_move_iterator(block.end())); + } + event_blocks.clear(); + return result; + } + + std::forward_list> event_blocks; +}; + +enum ProfilerState { + kDisabled, // disabled state + kCPU, // CPU profiling state + kCUDA, // GPU profiling state +}; + +void Mark(const std::string& name, DeviceContext* dev_ctx); + +void PushEvent(const std::string& name, DeviceContext* dev_ctx); + +void PopEvent(const std::string& name, DeviceContext* dev_ctx); + +struct RecordEvent { + explicit RecordEvent(const std::string& name, DeviceContext* dev_ctx); + + ~RecordEvent(); + + // The device context is used by Event to get the current cuda stream. + DeviceContext* dev_ctx_; + // Event name + std::string name_; +}; + +// Enable the profiling function. +void EnableProfiler(ProfilerState state); + +// Return the event list of all threads. Asummed the returned value calls +// event_lists, event_lists[i][j] represents the j-th Event of i-th thread. +std::vector> DisableProfiler(); + +// The information of each event given in the profiling report +struct EventItem { + std::string name; + int calls; + double total_time; + double min_time; + double max_time; + double ave_time; +}; + +// Candidate keys to sort the profiling report +enum EventSortingKey { kDefault, kCalls, kTotal, kMin, kMax, kAve }; + +// Parse the event list and output the profiling report +void ParseEvents(std::vector>&, + EventSortingKey sorted_by = EventSortingKey::kDefault); + +// Print results +void PrintProfilingReport(std::vector>& events_table, + std::string& sorted_domain, const size_t name_width, + const size_t data_width); +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/profiler_test.cc b/paddle/platform/profiler_test.cc new file mode 100644 index 0000000000..13dea713c7 --- /dev/null +++ b/paddle/platform/profiler_test.cc @@ -0,0 +1,131 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/platform/profiler.h" +#include "gtest/gtest.h" + +TEST(Event, CpuElapsedTime) { + using paddle::platform::Event; + using paddle::platform::EventKind; + + Event start_event(EventKind::kPushRange, "test", 0, nullptr); + EXPECT_TRUE(start_event.has_cuda() == false); + int counter = 0; + while (counter != 1000) { + counter++; + } + Event stop_event(EventKind::kPopRange, "test", 0, nullptr); + EXPECT_GT(start_event.CpuElapsedMs(stop_event), 0); +} + +#ifdef PADDLE_WITH_CUDA +TEST(Event, CudaElapsedTime) { + using paddle::platform::DeviceContext; + using paddle::platform::CUDADeviceContext; + using paddle::platform::CUDAPlace; + using paddle::platform::Event; + using paddle::platform::EventKind; + + DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(0)); + Event start_event(EventKind::kPushRange, "test", 0, dev_ctx); + EXPECT_TRUE(start_event.has_cuda() == true); + int counter = 0; + while (counter != 1000) { + counter++; + } + Event stop_event(EventKind::kPopRange, "test", 0, dev_ctx); + EXPECT_GT(start_event.CudaElapsedMs(stop_event), 0); +} +#endif + +TEST(RecordEvent, RecordEvent) { + using paddle::platform::DeviceContext; + using paddle::platform::Event; + using paddle::platform::EventKind; + using paddle::platform::RecordEvent; + using paddle::platform::ProfilerState; + using paddle::platform::EventSortingKey; + + ProfilerState state = ProfilerState::kCPU; + DeviceContext* dev_ctx = nullptr; +#ifdef PADDLE_WITH_CUDA + using paddle::platform::CUDADeviceContext; + using paddle::platform::CUDAPlace; + state = ProfilerState::kCUDA; + dev_ctx = + new paddle::platform::CUDADeviceContext(paddle::platform::CUDAPlace(0)); +#endif + EnableProfiler(state); + + /* Usage 1: + * PushEvent(evt_name, dev_ctx); + * ... + * code to be analyzed + * ... + * PopEvent(evt_name, dev_ctx); + */ + for (int loop = 0; loop < 3; ++loop) { + for (int i = 1; i < 5; ++i) { + std::string name = "op_" + std::to_string(i); + PushEvent(name, dev_ctx); + int counter = 1; + while (counter != i * 1000) counter++; + PopEvent(name, dev_ctx); + } + } + + /* Usage 2: + * { + * RecordEvent record_event(name, dev_ctx); + * ... + * code to be analyzed + * ... + * } + */ + for (int i = 1; i < 5; ++i) { + std::string name = "evs_op_" + std::to_string(i); + RecordEvent record_event(name, dev_ctx); + int counter = 1; + while (counter != i * 1000) counter++; + } + + // Bad Usage: + PushEvent("event_without_pop", dev_ctx); + PopEvent("event_without_push", dev_ctx); + std::vector> events = paddle::platform::DisableProfiler(); + // Will remove parsing-related code from test later + ParseEvents(events, EventSortingKey::kTotal); + + int cuda_startup_count = 0; + int start_profiler_count = 0; + int stop_profiler_count = 0; + for (size_t i = 0; i < events.size(); ++i) { + for (size_t j = 0; j < events[i].size(); ++j) { + if (events[i][j].name() == "_cuda_startup_") ++cuda_startup_count; + if (events[i][j].name() == "_start_profiler_") ++start_profiler_count; + if (events[i][j].name() == "_stop_profiler_") ++stop_profiler_count; + if (events[i][j].name() == "push") { + EXPECT_EQ(events[i][j + 1].name(), "pop"); +#ifdef PADDLE_WITH_CUDA + EXPECT_GT(events[i][j].CudaElapsedMs(events[i][j + 1]), 0); +#else + EXPECT_GT(events[i][j].CpuElapsedMs(events[i][j + 1]), 0); +#endif + } + } + } + EXPECT_EQ(cuda_startup_count % 5, 0); + EXPECT_EQ(start_profiler_count, 1); + EXPECT_EQ(stop_profiler_count, 1); +} diff --git a/paddle/platform/transform.h b/paddle/platform/transform.h index bb9d59ec0a..a88902b164 100644 --- a/paddle/platform/transform.h +++ b/paddle/platform/transform.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once @@ -31,7 +31,7 @@ namespace paddle { namespace platform { // Transform on host or device. It provides the same API in std library. -template +template struct Transform { template void operator()(const DeviceContext& context, InputIter first, InputIter last, @@ -45,16 +45,16 @@ struct Transform { }; template <> -struct Transform { +struct Transform { template - void operator()(const DeviceContext& context, InputIter first, InputIter last, - OutputIter result, UnaryOperation op) { + void operator()(const platform::CPUDeviceContext& context, InputIter first, + InputIter last, OutputIter result, UnaryOperation op) { std::transform(first, last, result, op); } template - void operator()(const DeviceContext& context, InputIter1 first1, + void operator()(const platform::CPUDeviceContext& context, InputIter1 first1, InputIter1 last1, InputIter2 first2, OutputIter result, BinaryOperation op) { std::transform(first1, last1, first2, result, op); @@ -63,27 +63,25 @@ struct Transform { #ifdef __NVCC__ template <> -struct Transform { +struct Transform { template - void operator()(const DeviceContext& context, InputIter first, InputIter last, - OutputIter result, UnaryOperation op) { + void operator()(const platform::CUDADeviceContext& context, InputIter first, + InputIter last, OutputIter result, UnaryOperation op) { auto place = context.GetPlace(); PADDLE_ENFORCE(is_gpu_place(place), "It must use GPU place."); - auto& ctx = reinterpret_cast(context); - thrust::transform(thrust::cuda::par.on(ctx.stream()), + thrust::transform(thrust::cuda::par.on(context.stream()), details::DevPtrCast(first), details::DevPtrCast(last), details::DevPtrCast(result), op); } template - void operator()(const DeviceContext& context, InputIter1 first1, + void operator()(const platform::CUDADeviceContext& context, InputIter1 first1, InputIter1 last1, InputIter2 first2, OutputIter result, BinaryOperation op) { auto place = context.GetPlace(); PADDLE_ENFORCE(is_gpu_place(place), "It must use GPU place."); - auto& ctx = reinterpret_cast(context); - thrust::transform(thrust::cuda::par.on(ctx.stream()), + thrust::transform(thrust::cuda::par.on(context.stream()), details::DevPtrCast(first1), details::DevPtrCast(last1), details::DevPtrCast(first2), details::DevPtrCast(result), op); diff --git a/paddle/platform/transform_test.cu b/paddle/platform/transform_test.cu index c76cab80e4..af9204a0a7 100644 --- a/paddle/platform/transform_test.cu +++ b/paddle/platform/transform_test.cu @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include #include "paddle/memory/memcpy.h" @@ -39,7 +39,7 @@ TEST(Transform, CPUUnary) { using namespace paddle::platform; CPUDeviceContext ctx; float buf[4] = {0.1, 0.2, 0.3, 0.4}; - Transform trans; + Transform trans; trans(ctx, buf, buf + 4, buf, Scale(10)); for (int i = 0; i < 4; ++i) { ASSERT_NEAR(buf[i], static_cast(i + 1), 1e-5); @@ -49,15 +49,15 @@ TEST(Transform, CPUUnary) { TEST(Transform, GPUUnary) { using namespace paddle::platform; using namespace paddle::memory; - GPUPlace gpu0(0); + CUDAPlace gpu0(0); CUDADeviceContext ctx(gpu0); float cpu_buf[4] = {0.1, 0.2, 0.3, 0.4}; float* gpu_buf = static_cast(Alloc(gpu0, sizeof(float) * 4)); - Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf)); - Transform trans; + Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf), ctx.stream()); + Transform trans; trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, Scale(10)); ctx.Wait(); - Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf)); + Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf), ctx.stream()); Free(gpu0, gpu_buf); for (int i = 0; i < 4; ++i) { ASSERT_NEAR(cpu_buf[i], static_cast(i + 1), 1e-5); @@ -68,7 +68,7 @@ TEST(Transform, CPUBinary) { using namespace paddle::platform; using namespace paddle::memory; int buf[4] = {1, 2, 3, 4}; - Transform trans; + Transform trans; CPUDeviceContext ctx; trans(ctx, buf, buf + 4, buf, buf, Multiply()); for (int i = 0; i < 4; ++i) { @@ -80,14 +80,14 @@ TEST(Transform, GPUBinary) { using namespace paddle::platform; using namespace paddle::memory; int buf[4] = {1, 2, 3, 4}; - GPUPlace gpu0(0); + CUDAPlace gpu0(0); CUDADeviceContext ctx(gpu0); int* gpu_buf = static_cast(Alloc(gpu0, sizeof(buf))); - Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf)); - Transform trans; + Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf), ctx.stream()); + Transform trans; trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, gpu_buf, Multiply()); ctx.Wait(); - Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf)); + Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf), ctx.stream()); Free(gpu0, gpu_buf); for (int i = 0; i < 4; ++i) { ASSERT_EQ((i + 1) * (i + 1), buf[i]); diff --git a/paddle/platform/variant.h b/paddle/platform/variant.h index 619897ca19..ea6ef8fddf 100644 --- a/paddle/platform/variant.h +++ b/paddle/platform/variant.h @@ -1,19 +1,32 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once +#ifdef __CUDACC__ +#ifdef __CUDACC_VER_MAJOR__ +// CUDA 9 define `__CUDACC_VER__` as a warning message, manually define +// __CUDACC_VER__ instead. +#undef __CUDACC_VER__ + +#define __CUDACC_VER__ \ + (__CUDACC_VER_MAJOR__ * 10000 + __CUDACC_VER_MINOR__ * 100 + \ + __CUDACC_VER_BUILD__) +#endif + +#endif + #include #ifdef PADDLE_WITH_CUDA diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt index fd55f410d3..7b37430707 100644 --- a/paddle/pybind/CMakeLists.txt +++ b/paddle/pybind/CMakeLists.txt @@ -1,8 +1,11 @@ if(WITH_PYTHON) cc_library(paddle_pybind SHARED - SRCS pybind.cc exception.cc protobuf.cc - DEPS pybind python backward proto_desc paddle_memory executor prune + SRCS pybind.cc exception.cc protobuf.cc const_value.cc + DEPS pybind python backward proto_desc paddle_memory executor prune init ${GLOB_OP_LIB}) + if(NOT APPLE AND NOT ANDROID) + target_link_libraries(paddle_pybind rt) + endif(NOT APPLE AND NOT ANDROID) endif(WITH_PYTHON) if(WITH_DOC) diff --git a/paddle/pybind/const_value.cc b/paddle/pybind/const_value.cc new file mode 100644 index 0000000000..b13ad42ea2 --- /dev/null +++ b/paddle/pybind/const_value.cc @@ -0,0 +1,29 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "const_value.h" +#include "paddle/framework/operator.h" + +namespace paddle { +namespace pybind { + +void BindConstValue(pybind11::module& m) { + m.def("kEmptyVarName", [] { return framework::kEmptyVarName; }); + m.def("kTempVarName", [] { return framework::kTempVarName; }); + m.def("kGradVarSuffix", [] { return framework::kGradVarSuffix; }); + m.def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; }); +} + +} // namespace pybind +} // namespace paddle diff --git a/paddle/pybind/const_value.h b/paddle/pybind/const_value.h new file mode 100644 index 0000000000..3d57c972a9 --- /dev/null +++ b/paddle/pybind/const_value.h @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "paddle/platform/enforce.h" +#include "pybind11/pybind11.h" + +namespace py = pybind11; + +namespace paddle { +namespace pybind { +extern void BindConstValue(pybind11::module& m); +} // namespace pybind +} // namespace paddle diff --git a/paddle/pybind/exception.cc b/paddle/pybind/exception.cc index ff79b12ee4..e29ac3ebab 100644 --- a/paddle/pybind/exception.cc +++ b/paddle/pybind/exception.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/pybind/exception.h" diff --git a/paddle/pybind/exception.h b/paddle/pybind/exception.h index 70beac1460..436ddd5707 100644 --- a/paddle/pybind/exception.h +++ b/paddle/pybind/exception.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include diff --git a/paddle/pybind/print_operators_doc.cc b/paddle/pybind/print_operators_doc.cc index 24f2a9383f..99694fa592 100644 --- a/paddle/pybind/print_operators_doc.cc +++ b/paddle/pybind/print_operators_doc.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include #include // std::stringstream #include @@ -31,31 +44,32 @@ std::string Escape(const std::string& s) { return r; } -std::string AttrType(paddle::framework::AttrType at) { +std::string AttrType(paddle::framework::proto::AttrType at) { switch (at) { - case paddle::framework::INT: + case paddle::framework::proto::INT: return "int"; - case paddle::framework::FLOAT: + case paddle::framework::proto::FLOAT: return "float"; - case paddle::framework::STRING: + case paddle::framework::proto::STRING: return "string"; - case paddle::framework::BOOLEAN: + case paddle::framework::proto::BOOLEAN: return "bool"; - case paddle::framework::INTS: + case paddle::framework::proto::INTS: return "int array"; - case paddle::framework::FLOATS: + case paddle::framework::proto::FLOATS: return "float array"; - case paddle::framework::STRINGS: + case paddle::framework::proto::STRINGS: return "string array"; - case paddle::framework::BOOLEANS: + case paddle::framework::proto::BOOLEANS: return "bool array"; - case paddle::framework::BLOCK: + case paddle::framework::proto::BLOCK: return "block id"; } return "UNKNOWN"; // not possible } -void PrintVar(const paddle::framework::OpProto::Var& v, std::stringstream& ss) { +void PrintVar(const paddle::framework::proto::OpProto::Var& v, + std::stringstream& ss) { ss << " { " << "\n" << " \"name\" : \"" << Escape(v.name()) << "\",\n" @@ -65,7 +79,7 @@ void PrintVar(const paddle::framework::OpProto::Var& v, std::stringstream& ss) { << " },"; } -void PrintAttr(const paddle::framework::OpProto::Attr& a, +void PrintAttr(const paddle::framework::proto::OpProto::Attr& a, std::stringstream& ss) { ss << " { " << "\n" @@ -81,7 +95,7 @@ void PrintOpProto(const std::string& type, std::stringstream& ss) { std::cerr << "Processing " << type << "\n"; - const paddle::framework::OpProto* p = opinfo.proto_; + const paddle::framework::proto::OpProto* p = opinfo.proto_; if (p == nullptr) { return; // It is possible that an operator doesn't have OpProto. } diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc index 6c8f06cccb..4f95948153 100644 --- a/paddle/pybind/protobuf.cc +++ b/paddle/pybind/protobuf.cc @@ -108,21 +108,21 @@ static py::bytes SerializeMessage(T &self) { // Bind Methods void BindProgramDesc(py::module &m) { - py::class_(m, "ProgramDesc", "") + py::class_(m, "ProgramDesc", "") .def(py::init<>()) .def("__init__", - [](ProgramDescBind &self, const ProgramDescBind &other) { - new (&self) ProgramDescBind(other); + [](ProgramDesc &self, const ProgramDesc &other) { + new (&self) ProgramDesc(other); }) .def("__init__", - [](ProgramDescBind &self, const py::bytes &binary_str) { + [](ProgramDesc &self, const py::bytes &binary_str) { std::string str(binary_str); - new (&self) ProgramDescBind(str); + new (&self) ProgramDesc(str); }) - .def("append_block", &ProgramDescBind::AppendBlock, + .def("append_block", &ProgramDesc::AppendBlock, py::return_value_policy::reference) .def("append_backward", - [](ProgramDescBind &program_desc, const VarDescBind &target, + [](ProgramDesc &program_desc, const VarDesc &target, const std::unordered_set &no_grad_vars) { ParamGradInfoMap param_grad_map = AppendBackward(program_desc, target, no_grad_vars); @@ -138,13 +138,13 @@ void BindProgramDesc(py::module &m) { } return retv; }) - .def("block", &ProgramDescBind::MutableBlock, + .def("block", &ProgramDesc::MutableBlock, py::return_value_policy::reference) - .def("num_blocks", &ProgramDescBind::Size) - .def("serialize_to_string", SerializeMessage) + .def("num_blocks", &ProgramDesc::Size) + .def("serialize_to_string", SerializeMessage) .def("parse_from_string", - [](ProgramDescBind &program_desc, const std::string &data) { - ProgramDesc *desc = program_desc.Proto(); + [](ProgramDesc &program_desc, const std::string &data) { + proto::ProgramDesc *desc = program_desc.Proto(); PADDLE_ENFORCE(desc->ParseFromString(data), "Fail to parse ProgramDesc from string. This could " "be a bug of Paddle."); @@ -152,109 +152,135 @@ void BindProgramDesc(py::module &m) { } void BindBlockDesc(py::module &m) { - py::class_(m, "BlockDesc", "") - .def_property_readonly("id", &BlockDescBind::ID) - .def_property_readonly("parent", &BlockDescBind::Parent) - .def("append_op", &BlockDescBind::AppendOp, + py::class_(m, "BlockDesc", "") + .def_property_readonly("id", &BlockDesc::ID) + .def_property_readonly("parent", &BlockDesc::Parent) + .def("append_op", &BlockDesc::AppendOp, py::return_value_policy::reference) - .def("prepend_op", &BlockDescBind::PrependOp, + .def("prepend_op", &BlockDesc::PrependOp, py::return_value_policy::reference) + .def("remove_op", &BlockDesc::RemoveOp) .def("var", - [](BlockDescBind &self, py::bytes byte_name) { + [](BlockDesc &self, py::bytes byte_name) { std::string name = byte_name; return self.Var(name); }, py::return_value_policy::reference) .def("has_var", - [](BlockDescBind &self, py::bytes byte_name) { + [](BlockDesc &self, py::bytes byte_name) { std::string name = byte_name; return self.HasVar(name); }) + .def("has_var_recursive", + [](BlockDesc &self, py::bytes byte_name) { + std::string name = byte_name; + return self.HasVarRecursive(name); + }) .def("find_var", - [](BlockDescBind &self, py::bytes byte_name) { + [](BlockDesc &self, py::bytes byte_name) { std::string name = byte_name; return self.FindVar(name); }, py::return_value_policy::reference) - .def("all_vars", &BlockDescBind::AllVars, + .def("find_var_recursive", + [](BlockDesc &self, py::bytes byte_name) { + std::string name = byte_name; + return self.FindVarRecursive(name); + }, py::return_value_policy::reference) - .def("op_size", &BlockDescBind::OpSize) - .def("op", &BlockDescBind::Op, py::return_value_policy::reference) - .def("serialize_to_string", SerializeMessage); + .def("all_vars", &BlockDesc::AllVars, py::return_value_policy::reference) + .def("op_size", &BlockDesc::OpSize) + .def("op", &BlockDesc::Op, py::return_value_policy::reference) + .def("serialize_to_string", SerializeMessage); } void BindVarDsec(py::module &m) { - py::enum_(m, "DataType", "") - .value("BOOL", DataType::BOOL) - .value("INT16", DataType::INT16) - .value("INT32", DataType::INT32) - .value("INT64", DataType::INT64) - .value("FP16", DataType::FP16) - .value("FP32", DataType::FP32) - .value("FP64", DataType::FP64); + py::enum_(m, "DataType", "") + .value("BOOL", proto::DataType::BOOL) + .value("INT16", proto::DataType::INT16) + .value("INT32", proto::DataType::INT32) + .value("INT64", proto::DataType::INT64) + .value("FP16", proto::DataType::FP16) + .value("FP32", proto::DataType::FP32) + .value("FP64", proto::DataType::FP64); - py::class_ var_desc(m, "VarDesc", ""); + py::class_ var_desc(m, "VarDesc", ""); var_desc .def("name", - [](const VarDescBind &self) { + [](const VarDesc &self) { py::bytes name = self.Name(); return name; }, py::return_value_policy::reference) - .def("set_shape", &VarDescBind::SetShape) - .def("set_dtype", &VarDescBind::SetDataType) - .def("shape", &VarDescBind::Shape, py::return_value_policy::reference) - .def("dtype", &VarDescBind::GetDataType) - .def("lod_level", &VarDescBind::GetLodLevel) - .def("set_lod_level", &VarDescBind::SetLoDLevel) - .def("type", &VarDescBind::GetType) - .def("set_type", &VarDescBind::SetType) - .def("serialize_to_string", SerializeMessage) - .def("persistable", &VarDescBind::Persistable) - .def("set_persistable", &VarDescBind::SetPersistable); + .def("set_shape", &VarDesc::SetShape) + .def("set_dtype", &VarDesc::SetDataType) + .def("shape", &VarDesc::Shape, py::return_value_policy::reference) + .def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference) + .def("lod_level", &VarDesc::GetLoDLevel) + .def("set_lod_level", &VarDesc::SetLoDLevel) + .def("type", &VarDesc::GetType) + .def("set_type", &VarDesc::SetType) + .def("serialize_to_string", SerializeMessage) + .def("persistable", &VarDesc::Persistable) + .def("set_persistable", &VarDesc::SetPersistable); - py::enum_(var_desc, "VarType", "") - .value("LOD_TENSOR", VarDesc::LOD_TENSOR) - .value("SELECTED_ROWS", VarDesc::SELECTED_ROWS) - .value("FEED_MINIBATCH", VarDesc::FEED_MINIBATCH) - .value("FETCH_LIST", VarDesc::FETCH_LIST) - .value("STEP_SCOPES", VarDesc::STEP_SCOPES) - .value("LOD_RANK_TABLE", VarDesc::LOD_RANK_TABLE) - .value("LOD_TENSOR_ARRAY", VarDesc::LOD_TENSOR_ARRAY); + py::enum_(var_desc, "VarType", "") + .value("LOD_TENSOR", proto::VarDesc::LOD_TENSOR) + .value("SELECTED_ROWS", proto::VarDesc::SELECTED_ROWS) + .value("FEED_MINIBATCH", proto::VarDesc::FEED_MINIBATCH) + .value("FETCH_LIST", proto::VarDesc::FETCH_LIST) + .value("STEP_SCOPES", proto::VarDesc::STEP_SCOPES) + .value("LOD_RANK_TABLE", proto::VarDesc::LOD_RANK_TABLE) + .value("LOD_TENSOR_ARRAY", proto::VarDesc::LOD_TENSOR_ARRAY) + .value("PLACE_LIST", proto::VarDesc::PLACE_LIST); } void BindOpDesc(py::module &m) { - py::enum_(m, "AttrType", "") - .value("INT", AttrType::INT) - .value("INTS", AttrType::INTS) - .value("FLOAT", AttrType::FLOAT) - .value("FLOATS", AttrType::FLOATS) - .value("STRING", AttrType::STRING) - .value("STRINGS", AttrType::STRINGS) - .value("BOOL", AttrType::BOOLEAN) - .value("BOOLS", AttrType::BOOLEANS) - .value("BLOCK", AttrType::BLOCK); + py::enum_(m, "AttrType", "") + .value("INT", proto::AttrType::INT) + .value("INTS", proto::AttrType::INTS) + .value("FLOAT", proto::AttrType::FLOAT) + .value("FLOATS", proto::AttrType::FLOATS) + .value("STRING", proto::AttrType::STRING) + .value("STRINGS", proto::AttrType::STRINGS) + .value("BOOL", proto::AttrType::BOOLEAN) + .value("BOOLS", proto::AttrType::BOOLEANS) + .value("BLOCK", proto::AttrType::BLOCK); - py::class_ op_desc(m, "OpDesc", ""); - op_desc.def("type", &OpDescBind::Type) - .def("set_type", &OpDescBind::SetType) - .def("input", &OpDescBind::Input) - .def("input_names", &OpDescBind::InputNames) - .def("set_input", &OpDescBind::SetInput) - .def("output", &OpDescBind::Output) - .def("output_names", &OpDescBind::OutputNames) - .def("set_output", &OpDescBind::SetOutput) - .def("has_attr", &OpDescBind::HasAttr) - .def("attr_type", &OpDescBind::GetAttrType) - .def("attr_names", &OpDescBind::AttrNames) - .def("set_attr", &OpDescBind::SetAttr) - .def("attr", &OpDescBind::GetAttr) - .def("set_block_attr", &OpDescBind::SetBlockAttr) - .def("block_attr", &OpDescBind::GetBlockAttr) - .def("check_attrs", &OpDescBind::CheckAttrs) - .def("infer_shape", &OpDescBind::InferShape) - .def("infer_var_type", &OpDescBind::InferVarType) - .def("serialize_to_string", SerializeMessage); + py::class_ op_desc(m, "OpDesc", ""); + op_desc + .def("__init__", [](OpDesc &self) { new (&self) OpDesc(); }, + py::return_value_policy::reference) + .def("copy_from", &OpDesc::CopyFrom) + .def("type", &OpDesc::Type) + .def("set_type", &OpDesc::SetType) + .def("input", &OpDesc::Input) + .def("input_names", &OpDesc::InputNames) + .def("output", &OpDesc::Output) + .def("output_names", &OpDesc::OutputNames) + .def("set_input", &OpDesc::SetInput) + .def("set_output", &OpDesc::SetOutput) + .def("input_arg_names", &OpDesc::InputArgumentNames) + .def("output_arg_names", &OpDesc::OutputArgumentNames) + .def("rename_input", &OpDesc::RenameInput) + .def("rename_output", &OpDesc::RenameOutput) + .def("has_attr", &OpDesc::HasAttr) + .def("attr_type", &OpDesc::GetAttrType) + .def("attr_names", &OpDesc::AttrNames) + .def("set_attr", &OpDesc::SetAttr) + .def("attr", &OpDesc::GetAttr) + .def("set_block_attr", &OpDesc::SetBlockAttr) + .def("set_serialized_attr", + [](OpDesc &self, const std::string &name, + const py::bytes &seriralized) { + std::string ser(seriralized); + self.SetAttr(name, ser); + }) + .def("block_attr", &OpDesc::GetBlockAttr) + .def("check_attrs", &OpDesc::CheckAttrs) + .def("infer_shape", &OpDesc::InferShape) + .def("infer_var_type", &OpDesc::InferVarType) + .def("serialize_to_string", SerializeMessage); } } // namespace pybind diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index c16d3e0cbe..c5d70bc9f9 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -16,11 +16,11 @@ limitations under the License. */ #include // for call_once #include -#include "gflags/gflags.h" #include "paddle/framework/backward.h" #include "paddle/framework/executor.h" #include "paddle/framework/feed_fetch_method.h" #include "paddle/framework/framework.pb.h" +#include "paddle/framework/init.h" #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor_array.h" @@ -30,6 +30,7 @@ limitations under the License. */ #include "paddle/operators/net_op.h" #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" +#include "paddle/pybind/const_value.h" #include "paddle/pybind/exception.h" #include "paddle/pybind/pybind.h" #include "paddle/pybind/tensor_py.h" @@ -51,24 +52,6 @@ static size_t UniqueIntegerGenerator(const std::string &prefix) { return generators[prefix].fetch_add(1); } -std::once_flag gflags_init_flag; - -// TODO(qijun) move init gflags to init.cc -void InitGflags(std::vector &argv) { - std::call_once(gflags_init_flag, [&]() { - int argc = argv.size(); - char **arr = new char *[argv.size()]; - std::string line; - for (size_t i = 0; i < argv.size(); i++) { - arr[i] = &argv[i][0]; - line += argv[i]; - line += ' '; - } - google::ParseCommandLineFlags(&argc, &arr, true); - VLOG(1) << "Init commandline: " << line; - }); -} - bool IsCompileGPU() { #ifndef PADDLE_WITH_CUDA return false; @@ -95,8 +78,12 @@ PYBIND11_PLUGIN(core) { [](Tensor &self, const std::vector &dim) { self.Resize(make_ddim(dim)); }) + .def("set_layout", + [](Tensor &self, const std::string &layout) { + self.set_layout(StringToDataLayout(layout)); + }) .def("alloc_float", - [](Tensor &self, paddle::platform::GPUPlace &place) { + [](Tensor &self, paddle::platform::CUDAPlace &place) { self.mutable_data(place); }) .def("alloc_float", @@ -108,7 +95,7 @@ PYBIND11_PLUGIN(core) { self.mutable_data(place); }) .def("alloc_int", - [](Tensor &self, paddle::platform::GPUPlace &place) { + [](Tensor &self, paddle::platform::CUDAPlace &place) { self.mutable_data(place); }) .def("set", PyCPUTensorSetFromArray) @@ -282,21 +269,39 @@ All parameter, weight, gradient are variables in Paddle. } return ret_values; }); - m.def("prune", [](const ProgramDescBind &origin, + m.def( + "get_grad_op_desc", [](const OpDesc &op_desc, + const std::unordered_set &no_grad_set, + const std::vector &grad_sub_block) { + std::unordered_map grad_to_var; + std::vector> grad_op_descs = + framework::OpInfoMap::Instance() + .Get(op_desc.Type()) + .GradOpMaker()(op_desc, no_grad_set, &grad_to_var, + grad_sub_block); + std::vector grad_op_desc_ptrs(grad_op_descs.size()); + std::transform(grad_op_descs.begin(), grad_op_descs.end(), + grad_op_desc_ptrs.begin(), + [](std::unique_ptr &p) { return p.release(); }); + return std::make_pair(grad_op_desc_ptrs, grad_to_var); + }); + m.def("prune", [](const ProgramDesc &origin, const std::vector> &targets) { - ProgramDescBind prog_with_targets(origin); + ProgramDesc prog_with_targets(origin); for (const auto &t : targets) { prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget(); } - ProgramDesc pruned_desc; + proto::ProgramDesc pruned_desc; Prune(*prog_with_targets.Proto(), &pruned_desc); - return new ProgramDescBind(pruned_desc); + return new ProgramDesc(pruned_desc); }); - m.def("inference_optimize", [](ProgramDescBind &origin) { - ProgramDesc pruned_desc; + m.def("inference_optimize", [](ProgramDesc &origin) { + proto::ProgramDesc pruned_desc; InferenceOptimize(*(origin.Proto()), &pruned_desc); - return new ProgramDescBind(pruned_desc); + return new ProgramDesc(pruned_desc); }); + m.def("empty_var_name", []() { return framework::kEmptyVarName; }); + m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; }); m.def_submodule( "var_names", "The module will return special predefined variable name in Paddle") @@ -310,10 +315,10 @@ All parameter, weight, gradient are variables in Paddle. return new paddle::platform::CPUDeviceContext(); }) .def_static("create", - [](paddle::platform::GPUPlace& place) + [](paddle::platform::CUDAPlace& place) -> paddle::platform::DeviceContext* { #ifndef PADDLE_WITH_CUDA - PADDLE_THROW("GPUPlace is not supported in CPU device."); + PADDLE_THROW("CUDAPlace is not supported in CPU device."); #else return new paddle::platform::CUDADeviceContext(place); #endif @@ -323,9 +328,9 @@ All parameter, weight, gradient are variables in Paddle. #ifdef PADDLE_WITH_CUDA py::class_(m, "Communicator").def(py::init<>()); #endif - py::class_(m, "GPUPlace") + py::class_(m, "CUDAPlace") .def(py::init()) - .def("__str__", string::to_string); + .def("__str__", string::to_string); py::class_(m, "CPUPlace") .def(py::init<>()) @@ -338,14 +343,14 @@ All parameter, weight, gradient are variables in Paddle. self = cpu_place; }) .def("set_place", - [](platform::Place &self, const platform::GPUPlace &gpu_place) { + [](platform::Place &self, const platform::CUDAPlace &gpu_place) { self = gpu_place; }); py::class_(m, "Operator") .def_static("create", [](py::bytes protobin) { - OpDesc desc; + proto::OpDesc desc; PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), "Cannot parse user input to OpDesc"); PADDLE_ENFORCE(desc.IsInitialized(), @@ -360,10 +365,10 @@ All parameter, weight, gradient are variables in Paddle. }) .def("run", [](OperatorBase &self, const Scope &scope, - const platform::DeviceContext &dev_ctx) { - self.Run(scope, dev_ctx); - dev_ctx.Wait(); - }) + const platform::CPUPlace &place) { self.Run(scope, place); }) + .def("run", + [](OperatorBase &self, const Scope &scope, + const platform::CUDAPlace &place) { self.Run(scope, place); }) .def("type", [](const OperatorBase &op) -> std::string { return op.Type(); }) .def("outputs", @@ -398,7 +403,7 @@ All parameter, weight, gradient are variables in Paddle. py::class_(m, "CondOp") .def_static("create", [](py::bytes protobin) -> operators::CondOp * { - OpDesc desc; + proto::OpDesc desc; PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), "Cannot parse user input to OpDesc"); PADDLE_ENFORCE(desc.IsInitialized(), @@ -417,13 +422,16 @@ All parameter, weight, gradient are variables in Paddle. }); py::class_(m, "Executor") - .def(py::init &>()) + .def(py::init()) .def("run", &Executor::Run); m.def("unique_integer", UniqueIntegerGenerator); - m.def("init_gflags", InitGflags); + m.def("init_gflags", framework::InitGflags); + m.def("init_glog", framework::InitGLOG); + m.def("init_devices", &framework::InitDevices); m.def("is_compile_gpu", IsCompileGPU); + m.def("set_feed_variable", framework::SetFeedVariable); m.def("get_fetch_variable", framework::GetFetchVariable); @@ -431,6 +439,7 @@ All parameter, weight, gradient are variables in Paddle. BindBlockDesc(m); BindVarDsec(m); BindOpDesc(m); + BindConstValue(m); py::class_(m, "LodRankTable") .def("items", [](framework::LoDRankTable &table) { diff --git a/paddle/pybind/tensor_py.h b/paddle/pybind/tensor_py.h index 41fa658502..3b5210e2b9 100644 --- a/paddle/pybind/tensor_py.h +++ b/paddle/pybind/tensor_py.h @@ -1,21 +1,22 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include -#include "paddle/framework/tensor.h" +#include "paddle/framework/lod_tensor.h" #include "paddle/memory/memcpy.h" +#include "paddle/platform/device_context.h" #include "pybind11/numpy.h" #include "pybind11/pybind11.h" @@ -61,21 +62,25 @@ struct CastToPyBufferImpl { auto *src_ptr = static_cast(tensor.data()); auto *dst_ptr = static_cast(dst_tensor.mutable_data( tensor.dims(), platform::CPUPlace())); - // TODO(qijun): Here we use default CUDA stream to set GPU Tensor to - // a Python numpy array. It's better to manage CDUA stream unifiedly. - paddle::platform::GpuMemcpySync(dst_ptr, src_ptr, - sizeof(CUR_TYPE) * tensor.numel(), - cudaMemcpyDeviceToHost); + + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto dev_ctx = static_cast( + pool.Get(tensor.place())); + + paddle::platform::GpuMemcpyAsync( + dst_ptr, src_ptr, sizeof(CUR_TYPE) * tensor.numel(), + cudaMemcpyDeviceToHost, dev_ctx->stream()); #else - PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); + PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); #endif } else if (paddle::platform::is_cpu_place(tensor.place())) { dst_tensor = tensor; } - return py::buffer_info( - dst_tensor.mutable_data(dst_tensor.place()), - sizeof(CUR_TYPE), py::format_descriptor::format(), - (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides); + return py::buffer_info(dst_tensor.data(), sizeof(CUR_TYPE), + py::format_descriptor::format(), + (size_t)framework::arity(dst_tensor.dims()), + dims_outside, strides); } else { constexpr bool less = I + 1 < std::tuple_size>::value; return CastToPyBufferImpl()(tensor); @@ -92,14 +97,27 @@ inline py::buffer_info CastToPyBuffer(framework::Tensor &tensor) { template T TensorGetElement(framework::Tensor &self, size_t offset) { - PADDLE_ENFORCE(platform::is_cpu_place(self.place())); - return self.data()[offset]; + if (platform::is_cpu_place(self.place())) { + return self.data()[offset]; + } else { + std::shared_ptr dst(new framework::Tensor); + framework::Copy(self, platform::CPUPlace(), dst.get()); + return dst->data()[offset]; + } } +// TODO(dzhwinter) : fix the redundent Tensor allocate and free template void TensorSetElement(framework::Tensor &self, size_t offset, T elem) { - PADDLE_ENFORCE(platform::is_cpu_place(self.place())); - self.data()[offset] = elem; + if (platform::is_gpu_place(self.place())) { + std::shared_ptr dst(new framework::Tensor); + framework::Copy(self, platform::CPUPlace(), dst.get()); + dst->data()[offset] = elem; + framework::Copy(*dst.get(), self.place(), &self); + + } else if (platform::is_cpu_place(self.place())) { + self.data()[offset] = elem; + } } template @@ -123,7 +141,7 @@ template void PyCUDATensorSetFromArray( framework::Tensor &self, py::array_t array, - paddle::platform::GPUPlace &place) { + paddle::platform::CUDAPlace &place) { std::vector dims; dims.reserve(array.ndim()); for (size_t i = 0; i < array.ndim(); ++i) { @@ -132,10 +150,12 @@ void PyCUDATensorSetFromArray( self.Resize(framework::make_ddim(dims)); auto *dst = self.mutable_data(place); - // TODO(qijun): Here we use default CUDA stream to set a Python numpy - // array to a GPU Tensor. It's better to manage CDUA stream unifiedly. - paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(), - cudaMemcpyHostToDevice); + + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto dev_ctx = + static_cast(pool.Get(place)); + paddle::platform::GpuMemcpyAsync(dst, array.data(), sizeof(T) * array.size(), + cudaMemcpyHostToDevice, dev_ctx->stream()); } #endif diff --git a/paddle/scripts/CMakeLists.txt b/paddle/scripts/CMakeLists.txt index a52f06fe49..68cb5a19f9 100644 --- a/paddle/scripts/CMakeLists.txt +++ b/paddle/scripts/CMakeLists.txt @@ -5,11 +5,3 @@ configure_file(submit_local.sh.in install(FILES ${CMAKE_CURRENT_BINARY_DIR}/paddle DESTINATION bin PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ) - -configure_file(tools/usage_stat/usage.sh - paddle_usage - @ONLY) - -install(FILES ${CMAKE_CURRENT_BINARY_DIR}/paddle_usage DESTINATION opt/paddle/bin - PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ - GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ) diff --git a/paddle/scripts/check_env.sh b/paddle/scripts/check_env.sh new file mode 100755 index 0000000000..af16b84ca8 --- /dev/null +++ b/paddle/scripts/check_env.sh @@ -0,0 +1,261 @@ +#!/bin/bash + +if [ "`uname -s`" != "Linux" ]; then + echo "Current scenario only support in Linux yet!" + exit 0 +fi + +echo "========================= Hardware Information =========================" +sockets=`grep 'physical id' /proc/cpuinfo | sort -u | wc -l` +cores_per_socket=`grep 'core id' /proc/cpuinfo | sort -u | wc -l` +ht=`lscpu |grep "per core" |awk -F':' '{print $2}'|xargs` +physical_cores=$((sockets * cores_per_socket)) +virtual_cores=`grep 'processor' /proc/cpuinfo | sort -u | wc -l` +numa_nodes=`lscpu |grep "NUMA node(s)"|awk -F':' '{print $2}'|xargs` +echo "CPU Name : `cat /proc/cpuinfo |grep -i "model name" |uniq |awk -F ':' '{print $2}'|xargs`" +echo "CPU Family : `lscpu |grep \"CPU family\" |awk -F':' '{print $2}'|xargs`" +echo "Socket Number : $sockets" +echo "Cores Per Socket : $cores_per_socket" +echo "Total Physical Cores : $physical_cores" +echo "Total Virtual Cores : $virtual_cores" +if [ $ht -eq 1 ]; then + echo "Hyper Threading : OFF" + if [ $physical_cores -ne $virtual_cores ]; then + echo "Error: HT logical error" + fi +else + echo "Hyper Threading : ON" + if [ $physical_cores -ge $virtual_cores ]; then + echo "Error: HT logical error" + fi +fi +echo "NUMA Nodes : $numa_nodes" +if [ $numa_nodes -lt $sockets ]; then + echo "Warning: NUMA node is not enough for the best performance,\ + at least $sockets" +fi + +echo "-------------------------- Memory Information --------------------------" +# dmidecode support start from 2.11 +dmi_ver=`dmidecode --version|awk -F '.' '{print $1}'|xargs` +if [ $dmi_ver -lt 2 ]; then + echo "Error: dmidecode unknown or version is too old" + exit 0 +fi +if [ `dmidecode | grep -ic "Permission denied"` -ne 0 ]; then + echo "Error: need root to run dmidecode" + exit 0 +fi +max_dimms=0 +num_dimms_installed=0 +for dimm_id in `dmidecode |grep Locator|sort -u | awk -F ':' '{print $2}'`; do + num_refered=`dmidecode |grep -wc "$dimm_id"` + # the actual dimm id should be refered only once + if [ $num_refered -eq 1 ]; then + num_unknown=`dmidecode | awk '/'$dimm_id'/ {s=1; f=0}; + /Unknown/ {f=1}; + /Manufacturer/ {if (s==1) {print f; exit 0;}};'` + if [ $num_unknown -eq 0 ]; then + dimms_installed="$dimms_installed \n $dimm_id" + ((num_dimms_installed++)) + else + dimms_uninstalled="$dimms_uninstalled \n $dimm_id" + fi + ((max_dimms++)) + fi +done +echo "Installed DIMM number : $num_dimms_installed" +num_dimms_mapped=`dmidecode | grep "Memory Device Mapped" | wc -l` +if [ $num_dimms_installed -ne $num_dimms_mapped ]; then + echo "Error: The installed DIMMs number does ont match the mapped memory device: $num_dimms_mapped" +fi +num_clock_configed=`dmidecode | grep -i "Configured Clock Speed" |grep -ic "Hz"` +if [ $num_dimms_installed -ne $num_clock_configed ]; then + echo "Error: The installed DIMMs number does ont match configured clocks: $num_clock_configed" +fi +echo -e "Installed DIMMs Locator: $dimms_installed" +echo -e "Not installed DIMMs : $dimms_uninstalled" +max_dimm_slots=`dmidecode | grep -c "Bank Locator"` +echo "DIMMs max slots : $max_dimm_slots" +if [ $max_dimms -ne $max_dimm_slots ]; then + echo "Error: The max dimm slots do not match the max dimms: $max_dimms" +fi +free_ver_main=`free -V|awk -F ' ' '{print $NF}'|awk -F '.' '{print $1}'` +free_ver_sub=`free -V|awk -F ' ' '{print $NF}'|awk -F '.' '{print $2}'` +if [ $free_ver_main -lt 3 ] || [ $free_ver_sub -lt 3 ]; then + mem_sz=`free |grep -i mem |awk -F' ' '{print $2}'|xargs` + swap_sz=`free |grep -i swap |awk -F' ' '{print $2}'|xargs` + total_sz=`free -t |grep -i total |tail -n 1| awk -F' ' '{print $2}'|xargs` + mem_sz="`awk 'BEGIN{printf "%.1f\n",('$mem_sz'/1024/1024)}'` GB" + swap_sz="`awk 'BEGIN{printf "%.1f\n",('$swap_sz'/1024/1024)}'` GB" + total_sz="`awk 'BEGIN{printf "%.1f\n",('$total_sz'/1024/1024)}'` GB" +else + mem_sz=`free -h |grep -i mem |awk -F' ' '{print $2}'|xargs` + swap_sz=`free -h |grep -i swap |awk -F' ' '{print $2}'|xargs` + total_sz=`free -th |grep -i total |tail -n 1| awk -F' ' '{print $2}'|xargs` +fi +echo "Memory Size : $mem_sz" +echo "Swap Memory Size : $swap_sz" +echo "Total Memory Size : $total_sz" +echo "Max Memory Capacity : `dmidecode |grep -i \"maximum capacity\"|sort -u|awk -F':' '{print $2}'|xargs`" +# DIMMs fequency +clock_speeds=`dmidecode | grep -i "Configured Clock Speed" | grep -i "Hz" |sort -u | awk -F':' '{print $2}'|xargs` +echo "Configed Clock Speed : $clock_speeds" +num_clock_type=`dmidecode | grep -i "Configured Clock Speed" | grep -i "Hz" |sort -u | wc -l` +if [ $num_clock_type -ne 1 ]; then + echo "Warning: Have more than 1 speed type, all DIMMs should have same fequency: $clock_speeds" +fi + +echo "-------------------------- Turbo Information --------------------------" +scaling_drive=`cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_driver` +echo "Scaling Driver : $scaling_drive" +if [ $scaling_drive == "intel_pstate" ] && [ -e /sys/devices/system/cpu/intel_pstate/no_turbo ]; then + turbo=`cat /sys/devices/system/cpu/intel_pstate/no_turbo` + if [ $turbo -eq 1 ]; then + echo "Turbo Status : OFF" + else + echo "Turbo Status : ON" + fi +else + echo "Warning: Scaling driver is not intel_pstarte, maybe should enable it in BIOS" + echo "Turbo Status : Unknown" +fi +# cpu frequency +num_max_freq=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq| sort -u |wc -l` +num_min_freq=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq| sort -u |wc -l` +if [ $num_max_freq -ne 1 ]; then + echo "Error: the max_frequency of all CPU should be equal" +fi +if [ $num_min_freq -ne 1 ]; then + echo "Error: the min_frequency of all CPU should be equal" +fi +max_freq=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq| uniq|xargs` # kHz +max_freq=`awk 'BEGIN{printf "%.2f",('$max_freq' / 1000000)}'` # GHz +min_freq=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq| uniq|xargs` # kHz +min_freq=`awk 'BEGIN{printf "%.2f",('$min_freq' / 1000000)}'` # GHz +echo "CPU Max Frequency : $max_freq GHz" +echo "CPU Min Frequency : $min_freq GHz" +# cpu governor +num_governor=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor| sort -u |wc -l` +if [ $num_governor -ne 1 ]; then + echo "Error: the governor of all CPU should be the same" +fi +governor=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor| sort -u |uniq` +echo "CPU Freq Governor : $governor" + + +echo "========================= Software Information =========================" +echo "BIOS Release Date : `dmidecode | grep "Release Date"|awk -F ':' '{print $2}'|xargs`" +echo "OS Version : `cat /etc/redhat-release`" +echo "Kernel Release Version : `uname -r`" +echo "Kernel Patch Version : `uname -v`" +echo "GCC Version :`gcc --version | head -n 1|awk -F '\\\(GCC\\\)' '{print $2}'`" +if command -v cmake >/dev/null 2>&1; then + cmake_ver=`cmake --version | head -n 1 | awk -F 'version' '{print $2}'` +else + cmake_ver=" Not installed" +fi +echo "CMake Version :$cmake_ver" +echo "------------------ Environment Variables Information -------------------" +kmp_affinity=`env | grep KMP_AFFINITY` +omp_dynamic=`env | grep OMP_DYNAMIC` +omp_nested=`env | grep OMP_NESTED` +omp_num_threads=`env | grep OMP_NUM_THREADS` +mkl_num_threads=`env | grep MKL_NUM_THREADS` +mkl_dynamic=`env | grep MKL_DYNAMIC` +if [ ! $kmp_affinity ]; then kmp_affinity="unset"; fi +if [ ! $omp_dynamic ]; then omp_dynamic="unset"; fi +if [ ! $omp_nested ]; then omp_nested="unset"; fi +if [ ! $omp_num_threads ]; then omp_num_threads="unset"; fi +if [ ! $mkl_num_threads ]; then mkl_num_threads="unset"; fi +if [ ! $mkl_dynamic ]; then mkl_dynamic="unset"; fi +echo "KMP_AFFINITY : $kmp_affinity" +echo "OMP_DYNAMIC : $omp_dynamic" +echo "OMP_NESTED : $omp_nested" +echo "OMP_NUM_THREADS : $omp_num_threads" +echo "MKL_NUM_THREADS : $mkl_num_threads" +echo "MKL_DYNAMIC : $mkl_dynamic" +# Check if any MKL related libraries have been installed in LD_LIBRARY_PATH +for path in `echo $LD_LIBRARY_PATH | awk -F ':' '{for(i=1;i<=NF;++i)print $i}'`; do + mkldnn_found=`find $path -name "libmkldnn.so"` + if [ "$mkldnn_found" ]; then + echo "Found MKL-DNN : $mkldnn_found" + fi + mklml_found=`find $path -name "libmklml_intel.so"` + if [ "$mklml_found" ]; then + echo "Found MKLML : $mklml_found" + fi + iomp_found=`find $path -name "libiomp5.so"` + if [ "$iomp_found" ]; then + echo "Found IOMP : $iomp_found" + fi +done + +# dump all details for fully check +lscpu > lscpu.dump +dmidecode > dmidecode.dump + +# The expected result would be like: +# ========================= Hardware Information ========================= +# CPU Name : Intel(R) Xeon(R) Gold 6148M CPU @ 2.40GHz +# CPU Family : 6 +# Socket Number : 2 +# Cores Per Socket : 20 +# Total Physical Cores : 40 +# Total Virtual Cores : 40 +# Hyper Threading : OFF +# NUMA Nodes : 2 +# -------------------------- Memory Information -------------------------- +# Installed DIMM number : 12 +# Installed DIMMs Locator: +# CPU1_DIMM_A1 +# CPU1_DIMM_B1 +# CPU1_DIMM_C1 +# CPU1_DIMM_D1 +# CPU1_DIMM_E1 +# CPU1_DIMM_F1 +# CPU2_DIMM_A1 +# CPU2_DIMM_B1 +# CPU2_DIMM_C1 +# CPU2_DIMM_D1 +# CPU2_DIMM_E1 +# CPU2_DIMM_F1 +# Not installed DIMMs : +# CPU1_DIMM_A2 +# CPU1_DIMM_B2 +# CPU1_DIMM_C2 +# CPU1_DIMM_D2 +# CPU1_DIMM_E2 +# CPU1_DIMM_F2 +# CPU2_DIMM_A2 +# CPU2_DIMM_B2 +# CPU2_DIMM_C2 +# CPU2_DIMM_D2 +# CPU2_DIMM_E2 +# CPU2_DIMM_F2 +# DIMMs max slots : 24 +# Memory Size : 376G +# Swap Memory Size : 4.0G +# Total Memory Size : 380G +# Max Memory Capacity : 2304 GB +# Configed Clock Speed : 2666 MHz +# -------------------------- Turbo Information -------------------------- +# Scaling Driver : intel_pstate +# Turbo Status : ON +# CPU Max Frequency : 3.70 GHz +# CPU Min Frequency : 1.00 GHz +# CPU Freq Governor : performance +# ========================= Software Information ========================= +# BIOS Release Date : 03/10/2017 +# OS Version : CentOS Linux release 7.3.1611 (Core) +# Kernel Release Version : 3.10.0-514.el7.x86_64 +# Kernel Patch Version : #1 SMP Tue Nov 22 16:42:41 UTC 2016 +# GCC Version : 4.8.5 20150623 (Red Hat 4.8.5-11) +# CMake Version : 3.5.2 +# ------------------ Environment Variables Information ------------------- +# KMP_AFFINITY : unset +# OMP_DYNAMIC : unset +# OMP_NESTED : unset +# OMP_NUM_THREADS : unset +# MKL_NUM_THREADS : unset +# MKL_DYNAMIC : unset diff --git a/paddle/scripts/cluster_train/paddle.py b/paddle/scripts/cluster_train/paddle.py index 9b03ed1d8f..e44bb4505b 100644 --- a/paddle/scripts/cluster_train/paddle.py +++ b/paddle/scripts/cluster_train/paddle.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/python # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile index 1a2d19e823..c2f631bdf4 100644 --- a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile @@ -1,7 +1,7 @@ # Build this image: docker build -t mpi . # -FROM paddledev/paddle:0.10.0rc3 +FROM paddlepaddle/paddle:0.10.0rc3 ENV DEBIAN_FRONTEND noninteractive diff --git a/paddle/scripts/cpplint.py b/paddle/scripts/cpplint.py index dff4339ea3..d0cbb070c4 100644 --- a/paddle/scripts/cpplint.py +++ b/paddle/scripts/cpplint.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python # # Copyright (c) 2009 Google Inc. All rights reserved. diff --git a/paddle/scripts/docker/README.md b/paddle/scripts/docker/README.md index f3a6f1dba7..f0620498cf 100644 --- a/paddle/scripts/docker/README.md +++ b/paddle/scripts/docker/README.md @@ -20,7 +20,7 @@ binaries. ## Run The Build -### Build Evironments +### Build Environments The pre-built build environment images are: @@ -192,7 +192,7 @@ For developers who are interested in the C++ source code, please use -e "WOBOQ=O - The following command builds PaddlePaddle, generates HTML pages from C++ source code, and writes HTML pages into `$HOME/woboq_out` on the host: ```bash -docker run -v $PWD:/paddle -v $HOME/woboq_out:/woboq_out -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TEST=ON" -e "WOBOQ=ON" paddlepaddle/paddle:latest-dev +docker run -v $PWD:/paddle -v $HOME/woboq_out:/woboq_out -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TESTING=ON" -e "WOBOQ=ON" paddlepaddle/paddle:latest-dev ``` - You can open the generated HTML files in your Web browser. Or, if you want to run a Nginx container to serve them for a wider audience, you can run: diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 3c6ec6faba..e70d04d901 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -113,7 +113,10 @@ EOF -DWITH_SWIG_PY=ON \ -DWITH_STYLE_CHECK=OFF make -j `nproc` gen_proto_py + make -j `nproc` paddle_python make -j `nproc` paddle_docs paddle_docs_cn + make -j `nproc` print_operators_doc + paddle/pybind/print_operators_doc > doc/en/html/operators.json popd fi @@ -175,7 +178,7 @@ EOF # run paddle version to install python packages first RUN apt-get update &&\ ${NCCL_DEPS}\ - apt-get install -y wget python-pip dmidecode && pip install -U pip && \ + apt-get install -y wget python-pip dmidecode python-tk && pip install -U pip && \ pip install /*.whl; apt-get install -f -y && \ apt-get clean -y && \ rm -f /*.whl && \ @@ -185,19 +188,21 @@ EOF ${DOCKERFILE_GPU_ENV} ADD go/cmd/pserver/pserver /usr/bin/ ADD go/cmd/master/master /usr/bin/ -EOF - - if [[ ${WITH_DOC:-OFF} == 'ON' ]]; then - cat >> /paddle/build/Dockerfile <> /paddle/build/Dockerfile <sec){min_sec=sec;} - if(max_sec==0 || max_sec/dev/null` - git_url=`git config --get remote.origin.url 2>/dev/null` - if [ "`echo ${git_url} | cut -b 1-19`" = "https://github.com/" ]; then - # under a git url, like https://github.com/user_xxx/proj_yyy.git - if [ "${v}" = "1" ]; then echo " from github url..."; fi - github_user=`echo ${git_url} | cut -d "/" -f 4` - if [ "${github_user}" = "PaddlePaddle" ]; then - github_user= - fi - fi - if [ -n "${git_username}" -a -z "${github_user}" ]; then - if [ "${v}" = "1" ]; then echo " from global git username..."; fi - github_user=${git_username} - fi - fi -fi -# allow user to set the user name, if it's not found -if [ -z "${github_user}" -a "${v}" = "1" ]; then - read -p "Please input your github username or email, or just return to keep this feedback anonymous:" - github_user=${REPLY} - if [ -z "${github_user}" ]; then - # empty input, consider as one anonymous user - github_user="${KEEP_ANONYMOUS}" - fi -fi -if [ -n "${github_user}" -a -z "${dry_run}" ]; then - # valid user and not in dry-run mode, then save to cache - mkdir -p ${PADDLE_CONF_HOME} - echo "${github_user}" >${PADDLE_CONF_HOME}/github_user -fi -if [ "${v}" = "1" ]; then echo "username: ${github_user}"; fi -if [ "${github_user}" = "${KEEP_ANONYMOUS}" ]; then - # anonymous user should keep the var empty. - github_user= -fi - -# read local paddle version -paddle_version=`paddle version | grep PaddlePaddle | head -n1 | cut -d " " -f 2 | cut -d "," -f 1` -if [ "${v}" = "1" ]; then echo "version:${paddle_version}"; fi - -# read local system time -system_time=`date "+%Y%m%d%H%M%S"` -if [ "${v}" = "1" ]; then echo "system time:${system_time}"; fi - -# make empty job_name as default value. -if [ -z "${task}" ]; then - task="(unknown_task)" -fi -if [ "${v}" = "1" ]; then echo "task: ${task}"; fi - -# concat the curl command -params="content={\"data_type\":\"usage\",\ -\"system_time\":${system_time},\"paddle_version\":\"${paddle_version}\",\ -\"github_user\":\"${github_user}\",\"job_name\":\"${task}\",\ -\"duration\":${duration},\"exit_code\":\"${exit_code}\"\ -}&type=1" -curl_cmd_prefix="curl -m 5 -X POST -d ${params}\ - -b ${PADDLE_CONF_HOME}/paddle.cookie -c ${PADDLE_CONF_HOME}/paddle.cookie " - -if [ "${dry_run}" = "1" ]; then - first_url=`echo ${PD_URLS} | cut -d " " -f 1` - echo "(dry-run mode)curl command: ${curl_cmd_prefix} ${first_url}" - exit 0 -else - for u in ${PD_URLS}; do - curl_cmd="${curl_cmd_prefix} ${u}" - if [ "${v}" = "1" ]; then echo "run: ${curl_cmd}"; fi - ${curl_cmd} >/dev/null 2>&1 - if [ $? -eq 0 ]; then - if [ "${v}" = "1" ]; then echo "upload OK!"; fi - exit 0 - else - if [ "${v}" = "1" ]; then echo "upload failed...try next"; fi - fi - done - if [ "${v}" = "1" ]; then echo "all urls tried but all failed...exit"; fi - exit 1 -fi diff --git a/paddle/scripts/travis/build_doc.sh b/paddle/scripts/travis/build_doc.sh index 278485f788..0db8d33bbc 100755 --- a/paddle/scripts/travis/build_doc.sh +++ b/paddle/scripts/travis/build_doc.sh @@ -10,11 +10,12 @@ cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON make -j `nproc` gen_proto_py make -j `nproc` paddle_python make -j `nproc` paddle_docs paddle_docs_cn +make -j `nproc` print_operators_doc +paddle/pybind/print_operators_doc > doc/en/html/operators.json # check websites for broken links -# It will be failed now! -#linkchecker doc/en/html/index.html -#linkchecker doc/cn/html/index.html +linkchecker doc/en/html/index.html +linkchecker doc/cn/html/index.html # Parse Github URL REPO=`git config remote.origin.url` diff --git a/paddle/string/piece.cc b/paddle/string/piece.cc index b80afdec82..2a553e2832 100644 --- a/paddle/string/piece.cc +++ b/paddle/string/piece.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. diff --git a/paddle/string/piece.h b/paddle/string/piece.h index 7362ce02c7..fc95263379 100644 --- a/paddle/string/piece.h +++ b/paddle/string/piece.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. diff --git a/paddle/string/piece_test.cc b/paddle/string/piece_test.cc index cf5152ff5a..fb8b972988 100644 --- a/paddle/string/piece_test.cc +++ b/paddle/string/piece_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. diff --git a/paddle/string/printf.h b/paddle/string/printf.h index 8b5ce63a8e..70d2511531 100644 --- a/paddle/string/printf.h +++ b/paddle/string/printf.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. diff --git a/paddle/string/printf_test.cc b/paddle/string/printf_test.cc index 2586264046..b5ad35513b 100644 --- a/paddle/string/printf_test.cc +++ b/paddle/string/printf_test.cc @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. #include "paddle/string/printf.h" #include diff --git a/paddle/string/tinyformat/tinyformat.h b/paddle/string/tinyformat/tinyformat.h index 3516777d9f..092c04c315 100644 --- a/paddle/string/tinyformat/tinyformat.h +++ b/paddle/string/tinyformat/tinyformat.h @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. // tinyformat.h // Copyright (C) 2011, Chris Foster [chris42f (at) gmail (d0t) com] // diff --git a/paddle/string/to_string.h b/paddle/string/to_string.h index 4f478b6a36..178edc1895 100644 --- a/paddle/string/to_string.h +++ b/paddle/string/to_string.h @@ -1,23 +1,29 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include #include +#include namespace paddle { namespace string { +inline std::ostream& operator<<(std::ostream& s, const std::type_index& t) { + s << t.name(); + return s; +} + template inline std::string to_string(T v) { std::ostringstream sout; @@ -25,6 +31,11 @@ inline std::string to_string(T v) { return sout.str(); } +template <> +inline std::string to_string(std::type_index t) { + return t.name(); +} + // Faster std::string/const char* type template <> inline std::string to_string(std::string v) { diff --git a/paddle/string/to_string_test.cc b/paddle/string/to_string_test.cc index 971484dd0c..4956bd96fa 100644 --- a/paddle/string/to_string_test.cc +++ b/paddle/string/to_string_test.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/string/to_string.h" #include diff --git a/paddle/testing/CMakeLists.txt b/paddle/testing/CMakeLists.txt index 8132742749..77f84cd43b 100644 --- a/paddle/testing/CMakeLists.txt +++ b/paddle/testing/CMakeLists.txt @@ -6,7 +6,6 @@ if(WITH_TESTING) add_library(paddle_test_util STATIC TestUtil.cpp) add_dependencies(paddle_test_util paddle_proto ${external_project_dependencies}) if(NOT MOBILE_INFERENCE) - add_library(paddle_gtest_main STATIC paddle_gtest_main.cc) - add_dependencies(paddle_gtest_main paddle_memory gtest gflags) + cc_library(paddle_gtest_main SRCS paddle_gtest_main.cc DEPS init paddle_memory gtest gflags) endif() endif() diff --git a/paddle/testing/paddle_gtest_main.cc b/paddle/testing/paddle_gtest_main.cc index a491322b7e..a7fb50ee41 100644 --- a/paddle/testing/paddle_gtest_main.cc +++ b/paddle/testing/paddle_gtest_main.cc @@ -13,8 +13,10 @@ See the License for the specific language governing permissions and limitations under the License. */ #include + #include "gflags/gflags.h" #include "gtest/gtest.h" +#include "paddle/framework/init.h" #include "paddle/memory/memory.h" int main(int argc, char** argv) { @@ -32,8 +34,11 @@ int main(int argc, char** argv) { google::ParseCommandLineFlags(&new_argc, &new_argv_address, false); testing::InitGoogleTest(&argc, argv); paddle::memory::Used(paddle::platform::CPUPlace()); + #ifdef PADDLE_WITH_CUDA - paddle::memory::Used(paddle::platform::GPUPlace(0)); + paddle::memory::Used(paddle::platform::CUDAPlace(0)); #endif + + paddle::framework::InitDevices(); return RUN_ALL_TESTS(); } diff --git a/paddle/trainer/TrainerConfigHelper.cpp b/paddle/trainer/TrainerConfigHelper.cpp index a0a365aa0b..2b68d89e48 100644 --- a/paddle/trainer/TrainerConfigHelper.cpp +++ b/paddle/trainer/TrainerConfigHelper.cpp @@ -29,6 +29,7 @@ DECLARE_bool(with_gpu); DECLARE_bool(parallel_nn); DECLARE_string(config_args); DECLARE_bool(use_mkldnn); +DECLARE_bool(use_mkl_packed); const char *kConfigParserModuleName = "paddle.trainer.config_parser"; const char *kConfigParserFuncName = "parse_config_and_serialize"; @@ -46,6 +47,7 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath) << ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu << ",parallel_nn=" << FLAGS_parallel_nn << ",use_mkldnn=" << FLAGS_use_mkldnn + << ",use_mkl_packed=" << FLAGS_use_mkl_packed << ",cudnn_version=" << hl_get_cudnn_lib_version(); if (!FLAGS_config_args.empty()) { configArgs << "," << FLAGS_config_args; diff --git a/paddle/trainer/tests/simple_sparse_neural_network.py b/paddle/trainer/tests/simple_sparse_neural_network.py index 30346ef299..ba554d5872 100644 --- a/paddle/trainer/tests/simple_sparse_neural_network.py +++ b/paddle/trainer/tests/simple_sparse_neural_network.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=17, learning_method=AdaGradOptimizer(), learning_rate=1e-4) diff --git a/paddle/trainer/tests/simple_sparse_neural_network_dp.py b/paddle/trainer/tests/simple_sparse_neural_network_dp.py index 86b272edfe..44e96873f0 100644 --- a/paddle/trainer/tests/simple_sparse_neural_network_dp.py +++ b/paddle/trainer/tests/simple_sparse_neural_network_dp.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer.PyDataProvider2 import provider, integer_sequence, integer_value import random diff --git a/paddle/utils/Flags.cpp b/paddle/utils/Flags.cpp index 8f100f02e9..ea47cf23eb 100644 --- a/paddle/utils/Flags.cpp +++ b/paddle/utils/Flags.cpp @@ -20,13 +20,20 @@ DEFINE_bool(use_gpu, false, "Only support CPU training"); DEFINE_bool(use_gpu, true, "Whether to use GPU for training"); #endif -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN // TODO(TJ): change to true when MKLDNN layers support multi-inputs DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training"); #else DEFINE_bool(use_mkldnn, false, "Only support CPU training"); #endif +#ifdef PADDLE_WITH_MKLML +// TODO(TJ): change to true when fully confirmed +DEFINE_bool(use_mkl_packed, false, "Whether to use MKL Packed Optimization"); +#else +DEFINE_bool(use_mkl_packed, false, "Not to use MKL Packed Optimization"); +#endif + DEFINE_bool(parallel_nn, false, "Whether to use multi-threads to calculate one neural network." diff --git a/paddle/utils/Flags.h b/paddle/utils/Flags.h index 1832bb515e..b64295bca0 100644 --- a/paddle/utils/Flags.h +++ b/paddle/utils/Flags.h @@ -41,3 +41,4 @@ DECLARE_string(predict_file); DECLARE_bool(prev_batch_state); DECLARE_string(init_model_path); DECLARE_bool(use_mkldnn); +DECLARE_bool(use_mkl_packed); diff --git a/paddle/utils/enable_virtualenv.py b/paddle/utils/enable_virtualenv.py index ccfaa7c147..29f8deb324 100644 --- a/paddle/utils/enable_virtualenv.py +++ b/paddle/utils/enable_virtualenv.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import os diff --git a/proto/OptimizerConfig.proto b/proto/OptimizerConfig.proto index d27b1bcf80..b341d78d19 100644 --- a/proto/OptimizerConfig.proto +++ b/proto/OptimizerConfig.proto @@ -1,3 +1,16 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. syntax = "proto2"; option optimize_for = LITE_RUNTIME; diff --git a/python/.gitignore b/python/.gitignore index cc7d0ece4a..1ba1d4c9b0 100644 --- a/python/.gitignore +++ b/python/.gitignore @@ -2,6 +2,7 @@ build dist paddle.egg-info +paddlepaddle_gpu.egg-info .idea paddle/proto/*.py paddle/proto/*.pyc diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index c8632295a2..36919ab00b 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -29,8 +29,14 @@ if(WITH_MKLML) endif() if(WITH_MKLDNN) - list(APPEND MKL_SHARED_LIBS "${MKLDNN_LIB}" "${MKLDNN_LIB}.0") - list(APPEND MKL_DEPENDS mkldnn) + list(APPEND MKL_SHARED_LIBS "${MKLDNN_SHARED_LIB}") + list(APPEND MKL_DEPENDS mkldnn mkldnn_shared_lib) +endif() + +if(WITH_GPU) + SET(PACKAGE_NAME "paddlepaddle-gpu") +else() + SET(PACKAGE_NAME "paddlepaddle") endif() configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 239fe4204b..4fdf409021 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -3622,8 +3622,13 @@ class ConcatenateLayer2(LayerBase): @config_layer('recurrent') class RecurrentLayer(LayerBase): + layer_type = 'recurrent' + def __init__(self, name, inputs, reversed=False, bias=True, **xargs): - super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs, + use_mkl_packed = bool( + int(g_command_config_args.get("use_mkl_packed", 0))) + self.layer_type = 'mkl_packed_recurrent' if use_mkl_packed else 'recurrent' + super(RecurrentLayer, self).__init__(name, self.layer_type, 0, inputs, **xargs) config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input') input_layer = self.get_input_layer(0) diff --git a/python/paddle/trainer_config_helpers/attrs.py b/python/paddle/trainer_config_helpers/attrs.py index ecba871910..e6f87ce61b 100644 --- a/python/paddle/trainer_config_helpers/attrs.py +++ b/python/paddle/trainer_config_helpers/attrs.py @@ -58,12 +58,12 @@ def is_compatible_with(x, Type): class HookAttribute(object): """ - Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs + Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs during training process of a layer with parameters, such as img_conv layer, fc layer. - :param type: Hook type, currently supported types: + :param type: Hook type, currently supported types: 'pruning' : user specify a sparsity_ratio before training started, and the - network will prune the parameters based on the sparsity_ratio. + network will prune the parameters based on the sparsity_ratio. eg: The definition of Hook object can be hk = HookAttribute('pruning', 0.6) The specific usage can be paddle.layer.img_conv(input=img, filter_size=3, num_channels=3, num_filters=64, @@ -71,10 +71,10 @@ class HookAttribute(object): The pruning details can be found https://arxiv.org/pdf/1506.02626.pdf :type type: string - :param sparsity_ratio: Must be specified if hook type is 'pruning', + :param sparsity_ratio: Must be specified if hook type is 'pruning', it represents the ratio of the zero elements to be set by the Parameter. :type sparsity_ratio: float or None - + """ def __init__(self, type, sparsity_ratio=None): @@ -130,10 +130,12 @@ class ParameterAttribute(object): :param sparse_update: Enable sparse update for this parameter. It will enable both local and remote sparse update. :type sparse_update: bool + :param update_hooks: A HookAttribute object. + :type update_hooks: HookAttribute :param initializer: If not None, it should be a callable object which accepts a parameter name and returns numpy array for the initial value of the parameter - :param initializer: callable object + :type initializer: callable object """ def __init__(self, diff --git a/python/paddle/trainer_config_helpers/evaluators.py b/python/paddle/trainer_config_helpers/evaluators.py index 95797fba8f..0eeaf7eabb 100644 --- a/python/paddle/trainer_config_helpers/evaluators.py +++ b/python/paddle/trainer_config_helpers/evaluators.py @@ -16,13 +16,22 @@ from paddle.trainer.config_parser import * from default_decorators import * __all__ = [ - "evaluator_base", "classification_error_evaluator", "auc_evaluator", - "pnpair_evaluator", "precision_recall_evaluator", "ctc_error_evaluator", - "chunk_evaluator", "sum_evaluator", "column_sum_evaluator", - "value_printer_evaluator", "gradient_printer_evaluator", - "maxid_printer_evaluator", "maxframe_printer_evaluator", - "seqtext_printer_evaluator", "classification_error_printer_evaluator", - "detection_map_evaluator" + "evaluator_base", + "classification_error_evaluator", + "auc_evaluator", + "pnpair_evaluator", + "precision_recall_evaluator", + "ctc_error_evaluator", + "chunk_evaluator", + "sum_evaluator", + "column_sum_evaluator", + "value_printer_evaluator", + "gradient_printer_evaluator", + "maxid_printer_evaluator", + "maxframe_printer_evaluator", + "seqtext_printer_evaluator", + "classification_error_printer_evaluator", + "detection_map_evaluator", ] diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 8c5cc25d6c..eac2cb3168 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -270,7 +270,7 @@ class LayerType(object): @staticmethod def is_layer_type(type_name): """ - If type_name is a layer type. + Whether type_name is a layer type. :param type_name: layer type name. Because layer type enumerations are strings. @@ -441,7 +441,7 @@ def full_matrix_projection(input, size=0, param_attr=None): with mixed_layer(size=100) as m: m += full_matrix_projection(input=layer) - 2. When used as an independant object like this, you must set the size: + 2. When used as an independent object like this, you must set the size: .. code-block:: python @@ -451,11 +451,11 @@ def full_matrix_projection(input, size=0, param_attr=None): :param input: The input of this layer. :type input: LayerOutput - :param size: The parameter size. Means the width of parameter. + :param size: The dimension of this layer. :type size: int - :param param_attr: Parameter config, None if use default. + :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute - :return: A FullMatrixProjection Object. + :return: FullMatrixProjection Object. :rtype: FullMatrixProjection """ proj = FullMatrixProjection( @@ -468,12 +468,12 @@ def full_matrix_projection(input, size=0, param_attr=None): def trans_full_matrix_projection(input, size=0, param_attr=None): """ Different from full_matrix_projection, this projection performs matrix - multiplication, using transpose of weight. + multiplication, using the transpose of weight. .. math:: out.row[i] += in.row[i] * w^\mathrm{T} - :math:`w^\mathrm{T}` means transpose of weight. + :math:`w^\mathrm{T}` means the transpose of weight. The simply usage is: .. code-block:: python @@ -489,9 +489,9 @@ def trans_full_matrix_projection(input, size=0, param_attr=None): :type input: LayerOutput :param size: The parameter size. Means the width of parameter. :type size: int - :param param_attr: Parameter config, None if use default. + :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute - :return: A TransposedFullMatrixProjection Object. + :return: TransposedFullMatrixProjection Object. :rtype: TransposedFullMatrixProjection """ proj = TransposedFullMatrixProjection( @@ -521,7 +521,7 @@ def table_projection(input, size=0, param_attr=None): with mixed_layer(size=100) as m: m += table_projection(input=layer) - 2. When used as an independant object like this, you must set the size: + 2. When used as an independent object like this, you must set the size: .. code-block:: python @@ -532,11 +532,11 @@ def table_projection(input, size=0, param_attr=None): :param input: The input of this layer, which must contains id fields. :type input: LayerOutput - :param size: The parameter size. Means the width of parameter. + :param size: The dimension of the output. :type size: int - :param param_attr: Parameter config, None if use default. + :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute - :return: A TableProjection Object. + :return: TableProjection Object. :rtype: TableProjection """ proj = TableProjection( @@ -547,7 +547,7 @@ def table_projection(input, size=0, param_attr=None): def identity_projection(input, offset=None, size=None): """ - 1. IdentityProjection if offset=None. It performs: + 1. If offset=None, it performs IdentityProjection as follows: .. math:: out.row[i] += in.row[i] @@ -559,9 +559,8 @@ def identity_projection(input, offset=None, size=None): proj = identity_projection(input=layer) - 2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection, - but layer size may be smaller than input size. - It select dimesions [offset, offset+layer_size) from input: + 2. If offset!=None, It executes IdentityOffsetProjection and takes the + elements of the input in the range [offset, offset+size) as output. .. math:: out.row[i] += in.row[i + \\textrm{offset}] @@ -573,14 +572,20 @@ def identity_projection(input, offset=None, size=None): proj = identity_projection(input=layer, offset=10) - Note that both of two projections should not have any parameter. + Note that neither of the projections have trainable parameter. :param input: The input of this layer. :type input: LayerOutput - :param offset: Offset, None if use default. + :param offset: The offset from the start of the input. The input's + elements in the range [offset, offset+size) will be + taken as output. If this parameter is not set or set + to None, the output will be the same as the input. :type offset: int - :return: A IdentityProjection or IdentityOffsetProjection object - :rtype: IdentityProjection or IdentityOffsetProjection + :param size: The dimension of this layer. It will be neglected + when offset is None or not set. + :type size: int + :return: IdentityProjection or IdentityOffsetProjection object + :rtype: IdentityProjection | IdentityOffsetProjection """ if offset is None: proj = IdentityProjection(input_layer_name=input.name) @@ -596,8 +601,8 @@ def identity_projection(input, offset=None, size=None): def slice_projection(input, slices): """ - slice_projection can slice the input value into multiple parts, - and then select some of them to merge into a new output. + slice_projection slices the input value into multiple parts, + then selects and merges some of them into a new output. .. math:: output = [input.slices()] @@ -608,15 +613,13 @@ def slice_projection(input, slices): proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)]) - Note that slice_projection should not have any parameter. + Note that slice_projection has no trainable parameter. :param input: The input of this layer. :type input: LayerOutput - :param slices: An array of slice parameters. - Each slice contains the start and end offsets based - on the input. - :type slices: pair of int - :return: A SliceProjection object + :param slices: A list of start and end offsets of each slice. + :type slices: list of tuple + :return: SliceProjection object. :rtype: SliceProjection """ assert len(slices) >= 1 @@ -636,8 +639,7 @@ def slice_projection(input, slices): @wrap_param_attr_default() def scaling_projection(input, param_attr=None): """ - scaling_projection multiplies the input with a scalar parameter and add to - the output. + scaling_projection multiplies the input with a scalar parameter. .. math:: out += w * in @@ -650,9 +652,9 @@ def scaling_projection(input, param_attr=None): :param input: The input of this layer. :type input: LayerOutput - :param param_attr: Parameter config, None if use default. + :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute - :return: A ScalingProjection object + :return: ScalingProjection object. :rtype: ScalingProjection """ proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr) @@ -663,8 +665,8 @@ def scaling_projection(input, param_attr=None): @wrap_param_attr_default() def dotmul_projection(input, param_attr=None): """ - DotMulProjection with a layer as input. - It performs element-wise multiplication with weight. + DotMulProjection takes a layer as input and performs + element-wise multiplication with weight. .. math:: out.row[i] += in.row[i] .* weight @@ -679,9 +681,9 @@ def dotmul_projection(input, param_attr=None): :param input: The input of this layer. :type input: LayerOutput - :param param_attr: Parameter config, None if use default. + :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute - :return: A DotMulProjection Object. + :return: DotMulProjection object. :rtype: DotMulProjection """ proj = DotMulProjection( @@ -698,7 +700,7 @@ def dotmul_operator(a=None, b=None, scale=1, **kwargs): out.row[i] += scale * (a.row[i] .* b.row[i]) where :math:`.*` means element-wise multiplication, and - scale is a config scalar, its default value is one. + scale is a config scalar, its default value is 1. The example usage is: @@ -706,13 +708,13 @@ def dotmul_operator(a=None, b=None, scale=1, **kwargs): op = dotmul_operator(a=layer1, b=layer2, scale=0.5) - :param a: Input layer1 + :param a: The first input of this layer. :type a: LayerOutput - :param b: Input layer2 + :param b: The second input of this layer. :type b: LayerOutput - :param scale: config scalar, default value is one. + :param scale: A scalar to scale the product. Its default value is 1. :type scale: float - :return: A DotMulOperator Object. + :return: DotMulOperator object. :rtype: DotMulOperator """ if 'x' in kwargs or 'y' in kwargs: @@ -738,28 +740,29 @@ def context_projection(input, """ Context Projection. - It just simply reorganizes input sequence, combines "context_len" sequence - to one context from context_start. "context_start" will be set to - -(context_len - 1) / 2 by default. If context position out of sequence + It just reorganizes input sequence, combines "context_len" elements of the + sequence to one context from context_start. "context_start" will be set to + -(context_len - 1) / 2 by default. When context position is out of sequence length, padding will be filled as zero if padding_attr = False, otherwise it is trainable. - For example, origin sequence is [A B C D E F G], context len is 3, then - after context projection and not set padding_attr, sequence will + For example, origin sequence is [A B C D E F G], context len is 3, padding_attr + is not set, then after context projection, sequence will be [ 0AB ABC BCD CDE DEF EFG FG0 ]. :param input: The input of this layer, which should be a sequence. :type input: LayerOutput - :param context_len: context length. + :param context_len: The length of the context. :type context_len: int - :param context_start: context start position. Default is + :param context_start: The start position of the context. The default value is -(context_len - 1)/2 :type context_start: int - :param padding_attr: Padding Parameter Attribute. If false, it means padding - always be zero. Otherwise Padding is learnable, and - parameter attribute is set by this parameter. + :param padding_attr: Parameter attribute of the padding. If the parameter is + set to False, padding will be zero. In other cases, the + padding is trainable, and its parameter attribute is set + by this parameter. :type padding_attr: bool | ParameterAttribute - :return: Projection + :return: Projection object. :rtype: Projection """ context_start = -( @@ -791,10 +794,9 @@ class MixedLayerType(LayerOutput): def __init__(self, name, size, act, bias_attr, layer_attr, parents=None): """ - Ctor. - :param name: layer name. + :param name: The name of this layer. :type name: basestring - :param size: layer size. + :param size: The dimension of this layer. :type size: int :param act: Activation type. :type act: BaseActivation @@ -802,8 +804,9 @@ class MixedLayerType(LayerOutput): whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param layer_attr: Extra Layer Attribute. - :type layer_attr: ExtraLayerAttribute or None + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. + :type layer_attr: ExtraLayerAttribute | None """ LayerOutput.__init__( self, @@ -868,12 +871,12 @@ def mixed_layer(size=0, bias_attr=False, layer_attr=None): """ - Mixed Layer. A mixed layer will add all inputs together, then activate. - Each inputs is a projection or operator. + Mixed Layer. A mixed layer will add all inputs together, then activate the sum. + Each input is a projection or operator. There are two styles of usages. - 1. When not set inputs parameter, use mixed_layer like this: + 1. When the parameter input is not set, use mixed_layer like this: .. code-block:: python @@ -889,21 +892,21 @@ def mixed_layer(size=0, input=[full_matrix_projection(input=layer1), full_matrix_projection(input=layer2)]) - :param name: mixed layer name. Can be referenced by other layer. + :param name: The name of this layer. It is optional. :type name: basestring - :param size: layer size. + :param size: The dimension of this layer. :type size: int - :param input: The input of this layer. It is an optional parameter. If set, - then this function will just return layer's name. + :param input: The input of this layer. It is an optional parameter. :param act: Activation Type. LinearActivation is the default activation. :type act: BaseActivation :param bias_attr: The bias attribute. If the parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param layer_attr: The extra layer config. Default is None. + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute - :return: MixedLayerType object can add inputs or layer name. + :return: MixedLayerType object. :rtype: MixedLayerType """ @@ -938,14 +941,15 @@ def data_layer(name, size, depth=None, height=None, width=None, :param name: The name of this layer. :type name: basestring - :param size: Size of this data layer. + :param size: The dimension of this data layer. :type size: int - :param height: Height of this data layer, used for image + :param height: The height of the input image data. :type height: int | None - :param width: Width of this data layer, used for image + :param width: The width of the input image data. :type width: int | None - :param layer_attr: Extra Layer Attribute. - :type layer_attr: ExtraLayerAttribute. + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. + :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ @@ -978,14 +982,15 @@ def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None): :param name: The name of this layer. It is optional. :type name: basestring - :param input: The input of this layer, which must be Index Data. + :param input: The input of this layer, whose type must be Index Data. :type input: LayerOutput - :param size: The embedding dimension. + :param size: The dimension of the embedding vector. :type size: int :param param_attr: The embedding parameter attribute. See ParameterAttribute for details. - :type param_attr: ParameterAttribute | None - :param layer_attr: Extra layer Config. Default is None. + :type param_attr: ParameterAttribute + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute | None :return: LayerOutput object. :rtype: LayerOutput @@ -1013,7 +1018,7 @@ def fc_layer(input, bias_attr=None, layer_attr=None): """ - Helper for declare fully connected layer. + The fully connected layer. The example usage is: @@ -1035,17 +1040,18 @@ def fc_layer(input, :type name: basestring :param input: The input of this layer. :type input: LayerOutput | list | tuple - :param size: The layer dimension. + :param size: The dimension of this layer. :type size: int :param act: Activation Type. TanhActivation is the default activation. :type act: BaseActivation - :param param_attr: The Parameter Attribute|list. + :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute :param bias_attr: The bias attribute. If the parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param layer_attr: Extra Layer config. + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute | None :return: LayerOutput object. :rtype: LayerOutput @@ -1086,13 +1092,15 @@ def fc_layer(input, @wrap_name_default("print") def printer_layer(input, format=None, name=None): """ - Print the output value of input layers. This layer is useful for debugging. + Print the output value of the layers specified by the parameter input. + This layer is useful for debugging. :param name: The name of this layer. It is optional. :type name: basestring :param input: The input of this layer. :type input: LayerOutput | list | tuple - :return: LayerOutput + :return: LayerOutput object. + :rtype: LayerOutput """ if isinstance(input, LayerOutput): input = [input] @@ -1135,11 +1143,12 @@ def priorbox_layer(input, :param aspect_ratio: The aspect ratio. :type aspect_ratio: list :param variance: The bounding box variance. - :type min_size: The min size of the priorbox width/height. + :type min_size: The minimum size of the priorbox width/height. :param min_size: list - :type max_size: The max size of the priorbox width/height. Could be NULL. + :type max_size: The maximum size of the priorbox width/height. It could be NULL. :param max_size: list - :return: LayerOutput + :return: LayerOutput object. + :rtype: LayerOutput """ # plus one for ratio 1. num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4 @@ -1177,7 +1186,7 @@ def multibox_loss_layer(input_loc, :param name: The name of this layer. It is optional. :type name: basestring - :param input_loc: The input predict locations. + :param input_loc: The input predicted locations. :type input_loc: LayerOutput | List of LayerOutput :param input_conf: The input priorbox confidence. :type input_conf: LayerOutput | List of LayerOutput @@ -1189,13 +1198,15 @@ def multibox_loss_layer(input_loc, :type num_classes: int :param overlap_threshold: The threshold of the overlap. :type overlap_threshold: float - :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox. + :param neg_pos_ratio: The ratio of the negative bounding box to + the positive bounding box. :type neg_pos_ratio: float - :param neg_overlap: The negative bbox overlap threshold. + :param neg_overlap: The negative bounding box overlap threshold. :type neg_overlap: float :param background_id: The background class index. :type background_id: int - :return: LayerOutput + :return: LayerOutput object. + :rtype: LayerOutput """ if isinstance(input_loc, LayerOutput): input_loc = [input_loc] @@ -1258,19 +1269,20 @@ def detection_output_layer(input_loc, :type input_conf: LayerOutput | List of LayerOutput. :param priorbox: The input priorbox location and the variance. :type priorbox: LayerOutput - :param num_classes: The number of the classification. + :param num_classes: The number of the classes. :type num_classes: int :param nms_threshold: The Non-maximum suppression threshold. :type nms_threshold: float - :param nms_top_k: The bbox number kept of the NMS's output + :param nms_top_k: The bounding boxes number kept of the NMS's output. :type nms_top_k: int - :param keep_top_k: The bbox number kept of the layer's output + :param keep_top_k: The bounding boxes number kept of the layer's output. :type keep_top_k: int - :param confidence_threshold: The classification confidence threshold + :param confidence_threshold: The classification confidence threshold. :type confidence_threshold: float :param background_id: The background class index. :type background_id: int - :return: LayerOutput + :return: LayerOutput object. + :rtype: LayerOutput """ if isinstance(input_loc, LayerOutput): input_loc = [input_loc] @@ -1326,7 +1338,7 @@ def roi_pool_layer(input, A layer used by Fast R-CNN to extract feature maps of ROIs from the last feature map. - :param name: The Layer Name. + :param name: The name of this layer. It is optional. :type name: basestring :param input: The input layer. :type input: LayerOutput. @@ -1338,9 +1350,10 @@ def roi_pool_layer(input, :type pooled_height: int :param spatial_scale: The spatial scale between the image and feature map. :type spatial_scale: float - :param num_channels: number of input channel. + :param num_channels: The number of the input channels. :type num_channels: int - :return: LayerOutput + :return: LayerOutput object. + :rtype: LayerOutput """ if num_channels is None: assert input.num_filters is not None @@ -1361,18 +1374,19 @@ def roi_pool_layer(input, @wrap_name_default("cross_channel_norm") def cross_channel_norm_layer(input, name=None, param_attr=None): """ - Normalize a layer's output. This layer is necessary for ssd. - This layer applys normalize across the channels of each sample to - a conv layer's output and scale the output by a group of trainable - factors which dimensions equal to the channel's number. + Normalize a layer's output. This layer is necessary for ssd. This + layer applys normalization across the channels of each sample to + a convolutional layer's output and scales the output by a group of + trainable factors whose dimensions equal to the channel's number. :param name: The name of this layer. It is optional. :type name: basestring :param input: The input of this layer. :type input: LayerOutput - :param param_attr: The Parameter Attribute|list. + :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute - :return: LayerOutput + :return: LayerOutput object. + :rtype: LayerOutput """ assert input.num_filters is not None Layer( @@ -1413,12 +1427,9 @@ def pooling_layer(input, Pooling layer for sequence inputs, not used for Image. If stride > 0, this layer slides a window whose size is determined by stride, - and return the pooling value of the window as the output. Thus, a long sequence - will be shorten. - - The parameter stride specifies the intervals at which to apply the pooling - operation. Note that for sequence with sub-sequence, the default value - of stride is -1. + and returns the pooling value of the sequence in the window as the output. Thus, + a long sequence will be shortened. Note that for sequence with sub-sequence, the + default value of stride is -1. The example usage is: @@ -1435,16 +1446,16 @@ def pooling_layer(input, :type name: basestring :param input: The input of this layer. :type input: LayerOutput - :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling, - SumPooling, SquareRootNPooling. + :param pooling_type: Type of pooling. MaxPooling is the default pooling. :type pooling_type: BasePoolingType | None :param stride: The step size between successive pooling regions. - :type stride: Int + :type stride: int :param bias_attr: The bias attribute. If the parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param layer_attr: The Extra Attributes for layer, such as dropout. + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute | None :return: LayerOutput object. :rtype: LayerOutput @@ -1519,34 +1530,33 @@ def lstmemory(input, NOTE: This is a low level user interface. You can use network.simple_lstm to config a simple plain lstm layer. - Please refer to **Generating Sequences With Recurrent Neural Networks** for - more details about LSTM. - - Link_ goes as below. - - .. _Link: http://arxiv.org/abs/1308.0850 + Reference: + `Generating Sequences With Recurrent Neural Networks + `_ - :param name: The lstmemory layer name. + :param name: The name of this layer. It is optional. :type name: basestring - :param size: DEPRECATED. size of the lstm cell + :param size: DEPRECATED. The dimension of the lstm cell. :type size: int :param input: The input of this layer. :type input: LayerOutput - :param reverse: is sequence process reversed or not. + :param reverse: Whether the input sequence is processed in a reverse order. :type reverse: bool :param act: Activation type. TanhActivation is the default activation. :type act: BaseActivation - :param gate_act: gate activation type, SigmoidActivation by default. + :param gate_act: Activation type of this layer's gates. SigmoidActivation is the + default activation. :type gate_act: BaseActivation - :param state_act: state activation type, TanhActivation by default. + :param state_act: Activation type of the state. TanhActivation is the default activation. :type state_act: BaseActivation :param bias_attr: The bias attribute. If the parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param param_attr: Parameter Attribute. - :type param_attr: ParameterAttribute | None | False - :param layer_attr: Extra Layer attribute + :param param_attr: The parameter attribute. See ParameterAttribute for details. + :type param_attr: ParameterAttribute + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute | None :return: LayerOutput object. :rtype: LayerOutput @@ -1635,14 +1645,14 @@ def grumemory(input, h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}} NOTE: In PaddlePaddle's implementation, the multiplication operations - :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in - gate_recurrent layer. Consequently, an additional mixed_layer with + :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not performed + in gate_recurrent layer. Consequently, an additional mixed_layer with full_matrix_projection or a fc_layer must be included before grumemory is called. - More details can be found by referring to `Empirical Evaluation of Gated - Recurrent Neural Networks on Sequence Modeling. - `_ + Reference: + `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling + `_ The simple usage is: @@ -1650,28 +1660,29 @@ def grumemory(input, gru = grumemory(input) - :param name: The gru layer name. - :type name: None | basestring + :param name: The name of this layer. It is optional. + :type name: basestring :param input: The input of this layer. :type input: LayerOutput. - :param size: DEPRECATED. size of the gru cell + :param size: DEPRECATED. The dimension of the gru cell. :type size: int - :param reverse: Whether sequence process is reversed or not. + :param reverse: Whether the input sequence is processed in a reverse order. :type reverse: bool :param act: Activation type, TanhActivation is the default. This activation affects the :math:`{\\tilde{h_t}}`. :type act: BaseActivation - :param gate_act: gate activation type, SigmoidActivation by default. - This activation affects the :math:`z_t` and :math:`r_t`. It is the - :math:`\\sigma` in the above formula. + :param gate_act: Activation type of this layer's two gates. SigmoidActivation is + the default activation. This activation affects the :math:`z_t` + and :math:`r_t`. It is the :math:`\\sigma` in the above formula. :type gate_act: BaseActivation :param bias_attr: The bias attribute. If the parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param param_attr: Parameter Attribute. - :type param_attr: ParameterAttribute | None | False - :param layer_attr: Extra Layer attribute + :param param_attr: The parameter attribute. See ParameterAttribute for details. + :type param_attr: ParameterAttribute + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute | None :return: LayerOutput object. :rtype: LayerOutput @@ -1715,10 +1726,10 @@ def last_seq(input, """ Get Last Timestamp Activation of a sequence. - If stride > 0, this layer slides a window whose size is determined by stride, - and return the last value of the window as the output. Thus, a long sequence - will be shorten. Note that for sequence with sub-sequence, the default value - of stride is -1. + If stride > 0, this layer will slide a window whose size is determined by stride, + and return the last value of the sequence in the window as the output. Thus, a + long sequence will be shortened. Note that for sequence with sub-sequence, the + default value of stride is -1. The simple usage is: @@ -1727,14 +1738,16 @@ def last_seq(input, seq = last_seq(input=layer) :param agg_level: Aggregated level + :type agg_level: AggregateLevel :param name: The name of this layer. It is optional. :type name: basestring :param input: The input of this layer. :type input: LayerOutput :param stride: The step size between successive pooling regions. - :type stride: Int - :param layer_attr: extra layer attributes. - :type layer_attr: ExtraLayerAttribute. + :type stride: int + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. + :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ @@ -1771,10 +1784,10 @@ def first_seq(input, """ Get First Timestamp Activation of a sequence. - If stride > 0, this layer slides a window whose size is determined by stride, - and return the first value of the window as the output. Thus, a long sequence - will be shorten. Note that for sequence with sub-sequence, the default value - of stride is -1. + If stride > 0, this layer will slide a window whose size is determined by stride, + and return the first value of the sequence in the window as the output. Thus, a + long sequence will be shortened. Note that for sequence with sub-sequence, the + default value of stride is -1. The simple usage is: @@ -1783,13 +1796,15 @@ def first_seq(input, seq = first_seq(input=layer) :param agg_level: aggregation level + :type agg_level: AggregateLevel :param name: The name of this layer. It is optional. :type name: basestring :param input: The input of this layer. :type input: LayerOutput :param stride: The step size between successive pooling regions. - :type stride: Int - :param layer_attr: extra layer attributes. + :type stride: int + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput @@ -1847,8 +1862,8 @@ def expand_layer(input, expand_level=ExpandLevel.FROM_NO_SEQUENCE, layer_attr=None): """ - A layer for "Expand Dense data or (sequence data where the length of each - sequence is one) to sequence data." + A layer for expanding dense data or (sequence data where the length of each + sequence is one) to sequence data. The example usage is: @@ -1860,7 +1875,9 @@ def expand_layer(input, :param input: The input of this layer. :type input: LayerOutput - :param expand_as: Expand as this layer's sequence info. + :param expand_as: Expand the input according to this layer's sequence infomation. And + after the operation, the input expanded will have the same number of + elememts as this layer. :type expand_as: LayerOutput :param name: The name of this layer. It is optional. :type name: basestring @@ -1868,9 +1885,10 @@ def expand_layer(input, whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param expand_level: whether input layer is timestep(default) or sequence. + :param expand_level: Whether the input layer is a sequence or the element of a sequence. :type expand_level: ExpandLevel - :param layer_attr: extra layer attributes. + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput @@ -2524,15 +2542,21 @@ def img_conv_layer(input, what-are-deconvolutional-layers/>`_ . The num_channel means input image's channel number. It may be 1 or 3 when input is raw pixels of image(mono or RGB), or it may be the previous layer's - num_filters * num_group. + num_filters. There are several groups of filters in PaddlePaddle implementation. - Each group will process some channels of the input. For example, if - num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create - 32*4 = 128 filters to process the input. The channels will be split into 4 - pieces. First 256/4 = 64 channels will be processed by first 32 filters. The - rest channels will be processed by the rest groups of filters. - + If the groups attribute is greater than 1, for example groups=2, + the input will be splitted into 2 parts along the channel axis, and + the filters will also be splitted into 2 parts. The first half of the filters + is only connected to the first half of the input channels, while the second + half of the filters is only connected to the second half of the input. After + the computation of convolution for each part of input, + the output will be obtained by concatenating the two results. + + The details of grouped convolution, please refer to: + `ImageNet Classification with Deep Convolutional Neural Networks + `_ + The example usage is: .. code-block:: python @@ -2557,7 +2581,8 @@ def img_conv_layer(input, :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter is not set, it will be set automatically according to filter_size. :type filter_size_y: int - :param num_filters: Each filter group's number of filter + :param num_filters: The number of filters. It is as same as the output image channel. + :type num_filters: int :param act: Activation type. ReluActivation is the default activation. :type act: BaseActivation :param groups: The group number. 1 is the default group number. @@ -2722,15 +2747,17 @@ def img_pool_layer(input, .. math:: - w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) - h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) + w & = 1 + \\frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} + + h & = 1 + \\frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} - ceil_mode=False: .. math:: - w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) - h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) + w & = 1 + \\frac{floor(input\_width + 2 * padding - pool\_size)}{stride} + + h & = 1 + \\frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} The example usage is: @@ -2863,17 +2890,21 @@ def img_pool3d_layer(input, .. math:: - w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) - h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) - d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z)) + w & = 1 + \\frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} + + h & = 1 + \\frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} + + d & = 1 + \\frac{ceil(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z} - ceil_mode=False: .. math:: - w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) - h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) - d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z)) + w & = 1 + \\frac{floor(input\_width + 2 * padding - pool\_size)}{stride} + + h & = 1 + \\frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} + + d & = 1 + \\frac{floor(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z} The example usage is: @@ -2996,7 +3027,7 @@ def spp_layer(input, Reference: `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition - https://arxiv.org/abs/1406.4729`_ + `_ The example usage is: @@ -3098,7 +3129,7 @@ def img_cmrnorm_layer(input, Reference: `ImageNet Classification with Deep Convolutional Neural Networks - http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_ + `_ The example usage is: @@ -3166,7 +3197,7 @@ def batch_norm_layer(input, Reference: `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift - http://arxiv.org/abs/1502.03167`_ + `_ The example usage is: @@ -3304,7 +3335,7 @@ def row_l2_norm_layer(input, name=None, layer_attr=None): A layer for L2-normalization in each row. .. math:: - out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}} + out[i] = \\frac{in[i]} {\\sqrt{\\sum_{k=1}^N in[k]^{2}}} where the size of :math:`in` is (batchSize x dataDim) , and the size of :math:`out` is a (batchSize x dataDim) . @@ -5424,17 +5455,27 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None): Reference: `Maxout Networks - http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_ + `_ `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks - https://arxiv.org/pdf/1312.6082v4.pdf`_ + `_ + .. math:: - y_{si+j} = \max_k x_{gsi + sk + j} - g = groups - s = input.size / num_channels - 0 \le i < num_channels / groups - 0 \le j < s - 0 \le k < groups + + & out = \max_k (in[n, k, o_c , s]) + + & out_{i * s + j} = \max_k in_{ k * o_{c} * s + i * s + j} + + & s = \\frac{input.size}{ num\_channels} + + & o_{c} = \\frac{num\_channels}{groups} + + & 0 \le i < o_{c} + + & 0 \le j < s + + & 0 \le k < groups + The simple usage is: @@ -5493,7 +5534,7 @@ def ctc_layer(input, Reference: `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks - http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_ + `_ Note: Considering the 'blank' label needed by CTC, you need to use (num_classes + 1) @@ -5567,7 +5608,7 @@ def warp_ctc_layer(input, Reference: `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks - http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_ + `_ Note: - Let num_classes represents the category number. Considering the 'blank' @@ -5788,7 +5829,7 @@ def nce_layer(input, Reference: `A fast and simple algorithm for training neural probabilistic language - models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_ + models. `_ The example usage is: @@ -5904,7 +5945,7 @@ def rank_cost(left, Reference: `Learning to Rank using Gradient Descent - http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_ + `_ .. math:: @@ -6171,9 +6212,11 @@ def huber_regression_cost(input, Given a prediction f(x), a label y and :math:`\delta`, the loss function is defined as: - .. math: - loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta - loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise + .. math:: + + loss = 0.5*(y-f(x))^{2}, | y-f(x) | < \delta + + loss = \delta | y-f(x) | - 0.5 \delta ^2, otherwise The example usage is: @@ -6220,12 +6263,14 @@ def huber_classification_cost(input, """ For classification purposes, a variant of the Huber loss called modified Huber is sometimes used. Given a prediction f(x) (a real-valued classifier score) and - a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber + a true binary class label :math:`y\in \{-1, 1 \}`, the modified Huber loss is defined as: .. math: - loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1 - loss = -4yf(x), \text{otherwise} + + loss = \max ( 0, 1-yf(x) )^2, yf(x) \geq -1 + + loss = -4yf(x), otherwise The example usage is: @@ -6440,7 +6485,7 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None): Reference: `Fast R-CNN - https://arxiv.org/pdf/1504.08083v2.pdf`_ + `_ The example usage is: @@ -6591,7 +6636,7 @@ def row_conv_layer(input, .. math:: r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}} - \quad \text{for} \quad (1 \leq i \leq d) + \quad \\text{for} \quad (1 \leq i \leq d) Note: The `context_len` is `k + 1`. That is to say, the lookahead step @@ -6647,7 +6692,7 @@ def prelu_layer(input, Reference: `Delving Deep into Rectifiers: Surpassing Human-Level Performance on - ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_ + ImageNet Classification `_ .. math:: z_i &\\quad if \\quad z_i > 0 \\\\ @@ -6740,11 +6785,11 @@ def gated_unit_layer(input, The gated unit layer implements a simple gating mechanism over the input. The input :math:`X` is first projected into a new space :math:`X'`, and it is also used to produce a gate weight :math:`\sigma`. Element-wise - product between :match:`X'` and :math:`\sigma` is finally returned. + product between :math:`X'` and :math:`\sigma` is finally returned. Reference: `Language Modeling with Gated Convolutional Networks - https://arxiv.org/abs/1612.08083`_ + `_ .. math:: y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c) @@ -6970,7 +7015,7 @@ def clip_layer(input, min, max, name=None): .. math:: - out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right) + out[i] = \min (\max (in[i],p_{1} ),p_{2} ) .. code-block:: python @@ -7139,7 +7184,7 @@ def img_conv3d_layer(input, :param filter_size: The dimensions of the filter kernel along three axises. If the parameter is set to one integer, the three dimensions will be same. :type filter_size: int | tuple | list - :param num_filters: The number of filters in each group. + :param num_filters: The number of filters. It is as same as the output image channel. :type num_filters: int :param act: Activation type. ReluActivation is the default activation. :type act: BaseActivation @@ -7436,7 +7481,7 @@ def factorization_machine(input, Factorization Machine with the formula: .. math:: - y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j + y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \\rangle x_i x_j Note: X is the input vector with size n. V is the factor matrix. Each row of V diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py index 9776ae1805..b5cde7bac7 100644 --- a/python/paddle/trainer_config_helpers/networks.py +++ b/python/paddle/trainer_config_helpers/networks.py @@ -25,10 +25,10 @@ from paddle.trainer.config_parser import * __all__ = [ 'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool", "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg', - 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru', - 'simple_attention', 'dot_product_attention', 'multi_head_attention', - 'simple_gru2', 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm', - 'inputs', 'outputs' + 'img_conv_group', 'img_separable_conv', 'vgg_16_network', 'gru_unit', + 'gru_group', 'simple_gru', 'simple_attention', 'dot_product_attention', + 'multi_head_attention', 'simple_gru2', 'bidirectional_gru', + 'text_conv_pool', 'bidirectional_lstm', 'inputs', 'outputs' ] ###################################################### @@ -251,13 +251,13 @@ def img_conv_bn_pool(input, pool_layer_attr=None): """ Convolution, batch normalization, pooling group. - + Img input => Conv => BN => Pooling => Output. :param name: group name. :type name: basestring :param input: input layer. - :type input: LayerOutput + :type input: LayerOutput :param filter_size: see img_conv_layer for details. :type filter_size: int :param num_filters: see img_conv_layer for details. @@ -435,6 +435,85 @@ def img_conv_group(input, input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type) +@wrap_name_default("separable_conv") +def img_separable_conv(input, + num_channels, + num_out_channels, + filter_size, + stride=1, + padding=0, + depth_multiplier=1, + act=None, + bias_attr=None, + param_attr=None, + shared_bias=True, + layer_type='exconv', + name=None): + """ + Separable Convolution. + + The separable convolution module is consisted of a depthwise convolution + that acts separately on input channels, followed by a pointwise convolution + with 1*1 kernels that mixes channels. It is used for Xception: + https://arxiv.org/pdf/1610.02357.pdf + + :param input: input layer. + :type input: LayerOutput + :param num_channels: the number of input channels. + :type num_channels: int + :param num_out_channels: the number of output channels. + :type num_out_channels: int + :param filter_size: the filter size for the depthwise convolution. + :type filter_size: int|tuple + :param stride: the stride size for the depthwise convolution. + :type stride: int|tuple + :param padding: the padding size for the depthwise convolution. + :type padding: int|tuple + :param depth_multiplier: the number of filter for one channel in the + depthwize convolution. + :type depth_multiplier: int + :param act: the activation function for the output. + :type act: BaseActivation + :param bias_attr: see img_conv_layer for details. + :type bias_attr: ParameterAttribute + :param param_attr: see img_conv_layer for details. + :type param_attr: ParameterAttribute + :param shared_bias: see img_conv_layer for details. + :type shared_bias: bool + :param layer_type: see img_conv_layer for details. + :type layer_type: bool + :return: layer's output + :rtype: LayerOutput + """ + __depthwise_conv__ = img_conv_layer( + name="%s_depthwise_conv" % name, + input=input, + num_channels=num_channels, + num_filters=num_channels * depth_multiplier, + groups=num_channels, + filter_size=filter_size, + stride=stride, + padding=padding, + act=LinearActivation(), + bias_attr=bias_attr, + param_attr=param_attr, + shared_biases=shared_bias, + layer_type=layer_type) + __pointwise_conv__ = img_conv_layer( + name="%s_pointwise_conv" % name, + input=__depthwise_conv__, + num_channels=num_channels * depth_multiplier, + num_filters=num_out_channels, + filter_size=1, + stride=1, + padding=0, + act=act, + bias_attr=bias_attr, + param_attr=param_attr, + shared_biases=shared_bias) + return __pointwise_conv__ + + def small_vgg(input_image, num_channels, num_classes): def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None): return img_conv_group( @@ -648,7 +727,7 @@ def lstmemory_unit(input, lstm_bias_attr=None, lstm_layer_attr=None): """ - lstmemory_unit defines the caculation process of a LSTM unit during a + lstmemory_unit defines the caculation process of a LSTM unit during a single time step. This function is not a recurrent layer, so it can not be directly used to process sequence input. This function is always used in recurrent_group (see layers.py for more details) to implement attention @@ -869,7 +948,7 @@ def gru_unit(input, gru_layer_attr=None, naive=False): """ - gru_unit defines the calculation process of a gated recurrent unit during a single + gru_unit defines the calculation process of a gated recurrent unit during a single time step. This function is not a recurrent layer, so it can not be directly used to process sequence input. This function is always used in the recurrent_group (see layers.py for more details) to implement attention @@ -1012,7 +1091,7 @@ def simple_gru(input, simple_gru in network.py. The reason why there are so many interfaces is that we have two ways to implement recurrent neural network. One way is to use one complete layer to implement rnn (including simple rnn, gru and lstm) - with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But + with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But the multiplication operation :math:`W x_t` is not computed in these layers. See details in their interfaces in layers.py. The other implementation is to use an recurrent group which can ensemble a @@ -1116,11 +1195,12 @@ def simple_gru2(input, :type act: BaseActivation :param gate_act: gate activiation type of gru :type gate_act: BaseActivation - :param gru_bias_attr: bias parameter attribute of gru layer, + :param gru_bias_attr: bias parameter attribute of gru layer, False means no bias, None means default bias. :type gru_bias_attr: ParameterAttribute|False|None - :param gru_layer_attr: Extra attribute of the gru layer. - :type gru_layer_attr: ExtraLayerAttribute + :param gru_param_attr: param parameter attribute of gru layer, + None means default param. + :type gru_param_attr: ParameterAttribute|None :return: the gru group. :rtype: LayerOutput """ @@ -1188,7 +1268,7 @@ def bidirectional_gru(input, :type size: int :param return_seq: If set False, the last time step of output are concatenated and returned. - If set True, the entire output sequences in forward + If set True, the entire output sequences in forward and backward directions are concatenated and returned. :type return_seq: bool :return: LayerOutput object. @@ -1277,7 +1357,7 @@ def bidirectional_lstm(input, :type size: int :param return_seq: If set False, the last time step of output are concatenated and returned. - If set True, the entire output sequences in forward + If set True, the entire output sequences in forward and backward directions are concatenated and returned. :type return_seq: bool :return: LayerOutput object. diff --git a/python/paddle/trainer_config_helpers/tests/configs/img_layers.py b/python/paddle/trainer_config_helpers/tests/configs/img_layers.py index 01d31ef3fa..c944a96042 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/img_layers.py +++ b/python/paddle/trainer_config_helpers/tests/configs/img_layers.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-3, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/img_trans_layers.py b/python/paddle/trainer_config_helpers/tests/configs/img_trans_layers.py index 91849b40a0..27b11ffdfc 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/img_trans_layers.py +++ b/python/paddle/trainer_config_helpers/tests/configs/img_trans_layers.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-3, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/last_first_seq.py b/python/paddle/trainer_config_helpers/tests/configs/last_first_seq.py index f87237f9b5..6a90051827 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/last_first_seq.py +++ b/python/paddle/trainer_config_helpers/tests/configs/last_first_seq.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/layer_activations.py b/python/paddle/trainer_config_helpers/tests/configs/layer_activations.py index 7012dbf6a0..06115d62e7 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/layer_activations.py +++ b/python/paddle/trainer_config_helpers/tests/configs/layer_activations.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. ''' Test all activations. ''' diff --git a/python/paddle/trainer_config_helpers/tests/configs/math_ops.py b/python/paddle/trainer_config_helpers/tests/configs/math_ops.py index a607a62c99..f5e90fdd89 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/math_ops.py +++ b/python/paddle/trainer_config_helpers/tests/configs/math_ops.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/projections.py b/python/paddle/trainer_config_helpers/tests/configs/projections.py index dc8975cb31..c683d378ca 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/projections.py +++ b/python/paddle/trainer_config_helpers/tests/configs/projections.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. ''' Test mixed layer, projections and operators. ''' diff --git a/python/paddle/trainer_config_helpers/tests/configs/shared_fc.py b/python/paddle/trainer_config_helpers/tests/configs/shared_fc.py index 7c848ef3fc..bf90d1762c 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/shared_fc.py +++ b/python/paddle/trainer_config_helpers/tests/configs/shared_fc.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/shared_gru.py b/python/paddle/trainer_config_helpers/tests/configs/shared_gru.py index c19bb9685a..7cfab83855 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/shared_gru.py +++ b/python/paddle/trainer_config_helpers/tests/configs/shared_gru.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/shared_lstm.py b/python/paddle/trainer_config_helpers/tests/configs/shared_lstm.py index 565e281a6e..8a425c7062 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/shared_lstm.py +++ b/python/paddle/trainer_config_helpers/tests/configs/shared_lstm.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/simple_rnn_layers.py b/python/paddle/trainer_config_helpers/tests/configs/simple_rnn_layers.py index a5b5bb30b1..8ee213a493 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/simple_rnn_layers.py +++ b/python/paddle/trainer_config_helpers/tests/configs/simple_rnn_layers.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-4) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py b/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py index a991b22252..cbd3c3e97f 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-4) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_bi_grumemory.py b/python/paddle/trainer_config_helpers/tests/configs/test_bi_grumemory.py index cd7f609638..bed9154fe3 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_bi_grumemory.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_bi_grumemory.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-4) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py b/python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py index be83f4f83c..7e1da753f5 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_clip_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_clip_layer.py index f066fe1fb3..0a719b0735 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_clip_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_clip_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='input', size=300) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_config_parser_for_non_file_config.py b/python/paddle/trainer_config_helpers/tests/configs/test_config_parser_for_non_file_config.py index 9b791a0222..7003872700 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_config_parser_for_non_file_config.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_config_parser_for_non_file_config.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. # diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_conv3d_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_conv3d_layer.py index aa0a2c0d5f..fb2cacd443 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_conv3d_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_conv3d_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py b/python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py index 7ce375c708..a8b5c860ef 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.py b/python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.py index caa6aaa943..eba2e1e483 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_crop.py b/python/paddle/trainer_config_helpers/tests/configs/test_crop.py index 8314a7e9a5..870388faf7 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_crop.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_crop.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_cross_entropy_over_beam.py b/python/paddle/trainer_config_helpers/tests/configs/test_cross_entropy_over_beam.py index 4a5bdf1181..253244dcd4 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_cross_entropy_over_beam.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_cross_entropy_over_beam.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python #coding=utf-8 diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_deconv3d_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_deconv3d_layer.py index a113279fc1..db950093b3 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_deconv3d_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_deconv3d_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_detection_output_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_detection_output_layer.py index 3572a2cb07..d304a29859 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_detection_output_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_detection_output_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_dot_prod_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_dot_prod_layer.py index e52d48dde0..2e5dde2da2 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_dot_prod_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_dot_prod_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * vec1 = data_layer(name='vector1', size=10) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_expand_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_expand_layer.py index c53f10e0a4..345fb2b6ab 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_expand_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_expand_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_factorization_machine.py b/python/paddle/trainer_config_helpers/tests/configs/test_factorization_machine.py index b249de0fee..3a489a39da 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_factorization_machine.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_factorization_machine.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='data', size=1024) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_fc.py b/python/paddle/trainer_config_helpers/tests/configs/test_fc.py index 2842d3429c..90b0e37270 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_fc.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_fc.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_gated_unit_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_gated_unit_layer.py index 9dab45519c..2bd4ab2da4 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_gated_unit_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_gated_unit_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='input', size=256) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_grumemory_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_grumemory_layer.py index 474e4f36ba..451909ee18 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_grumemory_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_grumemory_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-4) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_hsigmoid.py b/python/paddle/trainer_config_helpers/tests/configs/test_hsigmoid.py index dff1c535b3..3ebe40aadc 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_hsigmoid.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_hsigmoid.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py index 171da10f75..c762467feb 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python #coding=utf-8 from paddle.trainer_config_helpers import * diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_l2_distance_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_l2_distance_layer.py index b36a5c6d12..58bf3de104 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_l2_distance_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_l2_distance_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * outputs( diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_lstmemory_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_lstmemory_layer.py index 7ca1cc2db3..8d570706df 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_lstmemory_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_lstmemory_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_maxout.py b/python/paddle/trainer_config_helpers/tests/configs/test_maxout.py index eb14270baa..3b6117d297 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_maxout.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_maxout.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_multibox_loss_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_multibox_loss_layer.py index c3376c47bd..083d064367 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_multibox_loss_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_multibox_loss_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_multiplex_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_multiplex_layer.py index d250001932..9c14455841 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_multiplex_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_multiplex_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_ntm_layers.py b/python/paddle/trainer_config_helpers/tests/configs/test_ntm_layers.py index b7a15666f0..046698fb4e 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_ntm_layers.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_ntm_layers.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_pad.py b/python/paddle/trainer_config_helpers/tests/configs/test_pad.py index 491e8c8caa..1046db2f09 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_pad.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_pad.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py index 0dbb921d41..37805d4376 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=100, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py index 45b02fbf32..10d759f6d9 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='input', size=300, height=10, width=10) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_print_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_print_layer.py index 8da26ff44b..22e0ce3e5a 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_print_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_print_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_recursive_topology.py b/python/paddle/trainer_config_helpers/tests/configs/test_recursive_topology.py index 1a693f8dff..d1d97f1c5e 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_recursive_topology.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_recursive_topology.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_repeat_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_repeat_layer.py index 004e2a5dd4..6818b91f96 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_repeat_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_repeat_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_resize_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_resize_layer.py index 09a6f50733..ce8a22ebb1 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_resize_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_resize_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='input', size=300) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_rnn_group.py b/python/paddle/trainer_config_helpers/tests/configs/test_rnn_group.py index 91010759e4..79dad5e250 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_rnn_group.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_rnn_group.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_roi_pool_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_roi_pool_layer.py index b739a81b85..264341f899 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_roi_pool_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_roi_pool_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='data', size=3 * 14 * 14, height=14, width=14) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_row_conv.py b/python/paddle/trainer_config_helpers/tests/configs/test_row_conv.py index ab33c496b0..342a5029a8 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_row_conv.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_row_conv.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_row_l2_norm_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_row_l2_norm_layer.py index ac8badb26a..9521fa6c47 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_row_l2_norm_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_row_l2_norm_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='input', size=300) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_scale_shift_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_scale_shift_layer.py index dd589116fa..698d19d037 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_scale_shift_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_scale_shift_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='data', size=100) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_scale_sub_region_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_scale_sub_region_layer.py index 8d4bf28bf1..22fb25d0f2 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_scale_sub_region_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_scale_sub_region_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_seq_concat_reshape.py b/python/paddle/trainer_config_helpers/tests/configs/test_seq_concat_reshape.py index 5c161ba805..1883ed9d4e 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_seq_concat_reshape.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_seq_concat_reshape.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_seq_slice_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_seq_slice_layer.py index 510ad32208..12d7f1f33b 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_seq_slice_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_seq_slice_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python #coding=utf-8 from paddle.trainer_config_helpers import * diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_sequence_pooling.py b/python/paddle/trainer_config_helpers/tests/configs/test_sequence_pooling.py index 3c205eabd8..8cf5fd70e3 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_sequence_pooling.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_sequence_pooling.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_smooth_l1.py b/python/paddle/trainer_config_helpers/tests/configs/test_smooth_l1.py index 66629662dd..7188d82a53 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_smooth_l1.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_smooth_l1.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * data = data_layer(name='input', size=300) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_split_datasource.py b/python/paddle/trainer_config_helpers/tests/configs/test_split_datasource.py index 318b4459ba..a628272196 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_split_datasource.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_split_datasource.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * define_py_data_sources2( diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py index e0b0d0d3be..58c1675e6b 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=100, learning_rate=1e-5) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_sub_nested_seq_select_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_sub_nested_seq_select_layer.py index 6d1c3175ba..64d1d7b6ee 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_sub_nested_seq_select_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_sub_nested_seq_select_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/env python #coding=utf-8 from paddle.trainer_config_helpers import * diff --git a/python/paddle/trainer_config_helpers/tests/configs/unused_layers.py b/python/paddle/trainer_config_helpers/tests/configs/unused_layers.py index ebb39219bd..6294cb04ef 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/unused_layers.py +++ b/python/paddle/trainer_config_helpers/tests/configs/unused_layers.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-4) diff --git a/python/paddle/trainer_config_helpers/tests/configs/util_layers.py b/python/paddle/trainer_config_helpers/tests/configs/util_layers.py index 27f1c8e993..89b881b361 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/util_layers.py +++ b/python/paddle/trainer_config_helpers/tests/configs/util_layers.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) diff --git a/python/paddle/utils/dump_v2_config.py b/python/paddle/utils/dump_v2_config.py new file mode 100644 index 0000000000..5dc2111e37 --- /dev/null +++ b/python/paddle/utils/dump_v2_config.py @@ -0,0 +1,62 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import collections + +from paddle.trainer_config_helpers.layers import LayerOutput +from paddle.v2.layer import parse_network +from paddle.proto import TrainerConfig_pb2 + +__all__ = ["dump_v2_config"] + + +def dump_v2_config(topology, save_path, binary=False): + """ Dump the network topology to a specified file. + + This function is only used to dump network defined by using PaddlePaddle V2 + APIs. This function will NOT dump configurations related to PaddlePaddle + optimizer. + + :param topology: The output layers (can be more than one layers given in a + Python List or Tuple) of the entire network. Using the + specified layers (if more than one layer is given) as root, + traversing back to the data layer(s), all the layers + connected to the specified output layers will be dumped. + Layers not connceted to the specified will not be dumped. + :type topology: LayerOutput|List|Tuple + :param save_path: The path to save the dumped network topology. + :type save_path: str + :param binary: Whether to dump the serialized network topology or not. + The default value is false. NOTE that, if you call this + function to generate network topology for PaddlePaddle C-API, + a serialized version of network topology is required. When + using PaddlePaddle C-API, this flag MUST be set to True. + :type binary: bool + """ + + if isinstance(topology, LayerOutput): + topology = [topology] + elif isinstance(topology, collections.Sequence): + for out_layer in topology: + assert isinstance(out_layer, LayerOutput), ( + "The type of each element in the parameter topology " + "should be LayerOutput.") + else: + raise RuntimeError("Error input type for parameter topology.") + + model_str = parse_network(topology) + with open(save_path, "w") as fout: + if binary: + fout.write(model_str.SerializeToString()) + else: + fout.write(str(model_str)) diff --git a/python/paddle/utils/image_multiproc.py b/python/paddle/utils/image_multiproc.py index e8db525ff5..1acf40df58 100644 --- a/python/paddle/utils/image_multiproc.py +++ b/python/paddle/utils/image_multiproc.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import os, sys import numpy as np from PIL import Image diff --git a/python/paddle/utils/merge_model.py b/python/paddle/utils/merge_model.py index 421e953d27..2b10020772 100644 --- a/python/paddle/utils/merge_model.py +++ b/python/paddle/utils/merge_model.py @@ -30,7 +30,8 @@ def merge_v2_model(net, param_file, output_file): which ends with .tar.gz. @param net The output layer of the network for inference. - @param param_file Path of the parameters (.tar.gz) which is stored by v2 api. + @param param_file Path of the parameters (.tar.gz) which is stored by + v2 api. @param output_file Path of the merged file which will be generated. Usage: diff --git a/python/paddle/utils/plotcurve.py b/python/paddle/utils/plotcurve.py index 27bd8157d3..27a69b6a5c 100644 --- a/python/paddle/utils/plotcurve.py +++ b/python/paddle/utils/plotcurve.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. #!/usr/bin/python # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # diff --git a/python/paddle/v2/__init__.py b/python/paddle/v2/__init__.py index 70f61e8499..df710c33d0 100644 --- a/python/paddle/v2/__init__.py +++ b/python/paddle/v2/__init__.py @@ -62,12 +62,15 @@ __all__ = [ cp.begin_parse() -def set_omp_mkl_env_vars(trainer_count): +def set_env_vars(trainer_count): '''Auto set CPU environment if have not set before. - export KMP_AFFINITY, OMP_DYNAMIC according to the Hyper Threading status. - export OMP_NUM_THREADS, MKL_NUM_THREADS according to trainer_count. + For MKL: + export KMP_AFFINITY, OMP_DYNAMIC according to the Hyper Threading status. + export OMP_NUM_THREADS, MKL_NUM_THREADS according to trainer_count. + For OpenBLAS: + export OPENBLAS_NUM_THREADS, OPENBLAS_MAIN_FREE according to trainer_count. ''' - import platform + import platform, paddle if not platform.system() in ['Linux', 'Darwin']: return @@ -103,16 +106,22 @@ def set_omp_mkl_env_vars(trainer_count): num_cores = num_physical_cores() num_processors = num_logical_processors() - if num_processors > num_cores: # Hyper Threading is enabled - set_env("OMP_DYNAMIC", "true") - set_env("KMP_AFFINITY", "granularity=fine,compact,1,0") - else: - set_env("OMP_DYNAMIC", "false") - set_env("KMP_AFFINITY", "granularity=fine,compact,0,0") + if paddle.version.mkl() == 'ON': + if num_processors > num_cores: # Hyper Threading is enabled + set_env("OMP_DYNAMIC", "true") + set_env("KMP_AFFINITY", "granularity=fine,compact,1,0") + else: + set_env("OMP_DYNAMIC", "false") + set_env("KMP_AFFINITY", "granularity=fine,compact,0,0") threads = num_processors / trainer_count threads = '1' if threads < 1 else str(threads) - set_env("OMP_NUM_THREADS", threads) - set_env("MKL_NUM_THREADS", threads) + if paddle.version.mkl() == 'ON': + set_env("OMP_NUM_THREADS", threads) + set_env("MKL_NUM_THREADS", threads) + else: + set_env("OPENBLAS_NUM_THREADS", threads) + if threads > 1: + set_env("OPENBLAS_MAIN_FREE", '1') def init(**kwargs): @@ -129,12 +138,14 @@ def init(**kwargs): for key in args_dict.keys(): args.append('--%s=%s' % (key, str(args_dict[key]))) - set_omp_mkl_env_vars(kwargs.get('trainer_count', 1)) + set_env_vars(kwargs.get('trainer_count', 1)) if 'use_gpu' in kwargs: cp.g_command_config_args['use_gpu'] = kwargs['use_gpu'] if 'use_mkldnn' in kwargs: cp.g_command_config_args['use_mkldnn'] = kwargs['use_mkldnn'] + if 'use_mkl_packed' in kwargs: + cp.g_command_config_args['use_mkl_packed'] = kwargs['use_mkl_packed'] assert 'parallel_nn' not in kwargs, ("currently 'parallel_nn' is not " "supported in v2 APIs.") diff --git a/python/paddle/v2/dataset/common.py b/python/paddle/v2/dataset/common.py index e31e501ce9..fab8a68b0b 100644 --- a/python/paddle/v2/dataset/common.py +++ b/python/paddle/v2/dataset/common.py @@ -23,7 +23,6 @@ import paddle.v2.dataset import cPickle import glob import cPickle as pickle -import random __all__ = [ 'DATA_HOME', 'download', 'md5file', 'split', 'cluster_files_reader', @@ -71,7 +70,7 @@ def download(url, module_name, md5sum): if retry < retry_limit: retry += 1 else: - raise RuntimeError("Cannot download {0} within retry limit {2}". + raise RuntimeError("Cannot download {0} within retry limit {1}". format(url, retry_limit)) print "Cache file %s not found, downloading %s" % (filename, url) r = requests.get(url, stream=True) @@ -206,7 +205,6 @@ def convert(output_path, reader, line_count, name_prefix): indx_f = 0 def write_data(indx_f, lines): - random.shuffle(lines) filename = "%s/%s-%05d" % (output_path, name_prefix, indx_f) writer = recordio.writer(filename) for l in lines: diff --git a/python/paddle/v2/dataset/flowers.py b/python/paddle/v2/dataset/flowers.py index 634388094c..7bdddeaabe 100644 --- a/python/paddle/v2/dataset/flowers.py +++ b/python/paddle/v2/dataset/flowers.py @@ -44,7 +44,7 @@ __all__ = ['train', 'test', 'valid'] DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz' LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat' SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat' -DATA_MD5 = '52808999861908f626f3c1f4e79d11fa' +DATA_MD5 = '33bfc11892f1e405ca193ae9a9f2a118' LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d' SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c' # In official 'readme', tstid is the flag of test data diff --git a/python/paddle/v2/dataset/imdb.py b/python/paddle/v2/dataset/imdb.py index cfc1c886e1..37c4296f9b 100644 --- a/python/paddle/v2/dataset/imdb.py +++ b/python/paddle/v2/dataset/imdb.py @@ -23,10 +23,8 @@ Besides, this module also provides API for building dictionary. import paddle.v2.dataset.common import collections import tarfile -import Queue import re import string -import threading __all__ = ['build_dict', 'train', 'test', 'convert'] @@ -74,47 +72,20 @@ def build_dict(pattern, cutoff): return word_idx -def reader_creator(pos_pattern, neg_pattern, word_idx, buffer_size): +def reader_creator(pos_pattern, neg_pattern, word_idx): UNK = word_idx[''] + INS = [] - qs = [Queue.Queue(maxsize=buffer_size), Queue.Queue(maxsize=buffer_size)] - - def load(pattern, queue): + def load(pattern, out, label): for doc in tokenize(pattern): - queue.put(doc) - queue.put(None) + out.append(([word_idx.get(w, UNK) for w in doc], label)) + + load(pos_pattern, INS, 0) + load(neg_pattern, INS, 1) def reader(): - # Creates two threads that loads positive and negative samples - # into qs. - t0 = threading.Thread( - target=load, args=( - pos_pattern, - qs[0], )) - t0.daemon = True - t0.start() - - t1 = threading.Thread( - target=load, args=( - neg_pattern, - qs[1], )) - t1.daemon = True - t1.start() - - # Read alternatively from qs[0] and qs[1]. - i = 0 - doc = qs[i].get() - while doc != None: - yield [word_idx.get(w, UNK) for w in doc], i % 2 - i += 1 - doc = qs[i % 2].get() - - # If any queue is empty, reads from the other queue. - i += 1 - doc = qs[i % 2].get() - while doc != None: - yield [word_idx.get(w, UNK) for w in doc], i % 2 - doc = qs[i % 2].get() + for doc, label in INS: + yield doc, label return reader @@ -133,7 +104,7 @@ def train(word_idx): """ return reader_creator( re.compile("aclImdb/train/pos/.*\.txt$"), - re.compile("aclImdb/train/neg/.*\.txt$"), word_idx, 1000) + re.compile("aclImdb/train/neg/.*\.txt$"), word_idx) def test(word_idx): @@ -150,7 +121,7 @@ def test(word_idx): """ return reader_creator( re.compile("aclImdb/test/pos/.*\.txt$"), - re.compile("aclImdb/test/neg/.*\.txt$"), word_idx, 1000) + re.compile("aclImdb/test/neg/.*\.txt$"), word_idx) def word_dict(): diff --git a/python/paddle/v2/dataset/mq2007.py b/python/paddle/v2/dataset/mq2007.py index b705c9109b..d3b3dd524c 100644 --- a/python/paddle/v2/dataset/mq2007.py +++ b/python/paddle/v2/dataset/mq2007.py @@ -24,7 +24,6 @@ http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ20 """ import os -import random import functools import rarfile from common import download @@ -265,7 +264,7 @@ def query_filter(querylists): return filter_query -def load_from_text(filepath, shuffle=True, fill_missing=-1): +def load_from_text(filepath, shuffle=False, fill_missing=-1): """ parse data file into querys """ @@ -287,17 +286,14 @@ def load_from_text(filepath, shuffle=True, fill_missing=-1): querylist._add_query(query) if querylist is not None: querylists.append(querylist) - if shuffle == True: - random.shuffle(querylists) return querylists -def __reader__(filepath, format="pairwise", shuffle=True, fill_missing=-1): +def __reader__(filepath, format="pairwise", shuffle=False, fill_missing=-1): """ Parameters -------- filename : string - shuffle : shuffle query-doc pair under the same query fill_missing : fill the missing value. default in MQ2007 is -1 Returns diff --git a/python/paddle/v2/dataset/sentiment.py b/python/paddle/v2/dataset/sentiment.py index b0b9757c1a..7174413018 100644 --- a/python/paddle/v2/dataset/sentiment.py +++ b/python/paddle/v2/dataset/sentiment.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. # /usr/bin/env python # -*- coding:utf-8 -*- diff --git a/python/paddle/v2/dataset/tests/imikolov_test.py b/python/paddle/v2/dataset/tests/imikolov_test.py index 4e52810e6b..9b3ab72feb 100644 --- a/python/paddle/v2/dataset/tests/imikolov_test.py +++ b/python/paddle/v2/dataset/tests/imikolov_test.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.dataset.imikolov import unittest diff --git a/python/paddle/v2/dataset/tests/test_sentiment.py b/python/paddle/v2/dataset/tests/test_sentiment.py index 4074052907..f107948801 100644 --- a/python/paddle/v2/dataset/tests/test_sentiment.py +++ b/python/paddle/v2/dataset/tests/test_sentiment.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. # /usr/bin/env python # -*- coding:utf-8 -*- diff --git a/python/paddle/v2/event.py b/python/paddle/v2/event.py index a0ffd31c54..f322bffe13 100644 --- a/python/paddle/v2/event.py +++ b/python/paddle/v2/event.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. """ Testing and training events. diff --git a/python/paddle/v2/fluid/__init__.py b/python/paddle/v2/fluid/__init__.py index 59986c9f0c..8c29ee741c 100644 --- a/python/paddle/v2/fluid/__init__.py +++ b/python/paddle/v2/fluid/__init__.py @@ -1,3 +1,17 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from __future__ import print_function # import all class inside framework into fluid module import framework from framework import * @@ -15,17 +29,35 @@ import backward import regularizer from param_attr import ParamAttr from data_feeder import DataFeeder -from core import LoDTensor, CPUPlace, GPUPlace +from core import LoDTensor, CPUPlace, CUDAPlace +from distribute_transpiler import DistributeTranspiler +from distribute_transpiler_simple import SimpleDistributeTranspiler +import clip +from memory_optimization_transpiler import memory_optimize Tensor = LoDTensor __all__ = framework.__all__ + executor.__all__ + [ - 'io', 'initializer', 'layers', 'nets', 'optimizer', 'backward', - 'regularizer', 'LoDTensor', 'CPUPlace', 'GPUPlace', 'Tensor', 'ParamAttr' - 'DataFeeder' + 'io', + 'initializer', + 'layers', + 'nets', + 'optimizer', + 'backward', + 'regularizer', + 'LoDTensor', + 'CPUPlace', + 'CUDAPlace', + 'Tensor', + 'ParamAttr' + 'DataFeeder', + 'clip', + 'SimpleDistributeTranspiler', + 'DistributeTranspiler', + 'memory_optimize', ] -def __read_gflags_from_env__(): +def __bootstrap__(): """ Enable reading gflags from environment variables. @@ -34,11 +66,31 @@ def __read_gflags_from_env__(): """ import sys import core - read_env_flags = ['use_pinned_memory'] + import os + + try: + num_threads = int(os.getenv('OMP_NUM_THREADS', '1')) + except ValueError: + num_threads = 1 + + if num_threads > 1: + print( + 'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation ' + 'speed will not be optimized if you use data parallel. It will ' + 'fail if this PaddlePaddle binary is compiled with OpenBlas since' + ' OpenBlas does not support multi-threads.'.format(num_threads), + file=sys.stderr) + print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr) + + os.environ['OMP_NUM_THREADS'] = str(num_threads) + + read_env_flags = ['use_pinned_memory', 'check_nan_inf'] if core.is_compile_gpu(): - read_env_flags.append('fraction_of_gpu_memory_to_use') + read_env_flags += ['fraction_of_gpu_memory_to_use', 'op_sync'] core.init_gflags([sys.argv[0]] + ["--tryfromenv=" + ",".join(read_env_flags)]) + core.init_glog(sys.argv[0]) + core.init_devices() -__read_gflags_from_env__() +__bootstrap__() diff --git a/python/paddle/v2/fluid/backward.py b/python/paddle/v2/fluid/backward.py index f188582178..27cf637c48 100644 --- a/python/paddle/v2/fluid/backward.py +++ b/python/paddle/v2/fluid/backward.py @@ -1,57 +1,558 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.v2.fluid import framework as framework +from . import core +import collections +import copy -__all__ = ['append_backward_ops'] +__all__ = [ + 'append_backward', + 'calc_gradient', +] -def append_backward_ops(loss, parameter_list=None, no_grad_set=None): +def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None): """ - Create and add gradient Operators in BlockDesc to compute - gradients of `loss` for parameters in parameter_list + Traverse all ops in op_descs[begin_idx : end_idx], + if any op has inputs/outputs named "old_name", rename it as 'new_name' + """ + if begin_idx is None: + begin_idx = 0 + if end_idx is None: + end_idx = len(op_descs) + for i in range(begin_idx, end_idx): + op_desc = op_descs[i] + if isinstance(op_desc, tuple): + op_desc = op_desc[0] + op_desc.rename_input(old_name, new_name) + op_desc.rename_output(old_name, new_name) + + +def _create_op_desc_(op_type, inputs, outputs, attrs): + """ + Create a C++ OpDesc object with specified inputs, outputs and attributes. + """ + op_desc = core.OpDesc() + op_desc.set_type(op_type) + for para, args in inputs.iteritems(): + op_desc.set_input(para, args) + for para, args in outputs.iteritems(): + op_desc.set_output(para, args) + for name, val in attrs.iteritems(): + if isinstance(val, framework.Block): + op_desc.set_block_attr(name, val.desc) + else: + op_desc.set_attr(name, val) + return op_desc + + +def _infer_var_data_type_(grad_var_name, block): + """ + Infer the data type of given grad variable + """ + grad_var = block.desc.find_var(grad_var_name.encode("ascii")) + fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii")) + if block.desc.has_var_recursive(fwd_name): + fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii")) + grad_var.set_dtype(fwd_var.dtype()) + else: + grad_var.set_dtype(core.DataType.FP32) + + +def _all_in_set_(cands, s): + """ + Test if all elements of 'cands' are in set 's' + """ + if len(cands) == 0: + return False + for c in cands: + if not c in s: + return False + return True + + +def _some_in_set_(cands, s): + """ + Test if some elements of 'cands' are in set 's' + """ + if len(cands) == 0: + return False + for c in cands: + if c in s: + return True + return False + + +def _strip_grad_suffix_(name): + """ + Strip the grad suffix from the given varibale name + e.g. x@GRAD ==> x + y@GRAD@RENAME@1 ==> y + """ + pos = name.find(core.grad_var_suffix()) + return name[:pos] if pos != -1 else name + + +def _append_grad_suffix_(name): + """ + Append grad suffix to the given variable name + e.g. x ==> x@GRAD + """ + return name + core.grad_var_suffix() + + +def _addup_repetitive_outputs_(op_descs): + """ + In backward part, an variable may be the output of more than one ops. + In this case, the variable should be the accumulation of all the outputs. + `sum_op`s are added to implement the accumulate. + """ + pending_sum_ops = [] + var_rename_count = collections.defaultdict(int) + renamed_vars = collections.defaultdict(list) + for idx, op_desc in enumerate(op_descs): + for var_name in op_desc.input_arg_names(): + if len(renamed_vars[var_name]) > 1: + pending_sum_ops.append( + (_create_op_desc_("sum", {"X": renamed_vars[var_name]}, + {"Out": [var_name]}, {}), idx)) + renamed_vars[var_name] = [var_name] + for var_name in op_desc.output_arg_names(): + if var_name == core.empty_var_name( + ) or var_name in op_desc.input_arg_names(): + # empty variable or inplace op + continue + if len(renamed_vars[var_name]) == 0: + # it's the first time we get the variable + renamed_vars[var_name] = [var_name] + else: + if len(renamed_vars[var_name]) == 1: + new_name = var_name + "@RENAME@" + \ + str(var_rename_count[var_name]) + var_rename_count[var_name] += 1 + # rename original var_name + renamed_vars[var_name][0] = new_name + _rename_arg_(op_descs, var_name, new_name, 0, idx) + _rename_arg_(pending_sum_ops, var_name, new_name) + + new_name = var_name + "@RENAME@" + \ + str(var_rename_count[var_name]) + var_rename_count[var_name] += 1 + op_desc.rename_output(var_name, new_name) + renamed_vars[var_name].append(new_name) + for var_name, inputs in renamed_vars.iteritems(): + if len(inputs) > 1: + pending_sum_ops.append((_create_op_desc_( + "sum", {"X": inputs}, {"Out": [var_name]}, {}), len(op_descs))) + # sum_op descs are sorted according to their insert position + for p in reversed(pending_sum_ops): + op_descs.insert(p[1], p[0]) + + return op_descs + + +def _remove_no_grad_branch_(op_descs, no_grad_set): + """ + Remove unnecessary grad ops + A grad op can be removed in two cases: + 1. all outputs of the grad op are in 'no_grad_set' + 2. all grad inputs of the grad op are in 'no_grad_set' + """ + + def _op_can_be_removed_(op_desc, no_grad_set): + out_arg_names = op_desc.output_arg_names() + if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set): + return True + if _all_in_set_( + filter(lambda name: name.find(core.grad_var_suffix()) != -1, + op_desc.input_arg_names()), no_grad_set): + no_grad_set.union(out_arg_names) + return True + return False + + # Remove ops whose outputs are all in no_grad_dict + op_descs = filter( + lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs) + # Insert fill_zeros_like_op + to_insert = [] + for idx, op_desc in enumerate(op_descs): + for arg in op_desc.input_arg_names(): + if core.grad_var_suffix() in arg and arg in no_grad_set: + to_insert.append((_create_op_desc_("fill_zeros_like", { + "X": [_strip_grad_suffix_(arg)] + }, {"Out": [arg]}, {}), idx)) + + map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert)) + + return op_descs + + +def _append_backward_ops_(block, + ops, + target_block, + no_grad_dict, + grad_to_var, + callback=None): + """ + Create all grad ops, and insert them into given block + + Args: + block(Block): the block where forward ops are + ops(Op): the forward operators whose backward ops need to be added + target_block(Block): the block which is going to hold new generated grad ops + no_grad_dict(dict): + key(int) block index + val(set) a set of varibale names. These varibales have no gradient + grad_to_var(dict)(output argument): + key(str): grad variable name + val(str): corresponding forward variable name + callback(callable object): a callable object used to decorate new generated grad ops + """ + if callback is None: + + def empty_callback(block, context): + pass + + callback = empty_callback + elif not hasattr(callback, '__call__'): + raise ValueError("'callback' must be a callable object.") + + # grad_op_descs holds created grad_op, and will be appended to target_block + grad_op_descs = [] + program = block.program + for op in reversed(ops): + grad_sub_block_list = [] + # If the op has its own sub-block, deal with the sub-block first + if op.has_attr("sub_block"): + sub_block = program.block(op.block_attr("sub_block")) + grad_sub_block = program.create_block(parent_idx=sub_block.idx) + _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block, + no_grad_dict, grad_to_var) + grad_sub_block_list.append(grad_sub_block.desc) + + # Getting op's corresponding grad_op + grad_op_desc, op_grad_to_var = core.get_grad_op_desc( + op.desc, no_grad_dict[block.idx], grad_sub_block_list) + + grad_op_descs.extend(grad_op_desc) + grad_to_var.update(op_grad_to_var) + + grad_op_descs = _addup_repetitive_outputs_(grad_op_descs) + + grad_op_descs = _remove_no_grad_branch_(grad_op_descs, + no_grad_dict[block.idx]) + + # append op_desc in grad_op_descs to target_block + for op_desc in grad_op_descs: + new_op_desc = target_block.desc.append_op() + new_op_desc.copy_from(op_desc) + callback(block=target_block, context=grad_to_var) + + +def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map): + """ + Create new variables required by backward pass. - :param loss: an variable generated by cost function. - :type loss: Variable - :param no_grad_set: variable that should not create gradient - :type no_grad_set: set - :param parameter_list: parameters that need to compute gradient and - update to optimize the lost. - :type: list - :return: list of (parameters, gradients) pair. - :rtype: list[Variable] + Args: + block(Block): the block where new variables will be created + start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created + grad_to_var(dict): + key(str): grad variable name + val(str): corresponding forward variable name + In most cases, this dict is generated by _append_backward_ops_() + grad_info_map(dict)(output argument): + key(str): forward variable name + val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable + """ + for op_idx in range(start_op_idx, block.desc.op_size()): + op_desc = block.desc.op(op_idx) + if op_desc.has_attr("sub_block"): + sub_block = block.program.block(op_desc.block_attr("sub_block")) + _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map) + new_vars = set() + # create new gradient variables + for grad_var_name in op_desc.output_arg_names(): + grad_var_name = grad_var_name.encode("ascii") + if block.desc.has_var_recursive( + grad_var_name) or grad_var_name == core.empty_var_name(): + continue + block.desc.var(grad_var_name) + new_vars.add(grad_var_name) + if not grad_to_var.has_key(grad_var_name): + continue + grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block) + # infer_shape and infer_type + op_desc.infer_var_type(block.desc) + op_desc.infer_shape(block.desc) + for arg in op_desc.output_arg_names(): + if arg in new_vars: + _infer_var_data_type_(arg, block) + + +def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map): + var_map = copy.copy(target_grad_map) + for op_idx in range(start_op_idx, block.desc.op_size()): + op_desc = block.desc.op(op_idx) + for name in op_desc.input_arg_names(): + if name in var_map: + op_desc.rename_input(name, var_map[name]) + + for name in op_desc.output_arg_names(): + if block.desc.find_var(name.encode("ascii")): + new_name = "%s_%s" % (name, core.unique_integer(name)) + op_desc.rename_output(name, new_name) + var_map[name] = new_name + + for g, ng in var_map.iteritems(): + if g in grad_to_var: + grad_to_var[ng] = grad_to_var[g] + grad_to_var.pop(g) + + +def _get_stop_gradients_(program): + no_grad_dict = dict() + assert isinstance(program, framework.Program) + for block in program.blocks: + assert isinstance(block, framework.Block) + block_no_grad_set = set() + for var in block.vars.itervalues(): + assert isinstance(var, framework.Variable) + if var.stop_gradient: + block_no_grad_set.add(_append_grad_suffix_(var.name)) + no_grad_dict[block.idx] = block_no_grad_set + return no_grad_dict + + +def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None): + """ + Append backward part to main_program + + Args: + loss(Variable): The variable generated by cost function. + parameter_list(list[string]): Parameters that need to be updated by + optimizer. If None, it means all parameters need to be updated. + no_grad_set(set): Variables that have no gradients in Block 0. + All variables with `step_gradient=True` from all blocks will be + automatically added. + + Return: + (list[(Variable,Variable)]): list of (parameter, gradient) pair. """ assert isinstance(loss, framework.Variable) + program = loss.block.program if no_grad_set is None: - program = loss.block.program - assert isinstance(program, framework.Program) - no_grad_set = list() - for block in program.blocks: - assert isinstance(block, framework.Block) - for var in block.vars.itervalues(): - assert isinstance(var, framework.Variable) - if var.stop_gradient: - no_grad_set.append(var.name) - no_grad_set = set(no_grad_set) - - param_grad_map = loss.block.program.append_backward(loss, no_grad_set) + no_grad_set = set() + no_grad_set = copy.copy(no_grad_set) + no_grad_dict = _get_stop_gradients_(program) + no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set)) + + grad_info_map = dict() + root_block = program.block(0) + + fwd_op_num = root_block.desc.op_size() + current_block_idx = program.current_block_idx + grad_to_var = dict() + + op_desc = _create_op_desc_("fill_constant", {}, { + "Out": [_append_grad_suffix_(loss.name)] + }, {"shape": [1], + "value": 1.0, + "dtype": loss.dtype}) + root_block.desc.append_op().copy_from(op_desc) + + block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0])) + op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set) + no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set)) + + _append_backward_ops_(root_block, op_path, root_block, no_grad_dict, + grad_to_var, callback) + + # Because calc_gradient may be called multiple times, + # we need rename the internal gradient variables so that they have + # different names. + _rename_grad_(root_block, fwd_op_num, grad_to_var, {}) + + _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map) + + program.current_block_idx = current_block_idx + program.sync_with_cpp() + if parameter_list is not None: parameters = parameter_list else: - params = loss.block.program.global_block().all_parameters() + params = program.global_block().all_parameters() parameters = [param.name for param in params] + params_and_grads = [] for param in parameters: - if param not in param_grad_map: + if param not in grad_info_map: raise ValueError("param %s is not in map" % param) - grad_info = param_grad_map[param] - grad_block = loss.block.program.block(grad_info[1]) + grad_info = grad_info_map[param] + grad_block = grad_info[1] if not grad_block.has_var(grad_info[0]): raise ValueError("grad block[{0}] did not have grad var {1}".format( grad_info[1], grad_info[0])) # Get the param var from the global block - param_var = loss.block.program.global_block().var(param) + param_var = program.global_block().var(param) grad_var = grad_block.var(grad_info[0]) if loss.block.has_var(grad_info[0]): params_and_grads.append((param_var, grad_var)) else: params_and_grads.append((param_var, None)) return params_and_grads + + +def _as_list(x): + if x is None: + return [] + return list(x) if isinstance(x, collections.Sequence) else [x] + + +def _find_op_path_(block, outputs, inputs, no_grad_set): + """ + no_grad_set will also be changed + """ + input_names = set([inp.name for inp in inputs]) + output_names = set([out.name for out in outputs]) + + relevant_op_flags = [True] * len(block.ops) + + # All the inputs of the block are used if inputs is empty, + if inputs: + for i, op in enumerate(block.ops): + if _some_in_set_(op.desc.input_arg_names(), input_names): + for name in op.desc.output_arg_names(): + if name not in no_grad_set: + input_names.add(name) + else: + relevant_op_flags[i] = False + + for i, op in reversed(list(enumerate(block.ops))): + if _some_in_set_(op.desc.output_arg_names(), output_names): + for name in op.desc.input_arg_names(): + if name not in no_grad_set: + output_names.add(name) + else: + relevant_op_flags[i] = False + + op_path = [ + block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i] + ] + + if inputs: + for op in op_path: + for name in op.desc.input_arg_names(): + if name not in input_names: + no_grad_set.add(name) + + return op_path + + +def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None): + """ + Backpropagate the graidents of targets to inputs. + + Args: + targets(Variable|list[Variable]): The target variables + inputs(Variable|list[Variable]): The input variables + no_grad_set(set[string]): The names of variables that have no gradients + in Block 0. All variables with `stop_gradient=True` from all blocks + will be automatically added. + + Return: + (list[Variable]): list of gradients for inputs + If an input does not affect targets, the corresponding gradient variable + will be None + """ + targets = _as_list(targets) + inputs = _as_list(inputs) + target_gradients = _as_list(target_gradients) + + block = targets[0].block + prog = block.program + block_idx = block.idx + + if not target_gradients: + target_gradients = [None] * len(targets) + + if len(targets) != len(target_gradients): + raise ValueError( + "Should have the same number of target_gradients as targets") + + if no_grad_set is None: + no_grad_set = set() + no_grad_set = copy.copy(no_grad_set) + no_grad_dict = _get_stop_gradients_(prog) + no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set)) + + fwd_op_num = block.desc.op_size() + + target_grad_map = {} + for i, grad in enumerate(target_gradients): + target = targets[i] + if grad is None: + grad_name = _append_grad_suffix_(target.name) + op_desc = _create_op_desc_("fill_constant_batch_size_like", + {"Input": [target.name]}, + {"Out": [grad_name]}, { + "shape": target.shape, + "value": 1.0, + "dtype": target.dtype, + 'input_dim_idx': 0, + 'output_dim_idx': 0 + }) + block.desc.append_op().copy_from(op_desc) + else: + if target.block.idx != block_idx or target.block.program != prog: + raise ValueError("all targets must be in the same block") + if target.shape != grad.shape: + raise ValueError( + "The shapes of target and grad are different: %s %s" % ( + target.name, grad.name)) + target_grad_map[_append_grad_suffix_(target.name)] = grad.name + + for input in inputs: + if input.block.program != prog: + raise "input must be in the same program as targets" + + block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0])) + op_path = _find_op_path_(block, targets, inputs, block_no_grad_set) + no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set)) + grad_to_var = dict() + grad_info_map = dict() + _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var) + + # Because calc_gradient may be called multiple times, + # we need rename the internal gradient variables so that they have + # different names. + _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map) + + _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map) + prog.sync_with_cpp() + + grad_vars = [] + for input_var in inputs: + if input_var.name not in grad_info_map: + grad_vars.append(None) + else: + grad_info = grad_info_map[input_var.name] + grad_block = grad_info[1] + grad_var = grad_block.var(grad_info[0]) + grad_vars.append(grad_var) + + if len(grad_vars) == 1: + return grad_vars[0] + else: + return grad_vars diff --git a/python/paddle/v2/fluid/clip.py b/python/paddle/v2/fluid/clip.py new file mode 100644 index 0000000000..e4d9ed599e --- /dev/null +++ b/python/paddle/v2/fluid/clip.py @@ -0,0 +1,121 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import functools +import layers +from . import core + +__all__ = [ + 'GradientClipByValue', + 'ErrorClipByValue', + 'append_gradient_clip_ops', + 'error_clip_callback', +] + + +class BaseErrorClipAttr(object): + def append_clip_op(self, block, grad_name): + raise NotImplementedError() + + +class ErrorClipByValue(BaseErrorClipAttr): + def __init__(self, max, min=None): + max = float(max) + if min is None: + min = -max + else: + min = float(min) + self.max = max + self.min = min + + def append_clip_op(self, block, grad_name): + clip_op_desc = block.desc.append_op() + clip_op_desc.set_type("clip") + clip_op_desc.set_input("X", [grad_name]) + clip_op_desc.set_output("Out", [grad_name]) + clip_op_desc.set_attr("min", self.min) + clip_op_desc.set_attr("max", self.max) + + +def error_clip_callback(block, context): + # the context is a grad_to_var map + grad_to_var = context + op_desc = block.desc.op(block.desc.op_size() - 1) + for grad_n in filter(lambda n: grad_to_var.has_key(n), + op_desc.output_arg_names()): + fwd_var = block.var_recursive(grad_to_var[grad_n]) + error_clip = getattr(fwd_var, "error_clip", None) + if not (error_clip is None or isinstance(error_clip, + BaseErrorClipAttr)): + raise TypeError( + "Variable's error_clip should be an instance of BaseErrorClipAttr or None." + ) + if error_clip is not None: + error_clip.append_clip_op(block, grad_n) + + +class BaseGradientClipAttr(object): + def process_context(self, context, p_g): + raise NotImplementedError() + + def create_operators(self, param, grad): + raise NotImplementedError() + + +class NullGradientClipAttr(BaseGradientClipAttr): + def process_context(self, context, p_g): + pass + + def create_operators(self, param, grad): + return param, grad + + +class GradientClipByValue(BaseGradientClipAttr): + def __init__(self, max, min=None): + max = float(max) + if min is None: + min = -max + else: + min = float(min) + self.max = max + self.min = min + + def process_context(self, context, p_g): + pass + + def create_operators(self, param, grad): + new_grad = layers.clip(x=grad, min=self.min, max=self.max) + return param, new_grad + + +def append_gradient_clip_ops(param_grad): + context = dict() + create_op_callbacks = [] + for p, g in param_grad: + clip_attr = getattr(p, 'clip_attr', NullGradientClipAttr()) + if clip_attr is None: + clip_attr = NullGradientClipAttr() + if not isinstance(clip_attr, BaseGradientClipAttr): + raise TypeError( + "clip attribute should be an instance of BaseGradientClippingAttr" + ) + + clip_attr.process_context(context=context, p_g=param_grad) + create_op_callbacks.append( + functools.partial( + clip_attr.create_operators, param=p, grad=g)) + + return [each_callback() for each_callback in create_op_callbacks] + + +ClipByValue = GradientClipByValue diff --git a/python/paddle/v2/fluid/data_feeder.py b/python/paddle/v2/fluid/data_feeder.py index 30a542af21..bfdd00e3ef 100644 --- a/python/paddle/v2/fluid/data_feeder.py +++ b/python/paddle/v2/fluid/data_feeder.py @@ -1,9 +1,22 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from __future__ import print_function import core import numpy import six.moves as six -from framework import Variable +from framework import Variable, default_main_program __all__ = ['DataFeeder'] @@ -53,12 +66,16 @@ class DataToLoDTensorConverter(object): class DataFeeder(object): - def __init__(self, feed_list, place): + def __init__(self, feed_list, place, program=None): self.feed_dtypes = [] self.feed_names = [] self.feed_shapes = [] self.feed_lod_level = [] + if program is None: + program = default_main_program() for each_var in feed_list: + if isinstance(each_var, basestring): + each_var = program.block(0).var(each_var) if not isinstance(each_var, Variable): raise TypeError("Feed list should contain a list of variable") self.feed_dtypes.append(each_var.dtype) diff --git a/python/paddle/v2/fluid/default_scope_funcs.py b/python/paddle/v2/fluid/default_scope_funcs.py index 60c6165b6b..2218bb140a 100644 --- a/python/paddle/v2/fluid/default_scope_funcs.py +++ b/python/paddle/v2/fluid/default_scope_funcs.py @@ -1,16 +1,29 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. """ Default scope function. -`Paddle` manages Scope as programming language's scope. It just a -thread-local stack of Scope. Top of that stack is current scope, the bottom -of that stack is all scopes' parent. +`Paddle` manages Scope as programming language's scope. It just a +thread-local stack of Scope. Top of that stack is current scope, the bottom +of that stack is all scopes' parent. -Invoking `var/find_var` can `new/find` variable in current scope. -Invoking `enter_local_scope/leave_local_scope` can create or destroy local -scope. +Invoking `var/find_var` can `new/find` variable in current scope. +Invoking `enter_local_scope/leave_local_scope` can create or destroy local +scope. -A `scoped_function` will take a `function` as input. That function will be -invoked in a new local scope. +A `scoped_function` will take a `function` as input. That function will be +invoked in a new local scope. """ import paddle.v2.fluid.core @@ -19,8 +32,12 @@ import threading __tl_scope__ = threading.local() __all__ = [ - 'get_cur_scope', 'enter_local_scope', 'leave_local_scope', 'var', - 'find_var', 'scoped_function' + 'get_cur_scope', + 'enter_local_scope', + 'leave_local_scope', + 'var', + 'find_var', + 'scoped_function', ] @@ -71,7 +88,7 @@ def find_var(name): def scoped_function(func): """ invoke `func` in new scope. - + :param func: a callable function that will be run in new scope. :type func: callable """ diff --git a/python/paddle/v2/fluid/distribute_transpiler.py b/python/paddle/v2/fluid/distribute_transpiler.py new file mode 100644 index 0000000000..bd957f88de --- /dev/null +++ b/python/paddle/v2/fluid/distribute_transpiler.py @@ -0,0 +1,522 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from __future__ import print_function +import framework +from framework import Program, default_main_program, Parameter, Variable +import optimizer +from layer_helper import LayerHelper +from distributed_spliter import * +import math + + +class VarBlock: + def __init__(self, varname, offset, size): + self.varname = varname + # NOTE: real offset is offset * size + self.offset = offset + self.size = size + + def __str__(self): + return "%s:%d:%d" % (self.varname, self.offset, self.size) + + +def split_dense_variable(var_list, + pserver_count, + min_block_size=1024, + max_block_size=1048576): + """ + We may need to split dense tensor to one or several blocks and put + them equally onto parameter server. One block is a sub-tensor + aligned by dim[0] of the tensor. + + We need to have a minimal block size so that the calculations in + the parameter server side can gain better performance. By default + mininum block size is 1024. The max block size is used to prevent + too large block that may causing send error. + """ + blocks = [] + for var in var_list: + split_count = pserver_count + var_numel = reduce(lambda x, y: x * y, var.shape) + max_pserver_count = int(math.floor(var_numel / float(min_block_size))) + if max_pserver_count == 0: + max_pserver_count = 1 + if max_pserver_count < pserver_count: + split_count = max_pserver_count + block_size = int(math.ceil(var_numel / float(split_count))) + + if len(var.shape) >= 2: + # align by dim1(width) + dim1 = reduce(lambda x, y: x * y, var.shape[1:]) + remains = block_size % dim1 + if remains != 0: + block_size += dim1 - remains + # update split_count after align + split_count = int(math.ceil(var_numel / float(block_size))) + for block_id in xrange(split_count): + curr_block_size = min(block_size, var_numel - ( + (block_id) * block_size)) + block = VarBlock(var.name, block_id, curr_block_size) + blocks.append(str(block)) + return blocks + + +class DistributeTranspiler: + def transpile(self, + optimize_ops, + params_grads, + program=None, + pservers="127.0.0.1:6174", + trainers=1, + split_method=round_robin): + """ + Transpile the program to a distributed data-parallelism programs. + The main_program will be transform to use a remote parameter server + to do parameter optimization. And the optimization graph will be put + in to a parameter server program. + + Use different methods to split trainable varialbles to different + parameter servers. + + :param optimize_ops: op list of optimization, should be the + return value of Optimizer.minimize + :type optimize_ops: list + :param program: program to optimize, default default_main_program + :param pservers: parameter server endpoints like "m1:6174,m2:6174" + :type pservers: string + :return: return a list of programs + """ + assert (callable(split_method)) + if program is None: + program = default_main_program() + self.program = program + self.trainers = trainers + self.optimize_ops = optimize_ops + # steps to transpile: + # 1. split variable to multiple blocks, align by product(dim[1:]) (width). + # 2. modify trainer program add split_op to each Grad. + # 3. append send_op to trainer. + # 4. append concat_op to trainer to update local weights. + # 5. create new program as parameter server. + # 6. create parameter server program by split_method generated endpoint->VarBlock + + pserver_endpoints = pservers.split(",") + + # step1 + param_list = [pg[0] for pg in params_grads] + grad_list = [pg[1] for pg in params_grads] + # TODO: add split selected rows support + grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints)) + param_blocks = split_dense_variable(param_list, len(pserver_endpoints)) + # step2 + grad_var_mapping = self._append_split_op(program, grad_blocks) + + # step3 + send_inputs = [] + send_outputs = [] + for b in grad_blocks: # append by order + varname, block_id, _ = b.split(":") + send_inputs.append(grad_var_mapping[varname][int(block_id)]) + + param_var_mapping = self._create_vars_from_blocklist(program, + param_blocks) + for b in param_blocks: + varname, block_id, _ = b.split(":") + send_outputs.append(param_var_mapping[varname][int(block_id)]) + # let send_op know which endpoint to send which var, eplist is of the same + # order of send_inputs. + eplist = split_method(send_inputs, pserver_endpoints) + # create mapping of endpoint -> splited var to create pserver side program + self.param_grad_ep_mapping = dict() + for i, ep in enumerate(eplist): + param = send_outputs[i] + grad = send_inputs[i] + if not self.param_grad_ep_mapping.has_key(ep): + self.param_grad_ep_mapping[ep] = {"params": [], "grads": []} + self.param_grad_ep_mapping[ep]["params"].append(param) + self.param_grad_ep_mapping[ep]["grads"].append(grad) + + send_op = program.global_block().append_op( + type="send", + inputs={"X": send_inputs}, + outputs={"Out": send_outputs}, + attrs={"endpoints": pserver_endpoints, + "epmap": eplist}) + # step4 + for varname, splited_var in param_var_mapping.iteritems(): + if len(splited_var) <= 1: + continue + orig_param = program.global_block().vars[varname] + concat = program.global_block().append_op( + type="concat", + inputs={"X": splited_var}, + outputs={"Out": [orig_param]}, + attrs={"axis": 0}) + + def _create_vars_from_blocklist(self, program, block_list): + block_map = dict() + var_mapping = dict() + for block_str in block_list: + varname, offset, size = block_str.split(":") + if not block_map.has_key(varname): + block_map[varname] = [] + block_map[varname].append((long(offset), long(size))) + for varname, splited in block_map.iteritems(): + orig_var = program.global_block().vars[varname] + var_mapping[varname] = [] + if len(splited) == 1: + var_mapping[varname] = [orig_var] + continue + orig_shape = orig_var.shape + orig_dim1_flatten = 1 + if len(orig_shape) >= 2: + orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:]) + + for i, block in enumerate(splited): + size = block[1] + rows = size / orig_dim1_flatten + splited_shape = [rows] + if len(orig_shape) >= 2: + splited_shape.extend(orig_shape[1:]) + var = program.global_block().create_var( + name="%s.block%d" % (varname, i), + psersistable=False, + dtype=orig_var.dtype, + shape=splited_shape) # flattend splited var + var_mapping[varname].append(var) + return var_mapping + + def _clone_var(self, block, var): + assert isinstance(var, Variable) + return block.create_var( + name=var.name, + shape=var.shape, + dtype=var.dtype, + type=var.type, + lod_level=var.lod_level, + # HACK: let all param in pserver persistable so child + # program in recv can get them + persistable=True) + + def _append_split_op(self, program, gradblocks): + var_mapping = self._create_vars_from_blocklist(program, gradblocks) + for varname, splited_vars in var_mapping.iteritems(): + # variable that don't need to split have empty splited_vars + if len(splited_vars) <= 1: + continue + orig_var = program.global_block().vars[varname] + sections = [] + for v in splited_vars: + sections.append(v.shape[0]) + program.global_block().append_op( + type="split", + inputs={"X": orig_var}, + outputs={"Out": splited_vars}, + attrs={"sections": sections} # assume split evenly + ) + return var_mapping + + def get_trainer_program(self): + # remove optimize ops and add a send op to main_program + self.program.global_block().delete_ops(self.optimize_ops) + return self.program + + def _create_var_for_trainers(self, block, var, trainers): + var_list = [] + for i in xrange(trainers): + var_each = block.create_var( + name="%s.trainer_%d" % (var.name, i), + psersistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + var_list.append(var_each) + return var_list + + def _get_optimizer_input_shape(self, op_type, varkey, orig_shape, + param_shape): + """ + Returns the shape for optimizer inputs that need to be reshaped when + Param and Grad is splited to multiple servers. + """ + # HACK(typhoonzero): Should use functions of corresponding optimizer in + # optimizer.py to get the shape, do not bind this in the transpiler. + if op_type == "adam": + if varkey in ["Moment1", "Moment2"]: + return param_shape + elif op_type == "adagrad": + if varkey == "Moment": + return param_shape + elif op_type == "adamax": + if varkey in ["Moment", "InfNorm"]: + return param_shape + elif op_type == "momentum": + if varkey == "Velocity": + return param_shape + elif op_type == "": + if varkey == "Moment": + return param_shape + elif op_type == "sgd": + pass + return orig_shape + + def _is_op_on_pserver(self, endpoint, all_ops, idx): + """ + Recursively check if the op need to run on current server. + Assume that ops are in the execution order. + """ + param_names = [ + p.name for p in self.param_grad_ep_mapping[endpoint]["params"] + ] + op = all_ops[idx] + if op.inputs.has_key("Param"): + if op.inputs["Param"].name in param_names: + return True + else: + for n in param_names: + if n.startswith(op.inputs["Param"].name+".block") and \ + n != op.inputs["Param"].name: + return True + return False + else: + j = idx - 1 + while j >= 0: + prev_op = all_ops[j] + prev_output_names = [o.name for o in prev_op.outputs.values()] + prev_input_names = [o.name for o in prev_op.inputs.values()] + found1 = False + found2 = False + for _, v in op.inputs.iteritems(): + if v.name in prev_output_names: + found1 = self._is_op_on_pserver(endpoint, all_ops, j) + # later ops may produce output for prev op's next batch use. + for _, v in op.outputs.iteritems(): + if v.name in prev_input_names: + found2 = self._is_op_on_pserver(endpoint, all_ops, j) + if found1 or found2: + return True + j -= 1 + return False + + def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint): + new_inputs = dict() + # update param/grad shape first, then other inputs like + # moment can use the updated shape + for key, var in opt_op.inputs.iteritems(): + if key == "Grad": + grad_block = None + for g in self.param_grad_ep_mapping[endpoint]["grads"]: + if g.name.startswith(var.name): + grad_block = g + break + if not grad_block: + # do not append this op if current endpoint + # is not dealing with this grad block + return + merged_var = program.global_block().create_var( + name=grad_block.name, + persistable=grad_block.persistable, + dtype=grad_block.dtype, + shape=grad_block.shape) + # append merging ops if trainers > 1 + if self.trainers > 1: + vars2merge = self._create_var_for_trainers( + program.global_block(), grad_block, self.trainers) + program.global_block().append_op( + type="sum", + inputs={"X": vars2merge}, + outputs={"Out": merged_var}) + program.global_block().append_op( + type="scale", + inputs={"X": merged_var}, + outputs={"Out": merged_var}, + attrs={"scale": 1.0 / float(self.trainers)}) + new_inputs[key] = merged_var + elif key == "Param": + # param is already created on global program + param_block = None + for p in self.param_grad_ep_mapping[endpoint]["params"]: + if p.name.startswith(var.name): + param_block = p + break + if not param_block: + return + tmpvar = program.global_block().create_var( + name=param_block.name, + persistable=True, + dtype=param_block.dtype, + shape=param_block.shape) + + new_inputs[key] = tmpvar + + for key, var in opt_op.inputs.iteritems(): + if key in ["Param", "Grad"]: + continue + # update accumulator variable shape + param_shape = new_inputs["Param"].shape + new_shape = self._get_optimizer_input_shape(opt_op.type, key, + var.shape, param_shape) + tmpvar = program.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=new_shape) + new_inputs[key] = tmpvar + # create var in pserver program global block. + # TODO(typhoonzero): put blocks in one program to avoid create two + # variables. + pserver_program.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=new_shape) + + # change outputs ParamOut variable + opt_op.outputs["ParamOut"] = new_inputs["Param"] + program.global_block().append_op( + type=opt_op.type, + inputs=new_inputs, + outputs=opt_op.outputs, + attrs=opt_op.attrs) + + def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op): + for _, var in opt_op.inputs.iteritems(): + program.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + pserver_program.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + program.global_block().append_op( + type=opt_op.type, + inputs=opt_op.inputs, + outputs=opt_op.outputs, + attrs=opt_op.attrs) + + def get_pserver_program(self, endpoint): + """ + get pserver side program by endpoint + + NOTE: assume blocks of the same variable is not distributed + on the same pserver, only change param/grad varnames for + trainers to fetch. For each pserver endpoint, server side + program must be a sub-set of the original optimization program. + """ + # step5 + pserver_program = Program() + for v in self.param_grad_ep_mapping[endpoint]["params"]: + self._clone_var(pserver_program.global_block(), v) + for v in self.param_grad_ep_mapping[endpoint]["grads"]: + # create vars for each trainer in global scope, so + # we don't need to create them when grad arrives. + pserver_program.global_block().create_var( + name=v.name, persistable=True, dtype=v.dtype, shape=v.shape) + for trainer_id in xrange(self.trainers): + print("create variable for program: %s.trainer_%d" % + (v.name, trainer_id)) + pserver_program.global_block().create_var( + name="%s.trainer_%d" % (v.name, trainer_id), + persistable=True, + dtype=v.dtype, + shape=v.shape) + # step6 + optimize_sub_program = Program() + for idx, opt_op in enumerate(self.optimize_ops): + is_op_on_pserver = self._is_op_on_pserver(endpoint, + self.optimize_ops, idx) + if not is_op_on_pserver: + continue + if opt_op.inputs.has_key("Grad"): + self._append_pserver_ops(optimize_sub_program, pserver_program, + opt_op, endpoint) + else: + self._append_pserver_non_opt_ops(optimize_sub_program, + pserver_program, opt_op) + pserver_program.global_block().append_op( + type="recv", + inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"] + }, # grads to recv + outputs={}, + attrs={ + "OptimizeProgram": optimize_sub_program.desc, + "endpoint": endpoint, + "ParamList": [ + p.name + for p in self.param_grad_ep_mapping[endpoint]["params"] + ], + "GradList": [ + p.name + for p in self.param_grad_ep_mapping[endpoint]["grads"] + ], + "Fanin": self.trainers + }) + pserver_program.sync_with_cpp() + return pserver_program + + def get_startup_program(self, endpoint, pserver_program): + """ + Get startup program for current parameter server. + Modify operator input variables if there are variables that + was splited to several blocks. + """ + s_prog = Program() + orig_s_prog = framework.default_startup_program() + params = self.param_grad_ep_mapping[endpoint]["params"] + + def _get_splited_name_and_shape(varname): + for idx, splited_param in enumerate(params): + pname = splited_param.name + if pname.startswith(varname) and varname != pname: + return pname, splited_param.shape + return "", [] + + # 1. create vars in pserver program to startup program + pserver_vars = pserver_program.global_block().vars + created_var_map = dict() + for _, var in pserver_vars.iteritems(): + tmpvar = s_prog.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + created_var_map[var.name] = tmpvar + + # 2. rename op outputs + for op in orig_s_prog.global_block().ops: + new_outputs = dict() + # do not append startup op if var is not on this pserver + op_on_pserver = False + for key, var in op.outputs.iteritems(): + newname, _ = _get_splited_name_and_shape(var.name) + if newname: + op_on_pserver = True + new_outputs[key] = created_var_map[newname] + elif var.name in pserver_vars: + op_on_pserver = True + new_outputs[key] = pserver_vars[var.name] + + if op_on_pserver: + if op.type in [ + "gaussian_random", "fill_constant", "uniform_random" + ]: + op.attrs["shape"] = new_outputs["Out"].shape + s_prog.global_block().append_op( + type=op.type, + inputs=op.inputs, + outputs=new_outputs, + attrs=op.attrs) + return s_prog diff --git a/python/paddle/v2/fluid/distribute_transpiler_simple.py b/python/paddle/v2/fluid/distribute_transpiler_simple.py new file mode 100644 index 0000000000..bd88f02bde --- /dev/null +++ b/python/paddle/v2/fluid/distribute_transpiler_simple.py @@ -0,0 +1,255 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import framework +from framework import Program, default_main_program, Parameter, Variable +import optimizer +from layer_helper import LayerHelper + + +def hash_name_to_server(params_grads, pserver_endpoints): + """ + :param param_grads: + :return: a map of pserver endpoint -> + params -> [param list] + grads -> [grad list] + """ + + def _hash_param(param_name, total): + return hash(param_name) % total + + param_grad_map = dict() + for param, grad in params_grads: + if param.trainable is True and grad is not None: + server_id = _hash_param(param.name, len(pserver_endpoints)) + server_for_param = pserver_endpoints[server_id] + if not param_grad_map.has_key(server_for_param): + param_grad_map[server_for_param] = {"params": [], "grads": []} + param_grad_map[server_for_param]["params"].append(param) + param_grad_map[server_for_param]["grads"].append(grad) + + return param_grad_map + + +def round_robin(params_grads, pserver_endpoints): + assert (len(params_grads) > len(pserver_endpoints)) + + param_grad_map = dict() + pserver_idx = 0 + for param, grad in params_grads: + if param.trainable is True: + server_for_param = pserver_endpoints[pserver_idx] + if not param_grad_map.has_key(server_for_param): + param_grad_map[server_for_param] = {"params": [], "grads": []} + + param_grad_map[server_for_param]["params"].append(param) + param_grad_map[server_for_param]["grads"].append(grad) + + pserver_idx += 1 + if pserver_idx >= len(pserver_endpoints): + pserver_idx = 0 + return param_grad_map + + +class SimpleDistributeTranspiler: + def transpile(self, + optimize_ops, + params_grads, + program=None, + pservers="127.0.0.1:6174", + trainers=1, + split_method=round_robin): + """ + Transpile the program to a distributed data-parallelism programs. + + The main_program will be transform to use a remote parameter server + to do parameter optimization. And the optimization graph will be put + in to a parameter server program. + + Use different methods to split trainable varialbles to different + parameter servers. + + Example to run: + + exe = fluid.Executor(place) + t = fluid.DistributeTranspiler() + t.transpile(optimize_ops, params_grads, pservers="127.0.0.1:6174", trainers=1) + + pserver_endpoint = os.getenv("PSERVER") + if pserver_endpoint: + pserver_prog = t.get_pserver_program(pserver_endpoint, optimize_ops) + exe.run(fluid.default_startup_program()) + exe.run(pserver_prog) + else: + feeder = fluid.DataFeeder(feed_list=[images, label], place=place) + exe.run(fluid.default_startup_program()) + + for pass_id in range(PASS_NUM): + ... + + :param optimize_ops: op list of optimization, should be the + return value of Optimizer.minimize + :type optimize_ops: list + :param program: program to optimize, default default_main_program + :param pservers: parameter server endpoints like "m1:6174,m2:6174" + :type pservers: string + + :return: return a list of programs + """ + if program is None: + program = default_main_program() + self.program = program + self.trainers = trainers + self.optimize_ops = optimize_ops + self._optimize_distributed( + optimize_ops, + program, + params_grads, + pservers=pservers, + trainers=trainers, + split_method=split_method) + + def _clone_param(self, block, v): + assert isinstance(v, Parameter) + new_p = Parameter( + block=block, + shape=v.shape, + dtype=v.dtype, + type=v.type, + lod_level=v.lod_level, + stop_gradient=v.stop_gradient, + trainable=v.trainable, + optimize_attr=v.optimize_attr, + regularizer=v.regularizer, + name=v.name) + block.vars[new_p.name] = new_p + + def _clone_var(self, block, var): + assert isinstance(var, Variable) + return block.create_var( + name=var.name, + shape=var.shape, + dtype=var.dtype, + type=var.type, + lod_level=var.lod_level, + persistable=var.persistable) + + def _optimize_distributed(self, optimize_ops, program, params_and_grads, + **kwargs): + if kwargs.has_key("split_method"): + split_method = kwargs["split_method"] + else: + split_method = round_robin + + assert (callable(split_method)) + pserver_endpoints = kwargs["pservers"].split(",") + self.param_grad_map = split_method(params_and_grads, pserver_endpoints) + + send_op_ordered_inputs = [] + send_op_ordered_outputs = [] + epmap = [] + for ep, v in self.param_grad_map.iteritems(): + send_op_ordered_inputs.extend(v["grads"]) + send_op_ordered_outputs.extend(v["params"]) + for i in v["grads"]: + epmap.append(ep) + send_op = program.global_block().append_op( + type="send", + inputs={"X": send_op_ordered_inputs + }, # inputs is a list of tensors to be send + outputs={"Out": send_op_ordered_outputs}, + attrs={"endpoints": pserver_endpoints, + "epmap": epmap}) + + def get_trainer_program(self): + # remove optimize ops and add a send op to main_program + self.program.global_block().delete_ops(self.optimize_ops) + return self.program + + def _create_var_for_trainers(self, block, var, trainers): + var_list = [] + for i in xrange(trainers): + var_each = block.create_var( + name="%s.trainer_%d" % (var.name, i), + psersistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + var_list.append(var_each) + return var_list + + def get_pserver_program(self, endpoint, optimize_ops): + pserver_program = Program() + for v in self.param_grad_map[endpoint]["params"]: + self._clone_param(pserver_program.global_block(), v) + + optimize_sub_program = Program() + grad_var_names = [ + var.name for var in self.param_grad_map[endpoint]["grads"] + ] + for opt_op in optimize_ops: + for _, var in opt_op.inputs.iteritems(): + # NOTE: append operators to merge gradients from multiple + # trainers. If trainers == 1, this is not needed. + if self.trainers > 1 and var.name in grad_var_names: + vars2merge = self._create_var_for_trainers( + optimize_sub_program.global_block(), var, self.trainers) + merged_var = optimize_sub_program.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + optimize_sub_program.global_block().append_op( + type="sum", + inputs={"X": vars2merge}, + outputs={"Out": merged_var}) + optimize_sub_program.global_block().append_op( + type="scale", + inputs={"X": merged_var}, + outputs={"Out": merged_var}, + attrs={"scale": 1.0 / float(self.trainers)}) + else: + optimize_sub_program.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + + if opt_op.inputs.has_key("Grad"): + if opt_op.inputs["Grad"].name in grad_var_names: + optimize_sub_program.global_block().append_op( + type=opt_op.type, + inputs=opt_op.inputs, + outputs=opt_op.outputs, + attrs=opt_op.attrs) + else: + optimize_sub_program.global_block().append_op( + type=opt_op.type, + inputs=opt_op.inputs, + outputs=opt_op.outputs, + attrs=opt_op.attrs) + pserver_program.global_block().append_op( + type="recv", + inputs={"RX": + self.param_grad_map[endpoint]["grads"]}, # grads to recv + outputs={}, + attrs={ + "OptimizeProgram": optimize_sub_program.desc, + "endpoint": endpoint, + "ParamList": + [p.name for p in self.param_grad_map[endpoint]["params"]], + "GradList": + [p.name for p in self.param_grad_map[endpoint]["grads"]], + "Trainers": self.trainers + }) + pserver_program.sync_with_cpp() + return pserver_program diff --git a/python/paddle/v2/fluid/distributed_spliter.py b/python/paddle/v2/fluid/distributed_spliter.py new file mode 100644 index 0000000000..e647f760e9 --- /dev/null +++ b/python/paddle/v2/fluid/distributed_spliter.py @@ -0,0 +1,48 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +def hash_name(varlist, pserver_endpoints): + """ + hash variable names to several endpoints. + + :param varlist: a list of Variables + :return: a map of pserver endpoint -> varname + """ + + def _hash_block(block_str, total): + return hash(block_str) % total + + eplist = [] + for var in varlist: + server_id = _hash_block(var.name(), len(pserver_endpoints)) + server_for_param = pserver_endpoints[server_id] + eplist.append(server_for_param) + return eplist + + +def round_robin(varlist, pserver_endpoints): + """ + distribute variables to several endpoints. + """ + assert (len(varlist) > len(pserver_endpoints)) + + eplist = [] + pserver_idx = 0 + for var in varlist: + server_for_param = pserver_endpoints[pserver_idx] + eplist.append(server_for_param) + + pserver_idx += 1 + if pserver_idx >= len(pserver_endpoints): + pserver_idx = 0 + return eplist diff --git a/python/paddle/v2/fluid/evaluator.py b/python/paddle/v2/fluid/evaluator.py index 137c573622..adf174a07d 100644 --- a/python/paddle/v2/fluid/evaluator.py +++ b/python/paddle/v2/fluid/evaluator.py @@ -1,10 +1,26 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import layers -from framework import Program, unique_name, Variable +from framework import Program, unique_name, Variable, program_guard from layer_helper import LayerHelper -__all__ = ['Accuracy'] +__all__ = [ + 'Accuracy', + 'ChunkEvaluator', +] def _clone_var_(block, var): @@ -21,19 +37,19 @@ def _clone_var_(block, var): class Evaluator(object): """ Base Class for all evaluators - + Args: - name(str): The name of evaluator. such as, "accuracy". Used for generate + name(str): The name of evaluator. such as, "accuracy". Used for generate temporary variable name. - main_program(Program, optional): The evaluator should be added to this + main_program(Program, optional): The evaluator should be added to this main_program. Default default_main_program() - startup_program(Program, optional):The parameter should be added to this + startup_program(Program, optional):The parameter should be added to this startup_program. Default default_startup_program() - + Attributes: - states(list): The list of state variables. states will be reset to zero + states(list): The list of state variables. states will be reset to zero when `reset` is invoked. - metrics(list): The list of metrics variables. They will be calculate + metrics(list): The list of metrics variables. They will be calculate every mini-batch """ @@ -49,15 +65,12 @@ class Evaluator(object): if reset_program is None: reset_program = Program() - for var in self.states: - assert isinstance(var, Variable) - g_var = _clone_var_(reset_program.current_block(), var) - layers.fill_constant( - shape=g_var.shape, - value=0.0, - dtype=g_var.dtype, - out=g_var, - main_program=reset_program) + with program_guard(main_program=reset_program): + for var in self.states: + assert isinstance(var, Variable) + g_var = _clone_var_(reset_program.current_block(), var) + layers.fill_constant( + shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var) executor.run(reset_program) @@ -69,14 +82,14 @@ class Evaluator(object): def create_state(self, suffix, dtype, shape): """ - Create state variable. - + Create state variable. + NOTE: It is not a public API. - + Args: - suffix(str): the state suffix. - dtype(str|core.DataType): the state data type - shape(tuple|list): the shape of state + suffix(str): the state suffix. + dtype(str|core.DataType): the state data type + shape(tuple|list): the shape of state Returns: State variable @@ -104,20 +117,14 @@ class Accuracy(Evaluator): self.total = self.create_state(dtype='int64', shape=[1], suffix='total') self.correct = self.create_state( dtype='int64', shape=[1], suffix='correct') - kwargs = {'main_program': main_program} total = self.helper.create_tmp_variable(dtype='int') correct = self.helper.create_tmp_variable(dtype='int') acc = layers.accuracy( - input=input, - label=label, - k=k, - total=total, - correct=correct, - **kwargs) - total = layers.cast(x=total, dtype='int64', **kwargs) - correct = layers.cast(x=correct, dtype='int64', **kwargs) - layers.sums(input=[self.total, total], out=self.total, **kwargs) - layers.sums(input=[self.correct, correct], out=self.correct, **kwargs) + input=input, label=label, k=k, total=total, correct=correct) + total = layers.cast(x=total, dtype='int64') + correct = layers.cast(x=correct, dtype='int64') + layers.sums(input=[self.total, total], out=self.total) + layers.sums(input=[self.correct, correct], out=self.correct) self.metrics.append(acc) @@ -125,10 +132,75 @@ class Accuracy(Evaluator): if eval_program is None: eval_program = Program() block = eval_program.current_block() - kwargs = {'main_program': eval_program} - total = _clone_var_(block, self.total) - correct = _clone_var_(block, self.correct) - total = layers.cast(total, dtype='float32', **kwargs) - correct = layers.cast(correct, dtype='float32', **kwargs) - out = layers.elementwise_div(x=correct, y=total, **kwargs) + with program_guard(main_program=eval_program): + total = _clone_var_(block, self.total) + correct = _clone_var_(block, self.correct) + total = layers.cast(total, dtype='float32') + correct = layers.cast(correct, dtype='float32') + out = layers.elementwise_div(x=correct, y=total) return np.array(executor.run(eval_program, fetch_list=[out])[0]) + + +class ChunkEvaluator(Evaluator): + """ + Accumulate counter numbers output by chunk_eval from mini-batches and + compute the precision recall and F1-score using the accumulated counter + numbers. + """ + + def __init__( + self, + input, + label, + chunk_scheme, + num_chunk_types, + excluded_chunk_types=None, ): + super(ChunkEvaluator, self).__init__("chunk_eval") + main_program = self.helper.main_program + if main_program.current_block().idx != 0: + raise ValueError("You can only invoke Evaluator in root block") + + self.num_infer_chunks = self.create_state( + dtype='int64', shape=[1], suffix='num_infer_chunks') + self.num_label_chunks = self.create_state( + dtype='int64', shape=[1], suffix='num_label_chunks') + self.num_correct_chunks = self.create_state( + dtype='int64', shape=[1], suffix='num_correct_chunks') + precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval( + input=input, + label=label, + chunk_scheme=chunk_scheme, + num_chunk_types=num_chunk_types, + excluded_chunk_types=excluded_chunk_types, ) + layers.sums( + input=[self.num_infer_chunks, num_infer_chunks], + out=self.num_infer_chunks) + layers.sums( + input=[self.num_label_chunks, num_label_chunks], + out=self.num_label_chunks) + layers.sums( + input=[self.num_correct_chunks, num_correct_chunks], + out=self.num_correct_chunks) + + self.metrics.extend([precision, recall, f1_score]) + + def eval(self, executor, eval_program=None): + if eval_program is None: + eval_program = Program() + block = eval_program.current_block() + num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run( + eval_program, + fetch_list=[_clone_var_(block, state) for state in self.states]) + num_infer_chunks = num_infer_chunks[0] + num_label_chunks = num_label_chunks[0] + num_correct_chunks = num_correct_chunks[0] + precision = float( + num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0 + recall = float( + num_correct_chunks) / num_label_chunks if num_label_chunks else 0 + f1_score = float(2 * precision * recall) / ( + precision + recall) if num_correct_chunks else 0 + return np.array( + [precision], dtype='float32'), np.array( + [recall], dtype='float32'), np.array( + [f1_score], dtype='float32') diff --git a/python/paddle/v2/fluid/executor.py b/python/paddle/v2/fluid/executor.py index bdc82eede9..a99c5157b2 100644 --- a/python/paddle/v2/fluid/executor.py +++ b/python/paddle/v2/fluid/executor.py @@ -1,12 +1,44 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np -from . import core +import contextlib from framework import Program, default_main_program +from . import core -__all__ = ['Executor', 'g_scope'] +__all__ = ['Executor', 'global_scope', 'scope_guard', 'switch_scope'] g_scope = core.Scope() +def global_scope(): + return g_scope + + +def switch_scope(scope): + global g_scope + ex = g_scope + g_scope = scope + return ex + + +@contextlib.contextmanager +def scope_guard(scope): + ex = switch_scope(scope) + yield + switch_scope(ex) + + def as_numpy(tensor): if isinstance(tensor, list): return [as_numpy(t) for t in tensor] @@ -46,7 +78,8 @@ class Executor(object): p.set_place(each) act_places.append(p) - self.executor = core.Executor(act_places) + # TODO(dzhwinter) : only use the first place + self.executor = core.Executor(act_places[0]) self.places = places def aslodtensor(self, data): @@ -109,7 +142,7 @@ class Executor(object): raise TypeError() if scope is None: - scope = g_scope + scope = global_scope() program = program.clone() global_block = program.global_block() @@ -141,7 +174,7 @@ class Executor(object): outputs={'Out': [fetch_var]}, attrs={'col': i}) - self.executor.run(program.desc, scope, 0, True) + self.executor.run(program.desc, scope, 0, True, True) outs = [ core.get_fetch_variable(scope, fetch_var_name, i) for i in xrange(len(fetch_list)) diff --git a/python/paddle/v2/fluid/framework.py b/python/paddle/v2/fluid/framework.py index bf0cd275b6..4f8366b640 100644 --- a/python/paddle/v2/fluid/framework.py +++ b/python/paddle/v2/fluid/framework.py @@ -1,17 +1,48 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import collections +import contextlib import numpy as np -from . import core + import proto.framework_pb2 as framework_pb2 -import google.protobuf.message -import contextlib +from . import core __all__ = [ - 'Block', 'Variable', 'Program', 'Operator', 'default_startup_program', - 'default_main_program', 'program_guard', 'switch_startup_program', - 'switch_main_program' + 'Block', + 'Variable', + 'Program', + 'Operator', + 'default_startup_program', + 'default_main_program', + 'program_guard', + 'switch_startup_program', + 'switch_main_program', ] +EMPTY_VAR_NAME = core.kEmptyVarName() +TEMP_VAR_NAME = core.kTempVarName() +GRAD_VAR_SUFFIX = core.kGradVarSuffix() +ZERO_VAR_SUFFIX = core.kZeroVarSuffix() + + +def grad_var_name(var_name): + """ + return gradient name for a certain var name + """ + return var_name + GRAD_VAR_SUFFIX + def unique_name(prefix): """ @@ -85,8 +116,8 @@ def _debug_string_(proto, throw_on_error=True): """ error_fields = list() if not proto.IsInitialized(error_fields) and throw_on_error: - raise ValueError("{0} are not initialized\nThe message is {1}".format( - error_fields, proto)) + raise ValueError("{0} are not initialized.\nThe message is {1}:\n". + format(error_fields, proto)) return proto.__str__() @@ -131,9 +162,11 @@ class Variable(object): dtype=None, lod_level=None, persistable=None, + error_clip=None, stop_gradient=False, **kwargs): self.block = block + self.error_clip = error_clip if name is None: name = Variable._unique_var_name_() @@ -222,6 +255,9 @@ class Variable(object): __repr__ = __str__ + def set_desc(self, input): + self.desc = input + @property def persistable(self): return self.desc.persistable() @@ -257,6 +293,9 @@ class Variable(object): uid = core.unique_integer(prefix) # unique during whole process. return "_".join([prefix, str(uid)]) + def set_error_clip(self, error_clip): + self.error_clip = error_clip + def get_all_op_protos(): """ @@ -335,18 +374,23 @@ class Operator(object): >>> outputs={"Out": [var1]}) Args: - block(Block): The block has the current operator - desc(core.OpDesc): The protobuf description + block(Block): The block has the current operator. + desc(core.OpDesc): The protobuf description. type(str): The type of operator. inputs(dict): The input dictionary. Key is the input parameter name. Value is a list of variables. - outputs(dict): The output dictionary. Has same format with inputs + outputs(dict): The output dictionary which has the same format with + inputs. attrs(dict): The attributes dictionary. Key is attribute name. Value is the attribute value. The attribute type should be as same as the type registered in C++ """ self.block = block self.desc = desc + # for clone a new operator + self.inputs = inputs + self.outputs = outputs + self.attrs = attrs if len(self.desc.type()) != 0: return if type is None: @@ -377,7 +421,10 @@ class Operator(object): % (in_proto.name, len(in_args))) in_arg_names = [] for arg in in_args: - in_arg_names.append(arg.name) + if isinstance(arg, basestring): + in_arg_names.append(arg) + else: + in_arg_names.append(arg.name) self.desc.set_input(in_proto.name, in_arg_names) else: self.desc.set_input(in_proto.name, []) @@ -390,10 +437,11 @@ class Operator(object): for m in proto.outputs: need.add(m.name) if not given == need: - raise ValueError( - "Incorrect setting for output(s) of operator \"%s\". Need: [%s] Given: [%s]" - % (type, ", ".join(str(e) for e in need), ", ".join( - str(e) for e in given))) + raise ValueError(("Incorrect setting for output(s) of " + "operator \"%s\". Need: [%s] Given: [%s]") % + (type, ", ".join(str(e) + for e in need), ", ".join( + str(e) for e in given))) for out_proto in proto.outputs: out_args = outputs[out_proto.name] @@ -418,13 +466,18 @@ class Operator(object): continue if isinstance(attrs[attr_name], Block): self.desc.set_block_attr(attr_name, attrs[attr_name].desc) + elif isinstance(attrs[attr_name], core.BlockDesc) or \ + isinstance(attrs[attr_name], core.ProgramDesc): + self.desc.set_serialized_attr( + attr_name, attrs[attr_name].serialize_to_string()) else: self.desc.set_attr(attr_name, attrs[attr_name]) self.desc.check_attrs() no_kernel_op_set = { 'feed', 'fetch', 'save', 'load', 'recurrent', - 'rnn_memory_helper_grad', 'conditional_block', 'while' + 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', + 'recv', 'parallel_do' } if type not in no_kernel_op_set: self.desc.infer_var_type(self.block.desc) @@ -570,6 +623,7 @@ class Block(object): self.vars = dict() # var_name --> var self.ops = collections.deque() # operator list self.program = program + self.removed_vars = dict() def __str__(self): return self.to_string(True) @@ -597,6 +651,17 @@ class Block(object): raise ValueError("var %s not in this block" % name) return v + def var_recursive(self, name): + if self.has_var(name): + return self.var(name) + else: + if self.idx == 0: + raise ValueError("var %s is not in block(%d) nor its parents." % + name, self.idx) + else: + parent_block = self.program.block(self.parent_idx) + return parent_block.var_recursive(name) + def all_parameters(self): return list(self.iter_parameters()) @@ -626,6 +691,16 @@ class Block(object): self.ops.append(op) return op + def delete_ops(self, ops): + # remove from cpp + # FIXME(typhoonzero): remove only the first occuracy. + try: + start = list(self.ops).index(ops[0]) + end = list(self.ops).index(ops[-1]) + except Exception, e: + raise e + self.desc.remove_op(start, end + 1) + def prepend_op(self, *args, **kwargs): op_desc = self.desc.prepend_op() op = Operator(self, op_desc, *args, **kwargs) @@ -704,6 +779,8 @@ class Block(object): trainable=p.trainable, optimize_attr=p.optimize_attr, regularizer=p.regularizer, + clip_attr=p.clip_attr, + error_clip=p.error_clip, name=v.name) self.vars[new_p.name] = new_p @@ -723,6 +800,9 @@ class Program(object): proto = framework_pb2.ProgramDesc.FromString(str(protostr)) return _debug_string_(proto, throw_on_error) + def get_desc(self): + return self.desc + def clone(self): p = Program() p.desc = core.ProgramDesc(self.desc) @@ -740,9 +820,8 @@ class Program(object): if isinstance(t, Variable): t = t.op else: - raise ValueError( - "All targets of prune() can only be Variable or Operator." - ) + raise ValueError(("All targets of prune() can only be " + "Variable or Operator.")) targets_idx.append([t.block.idx, t.idx]) res = Program() @@ -806,9 +885,11 @@ class Program(object): self.sync_with_cpp() return param_to_grad_info - def create_block(self): + def create_block(self, parent_idx=None): new_block_idx = len(self.blocks) - self.desc.append_block(self.current_block().desc) + parent = self.current_block() if parent_idx is None else self.block( + parent_idx) + self.desc.append_block(parent.desc) self.current_block_idx = new_block_idx self.blocks.append(Block(self, self.current_block_idx)) return self.current_block() @@ -866,6 +947,8 @@ class Parameter(Variable): self.regularizer = kwargs.get('regularizer', None) + self.clip_attr = kwargs.get('clip_attr', None) + # program is a global instance. _main_program_ = Program() diff --git a/python/paddle/v2/fluid/initializer.py b/python/paddle/v2/fluid/initializer.py index c0839caaf2..2e8cfa3177 100644 --- a/python/paddle/v2/fluid/initializer.py +++ b/python/paddle/v2/fluid/initializer.py @@ -1,7 +1,25 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import framework import numpy as np -__all__ = ['Constant', 'Uniform', 'Normal', 'Xavier'] +__all__ = [ + 'Constant', + 'Uniform', + 'Normal', + 'Xavier', +] class Initializer(object): diff --git a/python/paddle/v2/fluid/io.py b/python/paddle/v2/fluid/io.py index e147ac22ad..e7a06a0714 100644 --- a/python/paddle/v2/fluid/io.py +++ b/python/paddle/v2/fluid/io.py @@ -1,16 +1,46 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import os import cPickle as pickle from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable +from . import core __all__ = [ - 'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params', - 'load_persistables', "save_inference_model", "load_inference_model", - "get_inference_program" + 'save_vars', + 'save_params', + 'save_persistables', + 'load_vars', + 'load_params', + 'load_persistables', + 'save_inference_model', + 'load_inference_model', + 'get_inference_program', ] def is_parameter(var): + """Check whether the variable is a Parameter. + + This function checks whether the input variable is a Parameter. + + Args: + var : The input variable. + + Returns: + boolean result whether the variable is a Parameter. + """ return isinstance(var, Parameter) @@ -36,7 +66,7 @@ def save_vars(executor, dirname, main_program=None, vars=None, predicate=None): :param executor: executor that save variable :param dirname: directory path :param main_program: program. If vars is None, then filter all variables in this - program which fit `predicate`. Default g_program. + program which fit `predicate`. Default default_main_program. :param predicate: The Predicate describes a callable that returns a variable as a bool. If it returns true, the variables will be saved. :param vars: variables need to be saved. If specify vars, program & predicate @@ -162,6 +192,33 @@ def get_inference_program(target_vars, main_program=None): return inference_program +def prepend_feed_ops(inference_program, feeded_var_names): + global_block = inference_program.global_block() + feed_var = global_block.create_var( + name='feed', type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True) + + for i, name in enumerate(feeded_var_names): + out = global_block.var(name) + global_block.prepend_op( + type='feed', + inputs={'X': [feed_var]}, + outputs={'Out': [out]}, + attrs={'col': i}) + + +def append_fetch_ops(inference_program, fetch_var_names): + global_block = inference_program.global_block() + fetch_var = global_block.create_var( + name='fetch', type=core.VarDesc.VarType.FETCH_LIST, persistable=True) + + for i, name in enumerate(fetch_var_names): + global_block.append_op( + type='fetch', + inputs={'X': [name]}, + outputs={'Out': [fetch_var]}, + attrs={'col': i}) + + def save_inference_model(dirname, feeded_var_names, target_vars, @@ -180,10 +237,22 @@ def save_inference_model(dirname, :return: None """ + if isinstance(feeded_var_names, basestring): + feeded_var_names = [feeded_var_names] + else: + if not (bool(feeded_var_names) and all( + isinstance(name, basestring) for name in feeded_var_names)): + raise ValueError("'feed_var_names' should be a list of str.") + + if isinstance(target_vars, Variable): + target_vars = [target_vars] + else: + if not (bool(target_vars) and all( + isinstance(var, Variable) for var in target_vars)): + raise ValueError("'target_vars' should be a list of Variable.") + if main_program is None: main_program = default_main_program() - if not isinstance(target_vars, list): - target_vars = [target_vars] if not os.path.isdir(dirname): os.makedirs(dirname) @@ -200,6 +269,14 @@ def save_inference_model(dirname, "fetch_var_names": fetch_var_names }, f, -1) + prepend_feed_ops(inference_program, feeded_var_names) + append_fetch_ops(inference_program, fetch_var_names) + + # Save only programDesc of inference_program in binary format + # in another file: __model__.dat + with open(model_file_name + ".dat", "wb") as fp: + fp.write(inference_program.desc.serialize_to_string()) + save_params(executor, dirname, main_program) diff --git a/python/paddle/v2/fluid/layer_helper.py b/python/paddle/v2/fluid/layer_helper.py index 3963e13222..191d2349b5 100644 --- a/python/paddle/v2/fluid/layer_helper.py +++ b/python/paddle/v2/fluid/layer_helper.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import copy import itertools @@ -21,19 +34,11 @@ class LayerHelper(object): @property def main_program(self): - prog = self.kwargs.get('main_program', None) - if prog is None: - return default_main_program() - else: - return prog + return default_main_program() @property def startup_program(self): - prog = self.kwargs.get('startup_program', None) - if prog is None: - return default_startup_program() - else: - return prog + return default_startup_program() def append_op(self, *args, **kwargs): return self.main_program.current_block().append_op(*args, **kwargs) @@ -128,11 +133,12 @@ class LayerHelper(object): raise ValueError("no Parameter name %s found" % name) return param - def create_tmp_variable(self, dtype): + def create_tmp_variable(self, dtype, stop_gradient=False): return self.main_program.current_block().create_var( name=unique_name(".".join([self.name, 'tmp'])), dtype=dtype, - persistable=False) + persistable=False, + stop_gradient=stop_gradient) def create_variable(self, *args, **kwargs): return self.main_program.current_block().create_var(*args, **kwargs) @@ -151,13 +157,6 @@ class LayerHelper(object): persistable=True, initializer=initializer) - @property - def to_kwargs(self): - return { - 'main_program': self.main_program, - 'startup_program': self.startup_program - } - def append_bias_op(self, input_var, dim_start=1, dim_end=None): """ Append bias operator and return its output. If the user does not set @@ -199,7 +198,7 @@ class LayerHelper(object): self.append_op( type=act_type, inputs={"X": [input_var]}, - outputs={"Y": [tmp]}, + outputs={"Out": [tmp]}, attrs=act) return tmp @@ -209,3 +208,9 @@ class LayerHelper(object): else: # For integer and boolean types, initialize with all zeros return Constant() + + def is_instance(self, param_name, cls): + param = self.kwargs.get(param_name, None) + if not isinstance(param, cls): + raise TypeError("The input {0} parameter of method {1} must be {2}", + param_name, self.layer_type, cls.__name__) diff --git a/python/paddle/v2/fluid/layers.py b/python/paddle/v2/fluid/layers.py deleted file mode 100644 index fb444f2d86..0000000000 --- a/python/paddle/v2/fluid/layers.py +++ /dev/null @@ -1,2174 +0,0 @@ -import core -import proto.framework_pb2 as framework_pb2 -from framework import OpProtoHolder, Variable, Program, Operator -from initializer import Constant, Normal, Xavier, Initializer -from paddle.v2.fluid.layer_helper import LayerHelper, unique_name -import re -import cStringIO -from param_attr import ParamAttr -import contextlib - -__all__ = [ - 'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat', - 'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim', - 'batch_norm', 'accuracy', 'split_lod_tensor', 'While' -] - - -def fc(input, - size, - num_flatten_dims=1, - param_attr=None, - bias_attr=None, - act=None, - name=None, - main_program=None, - startup_program=None): - """ - Fully Connected Layer. - - Args: - input: The input tensor to the function - size: The size of the layer - num_flatten_dims: Number of columns in input - param_attr: The parameters/weights to the FC Layer - param_initializer: Initializer used for the weight/parameter. If None, XavierInitializer() is used - bias_attr: The bias parameter for the FC layer - bias_initializer: Initializer used for the bias. If None, then ConstantInitializer() is used - act: Activation to be applied to the output of FC layer - name: Name/alias of the function - main_program: Name of the main program that calls this - startup_program: Name of the startup program - - This function can take in multiple inputs and performs the Fully Connected - function (linear transformation) on top of each of them. - So for input x, the output will be : Wx + b. Where W is the parameter, - b the bias and x is the input. - - The function also applies an activation (non-linearity) on top of the - output, if activation is passed in the input. - - All the input variables of this function are passed in as local variables - to the LayerHelper constructor. - - """ - helper = LayerHelper('fc', **locals()) - - dtype = helper.input_dtype() - - mul_results = [] - for input_var, param_attr in helper.iter_inputs_and_params(): - input_shape = input_var.shape - param_shape = [ - reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) - ] + [size] - w = helper.create_parameter( - attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False) - tmp = helper.create_tmp_variable(dtype) - helper.append_op( - type="mul", - inputs={ - "X": input_var, - "Y": w, - }, - outputs={"Out": tmp}, - attrs={'x_num_col_dims': num_flatten_dims, - 'y_num_col_dims': 1}) - mul_results.append(tmp) - - # sum - if len(mul_results) == 1: - pre_bias = mul_results[0] - else: - pre_bias = helper.create_tmp_variable(dtype) - helper.append_op( - type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}) - # add bias - pre_activation = helper.append_bias_op(pre_bias) - # add activation - return helper.append_activation(pre_activation) - - -def embedding(input, - size, - is_sparse=False, - param_attr=None, - dtype='float32', - main_program=None, - startup_program=None): - """ - Embedding Layer. - - Args: - param_initializer: - input: The input to the function - size: The size of the layer - is_sparse: A flag that decleares whether the input is sparse - param_attr: Parameters for this layer - dtype: The type of data : float32, float_16, int etc - main_program: Name of the main program that calls this - startup_program: Name of the startup program - - This function can take in the input (which is a vector of IDs) and - performs a lookup in the lookup_table using these IDs, to result into - the embedding of each ID in the input. - - All the input variables of this function are passed in as local variables - to the LayerHelper constructor. - - """ - - helper = LayerHelper('embedding', **locals()) - w = helper.create_parameter( - attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False) - tmp = helper.create_tmp_variable(dtype) - helper.append_op( - type='lookup_table', - inputs={'Ids': input, - 'W': w}, - outputs={'Out': tmp}, - attrs={'is_sparse': is_sparse}) - return tmp - - -# TODO(qijun): expose H0 and C0 -def dynamic_lstm(input, - size, - param_attr=None, - bias_attr=None, - use_peepholes=True, - is_reverse=False, - gate_activation='sigmoid', - cell_activation='tanh', - candidate_activation='tanh', - dtype='float32', - main_program=None, - startup_program=None): - helper = LayerHelper('lstm', **locals()) - size = size / 4 - weight = helper.create_parameter( - attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype) - bias_size = [1, 7 * size] - if not use_peepholes: - bias_size[1] = 4 * size - bias = helper.create_parameter( - attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) - - hidden = helper.create_tmp_variable(dtype) - cell = helper.create_tmp_variable(dtype) - batch_gate = helper.create_tmp_variable(dtype) - batch_cell_pre_act = helper.create_tmp_variable(dtype) - - helper.append_op( - type='lstm', - inputs={'Input': input, - 'Weight': weight, - 'Bias': bias}, - outputs={ - 'Hidden': hidden, - 'Cell': cell, - 'BatchGate': batch_gate, - 'BatchCellPreAct': batch_cell_pre_act - }, - attrs={ - 'use_peepholes': use_peepholes, - 'is_reverse': is_reverse, - 'gate_activation': gate_activation, - 'cell_activation': cell_activation, - 'candidate_activation': candidate_activation - }) - return hidden, cell - - -def gru_unit(input, - hidden, - size, - weight=None, - bias=None, - activation='tanh', - gate_activation='sigmoid', - main_program=None, - startup_program=None): - """ - GRUUnit Operator implements partial calculations of the GRU unit as following: - - $$ - update \ gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\ - reset \ gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r) \\ - output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\ - output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t) - $$ - - which is same as one time step of GRU Operator. - - @note To implement the complete GRU unit, fully-connected operator must be - used before to feed xu, xr and xc as the Input of GRUUnit operator. - - TODO(ChunweiYan) add more document here - """ - activation_dict = dict( - identity=0, - sigmoid=1, - tanh=2, - relu=3, ) - activation = activation_dict[activation] - gate_activation = activation_dict[gate_activation] - - helper = LayerHelper('gru_unit', **locals()) - dtype = helper.input_dtype() - size = size / 3 - - # create weight - if weight is None: - weight = helper.create_parameter( - attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) - - # create bias - if bias is None: - bias_size = [1, 3 * size] - bias = helper.create_parameter( - attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) - - gate = helper.create_tmp_variable(dtype) - reset_hidden_pre = helper.create_tmp_variable(dtype) - updated_hidden = helper.create_tmp_variable(dtype) - - helper.append_op( - type='gru_unit', - inputs={'Input': input, - 'HiddenPrev': hidden, - 'Weight': weight}, - outputs={ - 'Gate': gate, - 'ResetHiddenPrev': reset_hidden_pre, - 'Hidden': updated_hidden, - }, - attrs={ - 'activation': 0, - 'gate_activation': 1, - }) - - return updated_hidden, reset_hidden_pre, gate - - -def data(name, - shape, - append_batch_size=True, - dtype='float32', - lod_level=0, - type=core.VarDesc.VarType.LOD_TENSOR, - main_program=None, - startup_program=None, - stop_gradient=True): - """ - Data Layer. - - Args: - name: The name/alias of the function - shape: Tuple declaring the shape. - append_batch_size: Whether or not to append the data as a batch. - dtype: The type of data : float32, float_16, int etc - type: The output type. By default it is LOD_TENSOR. - lod_level(int): The LoD Level. 0 means the input data is not a sequence. - main_program: Name of the main program that calls this - startup_program: Name of the startup program - stop_gradient: A boolean that mentions whether gradient should flow. - - This function takes in input and based on whether data has - to be returned back as a minibatch, it creates the global variable using - the helper functions. The global variables can be accessed by all the - following operations and layers in the graph. - - All the input variables of this function are passed in as local variables - to the LayerHelper constructor. - - """ - helper = LayerHelper('data', **locals()) - shape = list(shape) - for i in xrange(len(shape)): - if shape[i] is None: - shape[i] = -1 - append_batch_size = False - elif shape[i] < 0: - append_batch_size = False - - if append_batch_size: - shape = [-1] + shape # append batch size as -1 - - return helper.create_global_variable( - name=name, - shape=shape, - dtype=dtype, - type=type, - stop_gradient=stop_gradient, - lod_level=lod_level) - - -def create_tensor(dtype, name=None, main_program=None, startup_program=None): - helper = LayerHelper("create_tensor", **locals()) - return helper.create_variable(name=helper.name, dtype=dtype) - - -def _convert_(name): - """ - Formatting. - - Args: - name: The name/alias - - This function takes in a name and converts it to a standard format of - group1_group2. Where as per the regular expression, group1 can have - alphabets and numbers and group2 has capital alphabets. - - """ - s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) - return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() - - -def _generate_doc_string_(op_proto): - """ - Generate docstring by OpProto - - Args: - op_proto (framework_pb2.OpProto): a protobuf message typed OpProto - - Returns: - str: the document string - """ - - def _type_to_str_(tp): - return framework_pb2.AttrType.Name(tp) - - if not isinstance(op_proto, framework_pb2.OpProto): - raise TypeError("OpProto should be `framework_pb2.OpProto`") - - buf = cStringIO.StringIO() - buf.write(op_proto.comment) - buf.write('\nArgs:\n') - for each_input in op_proto.inputs: - line_begin = ' {0}: '.format(_convert_(each_input.name)) - buf.write(line_begin) - buf.write(each_input.comment) - buf.write('\n') - buf.write(' ' * len(line_begin)) - buf.write('Duplicable: ') - buf.write(str(each_input.duplicable)) - buf.write(' Optional: ') - buf.write(str(each_input.dispensable)) - buf.write('\n') - - for each_attr in op_proto.attrs: - buf.write(' ') - buf.write(each_attr.name) - buf.write(' (') - buf.write(_type_to_str_(each_attr.type)) - buf.write('): ') - buf.write(each_attr.comment) - buf.write('\n') - - if len(op_proto.outputs) != 0: - buf.write('\nReturns:\n') - buf.write(' ') - for each_opt in op_proto.outputs: - if not each_opt.intermediate: - break - buf.write(each_opt.comment) - - return buf.getvalue() - - -def _create_op_func_(op_type): - """ - Create an Operator for a Function. - - Args: - op_type: The name of the operator to be created - - This function takes in the operator type (sigmoid, mean , average etc) and - creates the operator functionality. - - """ - op_proto = OpProtoHolder.instance().get_op_proto(op_type) - not_intermediate_outputs = \ - filter(lambda output: not output.intermediate, op_proto.outputs) - intermediate_outputs = \ - filter(lambda output: output.intermediate, op_proto.outputs) - - if len(not_intermediate_outputs) != 1: - raise ValueError("Only one non intermediate output operator can be", - "automatically generated") - - if not_intermediate_outputs[0].duplicable: - raise ValueError( - "Only non duplicable op can be automatically generated") - - for output in intermediate_outputs: - if output.duplicable: - raise ValueError("The op can be automatically generated only when ", - "all intermediate ops are not duplicable") - - o_name = not_intermediate_outputs[0].name - intermediate_output_names = [output.name for output in intermediate_outputs] - - def infer_and_check_dtype(op_proto, **kwargs): - """ - This function performs the sanity check for dtype and - instance type. - """ - dtype = None - for ipt in op_proto.inputs: - name = _convert_(ipt.name) - val = kwargs.pop(name, []) - if not isinstance(val, list) and not isinstance(val, tuple): - val = [val] - for each in val: - if not isinstance(each, Variable): - raise ValueError("input of {0} must be variable".format( - op_type)) - - if dtype is None: - dtype = each.dtype - elif dtype != each.dtype: - raise ValueError( - "operator {0} must input same dtype".format(op_type)) - - return dtype - - def func(**kwargs): - helper = LayerHelper(op_type, **kwargs) - - dtype = infer_and_check_dtype(op_proto, **kwargs) - - inputs = dict() - for ipt in op_proto.inputs: - name = _convert_(ipt.name) - val = kwargs.pop(name, []) - if not isinstance(val, list) and not isinstance(val, tuple): - val = [val] - inputs[ipt.name] = val - - outputs = dict() - out = helper.create_tmp_variable(dtype=dtype) - outputs[o_name] = [out] - for name in intermediate_output_names: - outputs[name] = [helper.create_tmp_variable(dtype=dtype)] - helper.append_op( - type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs) - return helper.append_activation(out) - - func.__name__ = op_type - globals()[op_type] = func - func.__doc__ = _generate_doc_string_(op_proto) - global __all__ - __all__.append(op_type) - - -_create_op_func_('mean') -_create_op_func_('mul') -_create_op_func_('elementwise_add') -_create_op_func_('elementwise_div') -_create_op_func_('dropout') -_create_op_func_('reshape') -_create_op_func_('sigmoid') -_create_op_func_('scale') -_create_op_func_('reshape') -_create_op_func_('transpose') -_create_op_func_('sigmoid_cross_entropy_with_logits') - - -def cast(x, dtype, main_program=None): - """ - This function takes in the input with input_dtype - and casts it to the output_dtype as the output. - """ - helper = LayerHelper('cast', **locals()) - out = helper.create_tmp_variable(dtype=dtype) - helper.append_op( - type='cast', - inputs={'X': [x]}, - outputs={'Out': [out]}, - attrs={'in_dtype': x.dtype, - 'out_dtype': out.dtype}) - return out - - -def concat(input, axis, main_program=None, startup_program=None): - """ - This function concats the input along the axis mentioned - and returns that as the output. - """ - helper = LayerHelper('concat', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) - helper.append_op( - type='concat', - inputs={'X': input}, - outputs={'Out': [out]}, - attrs={'axis': axis}) - return out - - -def sums(input, out=None, main_program=None, startup_program=None): - """ - This function takes in the input and performs the sum operation on it - and returns that as the output. - """ - helper = LayerHelper('sum', **locals()) - if out is None: - out = helper.create_tmp_variable(dtype=helper.input_dtype()) - helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out}) - return out - - -def linear_chain_crf(input, - label, - param_attr=None, - main_program=None, - startup_program=None): - helper = LayerHelper('linear_chain_crf', **locals()) - size = input.shape[1] - transition = helper.create_parameter( - attr=helper.param_attr, - shape=[size + 2, size], - dtype=helper.input_dtype()) - alpha = helper.create_tmp_variable(dtype=helper.input_dtype()) - emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) - transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) - log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype()) - helper.append_op( - type='linear_chain_crf', - inputs={"Emission": [input], - "Transition": transition, - "Label": label}, - outputs={ - "Alpha": [alpha], - "EmissionExps": [emission_exps], - "TransitionExps": transition_exps, - "LogLikelihood": log_likelihood - }) - - return log_likelihood - - -def crf_decoding(input, - param_attr, - label=None, - main_program=None, - startup_program=None): - helper = LayerHelper('crf_decoding', **locals()) - transition = helper.get_parameter(param_attr.name) - viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype()) - helper.append_op( - type='crf_decoding', - inputs={"Emission": [input], - "Transition": transition, - "Label": label}, - outputs={"ViterbiPath": [viterbi_path]}) - - return viterbi_path - - -def assign(input, output, main_program=None, startup_program=None): - helper = LayerHelper('assign', **locals()) - helper.append_op( - type='scale', - inputs={'X': [input]}, - outputs={'Out': [output]}, - attrs={'scale': 1.0}) - return output - - -def split_lod_tensor(input, - mask, - level=0, - main_program=None, - startup_program=None): - helper = LayerHelper('split_lod_tensor', **locals()) - out_true = helper.create_tmp_variable(dtype=input.dtype) - out_false = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='split_lod_tensor', - inputs={ - 'X': input, - 'Mask': mask, - }, - outputs={'OutTrue': out_true, - 'OutFalse': out_false}, - attrs={'level': level}) - return out_true, out_false - - -def merge_lod_tensor(in_true, - in_false, - x, - mask, - level=0, - main_program=None, - startup_program=None): - helper = LayerHelper('merge_lod_tensor', **locals()) - out = helper.create_tmp_variable(dtype=in_true.dtype) - helper.append_op( - type='merge_lod_tensor', - inputs={'X': x, - 'Mask': mask, - 'InTrue': in_true, - 'InFalse': in_false}, - outputs={'Out': out}, - attrs={'level': level}) - return out - - -def cos_sim(X, Y, **kwargs): - """ - This function performs the cosine similarity between two tensors - X and Y and returns that as the output. - """ - helper = LayerHelper('cos_sim', **kwargs) - out = helper.create_tmp_variable(dtype=X.dtype) - xnorm = helper.create_tmp_variable(dtype=X.dtype) - ynorm = helper.create_tmp_variable(dtype=X.dtype) - helper.append_op( - type='cos_sim', - inputs={'X': [X], - 'Y': [Y]}, - outputs={'Out': [out], - 'XNorm': [xnorm], - 'YNorm': [ynorm]}) - return out - - -def cross_entropy(input, label, **kwargs): - """ - This function computes cross_entropy using the input and label. - """ - helper = LayerHelper('cross_entropy', **kwargs) - out = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='cross_entropy', - inputs={'X': [input], - 'Label': [label]}, - outputs={'Y': [out]}, - attrs=kwargs) - return out - - -def square_error_cost(input, label, **kwargs): - """ - This functions returns the squared error cost using the input and label. - The output is appending the op to do the above. - """ - helper = LayerHelper('square_error_cost', **kwargs) - minus_out = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='elementwise_sub', - inputs={'X': [input], - 'Y': [label]}, - outputs={'Out': [minus_out]}) - - square_out = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]}) - return square_out - - -def accuracy(input, label, k=1, correct=None, total=None, **kwargs): - """ - This function computes the accuracy using the input and label. - The output is the top_k inputs and their indices. - """ - helper = LayerHelper("accuracy", **kwargs) - topk_out = helper.create_tmp_variable(dtype=input.dtype) - topk_indices = helper.create_tmp_variable(dtype="int64") - helper.append_op( - type="top_k", - inputs={"X": [input]}, - outputs={"Out": [topk_out], - "Indices": [topk_indices]}, - attrs={"k": k}) - acc_out = helper.create_tmp_variable(dtype="float32") - if correct is None: - correct = helper.create_tmp_variable(dtype="int64") - if total is None: - total = helper.create_tmp_variable(dtype="int64") - helper.append_op( - type="accuracy", - inputs={ - "Out": [topk_out], - "Indices": [topk_indices], - "Label": [label] - }, - outputs={ - "Accuracy": [acc_out], - "Correct": [correct], - "Total": [total], - }) - return acc_out - - -def chunk_eval(input, - label, - chunk_scheme, - num_chunk_types, - excluded_chunk_types=None, - **kwargs): - """ - This function computes the accuracy using the input and label. - The output is the top_k inputs and their indices. - """ - helper = LayerHelper("chunk_eval", **kwargs) - - # prepare output - precision = helper.create_tmp_variable(dtype="float32") - recall = helper.create_tmp_variable(dtype="float32") - f1_score = helper.create_tmp_variable(dtype="float32") - - helper.append_op( - type="chunk_eval", - inputs={"Inference": [input], - "Label": [label]}, - outputs={ - "Precision": [precision], - "Recall": [recall], - "F1-Score": [f1_score] - }, - attrs={ - "num_chunk_types": num_chunk_types, - 'chunk_scheme': chunk_scheme, - 'excluded_chunk_types': excluded_chunk_types or [] - }) - return precision, recall, f1_score - - -def sequence_conv(input, - num_filters, - filter_size=3, - filter_stride=1, - padding=None, - bias_attr=None, - param_attr=None, - act=None, - main_program=None, - startup_program=None): - """ - This function creates the op for sequence_conv, using the inputs and - other convolutional configurations for the filters and stride as given - in the input parameters to the function. - """ - - # FIXME(dzh) : want to unify the argument of python layer - # function. So we ignore some unecessary attributes. - # such as, padding_trainable, context_start. - - helper = LayerHelper('sequence_conv', **locals()) - dtype = helper.input_dtype() - filter_shape = [filter_size * input.shape[1], num_filters] - filter = helper.create_parameter( - attr=helper.param_attr, shape=filter_shape, dtype=dtype) - pre_bias = helper.create_tmp_variable(dtype) - - helper.append_op( - type='sequence_conv', - inputs={ - 'X': [input], - 'Filter': [filter], - }, - outputs={"Out": pre_bias}, - attrs={ - 'contextStride': filter_stride, - 'contextStart': -int(filter_size / 2), - 'contextLength': filter_size - }) - pre_act = helper.append_bias_op(pre_bias) - return helper.append_activation(pre_act) - - -def conv2d(input, - num_filters, - filter_size, - stride=[1, 1], - padding=None, - groups=None, - param_attr=None, - bias_attr=None, - act=None, - name=None, - main_program=None, - startup_program=None): - """ - This function creates the op for a 2-dimensional Convolution. - This is performed using the parameters of filters(size, dimensionality etc) - , stride and other configurations for a Convolution operation. - This funciton can also append an activation on top of the - conv-2d output, if mentioned in the input parameters. - """ - - helper = LayerHelper('conv2d', **locals()) - dtype = helper.input_dtype() - - num_channels = input.shape[1] - if groups is None: - num_filter_channels = num_channels - else: - if num_channels % groups != 0: - raise ValueError("num_channels must be divisible by groups.") - num_filter_channels = num_channels / groups - - if isinstance(filter_size, int): - filter_size = [filter_size, filter_size] - if isinstance(stride, int): - stride = [stride, stride] - if isinstance(padding, int): - padding = [padding, padding] - - input_shape = input.shape - filter_shape = [num_filters, num_filter_channels] + filter_size - - def _get_default_param_initializer(): - std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 - return Normal(0.0, std, 0) - - filter = helper.create_parameter( - attr=helper.param_attr, - shape=filter_shape, - dtype=dtype, - default_initializer=_get_default_param_initializer()) - - pre_bias = helper.create_tmp_variable(dtype) - - helper.append_op( - type='conv2d_cudnn', - inputs={ - 'Input': input, - 'Filter': filter, - }, - outputs={"Output": pre_bias}, - attrs={'strides': stride, - 'paddings': padding, - 'groups': groups}) - - pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) - - return helper.append_activation(pre_act) - - -def sequence_pool(input, pool_type, **kwargs): - """ - This function add the operator for sequence pooling. - This is applied on top of the input using pool_type mentioned - in the parameters. - """ - helper = LayerHelper('sequence_pool', input=input, **kwargs) - dtype = helper.input_dtype() - pool_out = helper.create_tmp_variable(dtype) - max_index = helper.create_tmp_variable(dtype) - - helper.append_op( - type="sequence_pool", - inputs={"X": input}, - outputs={"Out": pool_out, - "MaxIndex": max_index}, - attrs={"pooltype": pool_type.upper()}) - - return pool_out - - -def pool2d(input, - pool_size, - pool_type, - pool_stride=[1, 1], - pool_padding=[0, 0], - global_pooling=False, - main_program=None, - startup_program=None): - """ - This function adds the operator for pooling in 2 dimensions, using the - pooling configurations mentioned in input parameters. - """ - if pool_type not in ["max", "avg"]: - raise ValueError( - "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", - str(pool_type)) - if isinstance(pool_size, int): - pool_size = [pool_size, pool_size] - if isinstance(pool_stride, int): - pool_stride = [pool_stride, pool_stride] - if isinstance(pool_padding, int): - pool_padding = [pool_padding, pool_padding] - - helper = LayerHelper('pool2d', **locals()) - dtype = helper.input_dtype() - pool_out = helper.create_tmp_variable(dtype) - - helper.append_op( - type="pool2d", - inputs={"X": input}, - outputs={"Out": pool_out}, - attrs={ - "pooling_type": pool_type, - "ksize": pool_size, - "global_pooling": global_pooling, - "strides": pool_stride, - "paddings": pool_padding - }) - - return pool_out - - -def batch_norm(input, - act=None, - is_test=False, - momentum=0.9, - epsilon=1e-05, - param_attr=None, - bias_attr=None, - data_layout='NCHW', - main_program=None, - startup_program=None): - """ - This function helps create an operator to implement - the BatchNorm layer using the configurations from the input parameters. - """ - helper = LayerHelper('batch_norm', **locals()) - dtype = helper.input_dtype() - - input_shape = input.shape - if data_layout == 'NCHW': - channel_num = input_shape[1] - else: - if data_layout == 'NHWC': - channel_num = input_shape[-1] - else: - raise ValueError("unsupported data layout:" + data_layout) - - param_shape = [channel_num] - - # create parameter - scale = helper.create_parameter( - attr=helper.param_attr, - shape=param_shape, - dtype=dtype, - default_initializer=Constant(1.0)) - - bias = helper.create_parameter( - attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True) - - mean = helper.create_global_variable( - dtype=input.dtype, shape=param_shape, persistable=True) - helper.set_variable_initializer(var=mean, initializer=Constant(0.0)) - - variance = helper.create_global_variable( - dtype=input.dtype, shape=param_shape, persistable=True) - helper.set_variable_initializer(var=variance, initializer=Constant(1.0)) - - # create output - # mean and mean_out share the same memory - mean_out = mean - # variance and variance out share the same memory - variance_out = variance - saved_mean = helper.create_tmp_variable(dtype) - saved_variance = helper.create_tmp_variable(dtype) - - batch_norm_out = helper.create_tmp_variable(dtype) - - helper.append_op( - type="batch_norm", - inputs={ - "X": input, - "Scale": scale, - "Bias": bias, - "Mean": mean, - "Variance": variance - }, - outputs={ - "Y": batch_norm_out, - "MeanOut": mean_out, - "VarianceOut": variance_out, - "SavedMean": saved_mean, - "SavedVariance": saved_variance - }, - attrs={"momentum": momentum, - "epsilon": epsilon, - "is_test": is_test}) - - return helper.append_activation(batch_norm_out) - - -def beam_search_decode(ids, scores, main_program=None, startup_program=None): - helper = LayerHelper('beam_search_decode', **locals()) - sentence_ids = helper.create_tmp_variable(dtype=ids.dtype) - sentence_scores = helper.create_tmp_variable(dtype=ids.dtype) - - helper.append_op( - type="beam_search_decode", - inputs={"Ids": ids, - "Scores": scores}, - outputs={ - "SentenceIds": sentence_ids, - "SentenceScores": sentence_scores - }) - - return sentence_ids, sentence_scores - - -class BlockGuard(object): - """ - BlockGuard class. - - BlockGuard class is used to create a sub-block in a program by - using the Python `with` keyword. - """ - - def __init__(self, main_program): - if not isinstance(main_program, Program): - raise TypeError("BlockGuard takes a program") - self.main_program = main_program - - def __enter__(self): - self.main_program.create_block() - - def __exit__(self, exc_type, exc_val, exc_tb): - self.main_program.rollback() - if exc_type is not None: - return False # re-raise exception - return True - - -class StaticRNNGuard(BlockGuard): - """ - StaticRNNGuard class. - - StaticRNNGuard class is used to create a StaticRNN block in a program. - """ - - def __init__(self, rnn): - if not isinstance(rnn, StaticRNN): - raise TypeError("StaticRNNGuard takes a StaticRNN") - super(StaticRNNGuard, self).__init__(rnn.helper.main_program) - self.rnn = rnn - - def __enter__(self): - self.rnn.status = StaticRNN.IN_RNN_BLOCK - return super(StaticRNNGuard, self).__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - if exc_type is not None: - return False - self.rnn.status = StaticRNN.AFTER_RNN_BLOCK - self.rnn.complete_rnn_op() - return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb) - - -class StaticRNNMemoryLink(object): - """ - StaticRNNMemoryLink class. - - Args: - init: the initial variable for Memory - init: Variable - pre_mem: the memory variable in previous time step - pre_mem: Variable - mem: the memory variable in current time step - mem: Variable - - StaticRNNMemoryLink class is used to create a link between two - memory cells of a StaticRNN. - """ - - def __init__(self, init, pre_mem, mem=None): - self.init = init - self.pre_mem = pre_mem - self.mem = mem - - -class StaticRNN(object): - """ - StaticRNN class. - - StaticRNN class is used to create a StaticRNN. The RNN will have its - own parameters like inputs, outputs, memories, status and length. - """ - BEFORE_RNN_BLOCK = 0 - IN_RNN_BLOCK = 1 - AFTER_RNN_BLOCK = 2 - - def __init__(self, name=None, main_program=None): - self.helper = LayerHelper( - "static_rnn", name=name, main_program=main_program) - self.memories = {} # memory map, from pre_mem.name --> MemoryLink - self.inputs = [] # input variable list in current block - self.outputs = [] # output variable list in parent block - self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. - # sequence length, since it is a static RNN, sequence length are fixed. - self.seq_len = None - - def step(self): - return StaticRNNGuard(self) - - def _assert_in_rnn_block_(self, method): - if self.status != StaticRNN.IN_RNN_BLOCK: - raise ValueError("You must invoke {0} in rnn block".format(method)) - - def memory(self, - init=None, - shape=None, - batch_ref=None, - init_value=0.0, - init_batch_dim_idx=0, - ref_batch_dim_idx=1): - """ - Args: - init: boot memory, if not set, a shape, batch_ref must be provided - shape: shape of the boot memory - batch_ref: batch size reference variable - init_value: the init value of boot memory - init_batch_dim_idx: the index of batch size in init's dimension - ref_batch_dim_idx: the index of batch size in batch_ref's dimension - """ - self._assert_in_rnn_block_('memory') - if init is None: - if shape is None or batch_ref is None: - raise ValueError( - "if init is None, memory at least need shape and batch_ref") - parent_block = self.parent_block() - var_name = unique_name("@".join([self.helper.name, "memory_boot"])) - boot_var = parent_block.create_var( - name=var_name, - shape=shape, - dtype=batch_ref.dtype, - persistable=False) - - parent_block.append_op( - type="fill_constant_batch_size_like", - inputs={'Input': [batch_ref]}, - outputs={'Out': [boot_var]}, - attrs={ - 'value': init_value, - 'shape': boot_var.shape, - 'dtype': boot_var.dtype, - 'input_dim_idx': ref_batch_dim_idx, - 'output_dim_idx': init_batch_dim_idx - }) - - return self.memory(init=boot_var) - else: - pre_mem = self.helper.create_variable( - name=unique_name("@".join([self.helper.name, "mem"])), - dtype=init.dtype, - shape=init.shape) - self.memories[pre_mem.name] = StaticRNNMemoryLink( - init=init, pre_mem=pre_mem) - return pre_mem - - def step_input(self, x): - self._assert_in_rnn_block_('step_input') - if not isinstance(x, Variable): - raise TypeError("step input takes a Variable") - if self.seq_len is None: - self.seq_len = x.shape[0] - elif self.seq_len != x.shape[0]: - raise ValueError("Static RNN only take fix seq_len input") - - ipt = self.helper.create_variable( - name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type) - self.inputs.append(ipt) - return ipt - - def step_output(self, o): - self._assert_in_rnn_block_('step_output') - if not isinstance(o, Variable): - raise TypeError("step output takes a Variable") - - tmp_o = self.helper.create_tmp_variable(dtype=o.dtype) - self.helper.append_op( - type='rnn_memory_helper', - inputs={'X': [o]}, - outputs={'Out': tmp_o}, - attrs={'dtype': o.dtype}) - - out_var = self.parent_block().create_var( - name=tmp_o.name, - shape=[self.seq_len] + list(tmp_o.shape), - dtype=tmp_o.dtype) - - self.outputs.append(out_var) - - def output(self, *outputs): - for each in outputs: - self.step_output(each) - - def update_memory(self, mem, var): - if not isinstance(mem, Variable) or not isinstance(var, Variable): - raise TypeError("update memory should take variables") - self.memories[mem.name].mem = var - - def parent_block(self): - prog = self.helper.main_program - parent_idx = prog.current_block().parent_idx - assert parent_idx >= 0 - parent_block = prog.block(parent_idx) - return parent_block - - def __call__(self, *args, **kwargs): - if self.status != StaticRNN.AFTER_RNN_BLOCK: - raise ValueError("RNN output can only be retrieved after rnn block") - if len(self.outputs) == 0: - raise ValueError("RNN has no output") - elif len(self.outputs) == 1: - return self.outputs[0] - else: - return self.outputs - - def complete_rnn_op(self): - main_program = self.helper.main_program - rnn_block = main_program.current_block() - parent_block = self.parent_block() - - local_inputs = set() - - for op in rnn_block.ops: - assert isinstance(op, Operator) - for oname in op.output_names: - for out_var_name in op.output(oname): - local_inputs.add(out_var_name) - - for var in self.inputs: - local_inputs.add(var.name) - for m in self.memories: - local_inputs.add(m) - - params = list() - for op in rnn_block.ops: - assert isinstance(op, Operator) - for iname in op.input_names: - for in_var_name in op.input(iname): - if in_var_name not in local_inputs: - params.append(in_var_name) - - parameters = [parent_block.var(name) for name in params] - - step_scope = parent_block.create_var( - type=core.VarDesc.VarType.STEP_SCOPES) - - inlinks = [parent_block.var(i.name) for i in self.inputs] - outlinks = self.outputs - - boot_memories = [] - pre_memories = [] - memories = [] - for _, mem in self.memories.iteritems(): - boot_memories.append(mem.init) - pre_memories.append(mem.pre_mem.name) - mem_var = rnn_block.var(mem.mem.name) - assert isinstance(mem_var, Variable) - new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype) - - rnn_block.append_op( - type='rnn_memory_helper', - inputs={'X': [mem_var]}, - outputs={'Out': [new_mem]}, - attrs={'dtype': mem_var.dtype}) - - memories.append(new_mem.name) - - parent_block.append_op( - type='recurrent', - inputs={ - 'inputs': inlinks, - 'initial_states': boot_memories, - 'parameters': parameters - }, - outputs={'outputs': outlinks, - 'step_scopes': [step_scope]}, - attrs={ - 'ex_states': pre_memories, - 'states': memories, - 'step_block': rnn_block - }) - - -class WhileGuard(BlockGuard): - def __init__(self, while_op): - if not isinstance(while_op, While): - raise TypeError("WhileGuard takes a while op") - super(WhileGuard, self).__init__(while_op.helper.main_program) - self.while_op = while_op - - def __enter__(self): - self.while_op.status = While.IN_WHILE_BLOCK - return super(WhileGuard, self).__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - if exc_type is not None: - return False - self.while_op.status = While.AFTER_WHILE_BLOCK - self.while_op.complete() - return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb) - - -class While(object): - BEFORE_WHILE_BLOCK = 0 - IN_WHILE_BLOCK = 1 - AFTER_WHILE_BLOCK = 2 - - def __init__(self, cond, name=None, main_program=None): - self.helper = LayerHelper("while", name=name, main_program=main_program) - self.status = While.BEFORE_WHILE_BLOCK - if not isinstance(cond, Variable): - raise TypeError("condition should be a variable") - assert isinstance(cond, Variable) - if cond.dtype != core.DataType.BOOL: - raise TypeError("condition should be a bool variable") - if reduce(lambda a, b: a * b, cond.shape, 1) != 1: - raise TypeError("condition should be a bool scalar") - self.cond_var = cond - - def block(self): - return WhileGuard(self) - - def complete(self): - main_program = self.helper.main_program - while_block = main_program.current_block() - parent_block = main_program.block(main_program.current_block() - .parent_idx) - - inner_outputs = {self.cond_var.name} - x_name_list = set() - for op in while_block.ops: - for iname in op.input_names: - for in_var_name in op.input(iname): - if in_var_name not in inner_outputs: - x_name_list.add(in_var_name) - - for oname in op.output_names: - for out_var_name in op.output(oname): - inner_outputs.add(out_var_name) - - out_vars = [] - for inner_out_name in inner_outputs: - if inner_out_name in parent_block.vars: - out_vars.append(parent_block.var(inner_out_name)) - - step_scope = parent_block.create_var( - type=core.VarDesc.VarType.STEP_SCOPES) - - parent_block.append_op( - type='while', - inputs={ - 'X': [parent_block.var(x_name) for x_name in x_name_list], - 'Condition': [self.cond_var] - }, - outputs={'Out': out_vars, - 'StepScopes': [step_scope]}, - attrs={'step_block': while_block}) - - -def lstm(x, - c_pre_init, - hidden_dim, - forget_bias=None, - main_program=None, - startup_program=None): - """ - This function helps create an operator for the LSTM (Long Short Term - Memory) cell that can be used inside an RNN. - """ - helper = LayerHelper('lstm_unit', **locals()) - rnn = StaticRNN() - with rnn.step(): - c_pre = rnn.memory(init=c_pre_init) - x_t = rnn.step_input(x) - - before_fc = concat( - input=[x_t, c_pre], - axis=1, - main_program=main_program, - startup_program=startup_program) - after_fc = fc(input=before_fc, - size=hidden_dim * 4, - main_program=main_program, - startup_program=startup_program) - - dtype = x.dtype - c = helper.create_tmp_variable(dtype) - h = helper.create_tmp_variable(dtype) - - helper.append_op( - type='lstm_unit', - inputs={"X": after_fc, - "C_prev": c_pre}, - outputs={"C": c, - "H": h}, - attrs={"forget_bias": forget_bias}) - - rnn.update_memory(c_pre, c) - rnn.output(h) - - return rnn() - - -def lod_rank_table(x, level=0, main_program=None): - """ - This function creates an operator for creating a LOD_RANK_TABLE - using the input x. - """ - helper = LayerHelper("lod_rank_table", **locals()) - table = helper.create_variable( - type=core.VarDesc.VarType.LOD_RANK_TABLE, - name=unique_name("lod_rank_table")) - helper.append_op( - type='lod_rank_table', - inputs={'X': x}, - outputs={'Out': table}, - attrs={'level': level}) - return table - - -def max_sequence_len(rank_table, main_program=None): - """ - This function creates an operator to calculate the length of - max seqence through input rank_table(should be a lod_rank_table) - """ - helper = LayerHelper("max_seqence_len", **locals()) - res = helper.create_tmp_variable(dtype="int64") - helper.append_op( - type="max_sequence_len", - inputs={"RankTable": rank_table}, - outputs={"Out": res}) - return res - - -def topk(input, k, main_program=None, startup_program=None): - helper = LayerHelper('topk', **locals()) - topk_out = helper.create_tmp_variable(dtype=input.data_type) - topk_indices = helper.create_tmp_variable(dtype='int64') - helper.append_op( - type='top_k', - inputs={'X': [input]}, - outputs={'Out': [topk_out], - 'Indices': [topk_indices]}, - attrs={'k': k}) - return topk_out, topk_indices - - -def lod_tensor_to_array(x, table, main_program=None): - """ - This function creates an operator to convert an LOD_Tensor to - an array. - """ - helper = LayerHelper("lod_tensor_to_array", **locals()) - array = helper.create_variable( - name=unique_name("lod_tensor_to_array"), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=x.dtype) - helper.append_op( - type='lod_tensor_to_array', - inputs={'X': x, - 'RankTable': table}, - outputs={'Out': array}) - return array - - -def array_to_lod_tensor(x, table, main_program=None, startup_program=None): - """ - This function creates an operator to convert an array to a - LOD_Tensor. - """ - helper = LayerHelper("array_to_lod_tensor", **locals()) - tmp = helper.create_tmp_variable(dtype=x.dtype) - helper.append_op( - type="array_to_lod_tensor", - inputs={'X': x, - 'RankTable': table}, - outputs={'Out': tmp}) - return tmp - - -def fill_constant(shape, - dtype, - value, - out=None, - main_program=None, - startup_program=None): - """ - This function creates a tensor , with shape as mentioned in the input and - specified dtype and fills this up with a constant value that - comes in the input. It also sets the stop_gradient to be True. - """ - helper = LayerHelper("fill_constant", **locals()) - if out is None: - out = helper.create_tmp_variable(dtype=dtype) - helper.append_op( - type='fill_constant', - inputs={}, - outputs={'Out': [out]}, - attrs={'shape': shape, - 'dtype': out.dtype, - 'value': float(value)}) - out.stop_gradient = True - return out - - -def fill_constant_batch_size_like(input, - shape, - dtype, - value, - input_dim_idx=0, - output_dim_idx=0, - main_program=None, - startup_program=None): - helper = LayerHelper("fill_constant_batch_size_like", **locals()) - out = helper.create_tmp_variable(dtype=dtype) - helper.append_op( - type='fill_constant_batch_size_like', - inputs={'Input': input}, - outputs={'Out': [out]}, - attrs={ - 'shape': shape, - 'dtype': out.dtype, - 'value': float(value), - 'input_dim_idx': input_dim_idx, - 'output_dim_idx': output_dim_idx - }) - out.stop_gradient = True - return out - - -def ones(shape, dtype, main_program=None): - """ - This function performs the same function as fill_constant() declared above - with the constant value being 1.0. - """ - return fill_constant(value=1.0, **locals()) - - -def zeros(shape, dtype, main_program=None): - """ - This function performs the same function as fill_constant() declared above - with the constant value being 0.0. - """ - return fill_constant(value=0.0, **locals()) - - -def increment(x, - value=1.0, - in_place=True, - main_program=None, - startup_program=None): - """ - This function creates an operator to increment each value in the input - `x` by an amount: `value` as mentioned in the input parameter. This - operation is performed in-place by default. - """ - helper = LayerHelper("increment", **locals()) - if not in_place: - out = helper.create_tmp_variable(dtype=x.dtype) - else: - out = x - helper.append_op( - type='increment', - inputs={'X': [x]}, - outputs={'Out': [out]}, - attrs={'step': float(value)}) - return out - - -def array_write(x, i, array=None, main_program=None, startup_program=None): - """ - This function creates an operator to write the data out as a - LOD_TENSOR_ARRAY. - """ - helper = LayerHelper('array_write', **locals()) - if array is None: - array = helper.create_variable( - name="{0}.out".format(helper.name), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=x.dtype) - helper.append_op( - type='write_to_array', - inputs={'X': [x], - 'I': [i]}, - outputs={'Out': [array]}) - return array - - -def create_array(dtype, main_program=None): - helper = LayerHelper("array", **locals()) - return helper.create_variable( - name="{0}.out".format(helper.name), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=dtype) - - -def less_than(x, y, cond=None, main_program=None, **ignored): - helper = LayerHelper("less_than", **locals()) - if cond is None: - cond = helper.create_tmp_variable(dtype='bool') - cond.stop_gradient = True - - helper.append_op( - type='less_than', inputs={'X': [x], - 'Y': [y]}, outputs={'Out': [cond]}) - return cond - - -def array_read(array, i, main_program=None, startup_program=None): - """ - This function creates an operator to read the data in as a - LOD_TENSOR_ARRAY. - """ - helper = LayerHelper('array_read', **locals()) - if not isinstance( - array, - Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: - raise TypeError("array should be tensor array vairable") - out = helper.create_tmp_variable(dtype=array.dtype) - helper.append_op( - type='read_from_array', - inputs={'X': [array], - 'I': [i]}, - outputs={'Out': [out]}) - return out - - -def shrink_memory(x, i, table, main_program=None, startup_program=None): - """ - This function creates an operator to shrink_rnn_memory using the RankTable - as mentioned in the input parameter. - """ - helper = LayerHelper('shrink_memory', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) - helper.append_op( - type='shrink_rnn_memory', - inputs={'X': [x], - 'I': [i], - 'RankTable': [table]}, - outputs={'Out': [out]}, - attrs={}) - return out - - -def array_length(array, main_program=None): - """ - This function creates an operator to find the length of the - LOD_TENSOR_ARRAY. - """ - helper = LayerHelper('array_length', **locals()) - tmp = helper.create_tmp_variable(dtype='int64') - tmp.stop_gradient = True - helper.append_op( - type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) - return tmp - - -def conv2d_transpose(input, - num_filters, - output_size=None, - filter_size=None, - padding=None, - stride=None, - param_attr=None, - main_program=None, - startup_program=None): - """ - The transpose of conv2d layer. - - This layer is also known as deconvolution layer. - - Args: - input(Variable): The input image with [N, C, H, W] format. - num_filters(int): The number of filter. It is as same as the output - image channel. - output_size(int|tuple|None): The output image size. If output size is a - tuple, it must contain two integers, (image_H, image_W). This - parameter only works when filter_size is None. - filter_size(int|tuple|None): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_H, filter_size_W). - Otherwise, the filter will be a square. None if use output size to - calculate filter_size - padding(int|tuple): The padding size. If padding is a tuple, it must - contain two integers, (padding_H, padding_W). Otherwise, the - padding_H = padding_W = padding. - stride(int|tuple): The stride size. If stride is a tuple, it must - contain two integers, (stride_H, stride_W). Otherwise, the - stride_H = stride_W = stride. - param_attr: Parameter Attribute. - main_program(Program): the main program - startup_program(Program): the startup program - - Returns: - Variable: Output image. - """ - helper = LayerHelper("conv2d_transpose", **locals()) - if not isinstance(input, Variable): - raise TypeError("Input of conv2d_transpose must be Variable") - input_channel = input.shape[1] - - op_attr = dict() - - if isinstance(padding, int): - op_attr['paddings'] = [padding, padding] - elif padding is not None: - op_attr['paddings'] = padding - - if isinstance(stride, int): - op_attr['strides'] = stride - elif stride is not None: - op_attr['strides'] = stride - - if filter_size is None: - if output_size is None: - raise ValueError("output_size must be set when filter_size is None") - if isinstance(output_size, int): - output_size = [output_size, output_size] - - padding = op_attr.get('paddings', [0, 0]) - stride = op_attr.get('strides', [1, 1]) - - h_in = input.shape[2] - w_in = input.shape[3] - filter_size_h = output_size[0] - (h_in - 1) * stride[0] + 2 * padding[0] - filter_size_w = output_size[1] - (w_in - 1) * stride[1] + 2 * padding[1] - filter_size = [filter_size_h, filter_size_w] - elif isinstance(filter_size, int): - filter_size = [filter_size, filter_size] - - filter_shape = [input_channel, num_filters] + filter_size - img_filter = helper.create_parameter( - dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) - - out = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='conv2d_transpose', - inputs={'Input': [input], - 'Filter': [img_filter]}, - outputs={'Output': out}, - attrs=op_attr) - - return out - - -class ConditionalBlockGuard(BlockGuard): - def __init__(self, block): - if not isinstance(block, ConditionalBlock): - raise TypeError("block should be conditional block") - super(ConditionalBlockGuard, self).__init__(block.helper.main_program) - self.block = block - - def __enter__(self): - return super(ConditionalBlockGuard, self).__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - self.block.complete() - return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val, - exc_tb) - - -class ConditionalBlock(object): - def __init__(self, - inputs, - name=None, - main_program=None, - startup_program=None): - for each_input in inputs: - if not isinstance(each_input, Variable): - raise TypeError("Each input should be variable") - self.inputs = inputs - self.helper = LayerHelper( - 'conditional_block', - name=name, - main_program=main_program, - startup_program=startup_program) - - def block(self): - return ConditionalBlockGuard(self) - - def complete(self): - inside_block = self.helper.main_program.current_block() - parent_block = self.helper.main_program.block(inside_block.parent_idx) - - intermediate = set() - params = set() - - for each_op in inside_block.ops: - assert isinstance(each_op, Operator) - for iname in each_op.input_names: - for in_var_name in each_op.input(iname): - if in_var_name not in intermediate: - params.add(in_var_name) - - for oname in each_op.output_names: - for out_var_name in each_op.output(oname): - intermediate.add(out_var_name) - input_set = set([ipt.name for ipt in self.inputs]) - - param_list = [ - parent_block.var(each_name) for each_name in params - if each_name not in input_set - ] - - out_list = [ - parent_block.var(var_name) for var_name in parent_block.vars - if var_name not in intermediate - ] - - step_scope = parent_block.create_var( - type=core.VarDesc.VarType.STEP_SCOPES) - parent_block.append_op( - type='conditional_block', - inputs={ - 'X': self.inputs, - 'Params': param_list, - }, - outputs={'Out': out_list, - 'Scope': [step_scope]}, - attrs={'block': inside_block}) - - -class IfElseBlockGuard(object): - def __init__(self, is_true, ifelse): - if not isinstance(ifelse, IfElse): - raise TypeError("ifelse must be an instance of IfElse class") - - if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: - raise ValueError("You cannot invoke IfElse.block() inside a block") - - self.is_true = is_true - self.ie = ifelse - if is_true: - self.cond_block = ifelse.conditional_true_block - else: - self.cond_block = ifelse.conditional_false_block - - if not isinstance(self.cond_block, ConditionalBlock): - raise TypeError("Unexpected situation") - - self.cond_block = self.cond_block.block() - - def __enter__(self): - self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS - self.cond_block.__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): - # re-raise inside exception - return False - if len(self.ie.output_table[1 if self.is_true else 0]) == 0: - raise ValueError("Must set output inside block") - self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS - - -class IfElse(object): - OUT_IF_ELSE_BLOCKS = 0 - IN_IF_ELSE_TRUE_BLOCKS = 1 - IN_IF_ELSE_FALSE_BLOCKS = 2 - - def __init__(self, cond, name=None, main_program=None, - startup_program=None): - if not isinstance(cond, Variable): - raise TypeError("cond must be a Variable") - self.helper = LayerHelper( - 'ifelse', - name=name, - main_program=main_program, - startup_program=startup_program) - self.cond = cond - self.input_table = {} - self.status = IfElse.OUT_IF_ELSE_BLOCKS - self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) - self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) - self.output_table = ([], []) # (true_outs, false_outs) - - def input(self, x): - if self.status == IfElse.OUT_IF_ELSE_BLOCKS: - raise ValueError("input must in true/false blocks") - if id(x) not in self.input_table: - parent_block = self.parent_block() - out_true = parent_block.create_var( - name=unique_name('ifelse_input' + self.helper.name), - dtype=x.dtype) - - out_false = parent_block.create_var( - name=unique_name('ifelse_input' + self.helper.name), - dtype=x.dtype) - parent_block.append_op( - type='split_lod_tensor', - inputs={ - 'X': x, - 'Mask': self.cond, - }, - outputs={'OutTrue': out_true, - 'OutFalse': out_false}, - attrs={'level': 0}) - self.input_table[id(x)] = (out_true, out_false) - else: - out_true, out_false = self.input_table[id(x)] - - if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: - return out_true - else: - return out_false - - def parent_block(self): - current_block = self.helper.main_program.current_block() - return self.helper.main_program.block(current_block.parent_idx) - - def true_block(self): - return IfElseBlockGuard(True, self) - - def false_block(self): - return IfElseBlockGuard(False, self) - - def output(self, *outs): - if self.status == self.OUT_IF_ELSE_BLOCKS: - raise ValueError("output can only be invoked in the sub-block") - - out_table = self.output_table[1 if self.status == - self.IN_IF_ELSE_TRUE_BLOCKS else 0] - parent_block = self.parent_block() - for each_out in outs: - if not isinstance(each_out, Variable): - raise TypeError("Each output should be a variable") - # create outside tensor - outside_out = parent_block.create_var( - name=unique_name("_".join([self.helper.name, 'output'])), - dtype=each_out.dtype) - out_table.append(outside_out) - - # assign local var to outside - assign( - input=each_out, - output=outside_out, - main_program=self.helper.main_program, - startup_program=self.helper.startup_program) - - def __call__(self): - if self.status != self.OUT_IF_ELSE_BLOCKS: - raise ValueError("IfElse::__call__ must be out of sub-block") - false_len, true_len = map(len, self.output_table) - if false_len == 0 and true_len == 0: - raise ValueError("Must invoke true_block/false_block before " - "__call__") - elif false_len != true_len and false_len != 0 and true_len != 0: - raise ValueError("The output side must be same") - elif false_len == 0 or true_len == 0: - return self.output_table[0 if false_len != 0 else 1] - - # else none of false_len/true_len is zero - # merge together - rlist = [] - for false_var, true_var in zip(*self.output_table): - rlist.append( - merge_lod_tensor( - in_true=true_var, - in_false=false_var, - mask=self.cond, - x=self.cond, - level=0, - main_program=self.helper.main_program, - startup_program=self.helper.startup_program)) - return rlist - - -class DynamicRNN(object): - BEFORE_RNN = 0 - IN_RNN = 1 - AFTER_RNN = 2 - - def __init__(self, name=None, main_program=None, startup_program=None): - self.helper = LayerHelper( - 'dynamic_rnn', - name=name, - main_program=main_program, - startup_program=startup_program) - self.status = DynamicRNN.BEFORE_RNN - self.lod_rank_table = None - self.max_seq_len = None - self.step_idx = None - self.zero_idx = fill_constant(shape=[1], value=0, dtype='int64') - self.mem_dict = dict() - self.output_array = [] - self.outputs = [] - self.cond = self.helper.create_tmp_variable(dtype='bool') - self.cond.stop_gradient = False - self.while_op = While(self.cond) - self.input_array = [] - self.mem_link = [] - - def step_input(self, x): - self._assert_in_rnn_block_("step_input") - if not isinstance(x, Variable): - raise TypeError( - "step_input() can only take a Variable as its input") - parent_block = self._parent_block_() - if self.lod_rank_table is None: - self.lod_rank_table = parent_block.create_var( - name=unique_name('lod_rank_table'), - type=core.VarDesc.VarType.LOD_RANK_TABLE) - self.lod_rank_table.stop_gradient = True - parent_block.append_op( - type='lod_rank_table', - inputs={"X": x}, - outputs={"Out": self.lod_rank_table}) - self.max_seq_len = parent_block.create_var( - name=unique_name('dynamic_rnn_max_seq_len'), dtype='int64') - self.max_seq_len.stop_gradient = False - parent_block.append_op( - type='max_sequence_len', - inputs={'RankTable': self.lod_rank_table}, - outputs={"Out": self.max_seq_len}) - self.cond.stop_gradient = True - parent_block.append_op( - type='less_than', - inputs={'X': self.step_idx, - 'Y': self.max_seq_len}, - outputs={'Out': self.cond}) - - input_array = parent_block.create_var( - name=unique_name('dynamic_rnn_input_array'), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=x.dtype) - self.input_array.append((input_array, x.dtype)) - parent_block.append_op( - type='lod_tensor_to_array', - inputs={'X': x, - 'RankTable': self.lod_rank_table}, - outputs={'Out': input_array}) - return array_read( - array=input_array, i=self.step_idx, **self.helper.to_kwargs) - - @contextlib.contextmanager - def block(self): - if self.status != DynamicRNN.BEFORE_RNN: - raise ValueError("rnn.block() can only be invoke once") - self.step_idx = fill_constant(shape=[1], dtype='int64', value=0) - self.step_idx.stop_gradient = False - self.status = DynamicRNN.IN_RNN - with self.while_op.block(): - yield - increment( - x=self.step_idx, - value=1.0, - in_place=True, - **self.helper.to_kwargs) - - for new_mem, mem_array in self.mem_link: - array_write( - x=new_mem, - i=self.step_idx, - array=mem_array, - **self.helper.to_kwargs) - - less_than( - x=self.step_idx, - y=self.max_seq_len, - cond=self.cond, - **self.helper.to_kwargs) - - self.status = DynamicRNN.AFTER_RNN - for each_array in self.output_array: - self.outputs.append( - array_to_lod_tensor( - x=each_array, - table=self.lod_rank_table, - **self.helper.to_kwargs)) - - def __call__(self, *args, **kwargs): - if self.status != DynamicRNN.AFTER_RNN: - raise ValueError( - "Dynamic RNN outputs can only be retrieved after rnn block") - if len(self.outputs) == 1: - return self.outputs[0] - else: - return self.outputs - - def memory(self, init=None, shape=None, value=0.0, dtype='float32'): - self._assert_in_rnn_block_('memory') - if init is not None: - if not isinstance(init, Variable): - raise TypeError( - "The input arg `init` of memory() must be a Variable") - parent_block = self._parent_block_() - mem_array = parent_block.create_var( - name=unique_name('dynamic_rnn_mem_array'), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=init.dtype) - parent_block.append_op( - type='write_to_array', - inputs={'X': init, - 'I': self.zero_idx}, - outputs={'Out': mem_array}) - retv = array_read( - array=mem_array, i=self.step_idx, **self.helper.to_kwargs) - retv = shrink_memory( - x=retv, - i=self.step_idx, - table=self.lod_rank_table, - **self.helper.to_kwargs) - self.mem_dict[retv.name] = mem_array - return retv - else: - if len(self.input_array) == 0: - raise ValueError( - "step_input should be invoked before memory(shape=..., value=...)" - ) - parent_block = self._parent_block_() - init = parent_block.create_var( - name=unique_name('mem_init'), dtype=dtype) - arr, dtype = self.input_array[0] - in0 = parent_block.create_var(name=unique_name('in0'), dtype=dtype) - parent_block.append_op( - type='read_from_array', - inputs={'X': [arr], - 'I': [self.zero_idx]}, - outputs={'Out': [in0]}) - parent_block.append_op( - type='fill_constant_batch_size_like', - inputs={'Input': [in0]}, - outputs={'Out': [init]}, - attrs={ - 'shape': [-1] + shape, - 'value': float(value), - 'dtype': init.dtype - }) - return self.memory(init=init) - - def update_memory(self, ex_mem, new_mem): - self._assert_in_rnn_block_('update_memory') - if not isinstance(ex_mem, Variable): - raise TypeError("The input arg `ex_mem` of update_memory() must " - "be a Variable") - if not isinstance(new_mem, Variable): - raise TypeError("The input arg `new_mem` of update_memory() must " - "be a Variable") - - mem_array = self.mem_dict.get(ex_mem.name, None) - if mem_array is None: - raise ValueError("Please invoke memory before update_memory") - if self.lod_rank_table is None: - raise ValueError("Please invoke step_input before update_memory") - - self.mem_link.append((new_mem, mem_array)) - - def output(self, *outputs): - self._assert_in_rnn_block_('output') - parent_block = self._parent_block_() - for each in outputs: - outside_array = parent_block.create_var( - name=unique_name("_".join( - [self.helper.name, "output_array", each.name])), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=each.dtype) - array_write(x=each, i=self.step_idx, array=outside_array) - self.output_array.append(outside_array) - - def _parent_block_(self): - prog = self.helper.main_program - parent_idx = prog.current_block().parent_idx - assert parent_idx >= 0 - parent_block = prog.block(parent_idx) - - return parent_block - - def _assert_in_rnn_block_(self, method): - if self.status != DynamicRNN.IN_RNN: - raise ValueError("{0} can only be invoked inside rnn block.".format( - method)) diff --git a/python/paddle/v2/fluid/layers/__init__.py b/python/paddle/v2/fluid/layers/__init__.py new file mode 100644 index 0000000000..c190af3329 --- /dev/null +++ b/python/paddle/v2/fluid/layers/__init__.py @@ -0,0 +1,33 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import ops +from ops import * +import nn +from nn import * +import io +from io import * +import tensor +from tensor import * +import control_flow +from control_flow import * +import device +from device import * + +__all__ = [] +__all__ += nn.__all__ +__all__ += io.__all__ +__all__ += tensor.__all__ +__all__ += control_flow.__all__ +__all__ += ops.__all__ +__all__ += device.__all__ diff --git a/python/paddle/v2/fluid/layers/control_flow.py b/python/paddle/v2/fluid/layers/control_flow.py new file mode 100644 index 0000000000..e72b22c83f --- /dev/null +++ b/python/paddle/v2/fluid/layers/control_flow.py @@ -0,0 +1,1472 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from ..layer_helper import LayerHelper, unique_name +from ..framework import Program, Variable, Operator +from .. import core +from tensor import assign, fill_constant +import contextlib +from ..registry import autodoc + +__all__ = [ + 'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', + 'BlockGuardWithCompletion', 'StaticRNNMemoryLink', 'WhileGuard', 'While', + 'lod_rank_table', 'max_sequence_len', 'topk', 'lod_tensor_to_array', + 'array_to_lod_tensor', 'increment', 'array_write', 'create_array', + 'less_than', 'array_read', 'shrink_memory', 'array_length', 'IfElse', + 'DynamicRNN', 'ConditionalBlock', 'StaticRNN', 'reorder_lod_tensor_by_rank', + 'ParallelDo', 'Print' +] + + +def split_lod_tensor(input, mask, level=0): + """ + **split_lod_tensor** + + This function takes in an input that contains the complete lod information, + and takes in a mask which is used to mask certain parts of the input. + The output is the true branch and the false branch with the mask applied to + the input at a certain level in the tensor. + + Args: + input(tuple|list|None): The input tensor that contains complete + lod information needed to construct the output. + mask(list): A bool column vector which masks the input. + level(int): The specific lod level to rank. + + Returns: + Variable: The true branch of tensor as per the mask applied to input. + Variable: The false branch of tensor as per the mask applied to input. + + Examples: + .. code-block:: python + + x = layers.data(name='x', shape=[1]) + x.persistable = True + + y = layers.data(name='y', shape=[1]) + y.persistable = True + + out_true, out_false = layers.split_lod_tensor( + input=x, mask=y, level=level) + """ + helper = LayerHelper('split_lod_tensor', **locals()) + out_true = helper.create_tmp_variable(dtype=input.dtype) + out_false = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='split_lod_tensor', + inputs={ + 'X': input, + 'Mask': mask, + }, + outputs={'OutTrue': out_true, + 'OutFalse': out_false}, + attrs={'level': level}) + return out_true, out_false + + +def merge_lod_tensor(in_true, in_false, x, mask, level=0): + """ + **merge_lod_tensor** + + This function takes in an input :math:`x`, the True branch, the False + branch and a binary :math:`mask`. Using this information, this function + merges the True and False branches of the tensor into a single Output + at a certain lod level indiacted by :math:`level`. + + Args: + in_true(tuple|list|None): The True branch to be merged. + in_false(tuple|list|None): The False branch to be merged. + x(tuple|list|None): The input tensor that contains complete + lod information needed to construct the output. + mask(list): A bool column vector which masks the input. + level(int): The specific lod level to rank. + + Returns: + Variable: The merged output tensor. + + Examples: + .. code-block:: python + + x = layers.data( + name='x', shape=[1], dtype='float32', stop_gradient=False) + y = layers.data( + name='y', shape=[1], dtype='bool', stop_gradient=False) + + level = 0 + + out_true, out_false = layers.split_lod_tensor( + input=x, mask=y, level=level) + out = layers.merge_lod_tensor( + in_true=out_true, in_false=out_false, mask=y, x=x, level=level) + """ + helper = LayerHelper('merge_lod_tensor', **locals()) + out = helper.create_tmp_variable(dtype=in_true.dtype) + helper.append_op( + type='merge_lod_tensor', + inputs={'X': x, + 'Mask': mask, + 'InTrue': in_true, + 'InFalse': in_false}, + outputs={'Out': out}, + attrs={'level': level}) + return out + + +def Print(input, + first_n=-1, + message=None, + summarize=-1, + print_tensor_name=True, + print_tensor_type=True, + print_tensor_shape=True, + print_tensor_lod=True, + print_phase='both'): + ''' + **Print operator** + + This creates a print op that will print when a tensor is accessed. + + Wraps the tensor passed in so that whenever that a tensor is accessed, + the message `message` is printed, along with the current value of the + tensor `t`. + + Args: + input (Variable): A Tensor to print. + summarize (int): Print this number of elements in the tensor, will print + all if left is negative. + message (str): A string message to print as a prefix. + first_n (int): Only log `first_n` number of times. + print_tensor_name (bool): Print the tensor name. + print_tensor_type (bool): Print the tensor type. + print_tensor_shape (bool): Print the tensor shape. + print_tensor_lod (bool): Print the tensor lod. + print_phase (bool): Which phase to displace, including 'forward', + 'backward' and 'both'. If set to 'backward' or 'both', will + print the gradients of input tensor. + + Returns: + Variable: Output tensor, same data with input tensor. + + Examples: + .. code-block:: python + + value = some_layer(...) + Print(value, summarize=10, + message="The content of some_layer: ") + ''' + helper = LayerHelper('print', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='print', + inputs={'In': input}, + attrs={ + 'first_n': first_n, + 'summarize': summarize, + 'message': message or "", + 'print_tensor_name': print_tensor_name, + 'print_tensor_type': print_tensor_type, + 'print_tensor_shape': print_tensor_shape, + 'print_tensor_lod': print_tensor_lod, + 'print_phase': print_phase.upper() + }, + outputs={'Out': out}) + return out + + +class BlockGuard(object): + """ + BlockGuard class. + + BlockGuard class is used to create a sub-block in a program by + using the Python `with` keyword. + """ + + def __init__(self, main_program): + if not isinstance(main_program, Program): + raise TypeError("BlockGuard takes a program") + self.main_program = main_program + + def __enter__(self): + self.main_program.create_block() + + def __exit__(self, exc_type, exc_val, exc_tb): + self.main_program.rollback() + if exc_type is not None: + return False # re-raise exception + return True + + +class ParallelDo(object): + """ + ParallelDo class. + + ParallelDo class is used to create a ParallelDo. + """ + + def __init__(self, places, name=None): + self.helper = LayerHelper("parallel_do", name=name) + self.inputs = [] + self.places = places + self.outputs = [] + self.status = StaticRNN.BEFORE_RNN_BLOCK + + def do(self): + return BlockGuardWithCompletion(self) + + def parent_block(self): + prog = self.helper.main_program + parent_idx = prog.current_block().parent_idx + assert parent_idx >= 0 + parent_block = prog.block(parent_idx) + return parent_block + + def __call__(self, *args, **kwargs): + if self.status != StaticRNN.AFTER_RNN_BLOCK: + raise ValueError("RNN output can only be retrieved after rnn block") + if len(self.outputs) == 0: + raise ValueError("RNN has no output") + elif len(self.outputs) == 1: + return self.outputs[0] + else: + return self.outputs + + def read_input(self, var): + self.inputs.append(var) + return var + + def write_output(self, var): + self.outputs.append(var) + + def get_parameters(self): + main_program = self.helper.main_program + current_block = main_program.current_block() + parent_block = self.parent_block() + + local_inputs = set() + + for op in current_block.ops: + for oname in op.output_names: + for out_var_name in op.output(oname): + local_inputs.add(out_var_name) + + for var in self.inputs: + local_inputs.add(var.name) + + params = list() + for op in current_block.ops: + for iname in op.input_names: + for in_var_name in op.input(iname): + if in_var_name not in local_inputs: + params.append(in_var_name) + + return [parent_block.var(name) for name in params] + + def complete_op(self): + main_program = self.helper.main_program + current_block = main_program.current_block() + parent_block = self.parent_block() + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + + self.outputs = [ + parent_block.create_var( + name=o.name, + shape=o.shape, + dtype=o.dtype, + lod_level=o.lod_level, + persistable=o.persistable, + stop_gradient=o.stop_gradient) for o in self.outputs + ] + + inputs = [parent_block.var(i.name) for i in self.inputs] + outputs = [parent_block.var(o.name) for o in self.outputs] + + parent_block.append_op( + type='parallel_do', + inputs={ + 'inputs': inputs, + 'parameters': self.get_parameters(), + 'places': self.places + }, + outputs={'outputs': outputs, + 'parallel_scopes': [step_scope]}, + attrs={'sub_block': current_block}) + + +class BlockGuardWithCompletion(BlockGuard): + """ + BlockGuardWithCompletion class. + + BlockGuardWithCompletion class is used to create an op with a block in a program. + """ + + def __init__(self, rnn): + if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)): + raise TypeError( + "BlockGuardWithCompletion takes a StaticRNN or ParallelDo") + super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program) + self.rnn = rnn + + def __enter__(self): + self.rnn.status = StaticRNN.IN_RNN_BLOCK + return super(BlockGuardWithCompletion, self).__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + if exc_type is not None: + return False + self.rnn.status = StaticRNN.AFTER_RNN_BLOCK + self.rnn.complete_op() + return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val, + exc_tb) + + +class StaticRNNMemoryLink(object): + """ + StaticRNNMemoryLink class. + + Args: + init: the initial variable for Memory + init: Variable + pre_mem: the memory variable in previous time step + pre_mem: Variable + mem: the memory variable in current time step + mem: Variable + + StaticRNNMemoryLink class is used to create a link between two + memory cells of a StaticRNN. + """ + + def __init__(self, init, pre_mem, mem=None): + self.init = init + self.pre_mem = pre_mem + self.mem = mem + + +class StaticRNN(object): + """ + StaticRNN class. + + StaticRNN class is used to create a StaticRNN. The RNN will have its + own parameters like inputs, outputs, memories, status and length. + """ + BEFORE_RNN_BLOCK = 0 + IN_RNN_BLOCK = 1 + AFTER_RNN_BLOCK = 2 + + def __init__(self, name=None): + self.helper = LayerHelper("static_rnn", name=name) + self.memories = {} # memory map, from pre_mem.name --> MemoryLink + self.inputs = [] # input variable list in current block + self.outputs = [] # output variable list in parent block + self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. + # sequence length, since it is a static RNN, sequence length are fixed. + self.seq_len = None + + def step(self): + return BlockGuardWithCompletion(self) + + def _assert_in_rnn_block_(self, method): + if self.status != StaticRNN.IN_RNN_BLOCK: + raise ValueError("You must invoke {0} in rnn block".format(method)) + + def memory(self, + init=None, + shape=None, + batch_ref=None, + init_value=0.0, + init_batch_dim_idx=0, + ref_batch_dim_idx=1): + """ + Args: + init: boot memory, if not set, a shape, batch_ref must be provided + shape: shape of the boot memory + batch_ref: batch size reference variable + init_value: the init value of boot memory + init_batch_dim_idx: the index of batch size in init's dimension + ref_batch_dim_idx: the index of batch size in batch_ref's dimension + """ + self._assert_in_rnn_block_('memory') + if init is None: + if shape is None or batch_ref is None: + raise ValueError( + "if init is None, memory at least need shape and batch_ref") + parent_block = self.parent_block() + var_name = unique_name("@".join([self.helper.name, "memory_boot"])) + boot_var = parent_block.create_var( + name=var_name, + shape=shape, + dtype=batch_ref.dtype, + persistable=False) + + parent_block.append_op( + type="fill_constant_batch_size_like", + inputs={'Input': [batch_ref]}, + outputs={'Out': [boot_var]}, + attrs={ + 'value': init_value, + 'shape': boot_var.shape, + 'dtype': boot_var.dtype, + 'input_dim_idx': ref_batch_dim_idx, + 'output_dim_idx': init_batch_dim_idx + }) + + return self.memory(init=boot_var) + else: + pre_mem = self.helper.create_variable( + name=unique_name("@".join([self.helper.name, "mem"])), + dtype=init.dtype, + shape=init.shape) + self.memories[pre_mem.name] = StaticRNNMemoryLink( + init=init, pre_mem=pre_mem) + return pre_mem + + def step_input(self, x): + self._assert_in_rnn_block_('step_input') + if not isinstance(x, Variable): + raise TypeError("step input takes a Variable") + if self.seq_len is None: + self.seq_len = x.shape[0] + elif self.seq_len != x.shape[0]: + raise ValueError("Static RNN only take fix seq_len input") + + ipt = self.helper.create_variable( + name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type) + self.inputs.append(ipt) + return ipt + + def step_output(self, o): + self._assert_in_rnn_block_('step_output') + if not isinstance(o, Variable): + raise TypeError("step output takes a Variable") + + tmp_o = self.helper.create_tmp_variable(dtype=o.dtype) + self.helper.append_op( + type='rnn_memory_helper', + inputs={'X': [o]}, + outputs={'Out': tmp_o}, + attrs={'dtype': o.dtype}) + + out_var = self.parent_block().create_var( + name=tmp_o.name, + shape=[self.seq_len] + list(tmp_o.shape), + dtype=tmp_o.dtype) + + self.outputs.append(out_var) + + def output(self, *outputs): + for each in outputs: + self.step_output(each) + + def update_memory(self, mem, var): + if not isinstance(mem, Variable) or not isinstance(var, Variable): + raise TypeError("update memory should take variables") + self.memories[mem.name].mem = var + + def parent_block(self): + prog = self.helper.main_program + parent_idx = prog.current_block().parent_idx + assert parent_idx >= 0 + parent_block = prog.block(parent_idx) + return parent_block + + def __call__(self, *args, **kwargs): + if self.status != StaticRNN.AFTER_RNN_BLOCK: + raise ValueError("RNN output can only be retrieved after rnn block") + if len(self.outputs) == 0: + raise ValueError("RNN has no output") + elif len(self.outputs) == 1: + return self.outputs[0] + else: + return self.outputs + + def complete_op(self): + main_program = self.helper.main_program + rnn_block = main_program.current_block() + parent_block = self.parent_block() + + local_inputs = set() + + for op in rnn_block.ops: + assert isinstance(op, Operator) + for oname in op.output_names: + for out_var_name in op.output(oname): + local_inputs.add(out_var_name) + + for var in self.inputs: + local_inputs.add(var.name) + for m in self.memories: + local_inputs.add(m) + + params = list() + for op in rnn_block.ops: + assert isinstance(op, Operator) + for iname in op.input_names: + for in_var_name in op.input(iname): + if in_var_name not in local_inputs: + params.append(in_var_name) + + parameters = [parent_block.var(name) for name in params] + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + + inlinks = [parent_block.var(i.name) for i in self.inputs] + outlinks = self.outputs + + boot_memories = [] + pre_memories = [] + memories = [] + for _, mem in self.memories.iteritems(): + boot_memories.append(mem.init) + pre_memories.append(mem.pre_mem.name) + mem_var = rnn_block.var(mem.mem.name) + assert isinstance(mem_var, Variable) + new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype) + + rnn_block.append_op( + type='rnn_memory_helper', + inputs={'X': [mem_var]}, + outputs={'Out': [new_mem]}, + attrs={'dtype': mem_var.dtype}) + + memories.append(new_mem.name) + + parent_block.append_op( + type='recurrent', + inputs={ + 'inputs': inlinks, + 'initial_states': boot_memories, + 'parameters': parameters + }, + outputs={'outputs': outlinks, + 'step_scopes': [step_scope]}, + attrs={ + 'ex_states': pre_memories, + 'states': memories, + 'sub_block': rnn_block + }) + + +class WhileGuard(BlockGuard): + def __init__(self, while_op): + if not isinstance(while_op, While): + raise TypeError("WhileGuard takes a while op") + super(WhileGuard, self).__init__(while_op.helper.main_program) + self.while_op = while_op + + def __enter__(self): + self.while_op.status = While.IN_WHILE_BLOCK + return super(WhileGuard, self).__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + if exc_type is not None: + return False + self.while_op.status = While.AFTER_WHILE_BLOCK + self.while_op.complete() + return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb) + + +class While(object): + BEFORE_WHILE_BLOCK = 0 + IN_WHILE_BLOCK = 1 + AFTER_WHILE_BLOCK = 2 + + def __init__(self, cond, name=None): + self.helper = LayerHelper("while", name=name) + self.status = While.BEFORE_WHILE_BLOCK + if not isinstance(cond, Variable): + raise TypeError("condition should be a variable") + assert isinstance(cond, Variable) + if cond.dtype != core.DataType.BOOL: + raise TypeError("condition should be a bool variable") + if reduce(lambda a, b: a * b, cond.shape, 1) != 1: + raise TypeError("condition should be a bool scalar") + self.cond_var = cond + + def block(self): + return WhileGuard(self) + + def complete(self): + main_program = self.helper.main_program + while_block = main_program.current_block() + parent_block = main_program.block(main_program.current_block() + .parent_idx) + + inner_outputs = {self.cond_var.name} + x_name_list = set() + for op in while_block.ops: + for iname in op.input_names: + for in_var_name in op.input(iname): + if in_var_name not in inner_outputs: + x_name_list.add(in_var_name) + + for oname in op.output_names: + for out_var_name in op.output(oname): + inner_outputs.add(out_var_name) + + out_vars = [] + for inner_out_name in inner_outputs: + if inner_out_name in parent_block.vars: + out_vars.append(parent_block.var(inner_out_name)) + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + + parent_block.append_op( + type='while', + inputs={ + 'X': [parent_block.var(x_name) for x_name in x_name_list], + 'Condition': [self.cond_var] + }, + outputs={'Out': out_vars, + 'StepScopes': [step_scope]}, + attrs={'sub_block': while_block}) + + +def lod_rank_table(x, level=0): + """LoD Rank Table Operator. Given an input variable **x** and a level number + of LoD, this layer creates a LodRankTable object. A LoDRankTable object + contains a list of bi-element tuples. Each tuple consists of an index and + a length, both of which are int type. Refering to specified level of LoD, + the index is the sequence index number and the length representes the + sequence length. Please note that the list is ranked in descending order by + the length. The following is an example: + + .. code-block:: text + + x is a LoDTensor: + x.lod = [[0, 2, 3], + [0, 5, 6, 7]] + x.data = [a, b, c, d, e, f, g] + + 1. set level to 0: + Create lod rank table: + lod_rank_table_obj = lod_rank_table(x, level=0) + + Get: + lod_rank_table_obj.items() = [(0, 2), (1, 1)] + + 2. set level to 1: + Create lod rank table: + lod_rank_table_obj = lod_rank_table(x, level=1) + + Get: + lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)] + + Args: + x (Variable): Input variable, a LoDTensor based which to create the lod + rank table. + level (int): Specify the LoD level, on which to create the lod rank + table. + + Returns: + Variable: The created LoDRankTable object. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10], + dtype='float32', lod_level=1) + out = layers.lod_rank_table(x=x, level=0) + """ + helper = LayerHelper("lod_rank_table", **locals()) + table = helper.create_variable( + type=core.VarDesc.VarType.LOD_RANK_TABLE, + name=unique_name("lod_rank_table")) + helper.append_op( + type='lod_rank_table', + inputs={'X': x}, + outputs={'Out': table}, + attrs={'level': level}) + return table + + +def max_sequence_len(rank_table): + """Max Sequence Len Operator. Given a LoDRankTable object, this layer + returns the max length of a batch of sequences. In fact, a LoDRankTable + object contains a list of tuples() and + the list is already sorted by sequence length in descending order, so the + operator just returns the sequence length of the first tuple element. + + Args: + rank_table (Variable): Input variable which is a LoDRankTable object. + + Returns: + Variable: The max length of sequence. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10], + dtype='float32', lod_level=1) + rank_table = layers.lod_rank_table(x=x, level=0) + max_seq_len = layers.max_sequence_len(rank_table) + """ + helper = LayerHelper("max_seqence_len", **locals()) + res = helper.create_tmp_variable(dtype="int64") + helper.append_op( + type="max_sequence_len", + inputs={"RankTable": rank_table}, + outputs={"Out": res}) + return res + + +def topk(input, k): + """ + **topk** + + This function performs the operation that selects the k entries in the input + vector and outputs their values and indices as vectors. Thus topk_out[j] is + the j-th largest entry in input, and its index is topk_indices[j] + + Args: + input (Variable|list): The input tensor that has all the data. + k (int): The number of top elements that the function will pick. + + Returns: + Variable: The variable of type array that contains the k largest entries + from input. + Variable: The variable of type array that contains the indices of k + largest entries from input. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10]) + k = 5 + array = fluid.layers.topk(x, k) + """ + helper = LayerHelper('topk', **locals()) + topk_out = helper.create_tmp_variable(dtype=input.data_type) + topk_indices = helper.create_tmp_variable(dtype='int64') + helper.append_op( + type='top_k', + inputs={'X': [input]}, + outputs={'Out': [topk_out], + 'Indices': [topk_indices]}, + attrs={'k': k}) + return topk_out, topk_indices + + +def lod_tensor_to_array(x, table): + """ Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY. + + Args: + x (Variable|list): The LOD tensor to be converted to a LOD tensor array. + table (ParamAttr|list): The variable that stores the level of lod + which is ordered by sequence length in + descending order. + + Returns: + Variable: The variable of type array that has been converted from a + tensor. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10]) + table = fluid.layers.lod_rank_table(x, level=0) + array = fluid.layers.lod_tensor_to_array(x, table) + """ + helper = LayerHelper("lod_tensor_to_array", **locals()) + array = helper.create_variable( + name=unique_name("lod_tensor_to_array"), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=x.dtype) + helper.append_op( + type='lod_tensor_to_array', + inputs={'X': x, + 'RankTable': table}, + outputs={'Out': array}) + return array + + +def array_to_lod_tensor(x, table): + """Convert a LoD_Tensor_Aarry to an LoDTensor. + + Args: + x (Variable|list): The lod tensor array to be converted to a tensor. + table (ParamAttr|list): The variable that stores the level of lod + which is ordered by sequence length in + descending order. + + Returns: + Variable: The variable of type tensor that has been converted + from an array. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10]) + table = fluid.layers.lod_rank_table(x, level=0) + array = fluid.layers.lod_tensor_to_array(x, table) + lod_tensor = fluid.layers.array_to_lod_tensor(array, table) + """ + helper = LayerHelper("array_to_lod_tensor", **locals()) + tmp = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type="array_to_lod_tensor", + inputs={'X': x, + 'RankTable': table}, + outputs={'Out': tmp}) + return tmp + + +def increment(x, value=1.0, in_place=True): + """ + This function performs an operation that increments each value in the + input :math:`x` by an amount: :math:`value` as mentioned in the input + parameter. This operation is performed in-place by default. + + Args: + x (Variable|list): The tensor that has the input values. + value (float): The amount by which the values should be incremented. + in_place (bool): If the increment should be performed in-place. + + Returns: + Variable: The tensor variable storing the transformation of + element-wise increment of each value in the input. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32') + data = fluid.layers.increment(x=data, value=3.0, in_place=True) + """ + helper = LayerHelper("increment", **locals()) + if not in_place: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = x + helper.append_op( + type='increment', + inputs={'X': [x]}, + outputs={'Out': [out]}, + attrs={'step': float(value)}) + return out + + +def array_write(x, i, array=None): + """ + This function writes the given input variable to the specified position + indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the + output LOD_TENSOR_ARRAY is not given(None), a new one will be created and + returned. + + Args: + x (Variable|list): The input tensor from which the data will be read. + i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to + the position to which the input tensor will be + written. + array (Variable|list): The output LOD_TENSOR_ARRAY to which the input + tensor will be written. If this parameter is + NONE, a new LOD_TENSOR_ARRAY will be created and + returned. + + Returns: + Variable: The output LOD_TENSOR_ARRAY where the input tensor is written. + + Examples: + .. code-block::python + + tmp = fluid.layers.zeros(shape=[10], dtype='int32') + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) + arr = layers.array_write(tmp, i=i) + """ + helper = LayerHelper('array_write', **locals()) + if array is None: + array = helper.create_variable( + name="{0}.out".format(helper.name), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=x.dtype) + helper.append_op( + type='write_to_array', + inputs={'X': [x], + 'I': [i]}, + outputs={'Out': [array]}) + return array + + +def create_array(dtype): + """This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the + LayerHelper. + + Args: + dtype (int|float): The data type of the elements in the array. + + Returns: + Variable: The tensor variable storing the elements of data type. + + Examples: + .. code-block:: python + + data = fluid.layers.create_array(dtype='float32') + + """ + helper = LayerHelper("array", **locals()) + return helper.create_variable( + name="{0}.out".format(helper.name), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=dtype) + + +def less_than(x, y, cond=None, **ignored): + """ + **Less than** + + This layer returns the truth value of :math:`x < y` elementwise. + + Args: + x(Variable): First operand of *less_than* + y(Variable): Second operand of *less_than* + cond(Variable|None): Optional output variable to store the result of *less_than* + + Returns: + Variable: The tensor variable storing the output of *less_than*. + + Examples: + .. code-block:: python + + less = fluid.layers.less_than(x=label, y=limit) + """ + helper = LayerHelper("less_than", **locals()) + if cond is None: + cond = helper.create_tmp_variable(dtype='bool') + cond.stop_gradient = True + + helper.append_op( + type='less_than', inputs={'X': [x], + 'Y': [y]}, outputs={'Out': [cond]}) + return cond + + +def array_read(array, i): + """This function performs the operation to read the data in as an + LOD_TENSOR_ARRAY. + Args: + array (Variable|list): The input tensor that will be written to an array. + i (Variable|list): The subscript index in tensor array, that points the + place where data will be written to. + Returns: + Variable: The tensor type variable that has the data written to it. + Examples: + .. code-block::python + tmp = fluid.layers.zeros(shape=[10], dtype='int32') + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) + arr = layers.array_read(tmp, i=i) + """ + helper = LayerHelper('array_read', **locals()) + if not isinstance( + array, + Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: + raise TypeError("array should be tensor array vairable") + out = helper.create_tmp_variable(dtype=array.dtype) + helper.append_op( + type='read_from_array', + inputs={'X': [array], + 'I': [i]}, + outputs={'Out': [out]}) + return out + + +def shrink_memory(x, i, table): + """ + This function creates an operator to shrink_rnn_memory using the RankTable + as mentioned in the input parameter. + """ + helper = LayerHelper('shrink_memory', **locals()) + out = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type='shrink_rnn_memory', + inputs={'X': [x], + 'I': [i], + 'RankTable': [table]}, + outputs={'Out': [out]}, + attrs={}) + return out + + +def array_length(array): + """This function performs the operation to find the length of the input + LOD_TENSOR_ARRAY. + + Args: + array (LOD_TENSOR_ARRAY): The input array that will be used + to compute the length. + + Returns: + Variable: The length of the input LoDTensorArray. + + Examples: + .. code-block::python + + tmp = fluid.layers.zeros(shape=[10], dtype='int32') + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) + arr = fluid.layers.array_write(tmp, i=i) + arr_len = fluid.layers.array_length(arr) + """ + helper = LayerHelper('array_length', **locals()) + tmp = helper.create_tmp_variable(dtype='int64') + tmp.stop_gradient = True + helper.append_op( + type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) + return tmp + + +class ConditionalBlockGuard(BlockGuard): + def __init__(self, block): + if not isinstance(block, ConditionalBlock): + raise TypeError("block should be conditional block") + super(ConditionalBlockGuard, self).__init__(block.helper.main_program) + self.block = block + + def __enter__(self): + return super(ConditionalBlockGuard, self).__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + self.block.complete() + return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val, + exc_tb) + + +class ConditionalBlock(object): + def __init__(self, inputs, name=None): + for each_input in inputs: + if not isinstance(each_input, Variable): + raise TypeError("Each input should be variable") + self.inputs = inputs + self.helper = LayerHelper('conditional_block', name=name) + + def block(self): + return ConditionalBlockGuard(self) + + def complete(self): + inside_block = self.helper.main_program.current_block() + parent_block = self.helper.main_program.block(inside_block.parent_idx) + + intermediate = set() + params = set() + + for each_op in inside_block.ops: + assert isinstance(each_op, Operator) + for iname in each_op.input_names: + for in_var_name in each_op.input(iname): + if in_var_name not in intermediate: + params.add(in_var_name) + + for oname in each_op.output_names: + for out_var_name in each_op.output(oname): + intermediate.add(out_var_name) + input_set = set([ipt.name for ipt in self.inputs]) + + param_list = [ + parent_block.var(each_name) for each_name in params + if each_name not in input_set + ] + + out_list = [ + parent_block.var(var_name) for var_name in parent_block.vars + if var_name in intermediate + ] + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + parent_block.append_op( + type='conditional_block', + inputs={ + 'X': self.inputs, + 'Params': param_list, + }, + outputs={'Out': out_list, + 'Scope': [step_scope]}, + attrs={'sub_block': inside_block}) + + +class IfElseBlockGuard(object): + def __init__(self, is_true, ifelse): + if not isinstance(ifelse, IfElse): + raise TypeError("ifelse must be an instance of IfElse class") + + if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: + raise ValueError("You cannot invoke IfElse.block() inside a block") + + self.is_true = is_true + self.ie = ifelse + if is_true: + self.cond_block = ifelse.conditional_true_block + else: + self.cond_block = ifelse.conditional_false_block + + if not isinstance(self.cond_block, ConditionalBlock): + raise TypeError("Unexpected situation") + + self.cond_block = self.cond_block.block() + + def __enter__(self): + self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS + self.cond_block.__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): + # re-raise inside exception + return False + if len(self.ie.output_table[1 if self.is_true else 0]) == 0: + raise ValueError("Must set output inside block") + self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS + + +class IfElse(object): + OUT_IF_ELSE_BLOCKS = 0 + IN_IF_ELSE_TRUE_BLOCKS = 1 + IN_IF_ELSE_FALSE_BLOCKS = 2 + + def __init__(self, cond, name=None): + if not isinstance(cond, Variable): + raise TypeError("cond must be a Variable") + self.helper = LayerHelper('ifelse', name=name) + self.cond = cond + self.input_table = {} + self.status = IfElse.OUT_IF_ELSE_BLOCKS + self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) + self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) + self.output_table = ([], []) # (true_outs, false_outs) + + def input(self, x): + if self.status == IfElse.OUT_IF_ELSE_BLOCKS: + raise ValueError("input must in true/false blocks") + if id(x) not in self.input_table: + parent_block = self.parent_block() + out_true = parent_block.create_var( + name=unique_name('ifelse_input' + self.helper.name), + dtype=x.dtype) + + out_false = parent_block.create_var( + name=unique_name('ifelse_input' + self.helper.name), + dtype=x.dtype) + parent_block.append_op( + type='split_lod_tensor', + inputs={ + 'X': x, + 'Mask': self.cond, + }, + outputs={'OutTrue': out_true, + 'OutFalse': out_false}, + attrs={'level': 0}) + self.input_table[id(x)] = (out_true, out_false) + else: + out_true, out_false = self.input_table[id(x)] + + if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: + return out_true + else: + return out_false + + def parent_block(self): + current_block = self.helper.main_program.current_block() + return self.helper.main_program.block(current_block.parent_idx) + + def true_block(self): + return IfElseBlockGuard(True, self) + + def false_block(self): + return IfElseBlockGuard(False, self) + + def output(self, *outs): + if self.status == self.OUT_IF_ELSE_BLOCKS: + raise ValueError("output can only be invoked in the sub-block") + + out_table = self.output_table[1 if self.status == + self.IN_IF_ELSE_TRUE_BLOCKS else 0] + parent_block = self.parent_block() + for each_out in outs: + if not isinstance(each_out, Variable): + raise TypeError("Each output should be a variable") + # create outside tensor + outside_out = parent_block.create_var( + name=unique_name("_".join([self.helper.name, 'output'])), + dtype=each_out.dtype) + out_table.append(outside_out) + + # assign local var to outside + assign(input=each_out, output=outside_out) + + def __call__(self): + if self.status != self.OUT_IF_ELSE_BLOCKS: + raise ValueError("IfElse::__call__ must be out of sub-block") + false_len, true_len = map(len, self.output_table) + if false_len == 0 and true_len == 0: + raise ValueError("Must invoke true_block/false_block before " + "__call__") + elif false_len != true_len and false_len != 0 and true_len != 0: + raise ValueError("The output side must be same") + elif false_len == 0 or true_len == 0: + return self.output_table[0 if false_len != 0 else 1] + + # else none of false_len/true_len is zero + # merge together + rlist = [] + for false_var, true_var in zip(*self.output_table): + rlist.append( + merge_lod_tensor( + in_true=true_var, + in_false=false_var, + mask=self.cond, + x=self.cond, + level=0)) + return rlist + + +class DynamicRNN(object): + BEFORE_RNN = 0 + IN_RNN = 1 + AFTER_RNN = 2 + + def __init__(self, name=None): + self.helper = LayerHelper('dynamic_rnn', name=name) + self.status = DynamicRNN.BEFORE_RNN + self.lod_rank_table = None + self.max_seq_len = None + self.step_idx = None + self.zero_idx = fill_constant( + shape=[1], value=0, dtype='int64', force_cpu=True) + self.mem_dict = dict() + self.output_array = [] + self.outputs = [] + self.cond = self.helper.create_tmp_variable(dtype='bool') + self.cond.stop_gradient = False + self.while_op = While(self.cond) + self.input_array = [] + self.mem_link = [] + + def step_input(self, x): + self._assert_in_rnn_block_("step_input") + if not isinstance(x, Variable): + raise TypeError( + "step_input() can only take a Variable as its input.") + parent_block = self._parent_block_() + if self.lod_rank_table is None: + self.lod_rank_table = parent_block.create_var( + name=unique_name('lod_rank_table'), + type=core.VarDesc.VarType.LOD_RANK_TABLE) + self.lod_rank_table.stop_gradient = True + parent_block.append_op( + type='lod_rank_table', + inputs={"X": x}, + outputs={"Out": self.lod_rank_table}) + self.max_seq_len = parent_block.create_var( + name=unique_name('dynamic_rnn_max_seq_len'), dtype='int64') + self.max_seq_len.stop_gradient = False + parent_block.append_op( + type='max_sequence_len', + inputs={'RankTable': self.lod_rank_table}, + outputs={"Out": self.max_seq_len}) + self.cond.stop_gradient = True + parent_block.append_op( + type='less_than', + inputs={'X': self.step_idx, + 'Y': self.max_seq_len}, + outputs={'Out': self.cond}) + + input_array = parent_block.create_var( + name=unique_name('dynamic_rnn_input_array'), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=x.dtype) + self.input_array.append((input_array, x.dtype)) + parent_block.append_op( + type='lod_tensor_to_array', + inputs={'X': x, + 'RankTable': self.lod_rank_table}, + outputs={'Out': input_array}) + return array_read(array=input_array, i=self.step_idx) + + def static_input(self, x): + self._assert_in_rnn_block_("static_input") + if not isinstance(x, Variable): + raise TypeError( + "static_input() can only take a Variable as its input") + if self.lod_rank_table is None: + raise RuntimeError( + "static_input() must be called after step_input().") + parent_block = self._parent_block_() + x_reordered = parent_block.create_var( + name=unique_name("dynamic_rnn_static_input_reordered"), + type=core.VarDesc.VarType.LOD_TENSOR, + dtype=x.dtype) + parent_block.append_op( + type='reorder_lod_tensor_by_rank', + inputs={'X': [x], + 'RankTable': [self.lod_rank_table]}, + outputs={'Out': [x_reordered]}) + return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table) + + @contextlib.contextmanager + def block(self): + if self.status != DynamicRNN.BEFORE_RNN: + raise ValueError("rnn.block() can only be invoke once") + self.step_idx = fill_constant( + shape=[1], dtype='int64', value=0, force_cpu=True) + self.step_idx.stop_gradient = False + self.status = DynamicRNN.IN_RNN + with self.while_op.block(): + yield + increment(x=self.step_idx, value=1.0, in_place=True) + + for new_mem, mem_array in self.mem_link: + array_write(x=new_mem, i=self.step_idx, array=mem_array) + + less_than(x=self.step_idx, y=self.max_seq_len, cond=self.cond) + + self.status = DynamicRNN.AFTER_RNN + for each_array in self.output_array: + self.outputs.append( + array_to_lod_tensor( + x=each_array, table=self.lod_rank_table)) + + def __call__(self, *args, **kwargs): + if self.status != DynamicRNN.AFTER_RNN: + raise ValueError(("Output of the dynamic RNN can only be visited " + "outside the rnn block.")) + if len(self.outputs) == 1: + return self.outputs[0] + else: + return self.outputs + + def memory(self, + init=None, + shape=None, + value=0.0, + need_reorder=False, + dtype='float32'): + self._assert_in_rnn_block_('memory') + if init is not None: + if not isinstance(init, Variable): + raise TypeError( + "The input arg `init` of memory() must be a Variable") + parent_block = self._parent_block_() + init_tensor = init + if need_reorder == True: + if self.lod_rank_table is None: + raise ValueError( + 'If set need_reorder to True, make sure step_input be ' + 'invoked before ' + 'memory(init=init, need_reordered=True, ...).') + init_reordered = parent_block.create_var( + name=unique_name('dynamic_rnn_mem_init_reordered'), + type=core.VarDesc.VarType.LOD_TENSOR, + dtype=init.dtype) + parent_block.append_op( + type='reorder_lod_tensor_by_rank', + inputs={ + 'X': [init_tensor], + 'RankTable': [self.lod_rank_table] + }, + outputs={'Out': [init_reordered]}) + init_tensor = init_reordered + mem_array = parent_block.create_var( + name=unique_name('dynamic_rnn_mem_array'), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=init.dtype) + parent_block.append_op( + type='write_to_array', + inputs={'X': init_tensor, + 'I': self.zero_idx}, + outputs={'Out': mem_array}) + retv = array_read(array=mem_array, i=self.step_idx) + retv = shrink_memory( + x=retv, i=self.step_idx, table=self.lod_rank_table) + self.mem_dict[retv.name] = mem_array + return retv + else: + if len(self.input_array) == 0: + raise ValueError( + "step_input should be invoked before memory(shape=..., value=...)" + ) + parent_block = self._parent_block_() + init = parent_block.create_var( + name=unique_name('mem_init'), dtype=dtype) + arr, dtype = self.input_array[0] + in0 = parent_block.create_var(name=unique_name('in0'), dtype=dtype) + parent_block.append_op( + type='read_from_array', + inputs={'X': [arr], + 'I': [self.zero_idx]}, + outputs={'Out': [in0]}) + parent_block.append_op( + type='fill_constant_batch_size_like', + inputs={'Input': [in0]}, + outputs={'Out': [init]}, + attrs={ + 'shape': [-1] + shape, + 'value': float(value), + 'dtype': init.dtype + }) + return self.memory(init=init) + + def update_memory(self, ex_mem, new_mem): + self._assert_in_rnn_block_('update_memory') + if not isinstance(ex_mem, Variable): + raise TypeError("The input arg `ex_mem` of update_memory() must " + "be a Variable") + if not isinstance(new_mem, Variable): + raise TypeError("The input arg `new_mem` of update_memory() must " + "be a Variable") + + mem_array = self.mem_dict.get(ex_mem.name, None) + if mem_array is None: + raise ValueError("Please invoke memory before update_memory") + if self.lod_rank_table is None: + raise ValueError("Please invoke step_input before update_memory") + + self.mem_link.append((new_mem, mem_array)) + + def output(self, *outputs): + self._assert_in_rnn_block_('output') + parent_block = self._parent_block_() + for each in outputs: + outside_array = parent_block.create_var( + name=unique_name("_".join( + [self.helper.name, "output_array", each.name])), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=each.dtype) + array_write(x=each, i=self.step_idx, array=outside_array) + self.output_array.append(outside_array) + + def _parent_block_(self): + prog = self.helper.main_program + parent_idx = prog.current_block().parent_idx + assert parent_idx >= 0 + parent_block = prog.block(parent_idx) + + return parent_block + + def _assert_in_rnn_block_(self, method): + if self.status != DynamicRNN.IN_RNN: + raise ValueError("{0} can only be invoked inside rnn block.".format( + method)) + + +@autodoc +def reorder_lod_tensor_by_rank(x, rank_table): + helper = LayerHelper('reorder_lod_tensor_by_rank', **locals()) + helper.is_instance('x', Variable) + helper.is_instance('rank_table', Variable) + + out = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type='reorder_lod_tensor_by_rank', + inputs={'X': [x], + 'RankTable': [rank_table]}, + outputs={'Out': [out]}) + return out diff --git a/python/paddle/v2/fluid/layers/device.py b/python/paddle/v2/fluid/layers/device.py new file mode 100644 index 0000000000..ef74b2b2f0 --- /dev/null +++ b/python/paddle/v2/fluid/layers/device.py @@ -0,0 +1,38 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +""" +All util layers. +""" + +from ..layer_helper import LayerHelper +from ..framework import unique_name +from ..registry import autodoc + +__all__ = ['get_places'] + + +@autodoc +def get_places(device_count=None, device_type=None): + helper = LayerHelper('get_places', **locals()) + out_places = helper.create_variable(name=unique_name(helper.name + ".out")) + attrs = dict() + if device_count is not None: + attrs['device_count'] = int(device_count) + if device_type is not None: + attrs['device_type'] = str(device_type) + + helper.append_op( + type='get_places', outputs={"Out": [out_places]}, attrs=attrs) + + return out_places diff --git a/python/paddle/v2/fluid/layers/io.py b/python/paddle/v2/fluid/layers/io.py new file mode 100644 index 0000000000..a43e0ee4de --- /dev/null +++ b/python/paddle/v2/fluid/layers/io.py @@ -0,0 +1,75 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from .. import core +from ..layer_helper import LayerHelper + +__all__ = ['data'] + + +def data(name, + shape, + append_batch_size=True, + dtype='float32', + lod_level=0, + type=core.VarDesc.VarType.LOD_TENSOR, + stop_gradient=True): + """ + **Data Layer** + + This function takes in the input and based on whether data has + to be returned back as a minibatch, it creates the global variable by using + the helper functions. The global variables can be accessed by all the + following operators in the graph. + + All the input variables of this function are passed in as local variables + to the LayerHelper constructor. + + Args: + name(str): The name/alias of the function + shape(list): Tuple declaring the shape. + append_batch_size(bool): Whether or not to append the data as a batch. + dtype(int|float): The type of data : float32, float_16, int etc + type(VarType): The output type. By default it is LOD_TENSOR. + lod_level(int): The LoD Level. 0 means the input data is not a sequence. + main_program(Program): Name of the main program that calls this + startup_program(Program): Name of the startup program + stop_gradient(bool): A boolean that mentions whether gradient should flow. + + Returns: + Variable: The global variable that gives access to the data. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='x', shape=[784], dtype='float32') + """ + helper = LayerHelper('data', **locals()) + shape = list(shape) + for i in xrange(len(shape)): + if shape[i] is None: + shape[i] = -1 + append_batch_size = False + elif shape[i] < 0: + append_batch_size = False + + if append_batch_size: + shape = [-1] + shape # append batch size as -1 + + return helper.create_global_variable( + name=name, + shape=shape, + dtype=dtype, + type=type, + stop_gradient=stop_gradient, + lod_level=lod_level) diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py new file mode 100644 index 0000000000..7d61d111a8 --- /dev/null +++ b/python/paddle/v2/fluid/layers/nn.py @@ -0,0 +1,1916 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +""" +All layers just related to the neural network. +""" + +from ..layer_helper import LayerHelper +from ..initializer import Normal, Constant +from ..framework import Variable +from ..param_attr import ParamAttr +from tensor import concat + +__all__ = [ + 'fc', 'embedding', 'dynamic_lstm', 'gru_unit', 'linear_chain_crf', + 'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy', + 'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d', + 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', + 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', + 'sequence_first_step', 'sequence_last_step', 'dropout', 'split', + 'l2_normalize', 'matmul', 'warpctc' +] + + +def fc(input, + size, + num_flatten_dims=1, + param_attr=None, + bias_attr=None, + act=None, + name=None): + """ + **Fully Connected Layer** + + The fully connected layer can take multiple tensors as its inputs. It + creates a variable (one for each input tensor) called weights for each input + tensor, which represents a fully connected weight matrix from each input + unit to each output unit. The fully connected layer multiplies each input + tensor with its coresponding weight to produce an output Tensor. If + multiple input tensors are given, the results of multiple multiplications + will be sumed up. If bias_attr is not None, a biases variable will be + created and added to the output. Finally, if activation is not None, + it will be applied to the output as well. + + This process can be formulated as follows: + + .. math:: + + Out = Act({\sum_{i=0}^{N-1}W_iX_i + b}) + + In the above equation: + + * :math:`N`: Number of the input. + * :math:`X_i`: The input tensor. + * :math:`W`: The weights created by this layer. + * :math:`b`: The bias parameter created by this layer (if needed). + * :math:`Act`: The activation funtion. + * :math:`Out`: The output tensor. + + Args: + input(Variable|list): The input tensor(s) to the fully connected layer. + size(int): The number of output units in the fully connected layer. + num_flatten_dims(int): The fc layer can accept an input tensor with more + than two dimensions. If this happens, the + multidimensional tensor will first be flattened + into a 2-dimensional matrix. The parameter + `num_flatten_dims` determines how the input tensor + is flattened: the first `num_flatten_dims` + dimensions will be flatten to form the first + dimension of the final matrix (height of the + matrix), and the rest `rank(X) - num_flatten_dims` + dimensions are flattened to form the second + dimension of the final matrix (width of the matrix). + For example, suppose `X` is a 6-dimensional tensor + with a shape [2, 3, 4, 5, 6], and + `num_flatten_dims` = 3. Then, the flattened matrix + will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. + By default, `num_flatten_dims` is set to 1. + param_attr(ParamAttr|list): The parameter attribute for learnable + parameters/weights of the fully connected + layer. + param_initializer(ParamAttr|list): The initializer used for the + weight/parameter. If set None, + XavierInitializer() will be used. + bias_attr(ParamAttr|list): The parameter attribute for the bias parameter + for this layer. If set None, no bias will be + added to the output units. + bias_initializer(ParamAttr|list): The initializer used for the bias. + If set None, then ConstantInitializer() + will be used. + act(str): Activation to be applied to the output of the fully connected + layer. + name(str): Name/alias of the fully connected layer. + + + Returns: + Variable: The output tensor variable. + + Raises: + ValueError: If rank of the input tensor is less than 2. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32") + fc = fluid.layers.fc(input=data, size=1000, act="tanh") + """ + + helper = LayerHelper("fc", **locals()) + + dtype = helper.input_dtype() + + mul_results = [] + for input_var, param_attr in helper.iter_inputs_and_params(): + input_shape = input_var.shape + param_shape = [ + reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) + ] + [size] + w = helper.create_parameter( + attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False) + tmp = helper.create_tmp_variable(dtype) + helper.append_op( + type="mul", + inputs={ + "X": input_var, + "Y": w, + }, + outputs={"Out": tmp}, + attrs={"x_num_col_dims": num_flatten_dims, + "y_num_col_dims": 1}) + mul_results.append(tmp) + + # sum + if len(mul_results) == 1: + pre_bias = mul_results[0] + else: + pre_bias = helper.create_tmp_variable(dtype) + helper.append_op( + type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}) + # add bias + pre_activation = helper.append_bias_op(pre_bias) + # add activation + return helper.append_activation(pre_activation) + + +def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'): + """ + **Embedding Layer** + + This layer is used to lookup a vector of IDs, provided by *input*, in a lookup table. + The result of this lookup is the embedding of each ID in the *input*. + + All the input variables are passed in as local variables to the LayerHelper + constructor. + + Args: + input(Variable): Input to the function + size(tuple|list|None): Shape of the look up table parameter + is_sparse(bool): Boolean flag that specifying whether the input is sparse + param_attr(ParamAttr): Parameters for this layer + dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc + + Returns: + Variable: The tensor variable storing the embeddings of the \ + supplied inputs. + + Examples: + .. code-block:: python + + dict_size = len(dataset.ids) + data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32') + fc = fluid.layers.embedding(input=data, size=[dict_size, 16]) + """ + + helper = LayerHelper('embedding', **locals()) + w = helper.create_parameter( + attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False) + tmp = helper.create_tmp_variable(dtype) + helper.append_op( + type='lookup_table', + inputs={'Ids': input, + 'W': w}, + outputs={'Out': tmp}, + attrs={'is_sparse': is_sparse}) + return tmp + + +# TODO(qijun): expose H0 and C0 +def dynamic_lstm(input, + size, + param_attr=None, + bias_attr=None, + use_peepholes=True, + is_reverse=False, + gate_activation='sigmoid', + cell_activation='tanh', + candidate_activation='tanh', + dtype='float32'): + """ + **Dynamic LSTM Layer** + + The defalut implementation is diagonal/peephole connection + (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows: + + .. math:: + + i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) + + f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) + + \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) + + o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) + + c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t} + + h_t & = o_t \odot act_h(c_t) + + where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is + the matrix of weights from the input gate to the input), :math:`W_{ic}, \ + W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In + our implementation, we use vectors to reprenset these diagonal weight + matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input + gate bias vector), :math:`\sigma` is the non-line activations, such as + logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input + gate, forget gate, output gate, and cell activation vectors, respectively, + all of which have the same size as the cell output activation vector :math:`h`. + + The :math:`\odot` is the element-wise product of the vectors. :math:`act_g` + and :math:`act_h` are the cell input and cell output activation functions + and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called + candidate hidden state, which is computed based on the current input and + the previous hidden state. + + Set `use_peepholes` to `False` to disable peephole connection. The formula + is omitted here, please refer to the paper + http://www.bioinf.jku.at/publications/older/2604.pdf for details. + + Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}` + operations on the input :math:`x_{t}` are NOT included in this operator. + Users can choose to use fully-connect layer before LSTM layer. + + Args: + input(Variable): The input of dynamic_lstm layer, which supports + variable-time length input sequence. The underlying + tensor in this Variable is a matrix with shape + (T X 4D), where T is the total time steps in this + mini-batch, D is the hidden size. + size(int): 4 * hidden size. + param_attr(ParamAttr): The parameter attribute for the learnable + hidden-hidden weights. + + - The shape is (D x 4D), where D is the hidden + size. + - Weights = {:math:`W_{ch}, W_{ih}, \ + W_{fh}, W_{oh}`} + bias_attr(ParamAttr): The bias attribute for the learnable bias + weights, which contains two parts, input-hidden + bias weights and peephole connections weights if + setting `use_peepholes` to `True`. + + 1. `use_peepholes = False` + - The shape is (1 x 4D). + - Biases = {:math:`b_c, b_i, b_f, b_o`}. + 2. `use_peepholes = True` + - The shape is (1 x 7D). + - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \ + W_{fc}, W_{oc}`}. + use_peepholes(bool): Whether to enable diagonal/peephole connections, + default `True`. + is_reverse(bool): Whether to compute reversed LSTM, default `False`. + gate_activation(str): The activation for input gate, forget gate and + output gate. Choices = ["sigmoid", "tanh", "relu", + "identity"], default "sigmoid". + cell_activation(str): The activation for cell output. Choices = ["sigmoid", + "tanh", "relu", "identity"], default "tanh". + candidate_activation(str): The activation for candidate hidden state. + Choices = ["sigmoid", "tanh", "relu", "identity"], + default "tanh". + dtype(str): Data type. Choices = ["float32", "float64"], default "float32". + + Returns: + tuple: The hidden state, and cell state of LSTM. The shape of both \ + is (T x D), and lod is the same with the `input`. + + Examples: + .. code-block:: python + + hidden_dim = 512 + forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4, + act=None, bias_attr=None) + forward, _ = fluid.layers.dynamic_lstm( + input=forward_proj, size=hidden_dim * 4, use_peepholes=False) + """ + helper = LayerHelper('lstm', **locals()) + size = size / 4 + weight = helper.create_parameter( + attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype) + bias_size = [1, 7 * size] + if not use_peepholes: + bias_size[1] = 4 * size + bias = helper.create_parameter( + attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) + + hidden = helper.create_tmp_variable(dtype) + cell = helper.create_tmp_variable(dtype) + batch_gate = helper.create_tmp_variable(dtype) + batch_cell_pre_act = helper.create_tmp_variable(dtype) + + helper.append_op( + type='lstm', + inputs={'Input': input, + 'Weight': weight, + 'Bias': bias}, + outputs={ + 'Hidden': hidden, + 'Cell': cell, + 'BatchGate': batch_gate, + 'BatchCellPreAct': batch_cell_pre_act + }, + attrs={ + 'use_peepholes': use_peepholes, + 'is_reverse': is_reverse, + 'gate_activation': gate_activation, + 'cell_activation': cell_activation, + 'candidate_activation': candidate_activation + }) + return hidden, cell + + +def gru_unit(input, + hidden, + size, + weight=None, + bias=None, + activation='tanh', + gate_activation='sigmoid'): + """ + GRU unit layer. The equation of a gru step is: + + .. math:: + u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u) + + r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r) + + m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m) + + h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1}) + + The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms + of the equation above, the :math:`z_t` is split into 3 parts - + :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to + implement a full GRU unit operator for an input, a fully + connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`. + + The terms :math:`u_t` and :math:`r_t` represent the update and reset gates + of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is + an intermediate candidate hidden output, which is denoted by :math:`m_t`. + This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})` + and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`. + + Args: + input (Variable): The fc transformed input value of current step. + hidden (Variable): The hidden value of lstm unit from previous step. + size (integer): The input dimension value. + weight (ParamAttr): The weight parameters for gru unit. Default: None + bias (ParamAttr): The bias parameters for gru unit. Default: None + activation (string): The activation type for cell (actNode). Default: 'tanh' + gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid' + + Returns: + tuple: The hidden value, reset-hidden value and gate values. + + Examples: + + .. code-block:: python + + # assuming we have x_t_data and prev_hidden of size=10 + x_t = fluid.layers.fc(input=x_t_data, size=30) + hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t, + hidden = prev_hidden) + + """ + activation_dict = dict( + identity=0, + sigmoid=1, + tanh=2, + relu=3, ) + activation = activation_dict[activation] + gate_activation = activation_dict[gate_activation] + + helper = LayerHelper('gru_unit', **locals()) + dtype = helper.input_dtype() + size = size / 3 + + # create weight + if weight is None: + weight = helper.create_parameter( + attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) + + # create bias + + if bias is None: + bias_size = [1, 3 * size] + bias = helper.create_parameter( + attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) + + gate = helper.create_tmp_variable(dtype) + reset_hidden_pre = helper.create_tmp_variable(dtype) + updated_hidden = helper.create_tmp_variable(dtype) + + helper.append_op( + type='gru_unit', + inputs={'Input': input, + 'HiddenPrev': hidden, + 'Weight': weight}, + outputs={ + 'Gate': gate, + 'ResetHiddenPrev': reset_hidden_pre, + 'Hidden': updated_hidden, + }, + attrs={ + 'activation': 0, + 'gate_activation': 1, + }) + + return updated_hidden, reset_hidden_pre, gate + + +def linear_chain_crf(input, label, param_attr=None): + helper = LayerHelper('linear_chain_crf', **locals()) + size = input.shape[1] + transition = helper.create_parameter( + attr=helper.param_attr, + shape=[size + 2, size], + dtype=helper.input_dtype()) + alpha = helper.create_tmp_variable(dtype=helper.input_dtype()) + emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) + transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) + log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='linear_chain_crf', + inputs={"Emission": [input], + "Transition": transition, + "Label": label}, + outputs={ + "Alpha": [alpha], + "EmissionExps": [emission_exps], + "TransitionExps": transition_exps, + "LogLikelihood": log_likelihood + }) + + return log_likelihood + + +def crf_decoding(input, param_attr, label=None): + helper = LayerHelper('crf_decoding', **locals()) + transition = helper.get_parameter(param_attr.name) + viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='crf_decoding', + inputs={"Emission": [input], + "Transition": transition, + "Label": label}, + outputs={"ViterbiPath": [viterbi_path]}) + + return viterbi_path + + +def cos_sim(X, Y, **kwargs): + """ + This function performs the cosine similarity between two tensors + X and Y and returns that as the output. + """ + helper = LayerHelper('cos_sim', **kwargs) + out = helper.create_tmp_variable(dtype=X.dtype) + xnorm = helper.create_tmp_variable(dtype=X.dtype) + ynorm = helper.create_tmp_variable(dtype=X.dtype) + helper.append_op( + type='cos_sim', + inputs={'X': [X], + 'Y': [Y]}, + outputs={'Out': [out], + 'XNorm': [xnorm], + 'YNorm': [ynorm]}) + return out + + +def dropout(x, dropout_prob, is_test=False, seed=0, **kwargs): + helper = LayerHelper('dropout', **kwargs) + out = helper.create_tmp_variable(dtype=x.dtype) + mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True) + helper.append_op( + type='dropout', + inputs={'X': [x]}, + outputs={'Out': [out], + 'Mask': [mask]}, + attrs={'dropout_prob': dropout_prob, + 'is_test': is_test, + 'seed': seed}) + return out + + +def cross_entropy(input, label, **kwargs): + """ + **Cross Entropy Layer** + + This layer computes the cross entropy between `input` and `label`. It supports + both standard cross-entropy and soft-label cross-entropy loss computation. + + 1) One-hot cross-entropy: + `soft_label = False`, `Label[i, 0]` indicates the class index for sample i: + + .. math:: + + Y[i] = -\log(X[i, Label[i]]) + + 2) Soft-label cross-entropy: + `soft_label = True`, `Label[i, j]` indicates the soft label of class j + for sample i: + + .. math:: + + Y[i] = \sum_j{-Label[i, j] * log(X[i, j])} + + Please make sure that in this case the summation of each row of `label` + equals one. + + 3) One-hot cross-entropy with vecterized `label`: + As a special case of 2), when each row of 'label' has only one + non-zero element which is equal to 1, soft-label cross-entropy degenerates + to a one-hot cross-entropy with one-hot label representation. + + Args: + input (Variable|list): a 2-D tensor with shape [N x D], where N is the + batch size and D is the number of classes. This input is a probability + computed by the previous operator, which is almost always the result + of a softmax operator. + label (Variable|list): the ground truth which is a 2-D tensor. When + `soft_label` is set to `False`, `label` is a tensor with shape + [N x 1]. When `soft_label` is set to `True`, `label` is a + tensor with shape [N x D]. + soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate + the given labels as soft labels, default `False`. + + Returns: + A 2-D tensor with shape [N x 1], the cross entropy loss. + + Raises: + `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \ + `soft_label == True`, and the 2nd dimension of `input` and `label` are not \ + equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1. + + Examples: + .. code-block:: python + + predict = fluid.layers.fc(input=net, size=classdim, act='softmax') + cost = fluid.layers.cross_entropy(input=predict, label=label) + """ + helper = LayerHelper('cross_entropy', **kwargs) + out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='cross_entropy', + inputs={'X': [input], + 'Label': [label]}, + outputs={'Y': [out]}, + attrs=kwargs) + return out + + +def square_error_cost(input, label, **kwargs): + """ + **Square error cost layer** + + This layer accepts input predictions and target label and returns the squared error cost. + For predictions, :math:`X`, and target labels, :math:`Y`, the equation is: + + .. math:: + + Out = (X - Y)^2 + + In the above equation: + + * :math:`X`: Input predictions, a tensor. + * :math:`Y`: Input labels, a tensor. + * :math:`Out`: Output value, same shape with :math:`X`. + + Args: + input(Variable): Input tensor, has predictions. + label(Variable): Label tensor, has target labels. + + Returns: + Variable: The tensor variable storing the element-wise squared error difference \ + of input and label. + + Examples: + .. code-block:: python + + y = layers.data(name='y', shape=[1], dtype='float32') + y_predict = layers.data(name='y_predict', shape=[1], dtype='float32') + cost = layers.square_error_cost(input=y_predict, label=y) + + """ + helper = LayerHelper('square_error_cost', **kwargs) + minus_out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='elementwise_sub', + inputs={'X': [input], + 'Y': [label]}, + outputs={'Out': [minus_out]}) + + square_out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='square', inputs={'X': [minus_out]}, + outputs={'Out': [square_out]}) + return square_out + + +def accuracy(input, label, k=1, correct=None, total=None, **kwargs): + """ + This function computes the accuracy using the input and label. + The output is the top_k inputs and their indices. + """ + helper = LayerHelper("accuracy", **kwargs) + topk_out = helper.create_tmp_variable(dtype=input.dtype) + topk_indices = helper.create_tmp_variable(dtype="int64") + helper.append_op( + type="top_k", + inputs={"X": [input]}, + outputs={"Out": [topk_out], + "Indices": [topk_indices]}, + attrs={"k": k}) + acc_out = helper.create_tmp_variable(dtype="float32") + if correct is None: + correct = helper.create_tmp_variable(dtype="int64") + if total is None: + total = helper.create_tmp_variable(dtype="int64") + helper.append_op( + type="accuracy", + inputs={ + "Out": [topk_out], + "Indices": [topk_indices], + "Label": [label] + }, + outputs={ + "Accuracy": [acc_out], + "Correct": [correct], + "Total": [total], + }) + return acc_out + + +def chunk_eval(input, + label, + chunk_scheme, + num_chunk_types, + excluded_chunk_types=None, + **kwargs): + """ + This function computes and outputs the precision, recall and + F1-score of chunk detection. + """ + helper = LayerHelper("chunk_eval", **kwargs) + + # prepare output + precision = helper.create_tmp_variable(dtype="float32") + recall = helper.create_tmp_variable(dtype="float32") + f1_score = helper.create_tmp_variable(dtype="float32") + num_infer_chunks = helper.create_tmp_variable(dtype="int64") + num_label_chunks = helper.create_tmp_variable(dtype="int64") + num_correct_chunks = helper.create_tmp_variable(dtype="int64") + + helper.append_op( + type="chunk_eval", + inputs={"Inference": [input], + "Label": [label]}, + outputs={ + "Precision": [precision], + "Recall": [recall], + "F1-Score": [f1_score], + "NumInferChunks": [num_infer_chunks], + "NumLabelChunks": [num_label_chunks], + "NumCorrectChunks": [num_correct_chunks] + }, + attrs={ + "num_chunk_types": num_chunk_types, + "chunk_scheme": chunk_scheme, + "excluded_chunk_types": excluded_chunk_types or [] + }) + return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks + + +def sequence_conv(input, + num_filters, + filter_size=3, + filter_stride=1, + padding=None, + bias_attr=None, + param_attr=None, + act=None): + """ + This function creates the op for sequence_conv, using the inputs and + other convolutional configurations for the filters and stride as given + in the input parameters to the function. + """ + + # FIXME(dzh) : want to unify the argument of python layer + # function. So we ignore some unecessary attributes. + # such as, padding_trainable, context_start. + + helper = LayerHelper('sequence_conv', **locals()) + dtype = helper.input_dtype() + filter_shape = [filter_size * input.shape[1], num_filters] + filter_param = helper.create_parameter( + attr=helper.param_attr, shape=filter_shape, dtype=dtype) + pre_bias = helper.create_tmp_variable(dtype) + + helper.append_op( + type='sequence_conv', + inputs={ + 'X': [input], + 'Filter': [filter_param], + }, + outputs={"Out": pre_bias}, + attrs={ + 'contextStride': filter_stride, + 'contextStart': -int(filter_size / 2), + 'contextLength': filter_size + }) + pre_act = helper.append_bias_op(pre_bias) + return helper.append_activation(pre_act) + + +def conv2d(input, + num_filters, + filter_size, + stride=None, + padding=None, + groups=None, + param_attr=None, + bias_attr=None, + use_cudnn=True, + act=None): + """ + **Convlution2D Layer** + + The convolution2D layer calculates the output based on the input, filter + and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output) + are in NCHW format. Where N is batch size, C is the number of channels, H is the height + of the feature, and W is the width of the feature. + The details of convolution layer, please refer UFLDL's `convolution, + `_ . + If bias attribution and activation type are provided, bias is added to the output of the convolution, + and the corresponding activation function is applied to the final result. + For each input :math:`X`, the equation is: + + + .. math:: + + Out = \sigma (W \\ast X + b) + + In the above equation: + + * :math:`X`: Input value, a tensor with NCHW format. + * :math:`W`: Filter value, a tensor with MCHW format. + * :math:`\\ast`: Convolution operation. + * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. + * :math:`\\sigma`: Activation function. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. + + Example: + + Input: + Input shape: $(N, C_{in}, H_{in}, W_{in})$ + + Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ + + Output: + Output shape: $(N, C_{out}, H_{out}, W_{out})$ + Where + .. math:: + + H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ + W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 + + Args: + input(Variable): The input image with [N, C, H, W] format. + num_filters(int): The number of filter. It is as same as the output + image channel. + filter_size(int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_H, filter_size_W). + Otherwise, the filter will be a square. + stride(int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_H, stride_W). Otherwise, the + stride_H = stride_W = stride. Default: stride = 1. + padding(int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_H, padding_W). Otherwise, the + padding_H = padding_W = padding. Default: padding = 0. + groups(int): The groups number of the Conv2d Layer. According to grouped + convolution in Alex Krizhevsky's Deep CNN paper: when group=2, + the first half of the filters is only connected to the first half + of the input channels, while the second half of the filters is only + connected to the second half of the input channels. Default: groups=1 + param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None + bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None + use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + act(str): Activation type. Default: None + + Returns: + Variable: The tensor variable storing the convolution and \ + non-linearity activation result. + + Raises: + ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') + conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu") + """ + + if stride is None: + stride = [1, 1] + helper = LayerHelper('conv2d', **locals()) + dtype = helper.input_dtype() + + num_channels = input.shape[1] + if groups is None: + num_filter_channels = num_channels + else: + if num_channels % groups != 0: + raise ValueError("num_channels must be divisible by groups.") + num_filter_channels = num_channels / groups + + if isinstance(filter_size, int): + filter_size = [filter_size, filter_size] + if isinstance(stride, int): + stride = [stride, stride] + if isinstance(padding, int): + padding = [padding, padding] + if not isinstance(use_cudnn, bool): + raise ValueError("use_cudnn should be True or False") + + input_shape = input.shape + filter_shape = [num_filters, num_filter_channels] + filter_size + + def _get_default_param_initializer(): + std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 + return Normal(0.0, std, 0) + + filter_param = helper.create_parameter( + attr=helper.param_attr, + shape=filter_shape, + dtype=dtype, + default_initializer=_get_default_param_initializer()) + + pre_bias = helper.create_tmp_variable(dtype) + + helper.append_op( + type='conv2d', + inputs={ + 'Input': input, + 'Filter': filter_param, + }, + outputs={"Output": pre_bias}, + attrs={ + 'strides': stride, + 'paddings': padding, + 'groups': groups, + 'use_cudnn': use_cudnn + }) + + pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) + + return helper.append_activation(pre_act) + + +def sequence_pool(input, pool_type, **kwargs): + """ + This function add the operator for sequence pooling. + It pools features of all time-steps of each instance, and is applied + on top of the input using pool_type mentioned in the parameters. + + It supports four pool_type: + + - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}` + - sum: :math:`Out[i] = \sum_jX_{ij}` + - sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}` + - max: :math:`Out[i] = max(X_i)` + + .. code-block:: text + + x is a 1-level LoDTensor: + x.lod = [[0, 2, 5, 7]] + x.data = [1, 3, 2, 4, 6, 5, 1] + x.dims = [7, 1] + + then output is a Tensor: + out.dim = [3, 1] + with condition len(x.lod[-1]) - 1 == out.dims[0] + + for different pool_type: + average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2 + sum : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1 + sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2), + 6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2) + max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1) + + Args: + input(variable): The input variable which is a LoDTensor. + pool_type (string): The pooling type of sequence_pool. + It supports average, sum, sqrt and max. + + Returns: + The sequence pooling variable which is a Tensor. + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[7, 1], + dtype='float32', lod_level=1) + avg_x = fluid.layers.sequence_pool(input=x, pool_type='average') + sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum') + sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt') + max_x = fluid.layers.sequence_pool(input=x, pool_type='max') + """ + helper = LayerHelper('sequence_pool', input=input, **kwargs) + dtype = helper.input_dtype() + pool_out = helper.create_tmp_variable(dtype) + max_index = helper.create_tmp_variable(dtype) + + helper.append_op( + type="sequence_pool", + inputs={"X": input}, + outputs={"Out": pool_out, + "MaxIndex": max_index}, + attrs={"pooltype": pool_type.upper()}) + + # when pool_type is max, variable max_index is initialized, + # so we stop the gradient explicitly here + if pool_type == 'max': + max_index.stop_gradient = True + + return pool_out + + +def sequence_first_step(input, **kwargs): + """ + This funciton get the first step of sequence. + + .. code-block:: text + + x is a 1-level LoDTensor: + x.lod = [[0, 2, 5, 7]] + x.data = [1, 3, 2, 4, 6, 5, 1] + x.dims = [7, 1] + + then output is a Tensor: + out.dim = [3, 1] + with condition len(x.lod[-1]) - 1 == out.dims[0] + out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1) + + Args: + input(variable): The input variable which is a LoDTensor. + + Returns: + The sequence's first step variable which is a Tensor. + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[7, 1], + dtype='float32', lod_level=1) + x_first_step = fluid.layers.sequence_first_step(input=x) + """ + return sequence_pool(input=input, pool_type="first") + + +def sequence_last_step(input, **kwargs): + """ + This funciton get the last step of sequence. + + .. code-block:: text + + x is a 1-level LoDTensor: + x.lod = [[0, 2, 5, 7]] + x.data = [1, 3, 2, 4, 6, 5, 1] + x.dims = [7, 1] + + then output is a Tensor: + out.dim = [3, 1] + with condition len(x.lod[-1]) - 1 == out.dims[0] + out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1) + + Args: + input(variable): The input variable which is a LoDTensor. + + Returns: + The sequence's last step variable which is a Tensor. + + Examples: + + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[7, 1], + dtype='float32', lod_level=1) + x_last_step = fluid.layers.sequence_last_step(input=x) + """ + return sequence_pool(input=input, pool_type="last") + + +def pool2d(input, + pool_size, + pool_type, + pool_stride=None, + pool_padding=None, + global_pooling=False, + use_cudnn=True, + name=None): + """ + This function adds the operator for pooling in 2 dimensions, using the + pooling configurations mentioned in input parameters. + """ + if pool_padding is None: + pool_padding = [0, 0] + if pool_stride is None: + pool_stride = [1, 1] + if pool_type not in ["max", "avg"]: + raise ValueError( + "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", + str(pool_type)) + if isinstance(pool_size, int): + pool_size = [pool_size, pool_size] + if isinstance(pool_stride, int): + pool_stride = [pool_stride, pool_stride] + if isinstance(pool_padding, int): + pool_padding = [pool_padding, pool_padding] + if not isinstance(use_cudnn, bool): + raise ValueError("use_cudnn should be True or False") + + helper = LayerHelper('pool2d', **locals()) + dtype = helper.input_dtype() + pool_out = helper.create_tmp_variable(dtype) + + helper.append_op( + type="pool2d", + inputs={"X": input}, + outputs={"Out": pool_out}, + attrs={ + "pooling_type": pool_type, + "ksize": pool_size, + "global_pooling": global_pooling, + "strides": pool_stride, + "paddings": pool_padding, + "use_cudnn": use_cudnn + }) + + return pool_out + + +def batch_norm(input, + act=None, + is_test=False, + momentum=0.9, + epsilon=1e-05, + param_attr=None, + bias_attr=None, + data_layout='NCHW', + name=None): + """ + This function helps create an operator to implement + the BatchNorm layer using the configurations from the input parameters. + """ + helper = LayerHelper('batch_norm', **locals()) + dtype = helper.input_dtype() + + input_shape = input.shape + if data_layout == 'NCHW': + channel_num = input_shape[1] + else: + if data_layout == 'NHWC': + channel_num = input_shape[-1] + else: + raise ValueError("unsupported data layout:" + data_layout) + + param_shape = [channel_num] + + # create parameter + scale = helper.create_parameter( + attr=helper.param_attr, + shape=param_shape, + dtype=dtype, + default_initializer=Constant(1.0)) + + bias = helper.create_parameter( + attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True) + + mean = helper.create_global_variable( + dtype=input.dtype, + shape=param_shape, + persistable=True, + stop_gradient=True) + helper.set_variable_initializer(var=mean, initializer=Constant(0.0)) + + variance = helper.create_global_variable( + dtype=input.dtype, + shape=param_shape, + persistable=True, + stop_gradient=True) + helper.set_variable_initializer(var=variance, initializer=Constant(1.0)) + + # create output + # mean and mean_out share the same memory + mean_out = mean + # variance and variance out share the same memory + variance_out = variance + saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) + saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) + + batch_norm_out = helper.create_tmp_variable(dtype) + + helper.append_op( + type="batch_norm", + inputs={ + "X": input, + "Scale": scale, + "Bias": bias, + "Mean": mean, + "Variance": variance + }, + outputs={ + "Y": batch_norm_out, + "MeanOut": mean_out, + "VarianceOut": variance_out, + "SavedMean": saved_mean, + "SavedVariance": saved_variance + }, + attrs={"momentum": momentum, + "epsilon": epsilon, + "is_test": is_test}) + + return helper.append_activation(batch_norm_out) + + +def beam_search_decode(ids, scores, name=None): + helper = LayerHelper('beam_search_decode', **locals()) + sentence_ids = helper.create_tmp_variable(dtype=ids.dtype) + sentence_scores = helper.create_tmp_variable(dtype=ids.dtype) + + helper.append_op( + type="beam_search_decode", + inputs={"Ids": ids, + "Scores": scores}, + outputs={ + "SentenceIds": sentence_ids, + "SentenceScores": sentence_scores + }) + + return sentence_ids, sentence_scores + + +def conv2d_transpose(input, + num_filters, + output_size=None, + filter_size=None, + padding=None, + stride=None, + dilation=None, + param_attr=None, + use_cudnn=True, + name=None): + """ + The transpose of conv2d layer. + + This layer is also known as deconvolution layer. + + Args: + input(Variable): The input image with [N, C, H, W] format. + num_filters(int): The number of filter. It is as same as the output + image channel. + output_size(int|tuple|None): The output image size. If output size is a + tuple, it must contain two integers, (image_H, image_W). This + parameter only works when filter_size is None. + filter_size(int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_H, filter_size_W). + Otherwise, the filter will be a square. None if use output size to + calculate filter_size + padding(int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_H, padding_W). Otherwise, the + padding_H = padding_W = padding. + stride(int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_H, stride_W). Otherwise, the + stride_H = stride_W = stride. + dilation(int|tuple): The dilation size. If dilation is a tuple, it must + contain two integers, (dilation_H, dilation_W). Otherwise, the + dilation_H = dilation_W = dilation. + param_attr: Parameter Attribute. + use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn + library is installed. Default: True + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: Output image. + """ + helper = LayerHelper("conv2d_transpose", **locals()) + if not isinstance(input, Variable): + raise TypeError("Input of conv2d_transpose must be Variable") + input_channel = input.shape[1] + + op_attr = dict() + + if isinstance(padding, int): + op_attr['paddings'] = [padding, padding] + elif padding is not None: + op_attr['paddings'] = padding + + if isinstance(stride, int): + op_attr['strides'] = [stride, stride] + elif stride is not None: + op_attr['strides'] = stride + + if isinstance(dilation, int): + op_attr['dilations'] = [dilation, dilation] + elif dilation is not None: + op_attr['dilations'] = dilation + + if not isinstance(use_cudnn, bool): + raise ValueError("use_cudnn should be True or False") + op_attr['use_cudnn'] = use_cudnn + + if filter_size is None: + if output_size is None: + raise ValueError("output_size must be set when filter_size is None") + if isinstance(output_size, int): + output_size = [output_size, output_size] + + padding = op_attr.get('paddings', [0, 0]) + stride = op_attr.get('strides', [1, 1]) + dilation = op_attr.get('dilations', [1, 1]) + + h_in = input.shape[2] + w_in = input.shape[3] + + filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 * + padding[0] - 1) / dilation[0] + 1 + filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 * + padding[1] - 1) / dilation[1] + 1 + filter_size = [filter_size_h, filter_size_w] + + elif isinstance(filter_size, int): + filter_size = [filter_size, filter_size] + + filter_shape = [input_channel, num_filters] + filter_size + img_filter = helper.create_parameter( + dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) + + out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='conv2d_transpose', + inputs={'Input': [input], + 'Filter': [img_filter]}, + outputs={'Output': out}, + attrs=op_attr) + + return out + + +def sequence_expand(x, y, name=None): + """Sequence Expand Layer. This layer will expand the input variable **x** + according to LoD information of **y**. And the following examples will + explain how sequence_expand works: + + .. code-block:: text + + * Case 1 + x is a LoDTensor: + x.lod = [[0, 2, 3], + [0, 1, 3, 4]] + x.data = [a, b, c, d] + x.dims = [4, 1] + + y is a LoDTensor: + y.lod = [[0, 2, 4], + [0, 3, 6, 7, 8]] + + with condition len(y.lod[-1]) - 1 == x.dims[0] + + then output is a 2-level LoDTensor: + out.lod = [[0, 2, 4], + [0, 3, 6, 7, 8]] + out.data = [a, a, a, b, b, b, c, d] + out.dims = [8, 1] + + * Case 2 + x is a Tensor: + x.data = [a, b, c] + x.dims = [3, 1] + + y is a LoDTensor: + y.lod = [[0, 2, 3, 6]] + + with condition len(y.lod[-1]) - 1 == x.dims[0] + + then output is a 1-level LoDTensor: + out.lod = [[0, 2, 3, 6]] + out.data = [a, a, b, c, c, c] + out.dims = [6, 1] + + Args: + x (Variable): The input variable which is a Tensor or LoDTensor. + y (Variable): The input variable which is a LoDTensor. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The expanded variable which is a LoDTensor. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10], dtype='float32') + y = fluid.layers.data(name='y', shape=[10, 20], + dtype='float32', lod_level=1) + out = layers.sequence_expand(x=x, y=y) + """ + helper = LayerHelper('sequence_expand', input=x, **locals()) + dtype = helper.input_dtype() + tmp = helper.create_tmp_variable(dtype) + helper.append_op( + type='sequence_expand', inputs={'X': x, + 'Y': y}, outputs={'Out': tmp}) + return tmp + + +def lstm_unit(x_t, + hidden_t_prev, + cell_t_prev, + forget_bias=0.0, + param_attr=None, + bias_attr=None, + name=None): + """Lstm unit layer. The equation of a lstm step is: + + .. math:: + + i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i) + + f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f) + + c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c) + + o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o) + + h_t & = o_t tanh(c_t) + + The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and + :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}` + should be same. The implementation separates the linear transformation and + non-linear transformation apart. Here, we take :math:`i_t` as an example. + The linear transformation is applied by calling a `fc` layer and the + equation is: + + .. math:: + + L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i + + The non-linear transformation is applied by calling `lstm_unit_op` and the + equation is: + + .. math:: + + i_t = \sigma(L_{i_t}) + + This layer has two outputs including :math:`h_t` and :math:`o_t`. + + Args: + x_t (Variable): The input value of current step, a 2-D tensor with shape + M x N, M for batch size and N for input size. + hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor + with shape M x S, M for batch size and S for size of lstm unit. + cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with + shape M x S, M for batch size and S for size of lstm unit. + forget_bias (float): The forget bias of lstm unit. + param_attr (ParamAttr): The attributes of parameter weights, used to set + initializer, name etc. + bias_attr (ParamAttr): The attributes of bias weights, if not False, + bias weights will be created and be set to default value. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + tuple: The hidden value and cell value of lstm unit. + + Raises: + ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\ + not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \ + and **cell_t_prev** not be the same or the 2nd dimensions of \ + **hidden_t_prev** and **cell_t_prev** not be the same. + + Examples: + + .. code-block:: python + + x_t = fluid.layers.fc(input=x_t_data, size=10) + prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30) + prev_cell = fluid.layers.fc(input=prev_cell_data, size=30) + hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t, + hidden_t_prev=prev_hidden, + cell_t_prev=prev_cell) + """ + helper = LayerHelper('lstm_unit', **locals()) + + if len(x_t.shape) != 2: + raise ValueError("Rank of x_t must be 2.") + + if len(hidden_t_prev.shape) != 2: + raise ValueError("Rank of hidden_t_prev must be 2.") + + if len(cell_t_prev.shape) != 2: + raise ValueError("Rank of cell_t_prev must be 2.") + + if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[ + 0] != cell_t_prev.shape[0]: + raise ValueError("The 1st dimensions of x_t, hidden_t_prev and " + "cell_t_prev must be the same.") + + if hidden_t_prev.shape[1] != cell_t_prev.shape[1]: + raise ValueError("The 2nd dimensions of hidden_t_prev and " + "cell_t_prev must be the same.") + + if bias_attr is None: + bias_attr = ParamAttr() + + size = cell_t_prev.shape[1] + concat_out = concat(input=[x_t, hidden_t_prev], axis=1) + fc_out = fc(input=concat_out, + size=4 * size, + param_attr=param_attr, + bias_attr=bias_attr) + dtype = x_t.dtype + c = helper.create_tmp_variable(dtype) + h = helper.create_tmp_variable(dtype) + + helper.append_op( + type='lstm_unit', + inputs={"X": fc_out, + "C_prev": cell_t_prev}, + outputs={"C": c, + "H": h}, + attrs={"forget_bias": forget_bias}) + + return h, c + + +def reduce_sum(input, dim=None, keep_dim=False, name=None): + """ + Computes the sum of tensor elements over the given dimension. + + Args: + input (Variable): The input variable which is a Tensor or LoDTensor. + dim (int|None): The dimension along which the sum is performed. If + :attr:`None`, sum all elements of :attr:`input` and return a + Tensor variable with a single element, otherwise must be in the + range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, + the dimension to reduce is :math:`rank + dim`. + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension + than the :attr:`input` unless :attr:`keep_dim` is true. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The reduced Tensor variable. + + Examples: + .. code-block:: python + + # x is a Tensor variable with following elements: + # [[0.2, 0.3, 0.5, 0.9] + # [0.1, 0.2, 0.6, 0.7]] + # Each example is followed by the correspending output tensor. + fluid.layers.reduce_sum(x) # [3.5] + fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6] + fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6] + fluid.layers.reduce_sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]] + """ + helper = LayerHelper('reduce_sum', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='reduce_sum', + inputs={'X': input}, + outputs={'Out': out}, + attrs={ + 'dim': dim if dim != None else 0, + 'keep_dim': keep_dim, + 'reduce_all': True if dim == None else False + }) + return out + + +def reduce_mean(input, dim=None, keep_dim=False, name=None): + """ + Computes the mean of tensor elements over the given dimension. + + Args: + input (Variable): The input variable which is a Tensor or LoDTensor. + dim (int|None): The dimension along which the mean is computed. If + :attr:`None`, compute the mean over all elements of :attr:`input` + and return a Tensor variable with a single element, otherwise + must be in the range :math:`[-rank(input), rank(input))`. If + :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension + than the :attr:`input` unless :attr:`keep_dim` is true. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The reduced Tensor variable. + + Examples: + .. code-block:: python + + # x is a Tensor variable with following elements: + # [[0.2, 0.3, 0.5, 0.9] + # [0.1, 0.2, 0.6, 0.7]] + # Each example is followed by the correspending output tensor. + fluid.layers.reduce_mean(x) # [0.4375] + fluid.layers.reduce_mean(x, dim=0) # [0.15, 0.25, 0.55, 0.8] + fluid.layers.reduce_mean(x, dim=-1) # [0.475, 0.4] + fluid.layers.reduce_mean(x, dim=1, keep_dim=True) # [[0.475], [0.4]] + """ + helper = LayerHelper('reduce_mean', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='reduce_mean', + inputs={'X': input}, + outputs={'Out': out}, + attrs={ + 'dim': dim if dim != None else 0, + 'keep_dim': keep_dim, + 'reduce_all': True if dim == None else False + }) + return out + + +def reduce_max(input, dim=None, keep_dim=False, name=None): + """ + Computes the maximum of tensor elements over the given dimension. + + Args: + input (Variable): The input variable which is a Tensor or LoDTensor. + dim (int|None): The dimension along which the maximum is computed. + If :attr:`None`, compute the maximum over all elements of + :attr:`input` and return a Tensor variable with a single element, + otherwise must be in the range :math:`[-rank(input), rank(input))`. + If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension + than the :attr:`input` unless :attr:`keep_dim` is true. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The reduced Tensor variable. + + Examples: + .. code-block:: python + + # x is a Tensor variable with following elements: + # [[0.2, 0.3, 0.5, 0.9] + # [0.1, 0.2, 0.6, 0.7]] + # Each example is followed by the correspending output tensor. + fluid.layers.reduce_max(x) # [0.9] + fluid.layers.reduce_max(x, dim=0) # [0.2, 0.3, 0.6, 0.9] + fluid.layers.reduce_max(x, dim=-1) # [0.9, 0.7] + fluid.layers.reduce_max(x, dim=1, keep_dim=True) # [[0.9], [0.7]] + """ + helper = LayerHelper('reduce_max', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='reduce_max', + inputs={'X': input}, + outputs={'Out': out}, + attrs={ + 'dim': dim if dim != None else 0, + 'keep_dim': keep_dim, + 'reduce_all': True if dim == None else False + }) + return out + + +def reduce_min(input, dim=None, keep_dim=False, name=None): + """ + Computes the minimum of tensor elements over the given dimension. + + Args: + input (Variable): The input variable which is a Tensor or LoDTensor. + dim (int|None): The dimension along which the minimum is computed. + If :attr:`None`, compute the minimum over all elements of + :attr:`input` and return a Tensor variable with a single element, + otherwise must be in the range :math:`[-rank(input), rank(input))`. + If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension + than the :attr:`input` unless :attr:`keep_dim` is true. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The reduced Tensor variable. + + Examples: + .. code-block:: python + + # x is a Tensor variable with following elements: + # [[0.2, 0.3, 0.5, 0.9] + # [0.1, 0.2, 0.6, 0.7]] + # Each example is followed by the correspending output tensor. + fluid.layers.reduce_min(x) # [0.1] + fluid.layers.reduce_min(x, dim=0) # [0.1, 0.2, 0.5, 0.7] + fluid.layers.reduce_min(x, dim=-1) # [0.2, 0.1] + fluid.layers.reduce_min(x, dim=1, keep_dim=True) # [[0.2], [0.1]] + """ + helper = LayerHelper('reduce_min', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='reduce_min', + inputs={'X': input}, + outputs={'Out': out}, + attrs={ + 'dim': dim if dim != None else 0, + 'keep_dim': keep_dim, + 'reduce_all': True if dim == None else False + }) + return out + + +def split(input, num_or_sections, dim=-1, name=None): + """ + Split the input tensor into multiple sub-tensors. + + Args: + input (Variable): The input variable which is a Tensor or LoDTensor. + num_or_sections (int|list): If :attr:`num_or_sections` is an integer, + then the integer indicates the number of equal sized sub-tensors + that the tensor will be divided into. If :attr:`num_or_sections` + is a list of integers, the length of list indicates the number of + sub-tensors and the integers indicate the sizes of sub-tensors' + :attr:`dim` dimension orderly. + dim (int): The dimension along which to split. If :math:`dim < 0`, the + dimension to split along is :math:`rank(input) + dim`. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + List: The list of segmented tensor variables. + + Examples: + .. code-block:: python + + # x is a Tensor variable with shape [3, 9, 5]: + x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1) + x0.shape # [3, 3, 5] + x1.shape # [3, 3, 5] + x2.shape # [3, 3, 5] + x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1) + x0.shape # [3, 2, 5] + x1.shape # [3, 3, 5] + x2.shape # [3, 4, 5] + """ + helper = LayerHelper('split', **locals()) + input_shape = input.shape + dim = (len(input_shape) + dim) if dim < 0 else dim + if isinstance(num_or_sections, int): + assert num_or_sections > 1, 'num_or_sections must be more than 1.' + num = num_or_sections + else: + assert len(num_or_sections) < input_shape[ + dim], 'len(num_or_sections) must not be more than input.shape[dim].' + num = len(num_or_sections) + outs = [ + helper.create_tmp_variable(dtype=helper.input_dtype()) + for i in range(num) + ] + helper.append_op( + type='split', + inputs={'X': input}, + outputs={'Out': outs}, + attrs={ + 'num': num_or_sections if isinstance(num_or_sections, int) else 0, + 'sections': num_or_sections + if isinstance(num_or_sections, list) else [], + 'axis': dim + }) + return outs + + +def l2_normalize(x, axis, epsilon=1e-12, name=None): + """ + **L2 normalize Layer** + + The l2 normalize layer normalizes `x` along dimension `axis` using an L2 + norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes + + output = x / sqrt(max(sum(x**2), epsilon)) + + For `x` with more dimensions, this layer independently normalizes each 1-D + slice along dimension `axis`. + + Args: + x(Variable|list): The input tensor to l2_normalize layer. + axis(int): Dimension along which to normalize the input. + epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will + be used as the divisor if the l2 norm of `x` is less than + sqrt(epsilon). + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + + Returns: + Variable: The output tensor variable. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name="data", + shape=(3, 17, 13), + dtype="float32") + fc = fluid.layers.l2_normalize(x=data, axis=1) + """ + + if len(x.shape) == 1: axis = 0 + + helper = LayerHelper("l2_normalize", **locals()) + + square = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square}) + + reduced_sum = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type="reduce_sum", + inputs={"X": square}, + outputs={"Out": reduced_sum}, + attrs={ + "dim": 1 if axis is None else axis, + "keep_dim": True, + "reduce_all": False + }) + + # TODO(caoying) A lower bound value epsilon for the norm is needed to + # imporve the numeric stability of reciprocal. This requires a maximum_op. + rsquare = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare}) + + # TODO(caoying) the current elementwise_mul operator does not support a + # general broadcast rule which broadcasts input(Y) to have the same + # dimension with Input(X) starting from a specified dimension. So this + # exanpsion is requred. Once a general broadcast rule is spported, this + # expanding canbe removed. + rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype) + expand_times = [1] * len(x.shape) + expand_times[axis] = int(x.shape[axis]) + helper.append_op( + type="expand", + inputs={"X": rsquare}, + outputs={"Out": rsquare_expanded}, + attrs={"expand_times": expand_times}) + + out = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type="elementwise_mul", + inputs={"X": x, + "Y": rsquare_expanded}, + outputs={"Out": out}) + return out + + +def matmul(x, y, transpose_x=False, transpose_y=False, name=None): + """ + Applies matrix multipication to two tensors. Currently only rank 1 to rank + 3 input tensors are supported. + + The actual behavior depends on the shapes of :math:`x`, :math:`y` and the + flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically: + + - If a transpose flag is specified, the last two dimensions of the tensor + are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for + :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as + :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the + opposite: It is treated as :math:`[D, 1]` in nontransposed form and as + :math:`[1, D]` in transposed form. + + - After transpose, the two tensors are 2-D or 3-D and matrix multipication + performs in the following way. + + - If both are 2-D, they are multiplied like conventional matrices. + - If either is 3-D, it is treated as a stack of matrices residing in the + last two dimensions and a batched matrix multiply supporting broadcast + applies on the two tensors. + + Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and + nontransposed, the prepended or appended dimension :math:`1` will be + removed after matrix multipication. + + Args: + x (Variable): The input variable which is a Tensor or LoDTensor. + y (Variable): The input variable which is a Tensor or LoDTensor. + transpose_x (bool): Whether to transpose :math:`x` before multiplication. + transpose_y (bool): Whether to transpose :math:`y` before multiplication. + name(str|None): A name for this layer(optional). If set None, the layer + will be named automatically. + + Returns: + Variable: The product Tensor variable. + + Examples: + .. code-block:: python + + # Examples to clarify shapes of the inputs and output + # x: [B, M, K], y: [B, K, N] + fluid.layers.matmul(x, y) # out: [B, M, N] + # x: [B, M, K], y: [K, N] + fluid.layers.matmul(x, y) # out: [B, M, N] + # x: [B, M, K], y: [K] + fluid.layers.matmul(x, y) # out: [B, M] + # x: [M, K], y: [K, N] + fluid.layers.matmul(x, y) # out: [M, N] + # x: [K], y: [K] + fluid.layers.matmul(x, y) # out: [1] + # x: [M], y: [N] + + fluid.layers.matmul(x, y, True, True) # out: [M, N] + """ + helper = LayerHelper('matmul', **locals()) + assert max( + len(x.shape), len(y.shape) + ) <= 3, 'Currently only rank 1 to rank 3 input tensors are supported.' + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='matmul', + inputs={'X': x, + 'Y': y}, + outputs={'Out': out}, + attrs={'transpose_X': transpose_x, + 'transpose_Y': transpose_y}) + return out + + +def warpctc(input, label, blank=0, norm_by_times=False, **kwargs): + """ + An operator integrating the open source Warp-CTC library + (https://github.com/baidu-research/warp-ctc) + to compute Connectionist Temporal Classification (CTC) loss. + It can be aliased as softmax with CTC, since a native softmax activation is + interated to the Warp-CTC library, to to normlize values for each row of the + input tensor. + + Args: + input(Variable): (LodTensor, default: LoDTensor), + the unscaled probabilities of variable-length sequences, + which is a 2-D Tensor with LoD information. + It's shape is [Lp, num_classes + 1], where Lp is the sum of all input + sequences' length and num_classes is the true number of classes. + (not including the blank label). + label(Variable): (LodTensor, default: LoDTensor), the ground truth + of variable-length sequence, which is a 2-D Tensor with LoD + information. It is of the shape [Lg, 1], where Lg is th sum of + all labels' length. + blank: (int, default: 0), the blank label index of Connectionist + Temporal Classification (CTC) loss, which is in the + half-opened interval [0, num_classes + 1). + norm_by_times: (bool, default: false), whether to normalize + the gradients by the number of time-step,which is also the + sequence's length. There is no need to normalize the gradients + if warpctc layer was follewed by a mean_op. + + Returns: + Variable: The Connectionist Temporal Classification (CTC) loss, + which is a 2-D Tensor of the shape [batch_size, 1]. + + Examples: + .. code-block:: python + y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1) + y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32') + cost = layers.warpctc(input=y_predict, label=y) + + """ + helper = LayerHelper('warpctc', **kwargs) + loss_out = helper.create_tmp_variable(dtype=input.dtype) + grad_out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='warpctc', + inputs={'Logits': [input], + 'Label': [label]}, + outputs={'WarpCTCGrad': [grad_out], + 'Loss': [loss_out]}, + attrs={'blank': blank, + 'norm_by_times': norm_by_times}) + return loss_out diff --git a/python/paddle/v2/fluid/layers/ops.py b/python/paddle/v2/fluid/layers/ops.py new file mode 100644 index 0000000000..21945edf08 --- /dev/null +++ b/python/paddle/v2/fluid/layers/ops.py @@ -0,0 +1,65 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from ..registry import register_layer + +__activations__ = [ + 'sigmoid', + 'logsigmoid', + 'exp', + 'relu', + 'tanh', + 'tanh_shrink', + 'softshrink', + 'sqrt', + 'abs', + 'ceil', + 'floor', + 'round', + 'reciprocal', + 'log', + 'square', + 'softplus', + 'softsign', + 'brelu', + 'leaky_relu', + 'soft_relu', + 'elu', + 'relu6', + 'pow', + 'stanh', + 'hard_shrink', + 'thresholded_relu', + 'hard_sigmoid', + 'swish', +] + +__all__ = [ + 'mean', + 'mul', + 'reshape', + 'scale', + 'transpose', + 'sigmoid_cross_entropy_with_logits', + 'elementwise_add', + 'elementwise_div', + 'elementwise_sub', + 'elementwise_mul', + 'elementwise_max', + 'elementwise_min', + 'clip', + 'sequence_softmax', +] + __activations__ + +for _OP in set(__all__): + globals()[_OP] = register_layer(_OP) diff --git a/python/paddle/v2/fluid/layers/tensor.py b/python/paddle/v2/fluid/layers/tensor.py new file mode 100644 index 0000000000..255b9d4678 --- /dev/null +++ b/python/paddle/v2/fluid/layers/tensor.py @@ -0,0 +1,331 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from ..layer_helper import LayerHelper +from ..param_attr import ParamAttr +from ..framework import convert_np_dtype_to_dtype_ +from ..framework import Variable +from ..core import DataType +import numpy + +__all__ = [ + 'create_tensor', + 'create_parameter', + 'cast', + 'concat', + 'sums', + 'assign', + 'fill_constant_batch_size_like', + 'fill_constant', + 'ones', + 'zeros', +] + + +def create_tensor(dtype, name=None): + helper = LayerHelper("create_tensor", **locals()) + return helper.create_variable(name=helper.name, dtype=dtype) + + +def create_parameter(shape, + dtype, + attr=None, + is_bias=False, + default_initializer=None): + """ + Create a parameter + Args: + shape(list[int]): shape of the parameter + dtype(string): element type of the parameter + attr(ParamAttr): attributes of the parameter + is_bias(bool): This can affect which default initializer is chosen + when default_initializer is None. If is_bias, + initializer.Constant(0.0) will be used. Otherwise, + Xavier() will be used. + default_initializer(Initializer): initializer for the parameter + + Returns: + Parameter: the created parameter + """ + helper = LayerHelper("create_parameter") + if attr is None: + attr = ParamAttr() + return helper.create_parameter(attr, shape, dtype, is_bias, + default_initializer) + + +def cast(x, dtype): + """ + This function takes in the input with input_dtype + and casts it to the output_dtype as the output. + """ + helper = LayerHelper('cast', **locals()) + out = helper.create_tmp_variable(dtype=dtype) + helper.append_op( + type='cast', + inputs={'X': [x]}, + outputs={'Out': [out]}, + attrs={'in_dtype': x.dtype, + 'out_dtype': out.dtype}) + return out + + +def concat(input, axis=0): + """ + **Concat** + + This function concatenates the input along the axis mentioned + and returns that as the output. + + Args: + input(list): List of tensors to be concatenated + axis(int): Integer axis along which the tensors will be concatenated + + Returns: + Variable: Output variable of the concatenation + + Examples: + .. code-block:: python + out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth]) + """ + helper = LayerHelper('concat', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='concat', + inputs={'X': input}, + outputs={'Out': [out]}, + attrs={'axis': axis}) + return out + + +def sums(input, out=None): + """This function performs the sum operation on the input and returns the + result as the output. + + Args: + input (Variable|list): The input tensor that has the elements + that need to be summed up. + + Returns: + Variable: The tensor type variable that has the sum of input + written to it. + + Examples: + .. code-block::python + + tmp = fluid.layers.zeros(shape=[10], dtype='int32') + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) + a0 = layers.array_read(array=tmp, i=i) + i = layers.increment(x=i) + a1 = layers.array_read(array=tmp, i=i) + mean_a0 = layers.mean(x=a0) + mean_a1 = layers.mean(x=a1) + a_sum = layers.sums(input=[mean_a0, mean_a1]) + """ + helper = LayerHelper('sum', **locals()) + if out is None: + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out}) + return out + + +def assign(input, output): + """ + **Assign** + + This function copies the *input* Variable to the *output* Variable. + + Args: + input(Variable|numpy.ndarray): The source variable + output(Variable): The destination variable + + Returns: + Variable: The destination variable that was supplied as the *output*. + + Examples: + .. code-block:: python + out = fluid.layers.create_tensor(dtype='float32') + hidden = fluid.layers.fc(input=data, size=10) + fluid.layers.assign(hidden, out) + """ + helper = LayerHelper('assign', **locals()) + if isinstance(input, Variable): + helper.append_op( + type='scale', + inputs={'X': [input]}, + outputs={'Out': [output]}, + attrs={'scale': 1.0}) + elif isinstance(input, numpy.ndarray): + dtype = convert_np_dtype_to_dtype_(input.dtype) + if dtype == DataType.FP32: + value_name = "fp32_values" + values = [float(v) for v in input.flat] + elif dtype == DataType.INT32: + value_name = "int32_values" + values = [int(v) for v in input.flat] + else: + raise ValueError("Unsupported dtype %s", input.dtype) + if input.size > 1024 * 1024: + raise ValueError("The size of input is too big. Please consider " + "saving it to file and 'load_op' to load it") + + helper.append_op( + type='assign_value', + outputs={'Out': [output]}, + attrs={ + 'dtype': dtype, + 'shape': list(input.shape), + value_name: values + }) + else: + raise ValueError("Wrong type for assign input: %s" % type(input)) + + return output + + +def fill_constant(shape, dtype, value, force_cpu=False, out=None): + """ + **fill_constant** + + This function creates a tensor with specified `shape` and `dtype`, and + initializes it with a constant specifed by `value`. + + The attribute `stop_gradient` of the created tensor is set to True. + + Args: + shape(tuple|list|None): Shape of the output tensor. + dtype(np.dtype|core.DataType|str): Data type of the output tensor. + value(float): The constant value used to initialize the output tensor. + out(Variable): The output tensor. + + Returns: + Variable: The tensor variable storing the output. + + Examples: + .. code-block:: python + + data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64') + """ + + helper = LayerHelper("fill_constant", **locals()) + if out is None: + out = helper.create_tmp_variable(dtype=dtype) + helper.append_op( + type='fill_constant', + inputs={}, + outputs={'Out': [out]}, + attrs={ + 'shape': shape, + 'dtype': out.dtype, + 'value': float(value), + 'force_cpu': force_cpu + }) + out.stop_gradient = True + return out + + +def fill_constant_batch_size_like(input, + shape, + dtype, + value, + input_dim_idx=0, + output_dim_idx=0): + """ + **fill_constant_batch_size_like** + + This function creates a tensor of specified *shape*, *dtype* and batch size, + and initializes this with a constant supplied in *value*. The batch size is + obtained from the `input` tensor. + + It also sets *stop_gradient* to True. + + Args: + input(Variable): Tensor whose dimensions will be used to get batch size + shape(tuple|list|None): Shape of output tensor + dtype(np.dtype|core.DataType|str): Data type of output tensor + value(float): Constant value to initialize the output tensor + input_dim_idx(int): Index of input's batch size dimension + output_dim_idx(int): Index of output's batch size dimension + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + data = fluid.layers.fill_constant_batch_size_like( + input=like, shape=[1], value=0, dtype='int64') + """ + helper = LayerHelper("fill_constant_batch_size_like", **locals()) + out = helper.create_tmp_variable(dtype=dtype) + helper.append_op( + type='fill_constant_batch_size_like', + inputs={'Input': input}, + outputs={'Out': [out]}, + attrs={ + 'shape': shape, + 'dtype': out.dtype, + 'value': float(value), + 'input_dim_idx': input_dim_idx, + 'output_dim_idx': output_dim_idx + }) + out.stop_gradient = True + return out + + +def ones(shape, dtype): + """ + **ones** + + This function creates a tensor of specified *shape* and + *dtype*, and initializes this with 1. + + It also sets *stop_gradient* to True. + + Args: + shape(tuple|list|None): Shape of output tensor + dtype(np.dtype|core.DataType|str): Data type of output tensor + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + data = fluid.layers.ones(shape=[1], dtype='int64') + """ + return fill_constant(value=1.0, **locals()) + + +def zeros(shape, dtype): + """ + **zeros** + + This function creates a tensor of specified *shape* and + *dtype*, and initializes this with 0. + + It also sets *stop_gradient* to True. + + Args: + shape(tuple|list|None): Shape of output tensor + dtype(np.dtype|core.DataType|str): Data type of output tensor + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + data = fluid.layers.zeros(shape=[1], dtype='int64') + """ + return fill_constant(value=0.0, **locals()) diff --git a/python/paddle/v2/fluid/memory_optimization_transpiler.py b/python/paddle/v2/fluid/memory_optimization_transpiler.py new file mode 100644 index 0000000000..89ffe26ed1 --- /dev/null +++ b/python/paddle/v2/fluid/memory_optimization_transpiler.py @@ -0,0 +1,171 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from collections import defaultdict +import framework +from framework import Program, default_main_program, Parameter, Variable +import backward +from backward import _rename_arg_ +from . import core + +dtype_to_size = { + core.DataType.FP16: 2, + core.DataType.FP32: 4, + core.DataType.FP64: 8, + core.DataType.INT16: 2, + core.DataType.INT32: 4, + core.DataType.INT64: 8, + core.DataType.BOOL: 1 +} + + +class ControlFlowGraph(object): + def __init__(self, Program): + self._program = Program + self._succesors = defaultdict(set) + self._presucessors = defaultdict(set) + self._uses = defaultdict(set) + self._defs = defaultdict(set) + self._live_in = defaultdict(set) + self._live_out = defaultdict(set) + + def _add_connections(self, connections): + for node1, node2 in connections: + self._add(node1, node2) + + def _add(self, node1, node2): + self._succesors[node1].add(node2) + self._presucessors[node2].add(node1) + + def _build_graph(self): + program_desc = self._program.get_desc() + block_size = program_desc.num_blocks() + + # TODO(qijun) handle Program with if/while operators + self.global_block_desc = program_desc.block(0) + self.op_size = self.global_block_desc.op_size() + + op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)] + self._add_connections(op_node_connections) + + self.ops = [self.global_block_desc.op(i) for i in range(self.op_size)] + + for i in range(self.op_size): + self._uses[i].update(self.ops[i].input_arg_names()) + self._defs[i].update(self.ops[i].output_arg_names()) + + def _update_graph(self, old_name, new_name, begin_idx=0): + for i in range(begin_idx, self.op_size): + if old_name in self._uses[i]: + self._uses[i].remove(old_name) + self._uses[i].add(new_name) + if old_name in self._defs[i]: + self._defs[i].remove(old_name) + self._defs[i].add(new_name) + if old_name in self._live_in[i]: + self._live_in[i].remove(old_name) + self._live_out[i].add(new_name) + if old_name in self._live_out[i]: + self._live_out[i].remove(old_name) + self._live_out[i].add(new_name) + + def _reach_fixed_point(self, live_in, live_out): + if len(live_in) != len(self._live_in): + return False + if len(live_out) != len(self._live_out): + return False + for i in range(self.op_size): + if live_in[i] != self._live_in[i]: + return False + for i in range(self.op_size): + if live_out[i] != self._live_out[i]: + return False + return True + + def _dataflow_analyze(self): + self._build_graph() + live_in = defaultdict(set) + live_out = defaultdict(set) + while True: + for i in range(self.op_size): + live_in[i] = set(self._live_in[i]) + live_out[i] = set(self._live_out[i]) + self._live_in[i] = self._uses[i] | ( + self._live_out[i] - self._defs[i]) + for s in self._succesors[i]: + self._live_out[i] |= self._live_in[s] + + if self._reach_fixed_point(live_in, live_out): + break + + def _get_diff(self, a, b): + u = a & b + return a - u, b - u + + def memory_optimize(self): + self._build_graph() + self._dataflow_analyze() + self.pool = [] + for i in range(self.op_size): + if self.pool: + out_pair = [(x, self.global_block_desc.var(str(x)).shape()) + for x in self._defs[i]] + for x, x_shape in out_pair: + if not self.global_block_desc.var(str(x)).persistable(): + for index, cache_pair in enumerate(self.pool): + cache_var = cache_pair[0] + cache_shape = cache_pair[1] + if x_shape == cache_shape: + x_dtype = self.global_block_desc.var(str( + x)).dtype() + cache_dtype = self.global_block_desc.var( + str(cache_var)).dtype() + # TODO(qijun): actually, we should compare dtype_to_size[x_dtype] + # and dtype_to_size[cache_dtype] + if x_dtype == cache_dtype: + print( + ("Hit Cache !!!! cache pool index " + "is %d, var name is %s, " + "cached var name is %s, " + "var shape is %s ") % + (index, x, cache_var, str(cache_shape))) + self.pool.pop(index) + _rename_arg_( + self.ops, x, cache_var, begin_idx=i) + self._program.current_block().var(str( + x)).desc = self.global_block_desc.var( + str(cache_var)) + self._update_graph( + x, cache_var, begin_idx=i) + break + + in_diff, out_diff = self._get_diff(self._live_in[i], + self._live_out[i]) + can_optimize = filter( + lambda x: not self.global_block_desc.var(str(x)).persistable(), + in_diff) + if can_optimize: + for var_name in can_optimize: + self.pool.append( + (var_name, + self.global_block_desc.var(str(var_name)).shape())) + + def get_program(self): + return self._program + + +def memory_optimize(input_program): + graph = ControlFlowGraph(input_program) + graph.memory_optimize() + result_program = graph.get_program() + return result_program diff --git a/python/paddle/v2/fluid/net_drawer.py b/python/paddle/v2/fluid/net_drawer.py index 94fdd5e389..7448975b59 100644 --- a/python/paddle/v2/fluid/net_drawer.py +++ b/python/paddle/v2/fluid/net_drawer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import argparse import json import logging diff --git a/python/paddle/v2/fluid/nets.py b/python/paddle/v2/fluid/nets.py index 05728ad75a..c53fbd280f 100644 --- a/python/paddle/v2/fluid/nets.py +++ b/python/paddle/v2/fluid/nets.py @@ -1,6 +1,24 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import layers -__all__ = ["simple_img_conv_pool", "sequence_conv_pool"] +__all__ = [ + "simple_img_conv_pool", + "sequence_conv_pool", + "glu", + "dot_product_attention", +] def simple_img_conv_pool(input, @@ -9,24 +27,23 @@ def simple_img_conv_pool(input, pool_size, pool_stride, act, + param_attr=None, pool_type='max', - main_program=None, - startup_program=None): + use_cudnn=True): conv_out = layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, + param_attr=param_attr, act=act, - main_program=main_program, - startup_program=startup_program) + use_cudnn=use_cudnn) pool_out = layers.pool2d( input=conv_out, pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride, - main_program=main_program, - startup_program=startup_program) + use_cudnn=use_cudnn) return pool_out @@ -36,12 +53,12 @@ def img_conv_group(input, conv_padding=1, conv_filter_size=3, conv_act=None, + param_attr=None, conv_with_batchnorm=False, conv_batchnorm_drop_rate=None, pool_stride=1, pool_type=None, - main_program=None, - startup_program=None): + use_cudnn=True): """ Image Convolution Group, Used for vgg net. """ @@ -57,6 +74,7 @@ def img_conv_group(input, conv_padding = __extend_list__(conv_padding) conv_filter_size = __extend_list__(conv_filter_size) + param_attr = __extend_list__(param_attr) conv_with_batchnorm = __extend_list__(conv_with_batchnorm) conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate) @@ -70,52 +88,124 @@ def img_conv_group(input, num_filters=conv_num_filter[i], filter_size=conv_filter_size[i], padding=conv_padding[i], + param_attr=param_attr[i], act=local_conv_act, - main_program=main_program, - startup_program=startup_program) + use_cudnn=use_cudnn) if conv_with_batchnorm[i]: - tmp = layers.batch_norm( - input=tmp, - act=conv_act, - main_program=main_program, - startup_program=startup_program) + tmp = layers.batch_norm(input=tmp, act=conv_act) drop_rate = conv_batchnorm_drop_rate[i] if abs(drop_rate) > 1e-5: - tmp = layers.dropout( - x=tmp, - dropout_prob=drop_rate, - main_program=main_program, - startup_program=startup_program) + tmp = layers.dropout(x=tmp, dropout_prob=drop_rate) pool_out = layers.pool2d( input=tmp, pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride, - main_program=main_program, - startup_program=startup_program) + use_cudnn=use_cudnn) return pool_out def sequence_conv_pool(input, num_filters, filter_size, + param_attr=None, act="sigmoid", - pool_type="max", - main_program=None, - startup_program=None): + pool_type="max"): conv_out = layers.sequence_conv( input=input, num_filters=num_filters, filter_size=filter_size, - act=act, - main_program=main_program, - startup_program=startup_program) + param_attr=param_attr, + act=act) - pool_out = layers.sequence_pool( - input=conv_out, - pool_type=pool_type, - main_program=main_program, - startup_program=startup_program) + pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type) return pool_out + + +def glu(input, dim=-1): + """ + The gated linear unit composed by split, sigmoid activation and elementwise + multiplication. Specifically, Split the input into two equal sized parts + :math:`a` and :math:`b` along the given dimension and then compute as + following: + + .. math:: + + {GLU}(a, b)= a \otimes \sigma(b) + + Refer to `Language Modeling with Gated Convolutional Networks + `_. + + Args: + input (Variable): The input variable which is a Tensor or LoDTensor. + dim (int): The dimension along which to split. If :math:`dim < 0`, the + dimension to split along is :math:`rank(input) + dim`. + + Returns: + Variable: The Tensor variable with half the size of input. + + Examples: + .. code-block:: python + + # x is a Tensor variable with shape [3, 6, 9] + fluid.nets.glu(input=x, dim=1) # shape of output: [3, 3, 9] + """ + + a, b = layers.split(input, num_or_sections=2, dim=dim) + act_b = layers.sigmoid(x=b) + out = layers.elementwise_mul(x=a, y=act_b) + return out + + +def dot_product_attention(querys, keys, values): + """ + The dot-product attention. + + Attention mechanism can be seen as mapping a query and a set of key-value + pairs to an output. The output is computed as a weighted sum of the values, + where the weight assigned to each value is computed by a compatibility + function (dot-product here) of the query with the corresponding key. + + The dot-product attention can be implemented through (batch) matrix + multipication as follows: + + .. math:: + + Attention(Q, K, V)= softmax(QK^\mathrm{T})V + + Refer to `Attention Is All You Need + `_. + + Note that batch data containing sequences with different lengths is not + supported by this because of the (batch) matrix multipication. + + Args: + query (Variable): The input variable which is a Tensor or LoDTensor. + key (Variable): The input variable which is a Tensor or LoDTensor. + value (Variable): The input variable which is a Tensor or LoDTensor. + + Returns: + tuple: The Tensor variables representing the output and attention scores. + + Examples: + .. code-block:: python + + # Suppose q, k, v are tensor variables with the following shape: + # q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10] + out, attn_scores = fluid.nets.dot_product_attention(q, k, v) + out.shape # [3, 5, 10] + attn_scores.shape # [3, 5, 6] + """ + assert keys.shape[-2] == values.shape[ + -2], 'The shapes of keys and values mismatch.' + assert querys.shape[-1] == keys.shape[ + -1], 'The shapes of querys and keys mismatch.' + product = layers.matmul(x=querys, y=keys, transpose_y=True) + attn_scores = layers.reshape( + x=layers.reshape( + x=product, shape=[-1, product.shape[-1]], act='softmax'), + shape=product.shape) + out = layers.matmul(attn_scores, values) + return out, attn_scores diff --git a/python/paddle/v2/fluid/op.py b/python/paddle/v2/fluid/op.py index 5828803497..4bc0f79c64 100644 --- a/python/paddle/v2/fluid/op.py +++ b/python/paddle/v2/fluid/op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.core as core import paddle.v2.fluid.proto.framework_pb2 as framework_pb2 diff --git a/python/paddle/v2/fluid/optimizer.py b/python/paddle/v2/fluid/optimizer.py index 719e3b2563..8bd62ef0c0 100644 --- a/python/paddle/v2/fluid/optimizer.py +++ b/python/paddle/v2/fluid/optimizer.py @@ -1,11 +1,25 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from collections import defaultdict import framework -from backward import append_backward_ops -from framework import unique_name +from backward import append_backward +from framework import unique_name, program_guard from initializer import Constant from layer_helper import LayerHelper from regularizer import append_regularization_ops +from clip import append_gradient_clip_ops, error_clip_callback __all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad'] @@ -18,8 +32,9 @@ class Optimizer(object): but need to use one of it's implementation. """ - def __init__(self, global_step=None): + def __init__(self, global_step=None, regularization=None): self._global_step = global_step + self.regularization = regularization # Dictionary of accumulators. Some optimizer subclasses need to # allocate and manage extra variables associated with the parameters # to train. These variables are called accumulators. @@ -158,34 +173,32 @@ class Optimizer(object): # Create any accumulators program = loss.block.program - self.helper = LayerHelper( - self.__class__.__name__, - main_program=program, - startup_program=startup_program) - self._create_accumulators(loss.block, - [p[0] for p in parameters_and_grads]) - - optimize_ops = [] - for param_and_grad in parameters_and_grads: - if param_and_grad[0].trainable is True and param_and_grad[ - 1] is not None: - optimize_op = self._append_optimize_op(loss.block, - param_and_grad) - optimize_ops.append(optimize_op) - - # Returned list of ops can include more ops in addition - # to optimization ops - return_ops = optimize_ops - - # Get custom finish ops for subclasses - # FIXME: Need to fix this once we figure out how to handle dependencies - finish_ops = self._finish_update(loss.block) - if finish_ops is not None: - return_ops += finish_ops - - if self._global_step is not None: - return_ops.append(self._increment_global_step(loss.block)) - return return_ops + with program_guard(program, startup_program): + self.helper = LayerHelper(self.__class__.__name__) + self._create_accumulators(loss.block, + [p[0] for p in parameters_and_grads]) + + optimize_ops = [] + for param_and_grad in parameters_and_grads: + if param_and_grad[0].trainable is True and param_and_grad[ + 1] is not None: + optimize_op = self._append_optimize_op(loss.block, + param_and_grad) + optimize_ops.append(optimize_op) + + # Returned list of ops can include more ops in addition + # to optimization ops + return_ops = optimize_ops + + # Get custom finish ops for subclasses + # FIXME: Need to fix this once we figure out how to handle dependencies + finish_ops = self._finish_update(loss.block) + if finish_ops is not None: + return_ops += finish_ops + + if self._global_step is not None: + return_ops.append(self._increment_global_step(loss.block)) + return return_ops def minimize(self, loss, @@ -194,24 +207,30 @@ class Optimizer(object): no_grad_set=None): """Add operations to minimize `loss` by updating `parameter_list`. - This method combines interface `append_backward_ops()` and + This method combines interface `append_backward()` and `create_optimization_pass()` into one. """ - params_grads = append_backward_ops(loss, parameter_list, no_grad_set) + params_grads = append_backward(loss, parameter_list, no_grad_set, + error_clip_callback) + + params_grads = append_gradient_clip_ops(params_grads) + # Add regularization if any - params_grads = append_regularization_ops(params_grads) + params_grads = append_regularization_ops(params_grads, + self.regularization) + optimize_ops = self.create_optimization_pass(params_grads, loss, startup_program) - return optimize_ops + return optimize_ops, params_grads class SGDOptimizer(Optimizer): """ Simple SGD optimizer without any state. """ - def __init__(self, learning_rate, global_step=None): + def __init__(self, learning_rate, **kwargs): assert learning_rate is not None - super(SGDOptimizer, self).__init__(global_step) + super(SGDOptimizer, self).__init__(**kwargs) self.type = "sgd" self._learning_rate = learning_rate @@ -236,14 +255,10 @@ class MomentumOptimizer(Optimizer): """ _velocity_acc_str = "velocity" - def __init__(self, - learning_rate, - momentum, - use_nesterov=False, - global_step=None): + def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs): assert learning_rate is not None assert momentum is not None - super(MomentumOptimizer, self).__init__(global_step) + super(MomentumOptimizer, self).__init__(**kwargs) self.type = "momentum" self._learning_rate = learning_rate self._momentum = momentum @@ -284,10 +299,10 @@ class AdagradOptimizer(Optimizer): """ _moment_acc_str = "moment" - def __init__(self, learning_rate, epsilon=1.0e-6, global_step=None): + def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs): assert learning_rate is not None assert epsilon is not None - super(AdagradOptimizer, self).__init__(global_step) + super(AdagradOptimizer, self).__init__(**kwargs) self.type = "adagrad" self._learning_rate = learning_rate self._epsilon = epsilon @@ -331,12 +346,12 @@ class AdamOptimizer(Optimizer): beta1=0.9, beta2=0.999, epsilon=1e-8, - global_step=None): + **kwargs): assert learning_rate is not None assert beta1 is not None assert beta2 is not None assert epsilon is not None - super(AdamOptimizer, self).__init__(global_step) + super(AdamOptimizer, self).__init__(**kwargs) self.type = "adam" self._learning_rate = learning_rate self._beta1 = beta1 @@ -436,12 +451,12 @@ class AdamaxOptimizer(Optimizer): beta1=0.9, beta2=0.999, epsilon=1e-8, - global_step=None): + **kwargs): assert learning_rate is not None assert beta1 is not None assert beta2 is not None assert epsilon is not None - super(AdamaxOptimizer, self).__init__() + super(AdamaxOptimizer, self).__init__(**kwargs) self.type = "adamax" self._learning_rate = learning_rate self._beta1 = beta1 @@ -514,16 +529,12 @@ class DecayedAdagradOptimizer(Optimizer): """ _moment_acc_str = "moment" - def __init__(self, - learning_rate, - decay=0.95, - epsilon=1.0e-6, - global_step=None): + def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs): assert learning_rate is not None assert decay is not None assert epsilon is not None - super(DecayedAdagradOptimizer, self).__init__(global_step) + super(DecayedAdagradOptimizer, self).__init__(**kwargs) self.type = "decayed_adagrad" self._learning_rate = learning_rate self._decay = decay diff --git a/python/paddle/v2/fluid/param_attr.py b/python/paddle/v2/fluid/param_attr.py index 86088fdd7c..3af0190590 100644 --- a/python/paddle/v2/fluid/param_attr.py +++ b/python/paddle/v2/fluid/param_attr.py @@ -1,6 +1,21 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from initializer import Initializer, Xavier, Constant from regularizer import WeightDecayRegularizer +__all__ = ['ParamAttr'] + class ParamAttr(object): def __init__(self, @@ -8,12 +23,14 @@ class ParamAttr(object): initializer=None, learning_rate=1.0, regularizer=None, - trainable=True): + trainable=True, + clip=None): self.name = name self.initializer = initializer self.learning_rate = learning_rate self.regularizer = regularizer self.trainable = trainable + self.clip = clip def set_default_initializer(self, initializer): if initializer is None: @@ -36,6 +53,8 @@ class ParamAttr(object): def to_attr(arg): if arg is None: return ParamAttr() + elif isinstance(arg, list) or isinstance(arg, tuple): + return [ParamAttr.to_attr(a) for a in arg] elif isinstance(arg, ParamAttr): return arg elif isinstance(arg, str) or isinstance(arg, unicode): @@ -52,9 +71,12 @@ class ParamAttr(object): def to_kwargs(self, with_initializer=False): kwargs = { 'name': self.name, - 'learning_rate': self.learning_rate, + 'optimize_attr': { + 'learning_rate': self.learning_rate + }, 'regularizer': self.regularizer, - 'trainable': self.trainable + 'trainable': self.trainable, + 'clip_attr': self.clip } if with_initializer: kwargs['initializer'] = self.initializer diff --git a/python/paddle/v2/fluid/profiler.py b/python/paddle/v2/fluid/profiler.py index 2069b713fa..f049498b9f 100644 --- a/python/paddle/v2/fluid/profiler.py +++ b/python/paddle/v2/fluid/profiler.py @@ -1,5 +1,19 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.core as core from contextlib import contextmanager +import os __all__ = ['CudaProfiler'] @@ -30,17 +44,21 @@ def cuda_profiler(output_file, output_mode=None, config=None): written into this file. output_mode (string) : The output mode has Key-Value pair format and Comma separated values format. It should be 'kvp' or 'csv'. - config (string) : The profiler options and counters can refer to - "Compute Command Line Profiler User Guide". + config (list of string) : The profiler options and counters can refer + to "Compute Command Line Profiler User Guide". """ if output_mode is None: output_mode = 'csv' if output_mode not in ['kvp', 'csv']: raise ValueError("The output mode must be 'kvp' or 'csv'.") config = NVPROF_CONFIG if config is None else config - core.nvprof_init(output_file, output_mode, config) + config_file = 'nvprof_config_file' + with open(config_file, 'wb') as fp: + fp.writelines(["%s\n" % item for item in config]) + core.nvprof_init(output_file, output_mode, config_file) # Enables profiler collection by the active CUDA profiling tool. core.nvprof_start() yield # Disables profiler collection. core.nvprof_stop() + os.remove(config_file) diff --git a/python/paddle/v2/fluid/registry.py b/python/paddle/v2/fluid/registry.py new file mode 100644 index 0000000000..ff10542d40 --- /dev/null +++ b/python/paddle/v2/fluid/registry.py @@ -0,0 +1,213 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import re +import cStringIO +import warnings +import functools +import inspect + +import proto.framework_pb2 as framework_pb2 +from framework import OpProtoHolder, Variable, Program, Operator +from paddle.v2.fluid.layer_helper import LayerHelper, unique_name + +__all__ = [ + 'deprecated', + 'register_layer', + 'autodoc', +] + + +def _convert_(name): + """ + Formatting. + + Args: + name: The name/alias + + This function takes in a name and converts it to a standard format of + group1_group2. Where as per the regular expression, group1 can have + alphabets and numbers and group2 has capital alphabets. + + """ + s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) + return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() + + +def _generate_doc_string_(op_proto): + """ + Generate docstring by OpProto + + Args: + op_proto (framework_pb2.OpProto): a protobuf message typed OpProto + + Returns: + str: the document string + """ + + def _type_to_str_(tp): + return framework_pb2.AttrType.Name(tp) + + if not isinstance(op_proto, framework_pb2.OpProto): + raise TypeError("OpProto should be `framework_pb2.OpProto`") + + buf = cStringIO.StringIO() + buf.write(op_proto.comment) + buf.write('\nArgs:\n') + for each_input in op_proto.inputs: + line_begin = ' {0}: '.format(_convert_(each_input.name)) + buf.write(line_begin) + buf.write(each_input.comment) + buf.write('\n') + buf.write(' ' * len(line_begin)) + buf.write('Duplicable: ') + buf.write(str(each_input.duplicable)) + buf.write(' Optional: ') + buf.write(str(each_input.dispensable)) + buf.write('\n') + + for each_attr in op_proto.attrs: + buf.write(' ') + buf.write(each_attr.name) + buf.write(' (') + buf.write(_type_to_str_(each_attr.type)) + buf.write('): ') + buf.write(each_attr.comment) + buf.write('\n') + + if len(op_proto.outputs) != 0: + buf.write('\nReturns:\n') + buf.write(' ') + for each_opt in op_proto.outputs: + if not each_opt.intermediate: + break + buf.write(each_opt.comment) + + return buf.getvalue() + + +def register_layer(op_type): + """Register the Python layer for an Operator. + + Args: + op_type: The name of the operator to be created. + + This function takes in the operator type (sigmoid, mean , average etc) and + creates the operator functionality. + + """ + op_proto = OpProtoHolder.instance().get_op_proto(op_type) + not_intermediate_outputs = \ + filter(lambda output: not output.intermediate, op_proto.outputs) + intermediate_outputs = \ + filter(lambda output: output.intermediate, op_proto.outputs) + + if len(not_intermediate_outputs) != 1: + raise ValueError("Only one non intermediate output operator can be", + "automatically generated.") + + if not_intermediate_outputs[0].duplicable: + raise ValueError( + "Only non duplicable op can be automatically generated.") + + for output in intermediate_outputs: + if output.duplicable: + raise ValueError("The op can be automatically generated only when ", + "all intermediate ops are not duplicable.") + + o_name = not_intermediate_outputs[0].name + intermediate_output_names = [output.name for output in intermediate_outputs] + + def infer_and_check_dtype(op_proto, **kwargs): + """ + This function performs the sanity check for dtype and + instance type. + """ + dtype = None + for ipt in op_proto.inputs: + name = _convert_(ipt.name) + val = kwargs.pop(name, []) + if not isinstance(val, list) and not isinstance(val, tuple): + val = [val] + for each in val: + if not isinstance(each, Variable): + raise ValueError("input of {0} must be variable".format( + op_type)) + + if dtype is None: + dtype = each.dtype + elif dtype != each.dtype: + raise ValueError( + "operator {0} must input same dtype. {1} vs {2}".format( + op_type, dtype, each.dtype)) + + return dtype + + def func(**kwargs): + helper = LayerHelper(op_type, **kwargs) + + dtype = infer_and_check_dtype(op_proto, **kwargs) + + inputs = dict() + for ipt in op_proto.inputs: + name = _convert_(ipt.name) + val = kwargs.pop(name, []) + if not isinstance(val, list) and not isinstance(val, tuple): + val = [val] + inputs[ipt.name] = val + + outputs = dict() + out = kwargs.pop(_convert_(o_name), []) + if out: + out_var = out[0] if (isinstance(out, list) or + isinstance(out, tuple)) else out + else: + out_var = helper.create_tmp_variable(dtype=dtype) + outputs[o_name] = [out_var] + for name in intermediate_output_names: + outputs[name] = [helper.create_tmp_variable(dtype=dtype)] + helper.append_op( + type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs) + return helper.append_activation(out_var) + + func.__name__ = op_type + func.__doc__ = _generate_doc_string_(op_proto) + return func + + +def deprecated(func_or_class): + """ + Deprecated warning decorator. It will result a warning message. + Should be used before class or function, member function + """ + + @functools.wraps(func) + def func_wrapper(*args, **kwargs): + """ + Wrap func with deprecated warning + """ + warnings.simplefilter('always', DeprecationWarning) # turn off filter + warnings.warn( + "Call to deprecated function {}.".format(func.__name__), + category=DeprecationWarning, + stacklevel=2) + warnings.simplefilter('default', DeprecationWarning) # reset filter + return func(*args, **kwargs) + + return func_wrapper + + +def autodoc(func): + func.__doc__ = _generate_doc_string_(OpProtoHolder.instance().get_op_proto( + func.__name__)) + return func diff --git a/python/paddle/v2/fluid/regularizer.py b/python/paddle/v2/fluid/regularizer.py index bb1ac8911e..e53dee98fd 100644 --- a/python/paddle/v2/fluid/regularizer.py +++ b/python/paddle/v2/fluid/regularizer.py @@ -1,9 +1,26 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import framework -__all__ = ['append_regularization_ops', 'L1Decay', 'L2Decay'] +__all__ = [ + 'append_regularization_ops', + 'L1Decay', + 'L2Decay', +] -def append_regularization_ops(parameters_and_grads): +def append_regularization_ops(parameters_and_grads, regularization=None): """Create and add backward regularization Operators Creates and adds backward regularization operators in the BlockDesc. @@ -14,6 +31,8 @@ def append_regularization_ops(parameters_and_grads): Args: parameters_and_grads: A list of (parameters, gradients) pairs that need to be regularized. + regularization: A global regularizer. If the parameter is not + set. It will be applied with regularizer. Returns: list of (parameters, gradients) pair with the regularized gradient @@ -23,14 +42,19 @@ def append_regularization_ops(parameters_and_grads): """ params_and_grads = [] for param, grad in parameters_and_grads: + regularization_term = None + if param.regularizer is not None: + # Add variable for regularization term in grad block + regularization_term = param.regularizer(param, grad.block) + elif regularization is not None: + regularization_term = regularization(param, grad.block) + # If no gradient or no regularization specified, # then we don't need to do anything - if grad is None or param.regularizer is None: + if grad is None or regularization_term is None: params_and_grads.append((param, grad)) continue - # Add variable for regularization term in grad block - regularization_term = param.regularizer(param, grad.block) assert grad.shape == regularization_term.shape grad.block.append_op( diff --git a/python/paddle/v2/fluid/tests/.gitignore b/python/paddle/v2/fluid/tests/.gitignore index a648f2b387..62f82151eb 100644 --- a/python/paddle/v2/fluid/tests/.gitignore +++ b/python/paddle/v2/fluid/tests/.gitignore @@ -1,3 +1,4 @@ image/ fit_a_line.model/ tmp +cuda_profiler.txt diff --git a/python/paddle/v2/fluid/tests/CMakeLists.txt b/python/paddle/v2/fluid/tests/CMakeLists.txt index e795627bfe..9a0240cbf6 100644 --- a/python/paddle/v2/fluid/tests/CMakeLists.txt +++ b/python/paddle/v2/fluid/tests/CMakeLists.txt @@ -5,3 +5,4 @@ foreach(src ${TEST_OPS}) endforeach() add_subdirectory(book) +add_subdirectory(book_distribute) diff --git a/python/paddle/v2/fluid/tests/__init__.py b/python/paddle/v2/fluid/tests/__init__.py new file mode 100644 index 0000000000..2619c1c0e9 --- /dev/null +++ b/python/paddle/v2/fluid/tests/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. diff --git a/python/paddle/v2/fluid/tests/book/test_fit_a_line.py b/python/paddle/v2/fluid/tests/book/test_fit_a_line.py index fbf46ac6cb..904df66dc1 100644 --- a/python/paddle/v2/fluid/tests/book/test_fit_a_line.py +++ b/python/paddle/v2/fluid/tests/book/test_fit_a_line.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid diff --git a/python/paddle/v2/fluid/tests/book/test_image_classification_train.py b/python/paddle/v2/fluid/tests/book/test_image_classification_train.py index 4e71b6f345..a06486aa08 100644 --- a/python/paddle/v2/fluid/tests/book/test_image_classification_train.py +++ b/python/paddle/v2/fluid/tests/book/test_image_classification_train.py @@ -1,9 +1,22 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from __future__ import print_function -import numpy as np +import sys + import paddle.v2 as paddle import paddle.v2.fluid as fluid -import sys def resnet_cifar10(input, depth=32): diff --git a/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py b/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py index d2693b602e..42971da0f0 100644 --- a/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py +++ b/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py @@ -1,9 +1,23 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import math import numpy as np import paddle.v2 as paddle import paddle.v2.dataset.conll05 as conll05 import paddle.v2.fluid as fluid +import time word_dict, verb_dict, label_dict = conll05.get_dict() word_dict_len = len(word_dict) @@ -150,7 +164,7 @@ def main(): crf_decode = fluid.layers.crf_decoding( input=feature_out, param_attr=fluid.ParamAttr(name='crfw')) - precision, recall, f1_score = fluid.layers.chunk_eval( + chunk_evaluator = fluid.evaluator.ChunkEvaluator( input=crf_decode, label=target, chunk_scheme="IOB", @@ -160,7 +174,8 @@ def main(): paddle.reader.shuffle( paddle.dataset.conll05.test(), buf_size=8192), batch_size=BATCH_SIZE) - place = fluid.CPUPlace() + #place = fluid.CPUPlace() + place = fluid.CUDAPlace(0) feeder = fluid.DataFeeder( feed_list=[ word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target @@ -170,26 +185,31 @@ def main(): exe.run(fluid.default_startup_program()) - embedding_param = fluid.g_scope.find_var(embedding_name).get_tensor() + embedding_param = fluid.global_scope().find_var(embedding_name).get_tensor() embedding_param.set( load_parameter(conll05.get_embedding(), word_dict_len, word_dim), place) + start_time = time.time() batch_id = 0 for pass_id in xrange(PASS_NUM): + chunk_evaluator.reset(exe) for data in train_data(): - outs = exe.run(fluid.default_main_program(), - feed=feeder.feed(data), - fetch_list=[avg_cost, precision, recall, f1_score]) - avg_cost_val = np.array(outs[0]) - precision_val = np.array(outs[1]) - recall_val = np.array(outs[2]) - f1_score_val = np.array(outs[3]) + cost, precision, recall, f1_score = exe.run( + fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost] + chunk_evaluator.metrics) + pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval( + exe) if batch_id % 10 == 0: - print("avg_cost=" + str(avg_cost_val)) - print("precision_val=" + str(precision_val)) - print("recall_val:" + str(recall_val)) - print("f1_score_val:" + str(f1_score_val)) + print("avg_cost:" + str(cost) + " precision:" + str( + precision) + " recall:" + str(recall) + " f1_score:" + str( + f1_score) + " pass_precision:" + str( + pass_precision) + " pass_recall:" + str(pass_recall) + + " pass_f1_score:" + str(pass_f1_score)) + if batch_id != 0: + print("second per batch: " + str((time.time() - start_time) + / batch_id)) # exit early for CI exit(0) diff --git a/python/paddle/v2/fluid/tests/book/test_machine_translation.py b/python/paddle/v2/fluid/tests/book/test_machine_translation.py index 5bc7e1b59d..deeb6b1bad 100644 --- a/python/paddle/v2/fluid/tests/book/test_machine_translation.py +++ b/python/paddle/v2/fluid/tests/book/test_machine_translation.py @@ -1,59 +1,75 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import paddle.v2 as paddle -import paddle.v2.dataset.conll05 as conll05 +import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core import paddle.v2.fluid.framework as framework import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.executor import Executor, g_scope -from paddle.v2.fluid.optimizer import SGDOptimizer -import paddle.v2.fluid as fluid -import paddle.v2.fluid.layers as pd +from paddle.v2.fluid.executor import Executor dict_size = 30000 source_dict_dim = target_dict_dim = dict_size src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) -hidden_dim = 512 -word_dim = 512 +hidden_dim = 32 +word_dim = 16 IS_SPARSE = True -batch_size = 50 +batch_size = 10 max_length = 50 topk_size = 50 trg_dic_size = 10000 -src_word_id = layers.data(name="src_word_id", shape=[1], dtype='int64') -src_embedding = layers.embedding( - input=src_word_id, - size=[dict_size, word_dim], - dtype='float32', - is_sparse=IS_SPARSE, - param_attr=fluid.ParamAttr(name='vemb')) - - -def encoder(): - - lstm_hidden0, lstm_0 = layers.dynamic_lstm( - input=src_embedding, - size=hidden_dim, - candidate_activation='sigmoid', - cell_activation='sigmoid') - - lstm_hidden1, lstm_1 = layers.dynamic_lstm( - input=src_embedding, - size=hidden_dim, - candidate_activation='sigmoid', - cell_activation='sigmoid', - is_reverse=True) - - bidirect_lstm_out = layers.concat([lstm_hidden0, lstm_hidden1], axis=0) - - return bidirect_lstm_out - - -def decoder_trainer(context): - ''' - decoder with trainer - ''' - pass +decoder_size = hidden_dim + + +def encoder_decoder(): + # encoder + src_word_id = layers.data( + name="src_word_id", shape=[1], dtype='int64', lod_level=1) + src_embedding = layers.embedding( + input=src_word_id, + size=[dict_size, word_dim], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr=fluid.ParamAttr(name='vemb')) + + fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh') + lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4) + encoder_out = layers.sequence_last_step(input=lstm_hidden0) + + # decoder + trg_language_word = layers.data( + name="target_language_word", shape=[1], dtype='int64', lod_level=1) + trg_embedding = layers.embedding( + input=trg_language_word, + size=[dict_size, word_dim], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr=fluid.ParamAttr(name='vemb')) + + rnn = fluid.layers.DynamicRNN() + with rnn.block(): + current_word = rnn.step_input(trg_embedding) + mem = rnn.memory(init=encoder_out) + fc1 = fluid.layers.fc(input=[current_word, mem], + size=decoder_size, + act='tanh') + out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax') + rnn.update_memory(mem, fc1) + rnn.output(out) + + return rnn() def to_lodtensor(data, place): @@ -72,13 +88,18 @@ def to_lodtensor(data, place): def main(): - encoder_out = encoder() - # TODO(jacquesqiao) call here - decoder_trainer(encoder_out) + rnn_out = encoder_decoder() + label = layers.data( + name="target_language_next_word", shape=[1], dtype='int64', lod_level=1) + cost = layers.cross_entropy(input=rnn_out, label=label) + avg_cost = fluid.layers.mean(x=cost) + + optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4) + optimizer.minimize(avg_cost) train_data = paddle.batch( paddle.reader.shuffle( - paddle.dataset.wmt14.train(8000), buf_size=1000), + paddle.dataset.wmt14.train(dict_size), buf_size=1000), batch_size=batch_size) place = core.CPUPlace() @@ -88,15 +109,23 @@ def main(): batch_id = 0 for pass_id in xrange(2): - print 'pass_id', pass_id for data in train_data(): - print 'batch', batch_id - batch_id += 1 - if batch_id > 10: break word_data = to_lodtensor(map(lambda x: x[0], data), place) + trg_word = to_lodtensor(map(lambda x: x[1], data), place) + trg_word_next = to_lodtensor(map(lambda x: x[2], data), place) outs = exe.run(framework.default_main_program(), - feed={'src_word_id': word_data, }, - fetch_list=[encoder_out]) + feed={ + 'src_word_id': word_data, + 'target_language_word': trg_word, + 'target_language_next_word': trg_word_next + }, + fetch_list=[avg_cost]) + avg_cost_val = np.array(outs[0]) + print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + + " avg_cost=" + str(avg_cost_val)) + if batch_id > 3: + exit(0) + batch_id += 1 if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py index 35bf8da924..1d5defbed3 100644 --- a/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py +++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from __future__ import print_function import numpy as np import paddle.v2 as paddle diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py index 4dc2c50e1c..02da2fcc85 100644 --- a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py +++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from __future__ import print_function import numpy as np import paddle.v2 as paddle @@ -11,7 +24,10 @@ regularizer = fluid.regularizer.L2Decay(0.0005 * BATCH_SIZE) hidden1 = fluid.layers.fc(input=image, size=128, act='relu', - param_attr=regularizer) + param_attr=fluid.ParamAttr( + regularizer=regularizer, + clip=fluid.clip.ClipByValue(10))) + hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu', @@ -33,11 +49,10 @@ opts = optimizer.minimize(avg_cost) accuracy = fluid.evaluator.Accuracy(input=predict, label=label) inference_program = fluid.default_main_program().clone() -test_accuracy = fluid.evaluator.Accuracy( - input=predict, label=label, main_program=inference_program) -test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states -inference_program = fluid.io.get_inference_program( - test_target, main_program=inference_program) +with fluid.program_guard(inference_program): + test_accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states + inference_program = fluid.io.get_inference_program(test_target) train_reader = paddle.batch( paddle.reader.shuffle( @@ -72,5 +87,9 @@ for pass_id in range(PASS_NUM): + " test_acc=" + str(test_pass_acc)) if test_pass_acc > 0.7: + fluid.io.save_inference_model( + "./recognize_digits_mlp.inference.model/", ["x"], [predict], + exe) exit(0) + exit(1) diff --git a/python/paddle/v2/fluid/tests/book/test_recommender_system.py b/python/paddle/v2/fluid/tests/book/test_recommender_system.py index db91ca4f9c..47e2afcd83 100644 --- a/python/paddle/v2/fluid/tests/book/test_recommender_system.py +++ b/python/paddle/v2/fluid/tests/book/test_recommender_system.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.v2.fluid.core as core @@ -125,10 +138,11 @@ def model(): # need cos sim inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features) + scale_infer = layers.scale(x=inference, scale=5.0) label = layers.data(name='score', shape=[1], dtype='float32') - square_cost = layers.square_error_cost(input=inference, label=label) + square_cost = layers.square_error_cost(input=scale_infer, label=label) avg_cost = layers.mean(x=square_cost) @@ -141,7 +155,7 @@ def main(): opts = sgd_optimizer.minimize(cost) if USE_GPU: - place = core.GPUPlace(0) + place = core.CUDAPlace(0) else: place = core.CPUPlace() diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py index f103358edc..b44d2b41e3 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from __future__ import print_function import numpy as np import paddle.v2 as paddle diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py index cd28f04b85..5a139c1dcd 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py index 80f8599679..fab8a82f85 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py @@ -1,6 +1,52 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid +from paddle.v2.fluid.layer_helper import LayerHelper + + +def lstm(x, c_pre_init, hidden_dim, forget_bias=None): + """ + This function helps create an operator for the LSTM (Long Short Term + Memory) cell that can be used inside an RNN. + """ + helper = LayerHelper('lstm_unit', **locals()) + rnn = fluid.layers.StaticRNN() + with rnn.step(): + c_pre = rnn.memory(init=c_pre_init) + x_t = rnn.step_input(x) + + before_fc = fluid.layers.concat(input=[x_t, c_pre], axis=1) + after_fc = fluid.layers.fc(input=before_fc, size=hidden_dim * 4) + + dtype = x.dtype + c = helper.create_tmp_variable(dtype) + h = helper.create_tmp_variable(dtype) + + helper.append_op( + type='lstm_unit', + inputs={"X": after_fc, + "C_prev": c_pre}, + outputs={"C": c, + "H": h}, + attrs={"forget_bias": forget_bias}) + + rnn.update_memory(c_pre, c) + rnn.output(h) + + return rnn() def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): @@ -23,8 +69,7 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): c_pre_init = fluid.layers.fill_constant( dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0) c_pre_init.stop_gradient = False - layer_1_out = fluid.layers.lstm( - emb, c_pre_init=c_pre_init, hidden_dim=emb_dim) + layer_1_out = lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim) layer_1_out = fluid.layers.transpose(x=layer_1_out, axis=[1, 0, 2]) prediction = fluid.layers.fc(input=layer_1_out, diff --git a/python/paddle/v2/fluid/tests/book/test_word2vec.py b/python/paddle/v2/fluid/tests/book/test_word2vec.py index 8b928ff9ee..3d4bbccd33 100644 --- a/python/paddle/v2/fluid/tests/book/test_word2vec.py +++ b/python/paddle/v2/fluid/tests/book/test_word2vec.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid diff --git a/python/paddle/v2/fluid/tests/book_distribute/CMakeLists.txt b/python/paddle/v2/fluid/tests/book_distribute/CMakeLists.txt new file mode 100644 index 0000000000..4d7664469e --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/CMakeLists.txt @@ -0,0 +1,5 @@ +file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") +string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") +foreach(src ${TEST_OPS}) + py_test(${src} SRCS ${src}.py) +endforeach() diff --git a/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py b/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py new file mode 100644 index 0000000000..00e0b22c64 --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py @@ -0,0 +1,76 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import os + +x = fluid.layers.data(name='x', shape=[13], dtype='float32') + +y_predict = fluid.layers.fc(input=x, size=1, act=None) + +y = fluid.layers.data(name='y', shape=[1], dtype='float32') + +cost = fluid.layers.square_error_cost(input=y_predict, label=y) +avg_cost = fluid.layers.mean(x=cost) + +sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) +optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) + +BATCH_SIZE = 20 + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.uci_housing.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) +exe = fluid.Executor(place) + +t = fluid.DistributeTranspiler() +# all parameter server endpoints list for spliting parameters +pserver_endpoints = os.getenv("PSERVERS") +# server endpoint for current node +current_endpoint = os.getenv("SERVER_ENDPOINT") +# run as trainer or parameter server +training_role = os.getenv("TRAINING_ROLE", + "TRAINER") # get the training role: trainer/pserver +t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) + +if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint) + pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) + exe.run(pserver_startup) + exe.run(pserver_prog) +else: + trainer_prog = t.get_trainer_program() + + exe.run(fluid.default_startup_program()) + + PASS_NUM = 100 + for pass_id in range(PASS_NUM): + fluid.io.save_persistables(exe, "./fit_a_line.model/") + fluid.io.load_persistables(exe, "./fit_a_line.model/") + for data in train_reader(): + avg_loss_value, = exe.run(trainer_prog, + feed=feeder.feed(data), + fetch_list=[avg_cost]) + + if avg_loss_value[0] < 10.0: + exit(0) +exit(1) diff --git a/python/paddle/v2/fluid/tests/book_distribute/notest_dist_label_semantic_roles.py b/python/paddle/v2/fluid/tests/book_distribute/notest_dist_label_semantic_roles.py new file mode 100644 index 0000000000..adc7ae8adf --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/notest_dist_label_semantic_roles.py @@ -0,0 +1,239 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import math + +import numpy as np +import paddle.v2 as paddle +import paddle.v2.dataset.conll05 as conll05 +import paddle.v2.fluid as fluid +import time +import os + +word_dict, verb_dict, label_dict = conll05.get_dict() +word_dict_len = len(word_dict) +label_dict_len = len(label_dict) +pred_len = len(verb_dict) + +mark_dict_len = 2 +word_dim = 32 +mark_dim = 5 +hidden_dim = 512 +depth = 8 +mix_hidden_lr = 1e-3 + +IS_SPARSE = True +PASS_NUM = 10 +BATCH_SIZE = 20 + +embedding_name = 'emb' + + +def load_parameter(file_name, h, w): + with open(file_name, 'rb') as f: + f.read(16) # skip header. + return np.fromfile(f, dtype=np.float32).reshape(h, w) + + +def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, + **ignored): + # 8 features + predicate_embedding = fluid.layers.embedding( + input=predicate, + size=[pred_len, word_dim], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='vemb') + + mark_embedding = fluid.layers.embedding( + input=mark, + size=[mark_dict_len, mark_dim], + dtype='float32', + is_sparse=IS_SPARSE) + + word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] + emb_layers = [ + fluid.layers.embedding( + size=[word_dict_len, word_dim], + input=x, + param_attr=fluid.ParamAttr( + name=embedding_name, trainable=False)) for x in word_input + ] + emb_layers.append(predicate_embedding) + emb_layers.append(mark_embedding) + + hidden_0_layers = [ + fluid.layers.fc(input=emb, size=hidden_dim) for emb in emb_layers + ] + + hidden_0 = fluid.layers.sums(input=hidden_0_layers) + + lstm_0 = fluid.layers.dynamic_lstm( + input=hidden_0, + size=hidden_dim, + candidate_activation='relu', + gate_activation='sigmoid', + cell_activation='sigmoid') + + # stack L-LSTM and R-LSTM with direct edges + input_tmp = [hidden_0, lstm_0] + + for i in range(1, depth): + mix_hidden = fluid.layers.sums(input=[ + fluid.layers.fc(input=input_tmp[0], size=hidden_dim), + fluid.layers.fc(input=input_tmp[1], size=hidden_dim) + ]) + + lstm = fluid.layers.dynamic_lstm( + input=mix_hidden, + size=hidden_dim, + candidate_activation='relu', + gate_activation='sigmoid', + cell_activation='sigmoid', + is_reverse=((i % 2) == 1)) + + input_tmp = [mix_hidden, lstm] + + feature_out = fluid.layers.sums(input=[ + fluid.layers.fc(input=input_tmp[0], size=label_dict_len), + fluid.layers.fc(input=input_tmp[1], size=label_dict_len) + ]) + + return feature_out + + +def to_lodtensor(data, place): + seq_lens = [len(seq) for seq in data] + cur_len = 0 + lod = [cur_len] + for l in seq_lens: + cur_len += l + lod.append(cur_len) + flattened_data = np.concatenate(data, axis=0).astype("int64") + flattened_data = flattened_data.reshape([len(flattened_data), 1]) + res = fluid.LoDTensor() + res.set(flattened_data, place) + res.set_lod([lod]) + return res + + +def main(): + # define network topology + word = fluid.layers.data( + name='word_data', shape=[1], dtype='int64', lod_level=1) + predicate = fluid.layers.data( + name='verb_data', shape=[1], dtype='int64', lod_level=1) + ctx_n2 = fluid.layers.data( + name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1) + ctx_n1 = fluid.layers.data( + name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1) + ctx_0 = fluid.layers.data( + name='ctx_0_data', shape=[1], dtype='int64', lod_level=1) + ctx_p1 = fluid.layers.data( + name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1) + ctx_p2 = fluid.layers.data( + name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1) + mark = fluid.layers.data( + name='mark_data', shape=[1], dtype='int64', lod_level=1) + feature_out = db_lstm(**locals()) + target = fluid.layers.data( + name='target', shape=[1], dtype='int64', lod_level=1) + crf_cost = fluid.layers.linear_chain_crf( + input=feature_out, + label=target, + param_attr=fluid.ParamAttr( + name='crfw', learning_rate=mix_hidden_lr)) + avg_cost = fluid.layers.mean(x=crf_cost) + + # TODO(qiao) + # check other optimizers and check why out will be NAN + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.0001) + optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) + + # TODO(qiao) + # add dependency track and move this config before optimizer + crf_decode = fluid.layers.crf_decoding( + input=feature_out, param_attr=fluid.ParamAttr(name='crfw')) + + chunk_evaluator = fluid.evaluator.ChunkEvaluator( + input=crf_decode, + label=target, + chunk_scheme="IOB", + num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0))) + + train_data = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.conll05.test(), buf_size=8192), + batch_size=BATCH_SIZE) + place = fluid.CPUPlace() + feeder = fluid.DataFeeder( + feed_list=[ + word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target + ], + place=place) + exe = fluid.Executor(place) + + t = fluid.DistributeTranspiler() + pserver_endpoints = os.getenv("PSERVERS") + # server endpoint for current node + current_endpoint = os.getenv("SERVER_ENDPOINT") + # run as trainer or parameter server + training_role = os.getenv( + "TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver + t.transpile( + optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) + + if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint) + pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) + exe.run(pserver_startup) + exe.run(pserver_prog) + elif training_role == "TRAINER": + trainer_prog = t.get_trainer_program() + start_time = time.time() + batch_id = 0 + exe.run(fluid.default_startup_program()) + embedding_param = fluid.global_scope().find_var( + embedding_name).get_tensor() + embedding_param.set( + load_parameter(conll05.get_embedding(), word_dict_len, word_dim), + place) + for pass_id in xrange(PASS_NUM): + chunk_evaluator.reset(exe) + for data in train_data(): + cost, precision, recall, f1_score = exe.run( + trainer_prog, + feed=feeder.feed(data), + fetch_list=[avg_cost] + chunk_evaluator.metrics) + pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval( + exe) + + if batch_id % 10 == 0: + print("avg_cost:" + str(cost) + " precision:" + str( + precision) + " recall:" + str(recall) + " f1_score:" + + str(f1_score) + " pass_precision:" + str( + pass_precision) + " pass_recall:" + str( + pass_recall) + " pass_f1_score:" + str( + pass_f1_score)) + if batch_id != 0: + print("second per batch: " + str((time.time( + ) - start_time) / batch_id)) + + batch_id = batch_id + 1 + + +if __name__ == '__main__': + main() diff --git a/python/paddle/v2/fluid/tests/book_distribute/notest_dist_word2vec.py b/python/paddle/v2/fluid/tests/book_distribute/notest_dist_word2vec.py new file mode 100644 index 0000000000..27ef2cad1d --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/notest_dist_word2vec.py @@ -0,0 +1,110 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from __future__ import print_function +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import os + +PASS_NUM = 100 +EMBED_SIZE = 32 +HIDDEN_SIZE = 256 +N = 5 +BATCH_SIZE = 32 +IS_SPARSE = True +TRAINERS = 2 + +word_dict = paddle.dataset.imikolov.build_dict() +dict_size = len(word_dict) + +first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64') +second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64') +third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64') +forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64') +next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64') + +embed_first = fluid.layers.embedding( + input=first_word, + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') +embed_second = fluid.layers.embedding( + input=second_word, + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') +embed_third = fluid.layers.embedding( + input=third_word, + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') +embed_forth = fluid.layers.embedding( + input=forth_word, + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + +concat_embed = fluid.layers.concat( + input=[embed_first, embed_second, embed_third, embed_forth], axis=1) +hidden1 = fluid.layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid') +predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax') +cost = fluid.layers.cross_entropy(input=predict_word, label=next_word) +avg_cost = fluid.layers.mean(x=cost) +sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) +optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) +train_reader = paddle.batch( + paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) + +t = fluid.DistributeTranspiler() +# all parameter server endpoints list for spliting parameters +pserver_endpoints = os.getenv("PSERVERS") +# server endpoint for current node +current_endpoint = os.getenv("SERVER_ENDPOINT") +# run as trainer or parameter server +training_role = os.getenv("TRAINING_ROLE", + "TRAINER") # get the training role: trainer/pserver +t.transpile( + optimize_ops, params_grads, pservers=pserver_endpoints, trainers=TRAINERS) +if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint) + pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) + exe.run(pserver_startup) + exe.run(pserver_prog) +elif training_role == "TRAINER": + feeder = fluid.DataFeeder( + feed_list=[first_word, second_word, third_word, forth_word, next_word], + place=place) + exe.run(fluid.default_startup_program()) + for pass_id in range(PASS_NUM): + for data in train_reader(): + avg_cost_np = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost]) + print("avg_cost_np", avg_cost_np) + if avg_cost_np[0] < 5.0: + exit( + 0) # if avg cost less than 10.0, we think our code is good. +else: + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") +exit(1) diff --git a/python/paddle/v2/fluid/tests/book_distribute/notest_recognize_digits_conv_dist.py b/python/paddle/v2/fluid/tests/book_distribute/notest_recognize_digits_conv_dist.py new file mode 100644 index 0000000000..ee5cd07fb3 --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/notest_recognize_digits_conv_dist.py @@ -0,0 +1,94 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from __future__ import print_function +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import os + +images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype='float32') +label = fluid.layers.data(name='label', shape=[1], dtype='int64') +conv_pool_1 = fluid.nets.simple_img_conv_pool( + input=images, + filter_size=5, + num_filters=20, + pool_size=2, + pool_stride=2, + act="relu") +conv_pool_2 = fluid.nets.simple_img_conv_pool( + input=conv_pool_1, + filter_size=5, + num_filters=50, + pool_size=2, + pool_stride=2, + act="relu") + +predict = fluid.layers.fc(input=conv_pool_2, size=10, act="softmax") +cost = fluid.layers.cross_entropy(input=predict, label=label) +avg_cost = fluid.layers.mean(x=cost) +optimizer = fluid.optimizer.Adam(learning_rate=0.01) +optimize_ops, params_grads = optimizer.minimize(avg_cost) + +accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + +BATCH_SIZE = 50 +PASS_NUM = 3 +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) + +pserver_endpoints = os.getenv("PSERVERS") # all pserver endpoints +trainers = int(os.getenv("TRAINERS")) # total trainer count +current_endpoint = os.getenv("SERVER_ENDPOINT") # current pserver endpoint +training_role = os.getenv("TRAINING_ROLE", + "TRAINER") # get the training role: trainer/pserver +t = fluid.DistributeTranspiler() +t.transpile( + optimize_ops, params_grads, pservers=pserver_endpoints, trainers=trainers) + +if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint) + pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) + exe.run(pserver_startup) + exe.run(pserver_prog) +elif training_role == "TRAINER": + trainer_prog = t.get_trainer_program() + feeder = fluid.DataFeeder(feed_list=[images, label], place=place) + # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver + exe.run(fluid.default_startup_program()) + + for pass_id in range(PASS_NUM): + accuracy.reset(exe) + batch_id = 0 + for data in train_reader(): + loss, acc = exe.run(trainer_prog, + feed=feeder.feed(data), + fetch_list=[avg_cost] + accuracy.metrics) + pass_acc = accuracy.eval(exe) + if batch_id % 100 == 0: + print("batch_id %d, loss: %f, acc: %f" % + (batch_id, loss, pass_acc)) + batch_id += 1 + + pass_acc = accuracy.eval(exe) + print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc)) +else: + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") diff --git a/python/paddle/v2/fluid/tests/book_distribute/notest_recognize_digits_mlp_dist.py b/python/paddle/v2/fluid/tests/book_distribute/notest_recognize_digits_mlp_dist.py new file mode 100644 index 0000000000..9cfb4ab8c4 --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/notest_recognize_digits_mlp_dist.py @@ -0,0 +1,88 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from __future__ import print_function +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import os + +BATCH_SIZE = 128 +PASS_NUM = 100 + +images = fluid.layers.data(name='x', shape=[784], dtype='float32') + +# TODO(aroraabhinav) Add regularization and error clipping after +# Issue 7432(https://github.com/PaddlePaddle/Paddle/issues/7432) is resolved. +hidden1 = fluid.layers.fc(input=images, size=128, act='relu') +hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') +predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') + +label = fluid.layers.data(name='y', shape=[1], dtype='int64') + +cost = fluid.layers.cross_entropy(input=predict, label=label) +avg_cost = fluid.layers.mean(x=cost) + +optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9) +optimize_ops, params_grads = optimizer.minimize(avg_cost) + +accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=8192), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) + +t = fluid.DistributeTranspiler() +# all parameter server endpoints list for spliting parameters +pserver_endpoints = os.getenv("PSERVERS") +# server endpoint for current node +current_endpoint = os.getenv("SERVER_ENDPOINT") +# run as trainer or parameter server +training_role = os.getenv("TRAINING_ROLE", + "TRAINER") # get the training role: trainer/pserver +t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) + +if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint) + pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) + exe.run(pserver_startup) + exe.run(pserver_prog) +elif training_role == "TRAINER": + trainer_prog = t.get_trainer_program() + feeder = fluid.DataFeeder(feed_list=[images, label], place=place) + exe.run(fluid.default_startup_program()) + + for pass_id in range(PASS_NUM): + accuracy.reset(exe) + batch_id = 0 + for data in train_reader(): + loss, acc = exe.run(trainer_prog, + feed=feeder.feed(data), + fetch_list=[avg_cost] + accuracy.metrics) + pass_acc = accuracy.eval(exe) + if batch_id % 100 == 0: + print("batch_id %d, loss: %f, acc: %f" % + (batch_id, loss, pass_acc)) + batch_id += 1 + + pass_acc = accuracy.eval(exe) + print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc)) +else: + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") diff --git a/python/paddle/v2/fluid/tests/book_distribute/notest_understand_sentiment_conv_dist.py b/python/paddle/v2/fluid/tests/book_distribute/notest_understand_sentiment_conv_dist.py new file mode 100644 index 0000000000..840afb6376 --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/notest_understand_sentiment_conv_dist.py @@ -0,0 +1,124 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from __future__ import print_function +import os +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid + + +def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32, + hid_dim=32): + emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim]) + conv_3 = fluid.nets.sequence_conv_pool( + input=emb, + num_filters=hid_dim, + filter_size=3, + act="tanh", + pool_type="sqrt") + conv_4 = fluid.nets.sequence_conv_pool( + input=emb, + num_filters=hid_dim, + filter_size=4, + act="tanh", + pool_type="sqrt") + prediction = fluid.layers.fc(input=[conv_3, conv_4], + size=class_dim, + act="softmax") + cost = fluid.layers.cross_entropy(input=prediction, label=label) + avg_cost = fluid.layers.mean(x=cost) + adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002) + optimize_ops, params_grads = adam_optimizer.minimize(avg_cost) + accuracy = fluid.evaluator.Accuracy(input=prediction, label=label) + return avg_cost, accuracy, accuracy.metrics[0], optimize_ops, params_grads + + +def to_lodtensor(data, place): + seq_lens = [len(seq) for seq in data] + cur_len = 0 + lod = [cur_len] + for l in seq_lens: + cur_len += l + lod.append(cur_len) + flattened_data = np.concatenate(data, axis=0).astype("int64") + flattened_data = flattened_data.reshape([len(flattened_data), 1]) + res = fluid.LoDTensor() + res.set(flattened_data, place) + res.set_lod([lod]) + return res + + +def main(): + BATCH_SIZE = 100 + PASS_NUM = 5 + + word_dict = paddle.dataset.imdb.word_dict() + dict_dim = len(word_dict) + class_dim = 2 + + data = fluid.layers.data( + name="words", shape=[1], dtype="int64", lod_level=1) + label = fluid.layers.data(name="label", shape=[1], dtype="int64") + cost, accuracy, acc_out, optimize_ops, params_grads = convolution_net( + data, label, input_dim=dict_dim, class_dim=class_dim) + + train_data = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.imdb.train(word_dict), buf_size=1000), + batch_size=BATCH_SIZE) + place = fluid.CPUPlace() + exe = fluid.Executor(place) + + t = fluid.DistributeTranspiler() + + # all parameter server endpoints list for spliting parameters + pserver_endpoints = os.getenv("PSERVERS") + # server endpoint for current node + current_endpoint = os.getenv("SERVER_ENDPOINT") + # run as trainer or parameter server + training_role = os.getenv( + "TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver + t.transpile( + optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) + + if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint) + pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) + exe.run(pserver_startup) + exe.run(pserver_prog) + elif training_role == "TRAINER": + exe.run(fluid.default_startup_program()) + trainer_prog = t.get_trainer_program() + feeder = fluid.DataFeeder(feed_list=[data, label], place=place) + + for pass_id in xrange(PASS_NUM): + accuracy.reset(exe) + for data in train_data(): + cost_val, acc_val = exe.run(trainer_prog, + feed=feeder.feed(data), + fetch_list=[cost, acc_out]) + pass_acc = accuracy.eval(exe) + print("cost=" + str(cost_val) + " acc=" + str(acc_val) + + " pass_acc=" + str(pass_acc)) + if cost_val < 1.0 and pass_acc > 0.8: + exit(0) + else: + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") + + +if __name__ == '__main__': + main() diff --git a/python/paddle/v2/fluid/tests/book_distribute/test_split_var.py b/python/paddle/v2/fluid/tests/book_distribute/test_split_var.py new file mode 100644 index 0000000000..f979f642d8 --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/test_split_var.py @@ -0,0 +1,52 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import math +import unittest +from paddle.v2.fluid.distribute_transpiler import split_dense_variable +import paddle.v2.fluid as fluid +import paddle.v2.fluid.core as core +import random + + +class TestSplitVar(unittest.TestCase): + def test_check_output(self): + # split below shapes to 10 servers + shapes = [[3, 5], [1024], [28, 784], [8, 1020], [800, 10]] + expected_sizes = [ + [15], [1024], + [2352, 2352, 2352, 2352, 2352, 2352, 2352, 2352, 2352, 784], + [2040, 2040, 2040, 2040], + [1150, 1150, 1150, 1150, 1150, 1150, 1100] + ] + var_list = [] + program = fluid.Program() + for shape in shapes: + var = program.global_block().create_var( + name=str(random.randint(10000, 99999)), + persistable=True, + # dtype=core.VarDesc.VarType.LOD_TENSOR, + shape=shape) + var_list.append(var) + blocks = split_dense_variable(var_list, 10) + all_sizes = [] + for s in expected_sizes: + for s2 in s: + all_sizes.append(s2) + for i, block_str in enumerate(blocks): + varname, block_id, size = block_str.split(":") + self.assertEqual(int(size), all_sizes[i]) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/decorators.py b/python/paddle/v2/fluid/tests/decorators.py new file mode 100644 index 0000000000..3b314a15e1 --- /dev/null +++ b/python/paddle/v2/fluid/tests/decorators.py @@ -0,0 +1,42 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import paddle.v2.fluid as fluid + +__all__ = ['many_times', 'prog_scope'] + + +def many_times(times): + def __impl__(fn): + def __fn__(*args, **kwargs): + for _ in range(times): + fn(*args, **kwargs) + + return __fn__ + + return __impl__ + + +def prog_scope(): + def __impl__(fn): + def __fn__(*args, **kwargs): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + fn(*args, **kwargs) + + return __fn__ + + return __impl__ diff --git a/python/paddle/v2/fluid/tests/demo/fc_gan.py b/python/paddle/v2/fluid/tests/demo/fc_gan.py index cae959593e..5f9e8f9507 100644 --- a/python/paddle/v2/fluid/tests/demo/fc_gan.py +++ b/python/paddle/v2/fluid/tests/demo/fc_gan.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import errno import math import os diff --git a/python/paddle/v2/fluid/tests/op_test.py b/python/paddle/v2/fluid/tests/op_test.py index e83c4a0622..c3b2220e6e 100644 --- a/python/paddle/v2/fluid/tests/op_test.py +++ b/python/paddle/v2/fluid/tests/op_test.py @@ -1,10 +1,23 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import random import itertools import paddle.v2.fluid.core as core import collections -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward from paddle.v2.fluid.op import Operator from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.framework import Program, OpProtoHolder @@ -31,7 +44,8 @@ def create_op(scope, op_type, inputs, outputs, attrs): kwargs[in_name] = [] if in_dup: sub_in = inputs[in_name] - for sub_in_name, _ in sub_in: + for item in sub_in: + sub_in_name, _ = item[0], item[1] __create_var__(in_name, sub_in_name) else: __create_var__(in_name, in_name) @@ -41,7 +55,8 @@ def create_op(scope, op_type, inputs, outputs, attrs): kwargs[out_name] = [] if out_dup: sub_out = outputs[out_name] - for sub_out_name, _ in sub_out: + for item in sub_out: + sub_out_name, _ = item[0], item[1] __create_var__(out_name, sub_out_name) else: __create_var__(out_name, out_name) @@ -71,13 +86,15 @@ def set_input(scope, op, inputs, place): if in_name in inputs: if in_dup: sub_in = inputs[in_name] - for sub_in_name, sub_in_val in sub_in: + for item in sub_in: + sub_in_name, sub_in_val = item[0], item[1] __set_input__(sub_in_name, sub_in_val) else: __set_input__(in_name, inputs[in_name]) -def get_numeric_gradient(scope, +def get_numeric_gradient(place, + scope, op, inputs, input_to_check, @@ -85,17 +102,15 @@ def get_numeric_gradient(scope, delta=0.005, in_place=False): # FIXME: change this method by compile time concepts - set_input(scope, op, inputs, core.CPUPlace()) + set_input(scope, op, inputs, place) def product(dim): return reduce(lambda a, b: a * b, dim, 1) - ctx = core.DeviceContext.create(core.CPUPlace()) - def get_output(): sum = [] for output_name in output_names: - op.run(scope, ctx) + op.run(scope, place) sum.append( np.array(scope.find_var(output_name).get_tensor()).mean()) return np.array(sum).mean() @@ -129,7 +144,7 @@ def get_numeric_gradient(scope, # we use a for loop to compute the gradient of every element. for i in xrange(tensor_size): if in_place: - set_input(scope, op, inputs, core.CPUPlace()) + set_input(scope, op, inputs, place) # get one input element throw it's index i. origin = __get_elem__(tensor_to_check, i) @@ -139,7 +154,7 @@ def get_numeric_gradient(scope, y_pos = get_output() if in_place: - set_input(scope, op, inputs, core.CPUPlace()) + set_input(scope, op, inputs, place) x_neg = origin - delta __set_elem__(tensor_to_check, i, x_neg) @@ -285,7 +300,8 @@ class OpTest(unittest.TestCase): if not isinstance(sub_out, list): raise AssertionError("sub_out type %s is not list", type(sub_out)) - for sub_out_name, expect in sub_out: + for item in sub_out: + sub_out_name, expect = item[0], item[1] idx = find_actual(sub_out_name, fetch_list) actual = outs[idx] actual_t = np.array(actual) @@ -318,7 +334,7 @@ class OpTest(unittest.TestCase): def check_output(self, atol=1e-5): places = [core.CPUPlace()] if core.is_compile_gpu() and core.op_support_gpu(self.op_type): - places.append(core.GPUPlace(0)) + places.append(core.CUDAPlace(0)) for place in places: self.check_output_with_place(place, atol) @@ -349,6 +365,24 @@ class OpTest(unittest.TestCase): in_place=False, max_relative_error=0.005, user_defined_grads=None): + places = [core.CPUPlace()] + if core.is_compile_gpu() and core.op_support_gpu(self.op_type): + places.append(core.CUDAPlace(0)) + for place in places: + self.check_grad_with_place(place, inputs_to_check, output_names, + no_grad_set, numeric_grad_delta, + in_place, max_relative_error, + user_defined_grads) + + def check_grad_with_place(self, + place, + inputs_to_check, + output_names, + no_grad_set=None, + numeric_grad_delta=0.005, + in_place=False, + max_relative_error=0.005, + user_defined_grads=None): self.scope = core.Scope() op_inputs = self.inputs if hasattr(self, "inputs") else dict() op_outputs = self.outputs if hasattr(self, "outputs") else dict() @@ -364,6 +398,7 @@ class OpTest(unittest.TestCase): numeric_grads = user_defined_grads or [ get_numeric_gradient( + place, self.scope, self.op, self.inputs, @@ -372,22 +407,12 @@ class OpTest(unittest.TestCase): delta=numeric_grad_delta, in_place=in_place) for input_to_check in inputs_to_check ] - cpu_place = core.CPUPlace() - cpu_analytic_grads = self._get_gradient(inputs_to_check, cpu_place, - output_names, no_grad_set) - - self.__assert_is_close(numeric_grads, cpu_analytic_grads, - inputs_to_check, max_relative_error, - "Gradient Check On %s" % str(cpu_place)) - - if core.is_compile_gpu() and self.op.support_gpu(): - gpu_place = core.GPUPlace(0) - gpu_analytic_grads = self._get_gradient(inputs_to_check, gpu_place, - output_names, no_grad_set) + analytic_grads = self._get_gradient(inputs_to_check, place, + output_names, no_grad_set) - self.__assert_is_close(numeric_grads, gpu_analytic_grads, - inputs_to_check, max_relative_error, - "Gradient Check On %s" % str(gpu_place)) + self.__assert_is_close(numeric_grads, analytic_grads, inputs_to_check, + max_relative_error, + "Gradient Check On %s" % str(place)) @staticmethod def _create_var_descs_(block, var_dict): @@ -493,7 +518,7 @@ class OpTest(unittest.TestCase): op_loss.desc.infer_var_type(block.desc) op_loss.desc.infer_shape(block.desc) - param_grad_list = append_backward_ops( + param_grad_list = append_backward( loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set) feed_dict = { diff --git a/python/paddle/v2/fluid/tests/test_accuracy_op.py b/python/paddle/v2/fluid/tests/test_accuracy_op.py index 6f72918b71..a20abac8a0 100644 --- a/python/paddle/v2/fluid/tests/test_accuracy_op.py +++ b/python/paddle/v2/fluid/tests/test_accuracy_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_activation_op.py b/python/paddle/v2/fluid/tests/test_activation_op.py index bd52bef260..a6a6eb9d63 100644 --- a/python/paddle/v2/fluid/tests/test_activation_op.py +++ b/python/paddle/v2/fluid/tests/test_activation_op.py @@ -1,6 +1,20 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest +from scipy.special import expit class TestExp(OpTest): @@ -9,13 +23,13 @@ class TestExp(OpTest): self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } - self.outputs = {'Y': np.exp(self.inputs['X'])} + self.outputs = {'Out': np.exp(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestSigmoid(OpTest): @@ -24,13 +38,13 @@ class TestSigmoid(OpTest): self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } - self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))} + self.outputs = {'Out': 1 / (1 + np.exp(-self.inputs['X']))} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.008) + self.check_grad(['X'], 'Out', max_relative_error=0.008) class TestLogSigmoid(OpTest): @@ -39,13 +53,13 @@ class TestLogSigmoid(OpTest): self.inputs = { 'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") } - self.outputs = {'Y': np.log(1 / (1 + np.exp(-self.inputs['X'])))} + self.outputs = {'Out': np.log(1 / (1 + np.exp(-self.inputs['X'])))} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.008) + self.check_grad(['X'], 'Out', max_relative_error=0.008) class TestTanh(OpTest): @@ -54,13 +68,13 @@ class TestTanh(OpTest): self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } - self.outputs = {'Y': np.tanh(self.inputs['X'])} + self.outputs = {'Out': np.tanh(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestTanhShrink(OpTest): @@ -69,13 +83,13 @@ class TestTanhShrink(OpTest): self.inputs = { 'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32") } - self.outputs = {'Y': self.inputs['X'] - np.tanh(self.inputs['X'])} + self.outputs = {'Out': self.inputs['X'] - np.tanh(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.008) + self.check_grad(['X'], 'Out', max_relative_error=0.008) class TestHardShrink(OpTest): @@ -89,13 +103,13 @@ class TestHardShrink(OpTest): t = np.copy(x) t[(t >= -threshold) & (t <= threshold)] = 0 - self.outputs = {'Y': t} + self.outputs = {'Out': t} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.005) + self.check_grad(['X'], 'Out', max_relative_error=0.005) class TestSoftShrink(OpTest): @@ -109,13 +123,13 @@ class TestSoftShrink(OpTest): y = np.copy(self.inputs['X']) y = (y < -lambda_val) * (y + lambda_val) + (y > lambda_val) * ( y - lambda_val) - self.outputs = {'Y': y} + self.outputs = {'Out': y} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestSqrt(OpTest): @@ -124,13 +138,13 @@ class TestSqrt(OpTest): self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } - self.outputs = {'Y': np.sqrt(self.inputs['X'])} + self.outputs = {'Out': np.sqrt(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestAbs(OpTest): @@ -143,13 +157,13 @@ class TestAbs(OpTest): # we should avoid this x[np.abs(x) < 0.005] = 0.02 self.inputs = {'X': x} - self.outputs = {'Y': np.abs(self.inputs['X'])} + self.outputs = {'Out': np.abs(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestCeil(OpTest): @@ -157,13 +171,13 @@ class TestCeil(OpTest): self.op_type = "ceil" x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.inputs = {'X': x} - self.outputs = {'Y': np.ceil(self.inputs['X'])} + self.outputs = {'Out': np.ceil(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestFloor(OpTest): @@ -172,13 +186,13 @@ class TestFloor(OpTest): x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.inputs = {'X': x} # numpy floor need +1 - self.outputs = {'Y': np.floor(self.inputs['X']) + 1.0} + self.outputs = {'Out': np.floor(self.inputs['X']) + 1.0} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestRound(OpTest): @@ -186,13 +200,13 @@ class TestRound(OpTest): self.op_type = "round" x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.inputs = {'X': x} - self.outputs = {'Y': np.round(self.inputs['X'])} + self.outputs = {'Out': np.round(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestRelu(OpTest): @@ -202,13 +216,13 @@ class TestRelu(OpTest): # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 self.inputs = {'X': x} - self.outputs = {'Y': np.maximum(self.inputs['X'], 0)} + self.outputs = {'Out': np.maximum(self.inputs['X'], 0)} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestBRelu(OpTest): @@ -226,13 +240,13 @@ class TestBRelu(OpTest): t = np.copy(x) t[t < t_min] = t_min t[t > t_max] = t_max - self.outputs = {'Y': t} + self.outputs = {'Out': t} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.02) + self.check_grad(['X'], 'Out', max_relative_error=0.02) class TestRelu6(OpTest): @@ -247,14 +261,14 @@ class TestRelu6(OpTest): self.inputs = {'X': x} self.attrs = {'threshold': threshold} self.outputs = { - 'Y': np.minimum(np.maximum(self.inputs['X'], 0), threshold) + 'Out': np.minimum(np.maximum(self.inputs['X'], 0), threshold) } def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.02) + self.check_grad(['X'], 'Out', max_relative_error=0.02) class TestSoftRelu(OpTest): @@ -270,13 +284,13 @@ class TestSoftRelu(OpTest): t = np.copy(x) t[t < -threshold] = -threshold t[t > threshold] = threshold - self.outputs = {'Y': np.log((np.exp(t) + 1))} + self.outputs = {'Out': np.log((np.exp(t) + 1))} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.02) + self.check_grad(['X'], 'Out', max_relative_error=0.02) class TestELU(OpTest): @@ -289,27 +303,27 @@ class TestELU(OpTest): self.inputs = {'X': x} self.attrs = {'alpha': alpha} self.outputs = { - 'Y': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1)) + 'Out': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1)) } def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.02) + self.check_grad(['X'], 'Out', max_relative_error=0.02) class TestReciprocal(OpTest): def setUp(self): self.op_type = "reciprocal" self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} - self.outputs = {'Y': np.reciprocal(self.inputs['X'])} + self.outputs = {'Out': np.reciprocal(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.01) + self.check_grad(['X'], 'Out', max_relative_error=0.01) class TestLog(OpTest): @@ -318,13 +332,13 @@ class TestLog(OpTest): self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } - self.outputs = {'Y': np.log(self.inputs['X'])} + self.outputs = {'Out': np.log(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestSquare(OpTest): @@ -333,13 +347,13 @@ class TestSquare(OpTest): self.inputs = { 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") } - self.outputs = {'Y': np.square(self.inputs['X'])} + self.outputs = {'Out': np.square(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestPow(OpTest): @@ -347,13 +361,13 @@ class TestPow(OpTest): self.op_type = "pow" self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} self.attrs = {'factor': 3.0} - self.outputs = {'Y': np.power(self.inputs['X'], 3)} + self.outputs = {'Out': np.power(self.inputs['X'], 3)} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.02) + self.check_grad(['X'], 'Out', max_relative_error=0.02) class TestSTanh(OpTest): @@ -365,13 +379,13 @@ class TestSTanh(OpTest): scale_a = 2.0 / 3.0 scale_b = 1.7159 self.attrs = {'scale_a': scale_a, 'scale_b': scale_b} - self.outputs = {'Y': scale_b * np.tanh(self.inputs['X'] * scale_a)} + self.outputs = {'Out': scale_b * np.tanh(self.inputs['X'] * scale_a)} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestSoftplus(OpTest): @@ -380,13 +394,13 @@ class TestSoftplus(OpTest): self.inputs = { 'X': np.random.uniform(-1, 1, [11, 17]).astype("float64") } - self.outputs = {'Y': np.log(1 + np.exp(self.inputs['X']))} + self.outputs = {'Out': np.log(1 + np.exp(self.inputs['X']))} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestSoftsign(OpTest): @@ -396,14 +410,14 @@ class TestSoftsign(OpTest): 'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") } self.outputs = { - 'Y': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X'])) + 'Out': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X'])) } def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.007) + self.check_grad(['X'], 'Out', max_relative_error=0.007) class TestThresholdedRelu(OpTest): @@ -418,13 +432,13 @@ class TestThresholdedRelu(OpTest): self.inputs = {'X': X} self.attrs = {'threshold': threshold} - self.outputs = {'Y': (X > threshold) * X} + self.outputs = {'Out': (X > threshold) * X} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=self.relative_error) + self.check_grad(['X'], 'Out', max_relative_error=self.relative_error) class TestHardSigmoid(OpTest): @@ -446,13 +460,28 @@ class TestHardSigmoid(OpTest): upper_threshold - 0.2 temp = X * slope + offset - self.outputs = {'Y': np.maximum(0.0, np.minimum(1.0, temp))} + self.outputs = {'Out': np.maximum(0.0, np.minimum(1.0, temp))} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y', max_relative_error=0.002) + self.check_grad(['X'], 'Out', max_relative_error=0.002) + + +class TestSwish(OpTest): + def setUp(self): + self.op_type = "swish" + X = np.random.uniform(0.1, 1, [11, 17]).astype("float32") + self.inputs = {'X': X} + self.attrs = {'beta': 2.3} + self.outputs = {'Out': X * expit(self.attrs['beta'] * X)} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out', max_relative_error=0.008) if __name__ == "__main__": diff --git a/python/paddle/v2/fluid/tests/test_adadelta_op.py b/python/paddle/v2/fluid/tests/test_adadelta_op.py index 7105593a98..8de6a1f9a9 100644 --- a/python/paddle/v2/fluid/tests/test_adadelta_op.py +++ b/python/paddle/v2/fluid/tests/test_adadelta_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_adagrad_op.py b/python/paddle/v2/fluid/tests/test_adagrad_op.py index 903e84c328..30ed092d48 100644 --- a/python/paddle/v2/fluid/tests/test_adagrad_op.py +++ b/python/paddle/v2/fluid/tests/test_adagrad_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import paddle.v2.fluid.core as core @@ -113,8 +126,7 @@ class TestSparseAdagradOp(unittest.TestCase): LearningRate='LearningRate', epsilon=2.0) - ctx = core.DeviceContext.create(place) - adagrad_op.run(scope, ctx) + adagrad_op.run(scope, place) # get and compare moment result moment_result_array = np.array(moment) @@ -168,7 +180,7 @@ class TestSparseAdagradOp(unittest.TestCase): def test_sparse_adagrad(self): places = [core.CPUPlace()] if core.is_compile_gpu(): - places.append(core.GPUPlace(0)) + places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) diff --git a/python/paddle/v2/fluid/tests/test_adam_op.py b/python/paddle/v2/fluid/tests/test_adam_op.py index a0d6655d4c..32d00cf702 100644 --- a/python/paddle/v2/fluid/tests/test_adam_op.py +++ b/python/paddle/v2/fluid/tests/test_adam_op.py @@ -1,6 +1,21 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest +from paddle.v2.fluid import core +from paddle.v2.fluid.op import Operator class TestAdamOp1(OpTest): @@ -176,5 +191,124 @@ def adam_step(inputs, attributes): return param_out, moment1_out, moment2_out +def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad): + ''' + Simulate one step of the adam optimizer + :param inputs: dict of inputs + :param attributes: dict of attributes + :return tuple: tuple of output param, moment1, moment2, + beta1 power accumulator and beta2 power accumulator + ''' + param = inputs['Param'] + # grad = inputs['Grad'] + moment1 = inputs['Moment1'] + moment2 = inputs['Moment2'] + lr = inputs['LearningRate'] + beta1_pow = inputs['Beta1Pow'] + beta2_pow = inputs['Beta2Pow'] + + beta1 = attributes['beta1'] + beta2 = attributes['beta2'] + epsilon = attributes['epsilon'] + + moment1_out = np.zeros(shape=[height, row_numel]) + moment2_out = np.zeros(shape=[height, row_numel]) + param_out = np.zeros(shape=[height, row_numel]) + + for idx, row_id in enumerate(rows): + moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1 + ) * np_grad[idx] + moment2_out[row_id] = beta2 * moment2[row_id] + ( + 1 - beta2) * np.square(np_grad[idx]) + lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow) + param_out[row_id] = param[row_id] - lr_t * (moment1_out[row_id] / ( + np.sqrt(moment2_out[row_id]) + epsilon)) + return param_out, moment1_out, moment2_out + + +class TestSparseAdamOp(unittest.TestCase): + def setup(self, scope, place): + beta1 = 0.78 + beta2 = 0.836 + epsilon = 1e-4 + + height = 10 + rows = [0, 4, 7] + self.rows = rows + row_numel = 12 + self.row_numel = row_numel + self.dense_inputs = { + "Param": np.full((height, row_numel), 5.0).astype("float32"), + "Moment1": np.full((height, row_numel), 5.0).astype("float32"), + "Moment2": np.full((height, row_numel), 5.0).astype("float32"), + 'Beta1Pow': np.array([beta1**10]).astype("float32"), + 'Beta2Pow': np.array([beta2**10]).astype("float32"), + "LearningRate": np.full((1), 2.0).astype("float32") + } + self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} + + grad_selected_rows = scope.var('Grad').get_selected_rows() + grad_selected_rows.set_height(height) + grad_selected_rows.set_rows(rows) + np_array = np.ones((len(rows), row_numel)).astype("float32") + np_array[0, 0] = 2.0 + np_array[2, 8] = 4.0 + + grad_tensor = grad_selected_rows.get_tensor() + grad_tensor.set(np_array, place) + + self.sparse_inputs = ["Grad"] + + param_out, mom1, mom2 = adam_step_sparse( + self.dense_inputs, self.attrs, height, rows, row_numel, np_array) + self.outputs = { + "ParamOut": param_out, + "Moment1Out": mom1, + "Moment2Out": mom2 + } + + def check_with_place(self, place): + scope = core.Scope() + self.setup(scope, place) + + op_args = dict() + for key, np_array in self.dense_inputs.iteritems(): + var = scope.var(key).get_tensor() + var.set(np_array, place) + op_args[key] = key + for s in self.sparse_inputs: + op_args[s] = s + for s in self.outputs: + var = scope.var(s).get_tensor() + var.set(self.outputs[s], place) + op_args[s] = s + for k in self.attrs: + op_args[k] = self.attrs[k] + + # create and run sgd operator + adam_op = Operator("adam", **op_args) + adam_op.run(scope, place) + + for key, np_array in self.outputs.iteritems(): + out_var = scope.var(key).get_tensor() + actual = np.array(out_var) + actual = actual.reshape([actual.size]) + np_array = np_array.reshape([np_array.size]) + for idx, row_id in enumerate(self.rows): + j = 0 + while j < self.row_numel: + pos = row_id * self.row_numel + j + self.assertLess((actual[pos] - np_array[pos]) / actual[pos], + 0.00001) + j += 1 + + def test_sparse_sgd(self): + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.CUDAPlace(0)) + for place in places: + self.check_with_place(place) + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_adamax_op.py b/python/paddle/v2/fluid/tests/test_adamax_op.py index 8e5a15aa3d..35b2bc47ed 100644 --- a/python/paddle/v2/fluid/tests/test_adamax_op.py +++ b/python/paddle/v2/fluid/tests/test_adamax_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_array_read_write_op.py b/python/paddle/v2/fluid/tests/test_array_read_write_op.py index f6120aedec..8775cd4f9f 100644 --- a/python/paddle/v2/fluid/tests/test_array_read_write_op.py +++ b/python/paddle/v2/fluid/tests/test_array_read_write_op.py @@ -1,8 +1,21 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward from paddle.v2.fluid.framework import default_main_program import numpy @@ -64,7 +77,7 @@ class TestArrayReadWrite(unittest.TestCase): total_sum = layers.sums(input=[a_sum, x_sum]) total_sum_scaled = layers.scale(x=total_sum, scale=1 / 6.0) - append_backward_ops(total_sum_scaled) + append_backward(total_sum_scaled) g_vars = map(default_main_program().global_block().var, [each_x.name + "@GRAD" for each_x in x]) diff --git a/python/paddle/v2/fluid/tests/test_assign_op.py b/python/paddle/v2/fluid/tests/test_assign_op.py index 1b0c145f1a..4ac173c96b 100644 --- a/python/paddle/v2/fluid/tests/test_assign_op.py +++ b/python/paddle/v2/fluid/tests/test_assign_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import op_test import numpy import unittest diff --git a/python/paddle/v2/fluid/tests/test_assign_value_op.py b/python/paddle/v2/fluid/tests/test_assign_value_op.py new file mode 100644 index 0000000000..f4e2ff9bde --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_assign_value_op.py @@ -0,0 +1,53 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import paddle.v2.fluid as fluid +import paddle.v2.fluid.layers as layers +import op_test +import numpy +import unittest +import paddle.v2.fluid.framework as framework + + +class TestAssignValueOp(op_test.OpTest): + def setUp(self): + self.op_type = "assign_value" + x = numpy.random.random(size=(2, 5)).astype(numpy.float32) + self.inputs = {} + self.outputs = {'Out': x} + self.attrs = { + 'shape': x.shape, + 'dtype': framework.convert_np_dtype_to_dtype_(x.dtype), + 'fp32_values': [float(v) for v in x.flat] + } + + def test_forward(self): + self.check_output() + + def test_assign(self): + val = ( + -100 + 200 * numpy.random.random(size=(2, 5))).astype(numpy.int32) + x = layers.create_tensor(dtype="float32") + layers.assign(input=val, output=x) + exe = fluid.Executor(fluid.CPUPlace()) + fetched_x = exe.run(fluid.default_main_program(), + feed={}, + fetch_list=[x])[0] + self.assertTrue( + numpy.array_equal(fetched_x, val), + "fetch_x=%s val=%s" % (fetched_x, val)) + self.assertEqual(fetched_x.dtype, val.dtype) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_auc_op.py b/python/paddle/v2/fluid/tests/test_auc_op.py index 26ea905d88..aa74d224d5 100644 --- a/python/paddle/v2/fluid/tests/test_auc_op.py +++ b/python/paddle/v2/fluid/tests/test_auc_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_batch_norm_op.py b/python/paddle/v2/fluid/tests/test_batch_norm_op.py index e766a68c0e..fe82b7d7f3 100644 --- a/python/paddle/v2/fluid/tests/test_batch_norm_op.py +++ b/python/paddle/v2/fluid/tests/test_batch_norm_op.py @@ -1,12 +1,22 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle.v2.fluid.core as core from paddle.v2.fluid.op import Operator - - -def grad_var_name(var_name): - return var_name + "@GRAD" +from paddle.v2.fluid.framework import grad_var_name def get_backward_op(scope, op, no_grad_set): @@ -211,7 +221,7 @@ class TestBatchNormOp(OpTest): print 'python: NHWC, NCHW, backward checking passed' def test_forward_backward(self): - def test_with_place(place, tensor_format, shape): + def test_with_place(place, data_layout, shape): # attr epsilon = 0.00001 momentum = 0.9 @@ -295,12 +305,11 @@ class TestBatchNormOp(OpTest): SavedVariance="saved_variance", # attrs is_test=False, - tensor_format=tensor_format, + data_layout=data_layout, momentum=momentum, epsilon=epsilon) - ctx = core.DeviceContext.create(place) - batch_norm_op.run(scope, ctx) + batch_norm_op.run(scope, place) # check forward result self.__assert_close(y_tensor, y_out, "y_out") @@ -308,13 +317,13 @@ class TestBatchNormOp(OpTest): self.__assert_close(saved_variance_tensor, saved_variance, "saved_variance") self.__assert_close(mean_out_tensor, mean_out, "mean_out") - if isinstance(place, core.GPUPlace): + if isinstance(place, core.CUDAPlace): atol = 5e-2 else: atol = 1e-4 self.__assert_close(variance_out_tensor, variance_out, "variance_out", atol) - print "op test forward passed: ", str(place), tensor_format + print "op test forward passed: ", str(place), data_layout # run backward batch_norm_op_grad = get_backward_op(scope, batch_norm_op, set()) @@ -323,7 +332,7 @@ class TestBatchNormOp(OpTest): ["y_out", "mean", "variance", "saved_mean", "saved_variance"], place, feed_dict={"y_out": y_grad}) - batch_norm_op_grad.run(scope, ctx) + batch_norm_op_grad.run(scope, place) x_grad_tensor = create_or_get_tensor(scope, grad_var_name("x_val"), None, @@ -339,11 +348,12 @@ class TestBatchNormOp(OpTest): self.__assert_close(x_grad_tensor, x_grad_ref, "x_grad") self.__assert_close(scale_grad_tensor, scale_grad_ref, "scale_grad") self.__assert_close(bias_grad_tensor, bias_grad_ref, "bias_grad") - print "op test backward passed: ", str(place), tensor_format + print "op test backward passed: ", str(place), data_layout places = [core.CPUPlace()] if core.is_compile_gpu() and core.op_support_gpu("batch_norm"): - places.append(core.GPUPlace(0)) + places.append(core.CUDAPlace(0)) + for place in places: for data_format in ["NCHW", "NHWC"]: test_with_place(place, data_format, [2, 3, 4, 5]) diff --git a/python/paddle/v2/fluid/tests/test_beam_search_decode_op.py b/python/paddle/v2/fluid/tests/test_beam_search_decode_op.py index 5fad7d8cce..9ef6e08cc1 100644 --- a/python/paddle/v2/fluid/tests/test_beam_search_decode_op.py +++ b/python/paddle/v2/fluid/tests/test_beam_search_decode_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np @@ -57,8 +70,7 @@ class TestBeamSearchDecodeOp(unittest.TestCase): SentenceIds="sentence_ids", SentenceScores="sentence_scores") - ctx = core.DeviceContext.create(self.cpu_place) - beam_search_decode_op.run(self.scope, ctx) + beam_search_decode_op.run(self.scope, self.cpu_place) expected_lod = [[0, 4, 8], [0, 1, 3, 6, 9, 10, 13, 16, 19]] self.assertEqual(sentence_ids.lod(), expected_lod) diff --git a/python/paddle/v2/fluid/tests/test_beam_search_op.py b/python/paddle/v2/fluid/tests/test_beam_search_op.py index cc7c09bb59..f31c737ba6 100644 --- a/python/paddle/v2/fluid/tests/test_beam_search_op.py +++ b/python/paddle/v2/fluid/tests/test_beam_search_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import logging from paddle.v2.fluid.op import Operator, DynamicRecurrentOp import paddle.v2.fluid.core as core @@ -14,7 +27,6 @@ def create_tensor(scope, name, np_data): class BeamSearchOpTester(unittest.TestCase): def setUp(self): self.scope = core.Scope() - self.ctx = core.DeviceContext.create(core.CPUPlace()) self._create_ids() self._create_scores() self._create_pre_ids() @@ -32,19 +44,19 @@ class BeamSearchOpTester(unittest.TestCase): level=0, beam_size=2, end_id=0, ) - op.run(self.scope, self.ctx) + op.run(self.scope, core.CPUPlace()) selected_ids = self.scope.find_var("selected_ids").get_tensor() print 'selected_ids', np.array(selected_ids) print 'lod', selected_ids.lod() def _create_pre_ids(self): - np_data = np.array([[1, 2, 3, 4]], dtype='int32') + np_data = np.array([[1, 2, 3, 4]], dtype='int64') tensor = create_tensor(self.scope, "pre_ids", np_data) def _create_ids(self): self.lod = [[0, 1, 4], [0, 1, 2, 3, 4]] np_data = np.array( - [[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]], dtype='int32') + [[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]], dtype='int64') tensor = create_tensor(self.scope, "ids", np_data) tensor.set_lod(self.lod) diff --git a/python/paddle/v2/fluid/tests/test_bilinear_tensor_product_op.py b/python/paddle/v2/fluid/tests/test_bilinear_tensor_product_op.py index 080ca43b82..aed1bf4d3a 100644 --- a/python/paddle/v2/fluid/tests/test_bilinear_tensor_product_op.py +++ b/python/paddle/v2/fluid/tests/test_bilinear_tensor_product_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_calc_gradient.py b/python/paddle/v2/fluid/tests/test_calc_gradient.py new file mode 100644 index 0000000000..b99eeb09cd --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_calc_gradient.py @@ -0,0 +1,38 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest + +import paddle.v2.fluid as fluid +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.optimizer as optimizer +from paddle.v2.fluid.backward import calc_gradient + + +class TestCalcGradient(unittest.TestCase): + def test_calc_gradient(self): + x = layers.create_parameter(dtype="float32", shape=[5, 10]) + y = layers.create_parameter(dtype="float32", shape=[10, 8]) + mul_out = layers.mul(x=x, y=y) + mean_out = layers.mean(x=mul_out) + a = calc_gradient(mean_out, mul_out) + b = calc_gradient(mean_out, x) + place = fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(fluid.default_startup_program()) + exe.run(fluid.default_main_program(), feed={}, fetch_list=[a, b]) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_cast_op.py b/python/paddle/v2/fluid/tests/test_cast_op.py index 4e431bb88d..3795b96dbf 100644 --- a/python/paddle/v2/fluid/tests/test_cast_op.py +++ b/python/paddle/v2/fluid/tests/test_cast_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import op_test import unittest import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_chunk_eval_op.py b/python/paddle/v2/fluid/tests/test_chunk_eval_op.py index 819e65a653..59ef2bbb2f 100644 --- a/python/paddle/v2/fluid/tests/test_chunk_eval_op.py +++ b/python/paddle/v2/fluid/tests/test_chunk_eval_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -147,7 +160,13 @@ class TestChunkEvalOp(OpTest): 'Recall': np.asarray( [recall], dtype='float32'), 'F1-Score': np.asarray( - [f1], dtype='float32') + [f1], dtype='float32'), + 'NumInferChunks': np.asarray( + [self.num_infer_chunks], dtype='int64'), + 'NumLabelChunks': np.asarray( + [self.num_label_chunks], dtype='int64'), + 'NumCorrectChunks': np.asarray( + [self.num_correct_chunks], dtype='int64') } def setUp(self): diff --git a/python/paddle/v2/fluid/tests/test_clip.py b/python/paddle/v2/fluid/tests/test_clip.py new file mode 100644 index 0000000000..63353a1096 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_clip.py @@ -0,0 +1,80 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from __future__ import print_function +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid + +BATCH_SIZE = 128 +CLIP_MAX = 2e-6 +CLIP_MIN = -1e-6 + +prog = fluid.framework.Program() + +with fluid.program_guard(main_program=prog): + image = fluid.layers.data(name='x', shape=[784], dtype='float32') + + hidden1 = fluid.layers.fc(input=image, size=128, act='relu') + hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') + predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') + + label = fluid.layers.data(name='y', shape=[1], dtype='int64') + + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + +prog_clip = prog.clone() +prog_clip.block(0).var(hidden1.name).set_error_clip( + fluid.clip.ErrorClipByValue( + max=CLIP_MAX, min=CLIP_MIN)) + +avg_cost_clip = prog_clip.block(0).var(avg_cost.name) +fluid.backward.append_backward(loss=avg_cost) +fluid.backward.append_backward( + loss=avg_cost_clip, callback=fluid.clip.error_clip_callback) + +hidden1_grad = prog.block(0).var(hidden1.name + "@GRAD") +hidden1_grad_clip = prog_clip.block(0).var(hidden1.name + "@GRAD") + +hidden2_grad = prog.block(0).var(hidden2.name + "@GRAD") +hidden2_grad_clip = prog_clip.block(0).var(hidden2.name + "@GRAD") + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=8192), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) +feeder = fluid.DataFeeder(feed_list=[image, label], place=place) +exe.run(fluid.default_startup_program()) + +count = 0 +for data in train_reader(): + count += 1 + if count > 5: + break + out1, out2 = exe.run(prog, + feed=feeder.feed(data), + fetch_list=[hidden1_grad, hidden2_grad]) + out1_clip, out2_clip = exe.run( + prog_clip, + feed=feeder.feed(data), + fetch_list=[hidden1_grad_clip, hidden2_grad_clip]) + if not ((out1.clip( + min=CLIP_MIN, max=CLIP_MAX) == out1_clip).all() and + (out2 == out2_clip).all()): + exit(1) + +exit(0) diff --git a/python/paddle/v2/fluid/tests/test_clip_by_norm_op.py b/python/paddle/v2/fluid/tests/test_clip_by_norm_op.py index 02f6108a3a..5147e75046 100644 --- a/python/paddle/v2/fluid/tests/test_clip_by_norm_op.py +++ b/python/paddle/v2/fluid/tests/test_clip_by_norm_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_clip_op.py b/python/paddle/v2/fluid/tests/test_clip_op.py index a7e1bf1744..3338dc61b3 100644 --- a/python/paddle/v2/fluid/tests/test_clip_op.py +++ b/python/paddle/v2/fluid/tests/test_clip_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_compare_op.py b/python/paddle/v2/fluid/tests/test_compare_op.py index 5d0dfab6ff..fbf8921e40 100644 --- a/python/paddle/v2/fluid/tests/test_compare_op.py +++ b/python/paddle/v2/fluid/tests/test_compare_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import op_test import unittest import numpy diff --git a/python/paddle/v2/fluid/tests/test_concat_op.py b/python/paddle/v2/fluid/tests/test_concat_op.py index a792d1c106..3e413e1540 100644 --- a/python/paddle/v2/fluid/tests/test_concat_op.py +++ b/python/paddle/v2/fluid/tests/test_concat_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_cond_op.py b/python/paddle/v2/fluid/tests/test_cond_op.py index 9d1df44b90..5312fa51a2 100644 --- a/python/paddle/v2/fluid/tests/test_cond_op.py +++ b/python/paddle/v2/fluid/tests/test_cond_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import logging import paddle.v2.fluid.core as core import unittest @@ -65,8 +78,7 @@ class TestCondOp(unittest.TestCase): self.create_global_variables() self.create_cond_op() self.create_sub_net() - ctx = core.DeviceContext.create(core.CPUPlace()) - self.condop.run(self.scope, ctx) + self.condop.run(self.scope, core.CPUPlace()) return np.array(self.scope.find_var("Out").get_tensor()) def create_global_variables(self): diff --git a/python/paddle/v2/fluid/tests/test_conditional_block.py b/python/paddle/v2/fluid/tests/test_conditional_block.py index 2b9d8f351a..965e7d39c8 100644 --- a/python/paddle/v2/fluid/tests/test_conditional_block.py +++ b/python/paddle/v2/fluid/tests/test_conditional_block.py @@ -1,9 +1,22 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.layers as layers import paddle.v2.fluid.core as core from paddle.v2.fluid.framework import default_startup_program, default_main_program from paddle.v2.fluid.executor import Executor -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward import numpy @@ -26,7 +39,7 @@ class ConditionalBlock(unittest.TestCase): outs = exe.run(feed={'X': x}, fetch_list=[out])[0] print outs loss = layers.mean(x=out) - append_backward_ops(loss=loss) + append_backward(loss=loss) outs = exe.run( feed={'X': x}, fetch_list=[ diff --git a/python/paddle/v2/fluid/tests/test_const_value.py b/python/paddle/v2/fluid/tests/test_const_value.py new file mode 100644 index 0000000000..190bfa779b --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_const_value.py @@ -0,0 +1,27 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import paddle.v2.fluid.framework as framework + + +class ConditionalBlock(unittest.TestCase): + def test_const_value(self): + self.assertEqual(framework.GRAD_VAR_SUFFIX, "@GRAD") + self.assertEqual(framework.TEMP_VAR_NAME, "@TEMP@") + self.assertEqual(framework.GRAD_VAR_SUFFIX, "@GRAD") + self.assertEqual(framework.ZERO_VAR_SUFFIX, "@ZERO") + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_conv2d_op.py b/python/paddle/v2/fluid/tests/test_conv2d_op.py index e82e3ab0c9..8b03a3ae16 100644 --- a/python/paddle/v2/fluid/tests/test_conv2d_op.py +++ b/python/paddle/v2/fluid/tests/test_conv2d_op.py @@ -1,5 +1,20 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np + +import paddle.v2.fluid.core as core from op_test import OpTest @@ -47,6 +62,7 @@ def conv2d_forward_naive(input, filter, group, conv_param): class TestConv2dOp(OpTest): def setUp(self): + self.use_cudnn = False self.init_op_type() self.init_group() self.init_dilation() @@ -67,30 +83,59 @@ class TestConv2dOp(OpTest): 'strides': self.stride, 'paddings': self.pad, 'groups': self.groups, - 'dilations': self.dilations + 'dilations': self.dilations, + 'use_cudnn': self.use_cudnn } self.outputs = {'Output': output} def test_check_output(self): - self.check_output() + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_output_with_place(place, atol=1e-5) + else: + self.check_output() def test_check_grad(self): - self.check_grad( - set(['Input', 'Filter']), 'Output', max_relative_error=0.02) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, + set(['Input', 'Filter']), + 'Output', + max_relative_error=0.02) + else: + self.check_grad( + set(['Input', 'Filter']), 'Output', max_relative_error=0.02) def test_check_grad_no_filter(self): - self.check_grad( - ['Input'], - 'Output', - max_relative_error=0.02, - no_grad_set=set(['Filter'])) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, ['Input'], + 'Output', + max_relative_error=0.02, + no_grad_set=set(['Filter'])) + else: + self.check_grad( + ['Input'], + 'Output', + max_relative_error=0.02, + no_grad_set=set(['Filter'])) def test_check_grad_no_input(self): - self.check_grad( - ['Filter'], - 'Output', - max_relative_error=0.02, - no_grad_set=set(['Input'])) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, ['Filter'], + 'Output', + max_relative_error=0.02, + no_grad_set=set(['Input'])) + else: + self.check_grad( + ['Filter'], + 'Output', + max_relative_error=0.02, + no_grad_set=set(['Input'])) def init_test_case(self): self.pad = [0, 0] @@ -164,34 +209,39 @@ class TestWithDilation(TestConv2dOp): self.groups = 3 -#----------------Conv2dCudnn---------------- -class TestCudnn(TestConv2dOp): +#----------------Conv2dCUDNN---------------- +class TestCUDNN(TestConv2dOp): def init_op_type(self): - self.op_type = "conv2d_cudnn" + self.use_cudnn = True + self.op_type = "conv2d" -class TestCudnnWithPad(TestWithPad): +class TestCUDNNWithPad(TestWithPad): def init_op_type(self): - self.op_type = "conv2d_cudnn" + self.use_cudnn = True + self.op_type = "conv2d" -class TestCudnnWithStride(TestWithStride): +class TestCUDNNWithStride(TestWithStride): def init_op_type(self): - self.op_type = "conv2d_cudnn" + self.use_cudnn = True + self.op_type = "conv2d" -class TestCudnnWithGroup(TestWithGroup): +class TestCUDNNWithGroup(TestWithGroup): def init_op_type(self): - self.op_type = "conv2d_cudnn" + self.use_cudnn = True + self.op_type = "conv2d" -class TestCudnnWith1x1(TestWith1x1): +class TestCUDNNWith1x1(TestWith1x1): def init_op_type(self): - self.op_type = "conv2d_cudnn" + self.use_cudnn = True + self.op_type = "conv2d" # cudnn v5 does not support dilation conv. -# class TestCudnnWithDilation(TestWithDilation): +# class TestCUDNNWithDilation(TestWithDilation): # def init_op_type(self): # self.op_type = "conv_cudnn" diff --git a/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py b/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py index d7b1f2f2a3..b7b86c58fb 100644 --- a/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py +++ b/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py @@ -1,16 +1,34 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np + +import paddle.v2.fluid.core as core from op_test import OpTest -def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): +def conv2dtranspose_forward_naive(input_, filter_, attrs): in_n, in_c, in_h, in_w = input_.shape f_c, out_c, f_h, f_w = filter_.shape assert in_c == f_c - stride, pad = conv2dtranspose_param['stride'], conv2dtranspose_param['pad'] - out_h = (in_h - 1) * stride[0] + f_h - out_w = (in_w - 1) * stride[1] + f_w + stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[ + 'dilations'] + d_bolck_h = dilations[0] * (f_h - 1) + 1 + d_bolck_w = dilations[1] * (f_w - 1) + 1 + out_h = (in_h - 1) * stride[0] + d_bolck_h + out_w = (in_w - 1) * stride[1] + d_bolck_w out = np.zeros((in_n, out_c, out_h, out_w)) @@ -23,9 +41,9 @@ def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): for k in range(out_c): tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0) - i1, i2 = i * stride[0], i * stride[0] + f_h - j1, j2 = j * stride[0], j * stride[0] + f_w - out[n, k, i1:i2, j1:j2] += tmp_out + i1, i2 = i * stride[0], i * stride[0] + d_bolck_h + j1, j2 = j * stride[0], j * stride[0] + d_bolck_h + out[n, k, i1:i2:dilations[0], j1:j2:dilations[1]] += tmp_out out = out[:, :, pad[0]:out_h - pad[0], pad[1]:out_w - pad[1]] return out @@ -34,43 +52,75 @@ def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): class TestConv2dTransposeOp(OpTest): def setUp(self): # init as conv transpose + self.use_cudnn = False self.init_op_type() self.init_test_case() - conv2dtranspose_param = {'stride': self.stride, 'pad': self.pad} input_ = np.random.random(self.input_size).astype("float32") filter_ = np.random.random(self.filter_size).astype("float32") - output = conv2dtranspose_forward_naive( - input_, filter_, conv2dtranspose_param).astype('float32') self.inputs = {'Input': input_, 'Filter': filter_} self.attrs = { 'strides': self.stride, 'paddings': self.pad, - 'dilations': self.dilations + 'dilations': self.dilations, + 'use_cudnn': self.use_cudnn, + 'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter } + + output = conv2dtranspose_forward_naive(input_, filter_, + self.attrs).astype('float32') + self.outputs = {'Output': output} def test_check_output(self): - self.check_output() + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_output_with_place(place, atol=1e-5) + else: + self.check_output() def test_check_grad_no_input(self): - self.check_grad( - ['Filter'], - 'Output', - max_relative_error=0.02, - no_grad_set=set(['Input'])) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, ['Filter'], + 'Output', + max_relative_error=0.02, + no_grad_set=set(['Input'])) + else: + self.check_grad( + ['Filter'], + 'Output', + max_relative_error=0.02, + no_grad_set=set(['Input'])) def test_check_grad_no_filter(self): - self.check_grad( - ['Input'], - 'Output', - max_relative_error=0.02, - no_grad_set=set(['Filter'])) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, ['Input'], + 'Output', + max_relative_error=0.02, + no_grad_set=set(['Filter'])) + else: + self.check_grad( + ['Input'], + 'Output', + max_relative_error=0.02, + no_grad_set=set(['Filter'])) def test_check_grad(self): - self.check_grad( - set(['Input', 'Filter']), 'Output', max_relative_error=0.02) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, + set(['Input', 'Filter']), + 'Output', + max_relative_error=0.02) + else: + self.check_grad( + set(['Input', 'Filter']), 'Output', max_relative_error=0.02) def init_test_case(self): self.pad = [0, 0] @@ -104,11 +154,63 @@ class TestWithStride(TestConv2dTransposeOp): self.filter_size = [f_c, 6, 3, 3] +class TestWithDilation(TestConv2dTransposeOp): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [1, 1] + self.dilations = [2, 2] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + # ------------ test_cudnn ------------ -class TestCudnn(TestConv2dTransposeOp): +class TestCUDNN(TestConv2dTransposeOp): def init_op_type(self): - self.op_type = "conv2d_transpose_cudnn" + self.use_cudnn = True + self.op_type = "conv2d_transpose" + + +class TestCUDNNWithPad(TestWithPad): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [1, 1] + self.dilations = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + def init_op_type(self): + self.use_cudnn = True + self.op_type = "conv2d_transpose" + + +class TestCUDNNWithStride(TestWithStride): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [2, 2] + self.dilations = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + def init_op_type(self): + self.use_cudnn = True + self.op_type = "conv2d_transpose" + +# #cudnn v5 does not support dilation conv. +# class TestCUDNNWithDilation(TestWithDilation): +# def init_test_case(self): +# self.pad = [1, 1] +# self.stride = [2, 2] +# self.dilations = [2, 2] +# self.input_size = [2, 3, 5, 5] # NCHW +# f_c = self.input_size[1] +# self.filter_size = [f_c, 6, 3, 3] +# +# def init_op_type(self): +# self.op_type = "conv2d_transpose" if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_conv3d_op.py b/python/paddle/v2/fluid/tests/test_conv3d_op.py index 8593dff20b..5b0397cc69 100644 --- a/python/paddle/v2/fluid/tests/test_conv3d_op.py +++ b/python/paddle/v2/fluid/tests/test_conv3d_op.py @@ -1,5 +1,20 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np + +import paddle.v2.fluid.core as core from op_test import OpTest @@ -54,6 +69,7 @@ def conv3d_forward_naive(input, filter, group, conv_param): class TestConv3dOp(OpTest): def setUp(self): + self.use_cudnn = False self.init_group() self.init_op_type() self.init_dilation() @@ -62,7 +78,9 @@ class TestConv3dOp(OpTest): conv3d_param = { 'stride': self.stride, 'pad': self.pad, - 'dilations': self.dilations + 'dilations': self.dilations, + 'use_cudnn': self.use_cudnn, + 'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter } input = np.random.random(self.input_size).astype("float32") filter = np.random.random(self.filter_size).astype("float32") @@ -79,25 +97,53 @@ class TestConv3dOp(OpTest): self.outputs = {'Output': output} def test_check_output(self): - self.check_output() + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_output_with_place(place, atol=1e-5) + else: + self.check_output() def test_check_grad(self): - self.check_grad( - set(['Input', 'Filter']), 'Output', max_relative_error=0.03) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, + set(['Input', 'Filter']), + 'Output', + max_relative_error=0.03) + else: + self.check_grad( + set(['Input', 'Filter']), 'Output', max_relative_error=0.03) def test_check_grad_no_filter(self): - self.check_grad( - ['Input'], - 'Output', - max_relative_error=0.03, - no_grad_set=set(['Filter'])) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, ['Input'], + 'Output', + max_relative_error=0.03, + no_grad_set=set(['Filter'])) + else: + self.check_grad( + ['Input'], + 'Output', + max_relative_error=0.03, + no_grad_set=set(['Filter'])) def test_check_grad_no_input(self): - self.check_grad( - ['Filter'], - 'Output', - max_relative_error=0.03, - no_grad_set=set(['Input'])) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, ['Filter'], + 'Output', + max_relative_error=0.03, + no_grad_set=set(['Input'])) + else: + self.check_grad( + ['Filter'], + 'Output', + max_relative_error=0.03, + no_grad_set=set(['Input'])) def init_test_case(self): self.pad = [0, 0, 0] @@ -169,31 +215,35 @@ class TestWithDilation(TestConv3dOp): self.groups = 3 -class TestCudnn(TestConv3dOp): +class TestCUDNN(TestConv3dOp): def init_op_type(self): - self.op_type = "conv3d_cudnn" + self.use_cudnn = True + self.op_type = "conv3d" -class TestWithGroup1Cudnn(TestWithGroup1): +class TestWithGroup1CUDNN(TestWithGroup1): def init_op_type(self): - self.op_type = "conv3d_cudnn" + self.use_cudnn = True + self.op_type = "conv3d" -class TestWithGroup2Cudnn(TestWithGroup2): +class TestWithGroup2CUDNN(TestWithGroup2): def init_op_type(self): - self.op_type = "conv3d_cudnn" + self.use_cudnn = True + self.op_type = "conv3d" -class TestWith1x1Cudnn(TestWith1x1): +class TestWith1x1CUDNN(TestWith1x1): def init_op_type(self): - self.op_type = "conv3d_cudnn" + self.use_cudnn = True + self.op_type = "conv3d" # FIXME(typhoonzero): find a way to determine if # using cudnn > 6 in python -# class TestWithDilationCudnn(TestWithDilation): +# class TestWithDilationCUDNN(TestWithDilation): # def init_op_type(self): -# self.op_type = "conv3d_cudnn" +# self.op_type = "conv3d" if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py b/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py index 8fd34b87bf..b08969062a 100644 --- a/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py +++ b/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py @@ -1,17 +1,37 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np + +import paddle.v2.fluid.core as core from op_test import OpTest -def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param): +def conv3dtranspose_forward_naive(input_, filter_, attrs): in_n, in_c, in_d, in_h, in_w = input_.shape f_c, out_c, f_d, f_h, f_w = filter_.shape assert in_c == f_c - stride, pad = conv3dtranspose_param['stride'], conv3dtranspose_param['pad'] - out_d = (in_d - 1) * stride[0] + f_d - out_h = (in_h - 1) * stride[1] + f_h - out_w = (in_w - 1) * stride[2] + f_w + stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[ + 'dilations'] + + d_bolck_d = dilations[0] * (f_d - 1) + 1 + d_bolck_h = dilations[1] * (f_h - 1) + 1 + d_bolck_w = dilations[2] * (f_w - 1) + 1 + out_d = (in_d - 1) * stride[0] + d_bolck_d + out_h = (in_h - 1) * stride[1] + d_bolck_h + out_w = (in_w - 1) * stride[2] + d_bolck_w out = np.zeros((in_n, out_c, out_d, out_h, out_w)) for n in range(in_n): @@ -25,10 +45,11 @@ def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param): for k in range(out_c): tmp_out = np.sum(input_masked * filter_[:, k, :, :, :], axis=0) - d1, d2 = d * stride[0], d * stride[0] + f_d - i1, i2 = i * stride[1], i * stride[1] + f_h - j1, j2 = j * stride[2], j * stride[2] + f_w - out[n, k, d1:d2, i1:i2, j1:j2] += tmp_out + d1, d2 = d * stride[0], d * stride[0] + d_bolck_d + i1, i2 = i * stride[1], i * stride[1] + d_bolck_h + j1, j2 = j * stride[2], j * stride[2] + d_bolck_w + out[n, k, d1:d2:dilations[0], i1:i2:dilations[1], j1:j2: + dilations[2]] += tmp_out out = out[:, :, pad[0]:out_d - pad[0], pad[1]:out_h - pad[1], pad[2]:out_w - pad[2]] @@ -38,43 +59,75 @@ def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param): class TestConv3dTransposeOp(OpTest): def setUp(self): # init as conv transpose + self.use_cudnn = False self.init_op_type() self.init_test_case() - conv3dtranspose_param = {'stride': self.stride, 'pad': self.pad} input_ = np.random.random(self.input_size).astype("float32") filter_ = np.random.random(self.filter_size).astype("float32") - output = conv3dtranspose_forward_naive( - input_, filter_, conv3dtranspose_param).astype("float32") self.inputs = {'Input': input_, 'Filter': filter_} self.attrs = { 'strides': self.stride, 'paddings': self.pad, - # 'dilations': self.dilations + 'dilations': self.dilations, + 'use_cudnn': self.use_cudnn, + 'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter } + + output = conv3dtranspose_forward_naive(input_, filter_, + self.attrs).astype("float32") + self.outputs = {'Output': output} def test_check_output(self): - self.check_output() + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_output_with_place(place, atol=1e-5) + else: + self.check_output() def test_check_grad(self): - self.check_grad( - set(['Input', 'Filter']), 'Output', max_relative_error=0.02) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, + set(['Input', 'Filter']), + 'Output', + max_relative_error=0.03) + else: + self.check_grad( + set(['Input', 'Filter']), 'Output', max_relative_error=0.03) def test_check_grad_no_filter(self): - self.check_grad( - ['Input'], - 'Output', - max_relative_error=0.02, - no_grad_set=set(['Filter'])) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, ['Input'], + 'Output', + max_relative_error=0.03, + no_grad_set=set(['Filter'])) + else: + self.check_grad( + ['Input'], + 'Output', + max_relative_error=0.03, + no_grad_set=set(['Filter'])) def test_check_grad_no_input(self): - self.check_grad( - ['Filter'], - 'Output', - max_relative_error=0.02, - no_grad_set=set(['Input'])) + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, ['Filter'], + 'Output', + max_relative_error=0.03, + no_grad_set=set(['Input'])) + else: + self.check_grad( + ['Filter'], + 'Output', + max_relative_error=0.03, + no_grad_set=set(['Input'])) def init_test_case(self): self.pad = [0, 0, 0] @@ -108,11 +161,63 @@ class TestWithStride(TestConv3dTransposeOp): self.filter_size = [f_c, 6, 3, 3, 3] +class TestWithDilation(TestConv3dTransposeOp): + def init_test_case(self): + self.pad = [1, 1, 1] + self.stride = [1, 1, 1] + self.dilations = [2, 2, 2] + self.input_size = [2, 3, 5, 5, 5] # NCDHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3, 3] + + # ------------ test_cudnn ------------ -class TestCudnn(TestConv3dTransposeOp): +class TestCUDNN(TestConv3dTransposeOp): + def init_op_type(self): + self.use_cudnn = True + self.op_type = "conv3d_transpose" + + +class TestCUDNNWithPad(TestWithPad): + def init_test_case(self): + self.pad = [1, 1, 1] + self.stride = [1, 1, 1] + self.dilations = [1, 1, 1] + self.input_size = [2, 3, 5, 5, 5] # NCDHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3, 3] + def init_op_type(self): - self.op_type = "conv3d_transpose_cudnn" + self.use_cudnn = True + self.op_type = "conv3d_transpose" + + +class TestCUDNNWithStride(TestWithStride): + def init_test_case(self): + self.pad = [1, 1, 1] + self.stride = [2, 2, 2] + self.dilations = [1, 1, 1] + self.input_size = [2, 3, 5, 5, 5] # NCDHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3, 3] + + def init_op_type(self): + self.use_cudnn = True + self.op_type = "conv3d_transpose" + +# #cudnn v5 does not support dilation conv. +# class TestCUDNNWithDilation(TestWithDilation): +# def init_test_case(self): +# self.pad = [1, 1, 1] +# self.stride = [2, 2, 2] +# self.dilations = [2, 2, 2] +# self.input_size = [2, 3, 5, 5, 5] # NCDHW +# f_c = self.input_size[1] +# self.filter_size = [f_c, 6, 3, 3, 3] +# +# def init_op_type(self): +# self.op_type = "conv3d_transpose" if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_conv_shift_op.py b/python/paddle/v2/fluid/tests/test_conv_shift_op.py index b9ab21a06a..14b2640e24 100644 --- a/python/paddle/v2/fluid/tests/test_conv_shift_op.py +++ b/python/paddle/v2/fluid/tests/test_conv_shift_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_cos_sim_op.py b/python/paddle/v2/fluid/tests/test_cos_sim_op.py index 47557ccb41..f6e5e2cbe9 100644 --- a/python/paddle/v2/fluid/tests/test_cos_sim_op.py +++ b/python/paddle/v2/fluid/tests/test_cos_sim_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_create_op_doc_string.py b/python/paddle/v2/fluid/tests/test_create_op_doc_string.py index 42b6f7a361..6c92264221 100644 --- a/python/paddle/v2/fluid/tests/test_create_op_doc_string.py +++ b/python/paddle/v2/fluid/tests/test_create_op_doc_string.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.layers as layers diff --git a/python/paddle/v2/fluid/tests/test_crf_decoding_op.py b/python/paddle/v2/fluid/tests/test_crf_decoding_op.py index ab573da31d..40e80a824a 100644 --- a/python/paddle/v2/fluid/tests/test_crf_decoding_op.py +++ b/python/paddle/v2/fluid/tests/test_crf_decoding_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import random import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_crop_op.py b/python/paddle/v2/fluid/tests/test_crop_op.py index 62c883bdc1..a0b2fc954d 100644 --- a/python/paddle/v2/fluid/tests/test_crop_op.py +++ b/python/paddle/v2/fluid/tests/test_crop_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_cross_entropy_op.py b/python/paddle/v2/fluid/tests/test_cross_entropy_op.py index b81af9364d..f05e6b2356 100644 --- a/python/paddle/v2/fluid/tests/test_cross_entropy_op.py +++ b/python/paddle/v2/fluid/tests/test_cross_entropy_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest, randomize_probability diff --git a/python/paddle/v2/fluid/tests/test_ctc_align.py b/python/paddle/v2/fluid/tests/test_ctc_align.py new file mode 100644 index 0000000000..5a7c16997c --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_ctc_align.py @@ -0,0 +1,76 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. + +import sys +import unittest +import numpy as np +from op_test import OpTest +from test_softmax_op import stable_softmax + + +def CTCAlign(input, lod, blank, merge_repeated): + lod0 = lod[0] + result = [] + for i in range(len(lod0) - 1): + prev_token = -1 + for j in range(lod0[i], lod0[i + 1]): + token = input[j][0] + if (token != blank) and not (merge_repeated and + token == prev_token): + result.append(token) + prev_token = token + result = np.array(result).reshape([len(result), 1]).astype("int32") + return result + + +class TestCTCAlignOp(OpTest): + def config(self): + self.op_type = "ctc_align" + self.input_lod = [[0, 11, 18]] + self.blank = 0 + self.merge_repeated = False + self.input = np.array( + [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, 6, 0, 0, 7, 7, 7, 0]).reshape( + [18, 1]).astype("int32") + + def setUp(self): + self.config() + output = CTCAlign(self.input, self.input_lod, self.blank, + self.merge_repeated) + + self.inputs = {"Input": (self.input, self.input_lod), } + self.outputs = {"Output": output} + self.attrs = { + "blank": self.blank, + "merge_repeated": self.merge_repeated + } + + def test_check_output(self): + self.check_output() + pass + + +class TestCTCAlignOpCase1(TestCTCAlignOp): + def config(self): + self.op_type = "ctc_align" + self.input_lod = [[0, 11, 19]] + self.blank = 0 + self.merge_repeated = True + self.input = np.array( + [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, 6, 0, 0, 7, 7, 7, 0, 0]).reshape( + [19, 1]).astype("int32") + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_data_feeder.py b/python/paddle/v2/fluid/tests/test_data_feeder.py index 4549693203..5574766f8f 100644 --- a/python/paddle/v2/fluid/tests/test_data_feeder.py +++ b/python/paddle/v2/fluid/tests/test_data_feeder.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid as fluid diff --git a/python/paddle/v2/fluid/tests/test_decayed_adagrad_op.py b/python/paddle/v2/fluid/tests/test_decayed_adagrad_op.py index 674c3fda5c..5e745a2843 100644 --- a/python/paddle/v2/fluid/tests/test_decayed_adagrad_op.py +++ b/python/paddle/v2/fluid/tests/test_decayed_adagrad_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_default_scope_funcs.py b/python/paddle/v2/fluid/tests/test_default_scope_funcs.py index 738e69529e..7a62168be9 100644 --- a/python/paddle/v2/fluid/tests/test_default_scope_funcs.py +++ b/python/paddle/v2/fluid/tests/test_default_scope_funcs.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.v2.fluid.default_scope_funcs import * import unittest diff --git a/python/paddle/v2/fluid/tests/test_detection_output_op.py b/python/paddle/v2/fluid/tests/test_detection_output_op.py new file mode 100644 index 0000000000..147a43628c --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_detection_output_op.py @@ -0,0 +1,70 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest + + +class TestUnpoolOp(OpTest): + def setUp(self): + self.op_type = "detection_output" + self.init_test_case() + + #loc.shape ((1, 4, 4, 1, 1)) + #conf.shape ((1, 4, 2, 1, 1)) + + loc = np.array([[[[[0.1]], [[0.1]], [[0.1]], [[0.1]]], + [[[0.1]], [[0.1]], [[0.1]], [[0.1]]], + [[[0.1]], [[0.1]], [[0.1]], [[0.1]]], + [[[0.1]], [[0.1]], [[0.1]], [[0.1]]]]]) + conf = np.array([[[[[0.1]], [[0.9]]], [[[0.2]], [[0.8]]], + [[[0.3]], [[0.7]]], [[[0.4]], [[0.6]]]]]) + priorbox = np.array([ + 0.1, 0.1, 0.5, 0.5, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.6, 0.6, 0.1, + 0.1, 0.2, 0.2, 0.3, 0.3, 0.7, 0.7, 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, + 0.8, 0.8, 0.1, 0.1, 0.2, 0.2 + ]) + + output = np.array([ + 0, 1, 0.68997443, 0.099959746, 0.099959746, 0.50804031, 0.50804031 + ]) + self.inputs = { + 'Loc': loc.astype('float32'), + 'Conf': conf.astype('float32'), + 'PriorBox': priorbox.astype('float32') + } + self.attrs = { + 'num_classes': self.num_classes, + 'top_k': self.top_k, + 'nms_top_k': self.nms_top_k, + 'background_label_id': self.background_label_id, + 'nms_threshold': self.nms_threshold, + 'confidence_threshold': self.confidence_threshold, + } + self.outputs = {'Out': output.astype('float32')} + + def test_check_output(self): + self.check_output() + + def init_test_case(self): + self.num_classes = 2 + self.top_k = 10 + self.nms_top_k = 20 + self.background_label_id = 0 + self.nms_threshold = 0.01 + self.confidence_threshold = 0.01 + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_dropout_op.py b/python/paddle/v2/fluid/tests/test_dropout_op.py index 4f5ea836b4..f401050dcc 100644 --- a/python/paddle/v2/fluid/tests/test_dropout_op.py +++ b/python/paddle/v2/fluid/tests/test_dropout_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -47,7 +60,9 @@ class TestDropoutOp4(OpTest): self.op_type = "dropout" self.inputs = {'X': np.random.random((32, 64)).astype("float32")} self.attrs = {'dropout_prob': 0.35, 'is_test': True} - self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']} + self.outputs = { + 'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob']) + } def test_check_output(self): self.check_output() @@ -58,7 +73,9 @@ class TestDropoutOp5(OpTest): self.op_type = "dropout" self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")} self.attrs = {'dropout_prob': 0.75, 'is_test': True} - self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']} + self.outputs = { + 'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob']) + } def test_check_output(self): self.check_output() diff --git a/python/paddle/v2/fluid/tests/test_dyn_rnn.py b/python/paddle/v2/fluid/tests/test_dyn_rnn.py index 034266c26f..a946fea58d 100644 --- a/python/paddle/v2/fluid/tests/test_dyn_rnn.py +++ b/python/paddle/v2/fluid/tests/test_dyn_rnn.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid as fluid import paddle.v2 as paddle import unittest @@ -63,8 +76,7 @@ class TestDynRNN(unittest.TestCase): all_timesteps = fluid.layers.array_to_lod_tensor( x=out, table=rank_table) - last = fluid.layers.sequence_pool( - input=all_timesteps, pool_type='last') + last = fluid.layers.sequence_last_step(input=all_timesteps) logits = fluid.layers.fc(input=last, size=1, act=None) loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=logits, label=label) @@ -101,7 +113,7 @@ class TestDynRNN(unittest.TestCase): rnn.update_memory(mem, out_) rnn.output(out_) - last = fluid.layers.sequence_pool(input=rnn(), pool_type='last') + last = fluid.layers.sequence_last_step(input=rnn()) logits = fluid.layers.fc(input=last, size=1, act=None) label = fluid.layers.data(name='label', shape=[1], dtype='float32') loss = fluid.layers.sigmoid_cross_entropy_with_logits( diff --git a/python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py b/python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py new file mode 100644 index 0000000000..95cc80739d --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py @@ -0,0 +1,377 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import numpy +import random +import collections +import paddle.v2.fluid as fluid +import unittest +from decorators import * + + +class Memory(object): + def __init__(self, shape, dtype='float32'): + self.ex = numpy.zeros(shape=shape, dtype=dtype) + self.cur = None + + def update(self, val): + assert val.shape == self.ex.shape + assert val.dtype == self.ex.dtype + self.cur = val + + def ex(self): + return self.ex + + def next(self): + self.ex = self.cur + self.cur = None + + def __next__(self): + self.next() + + def reset(self): + self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype) + self.cur = None + + +class Output(object): + def __init__(self): + self.outs = [] + + def next_sequence(self): + self.outs.append([]) + + def out(self, val): + self.outs[-1].append(val) + + def last(self): + return self.outs[-1][-1] + + +class BaseRNN(object): + def __init__(self, ins, mems, params, outs, num_seq=5, max_seq_len=15): + self.num_seq = num_seq + self.inputs = collections.defaultdict(list) + + for _ in xrange(num_seq): + seq_len = random.randint(1, max_seq_len - 1) + for iname in ins: + ishape = ins[iname].get('shape', None) + idtype = ins[iname].get('dtype', 'float32') + lst = [] + for _ in xrange(seq_len): + lst.append(numpy.random.random(size=ishape).astype(idtype)) + self.inputs[iname].append(lst) + + self.mems = dict() + for mname in mems: + mshape = mems[mname].get('shape', None) + mdtype = mems[mname].get('dtype', 'float32') + self.mems[mname] = Memory(shape=mshape, dtype=mdtype) + + self.params = dict() + for pname in params: + pshape = params[pname].get('shape', None) + pdtype = params[pname].get('dtype', 'float32') + self.params[pname] = numpy.random.random(size=pshape).astype(pdtype) + + self.outputs = dict() + + for oname in outs: + self.outputs[oname] = Output() + + def step(self, **kwargs): + raise NotImplementedError() + + def exe(self): + retv = dict() + for out in self.outputs: + retv[out] = [] + + for seq_id in xrange(self.num_seq): + for mname in self.mems: + self.mems[mname].reset() + for out in self.outputs: + self.outputs[out].next_sequence() + + iname0 = self.inputs.keys()[0] + seq_len = len(self.inputs[iname0][seq_id]) + + for step_id in xrange(seq_len): + xargs = dict() + + for iname in self.inputs: + xargs[iname] = self.inputs[iname][seq_id][step_id] + + for mname in self.mems: + xargs[mname] = self.mems[mname] + + for pname in self.params: + xargs[pname] = self.params[pname] + + for out in self.outputs: + xargs[out] = self.outputs[out] + + self.step(**xargs) + + for mname in self.mems: + next(self.mems[mname]) + + for out in self.outputs: + retv[out].append(self.outputs[out].last()) + + for out in retv: + retv[out] = numpy.array(retv[out]) + return retv + + def to_feed(self, place): + feed_dict = dict() + + for iname in self.inputs: + lod = [0] + np_flatten = [] + for seq_id in xrange(len(self.inputs[iname])): + seq_len = len(self.inputs[iname][seq_id]) + lod.append(lod[-1] + seq_len) + np_flatten.extend(self.inputs[iname][seq_id]) + + t = fluid.Tensor() + t.set(numpy.array(np_flatten), place) + t.set_lod([lod]) + feed_dict[iname] = t + + for pname in self.params: + feed_dict[pname] = self.params[pname] + return feed_dict + + def get_numeric_gradient_of_param(self, param_name, delta=0.001): + p = self.params[param_name] + if len(p.shape) != 2: + raise ValueError("Not support get numeric gradient of an parameter," + " which is not matrix") + g = numpy.zeros(shape=p.shape, dtype=p.dtype) + + for i in xrange(p.shape[0]): + for j in xrange(p.shape[1]): + o = p[i][j] + p[i][j] += delta + pos = self._exe_mean_out_() + p[i][j] -= 2 * delta + neg = self._exe_mean_out_() + p[i][j] = o + g[i][j] = (pos - neg) / (delta * 2) + return g + + def get_numeric_gradient_of_input(self, + input_name, + delta=0.001, + return_one_tensor=True): + ipt = self.inputs[input_name] + grad = [] + + for seq in ipt: + seq_grad = [] + for item in seq: + item_grad = numpy.zeros(shape=item.shape, dtype=item.dtype) + if len(item.shape) != 1: + raise ValueError("Not support") + + for i in xrange(len(item)): + o = item[i] + item[i] += delta + pos = self._exe_mean_out_() + item[i] -= 2 * delta + neg = self._exe_mean_out_() + item[i] = o + item_grad[i] = (pos - neg) / (delta * 2) + seq_grad.append(item_grad) + grad.append(seq_grad) + + if not return_one_tensor: + return grad + + for i in xrange(len(grad)): + grad[i] = numpy.concatenate(grad[i]) + grad = numpy.concatenate(grad) + return grad + + def _exe_mean_out_(self): + outs = self.exe() + return numpy.array([o.mean() for o in outs.itervalues()]).mean() + + +class SeedFixedTestCase(unittest.TestCase): + @classmethod + def setUpClass(cls): + """Fix random seeds to remove randomness from tests""" + cls._np_rand_state = numpy.random.get_state() + cls._py_rand_state = random.getstate() + + numpy.random.seed(123) + random.seed(124) + + @classmethod + def tearDownClass(cls): + """Restore random seeds""" + numpy.random.set_state(cls._np_rand_state) + random.setstate(cls._py_rand_state) + + +class TestSimpleMul(SeedFixedTestCase): + DATA_NAME = 'X' + DATA_WIDTH = 32 + PARAM_NAME = 'W' + HIDDEN_WIDTH = 10 + OUT_NAME = 'Out' + + class SimpleMul(BaseRNN): + def __init__(self): + base = TestSimpleMul + super(base.SimpleMul, self).__init__({ + base.DATA_NAME: { + 'shape': [base.DATA_WIDTH] + } + }, {}, { + base.PARAM_NAME: { + 'shape': [base.DATA_WIDTH, base.HIDDEN_WIDTH] + } + }, [base.OUT_NAME]) + + def step(self, X, W, Out): + Out.out(numpy.matmul(X, W)) + + # Test many times in local to ensure the random seed cannot breaks CI + # @many_times(10) + @prog_scope() + def test_forward_backward(self): + py_rnn = TestSimpleMul.SimpleMul() + dat = fluid.layers.data( + name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1) + dat.stop_gradient = False + + rnn = fluid.layers.DynamicRNN() + with rnn.block(): + d = rnn.step_input(dat) + o = fluid.layers.fc(input=d, + param_attr=self.PARAM_NAME, + bias_attr=False, + size=self.HIDDEN_WIDTH, + act=None) + rnn.output(o) + + out = rnn() + out = fluid.layers.sequence_pool(out, pool_type='last') + loss = fluid.layers.mean(x=out) + fluid.backward.append_backward(loss) + + cpu = fluid.CPUPlace() + exe = fluid.Executor(cpu) + out, w_g, i_g = map(numpy.array, + exe.run(feed=py_rnn.to_feed(cpu), + fetch_list=[ + out, self.PARAM_NAME + "@GRAD", + self.DATA_NAME + "@GRAD" + ], + return_numpy=False)) + out_by_python = py_rnn.exe()[self.OUT_NAME] + self.assertTrue(numpy.allclose(out, out_by_python)) + w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME) + self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.05)) + i_g_num = py_rnn.get_numeric_gradient_of_input( + input_name=self.DATA_NAME) + i_g_num = i_g_num.reshape(i_g.shape) + self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.05)) + + +class TestSimpleMulWithMemory(SeedFixedTestCase): + DATA_WIDTH = 32 + HIDDEN_WIDTH = 20 + DATA_NAME = 'X' + PARAM_NAME = 'W' + + class SimpleMulWithMemory(BaseRNN): + def __init__(self): + super(TestSimpleMulWithMemory.SimpleMulWithMemory, self).__init__({ + TestSimpleMulWithMemory.DATA_NAME: { + 'shape': [TestSimpleMulWithMemory.DATA_WIDTH] + } + }, {'Mem': { + 'shape': [TestSimpleMulWithMemory.HIDDEN_WIDTH] + }}, { + TestSimpleMulWithMemory.PARAM_NAME: { + 'shape': [ + TestSimpleMulWithMemory.DATA_WIDTH, + TestSimpleMulWithMemory.HIDDEN_WIDTH + ] + } + }, ['Out']) + + def step(self, X, Mem, W, Out): + o = numpy.matmul(X, W) + assert isinstance(Mem, Memory) + o += Mem.ex + Mem.update(o) + assert isinstance(Out, Output) + Out.out(o) + + # many_times used locally for debug. Make sure the calculation is stable. + # @many_times(10) + @prog_scope() + def test_forward_backward(self): + py_rnn = TestSimpleMulWithMemory.SimpleMulWithMemory() + data = fluid.layers.data( + name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1) + data.stop_gradient = False + rnn = fluid.layers.DynamicRNN() + with rnn.block(): + d = rnn.step_input(data) + mem = rnn.memory(value=0.0, shape=[self.HIDDEN_WIDTH]) + hidden = fluid.layers.fc(input=d, + size=self.HIDDEN_WIDTH, + param_attr=self.PARAM_NAME, + bias_attr=False, + act=None) + o = fluid.layers.elementwise_add(x=hidden, y=mem) + rnn.update_memory(mem, o) + rnn.output(o) + + out = rnn() + last = fluid.layers.sequence_pool(input=out, pool_type='last') + loss = fluid.layers.mean(x=last) + fluid.backward.append_backward(loss) + + cpu = fluid.CPUPlace() + exe = fluid.Executor(cpu) + feed = py_rnn.to_feed(cpu) + last_np, w_g, i_g = map(numpy.array, + exe.run(feed=feed, + fetch_list=[ + last, self.PARAM_NAME + "@GRAD", + self.DATA_NAME + "@GRAD" + ], + return_numpy=False)) + last_by_py, = py_rnn.exe().values() + w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME) + self.assertTrue(numpy.allclose(last_np, last_by_py)) + + self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.1)) + i_g_num = py_rnn.get_numeric_gradient_of_input(self.DATA_NAME) + i_g_num = i_g_num.reshape(i_g.shape) + + # Since this RNN has many float add. The number could be not stable. + # rtol = 0.1 + self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.1)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_dynrnn_static_input.py b/python/paddle/v2/fluid/tests/test_dynrnn_static_input.py new file mode 100644 index 0000000000..d6878f0b6d --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_dynrnn_static_input.py @@ -0,0 +1,205 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import paddle.v2 as paddle +import paddle.v2.fluid.core as core +import paddle.v2.fluid as fluid +from paddle.v2.fluid.backward import append_backward +import paddle.v2.fluid.framework as framework +from paddle.v2.fluid.framework import Program, switch_main_program +import bisect +import numpy as np + +fluid.default_startup_program().random_seed = 1 + + +class TestDyRnnStaticInput(unittest.TestCase): + def setUp(self): + self._delta = 0.005 + self._max_sequence_len = 3 + self._program = Program() + switch_main_program(self._program) + self.output_dim = 10 + self.place = core.CPUPlace() + self.prepare_x_tensor() + self.prepare_static_input_tensor() + self.exe = fluid.Executor(self.place) + + def prepare_x_tensor(self): + self.x_tensor_dim = 10 + lod = [[0, 2, 3, 6]] + shape = [lod[0][-1], self.x_tensor_dim] + self.x_tensor_data = np.random.random(shape).astype('float32') + self.x_tensor = core.LoDTensor() + self.x_tensor.set_lod(lod) + self.x_tensor.set(self.x_tensor_data, self.place) + + def prepare_static_input_tensor(self): + self.static_input_tensor_dim = 4 + lod = [[0, 1, 3, 6]] + shape = [lod[0][-1], self.static_input_tensor_dim] + self.static_input_data = np.random.random(shape).astype('float32') + self.static_input_tensor = core.LoDTensor() + self.static_input_tensor.set_lod(lod) + self.static_input_tensor.set(self.static_input_data, self.place) + + def fetch_value(self, var): + fetch_outs = self.exe.run(feed={ + 'x_tensor': self.x_tensor, + 'static_input_tensor': self.static_input_tensor + }, + fetch_list=[var], + return_numpy=False) + return self._lodtensor_to_ndarray(fetch_outs[0]) + + def _lodtensor_to_ndarray(self, lod_tensor): + dims = lod_tensor.get_dims() + ndarray = np.zeros(shape=dims).astype('float32') + for i in xrange(np.product(dims)): + ndarray.ravel()[i] = lod_tensor.get_float_element(i) + return ndarray, lod_tensor.lod() + + def build_graph(self, only_forward=False): + x_tensor = fluid.layers.data( + name='x_tensor', + shape=[self.x_tensor_dim], + dtype='float32', + lod_level=1) + x_tensor.stop_gradient = False + + static_input_tensor = fluid.layers.data( + name='static_input_tensor', + shape=[self.static_input_tensor_dim], + dtype='float32', + lod_level=1) + static_input_tensor.stop_gradient = False + + if only_forward: + static_input_out_array = self._program.global_block().create_var( + name='static_input_out_array', + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype='float32') + static_input_out_array.stop_gradient = True + + rnn = fluid.layers.DynamicRNN() + with rnn.block(): + step_x = rnn.step_input(x_tensor) + step_static_input = rnn.static_input(static_input_tensor) + if only_forward: + fluid.layers.array_write( + x=step_static_input, + i=rnn.step_idx, + array=static_input_out_array) + last = fluid.layers.sequence_pool( + input=step_static_input, pool_type='last') + projected = fluid.layers.fc(input=[step_x, last], + size=self.output_dim) + rnn.output(projected) + + if only_forward: + static_input_step_outs = [] + step_idx = fluid.layers.fill_constant( + shape=[1], dtype='int64', value=0) + step_idx.stop_gradient = True + + for i in xrange(self._max_sequence_len): + step_out = fluid.layers.array_read(static_input_out_array, + step_idx) + step_out.stop_gradient = True + static_input_step_outs.append(step_out) + fluid.layers.increment(x=step_idx, value=1.0, in_place=True) + + if only_forward: + return static_input_step_outs + + last = fluid.layers.sequence_pool(input=rnn(), pool_type='last') + loss = fluid.layers.mean(x=last) + append_backward(loss) + static_input_grad = self._program.global_block().var( + framework.grad_var_name('static_input_tensor')) + return static_input_grad, loss + + def get_seq_len_from_lod(self, lod): + return [lod[0][i + 1] - lod[0][i] for i in xrange(len(lod[0]) - 1)] + + def get_expected_static_step_outs(self): + x_lod = self.x_tensor.lod() + x_seq_len = self.get_seq_len_from_lod(x_lod) + x_seq_len_sorted = sorted(x_seq_len) + x_sorted_indices = np.argsort(x_seq_len)[::-1] + + static_lod = self.static_input_tensor.lod() + static_sliced = [ + self.static_input_data[static_lod[0][i]:static_lod[0][i + 1]] + for i in xrange(len(static_lod[0]) - 1) + ] + static_seq_len = self.get_seq_len_from_lod(static_lod) + static_reordered = [] + for i in xrange(len(x_sorted_indices)): + static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist()) + static_seq_len_reordered = [ + static_seq_len[x_sorted_indices[i]] + for i in xrange(len(x_sorted_indices)) + ] + + static_step_outs = [] + static_step_lods = [] + + for i in xrange(self._max_sequence_len): + end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1) + lod = [0] + for i in xrange(end): + lod.append(static_seq_len_reordered[i] + lod[-1]) + static_step_lods.append([lod]) + end = lod[-1] + static_step_outs.append( + np.array(static_reordered[:end]).astype('float32')) + + return static_step_outs, static_step_lods + + def test_step_out(self): + static_step_outs = self.build_graph(only_forward=True) + self.exe.run(framework.default_startup_program()) + expected_outs, expected_lods = self.get_expected_static_step_outs() + for i in xrange(self._max_sequence_len): + step_out, lod = self.fetch_value(static_step_outs[i]) + self.assertTrue(np.allclose(step_out, expected_outs[i])) + self.assertTrue(np.allclose(lod, expected_lods[i])) + + def test_network_gradient(self): + static_input_grad, loss = self.build_graph() + self.exe.run(framework.default_startup_program()) + + actual_gradients, actual_lod = self.fetch_value(static_input_grad) + + static_input_shape = self.static_input_tensor.get_dims() + numeric_gradients = np.zeros(shape=static_input_shape).astype('float32') + # calculate numeric gradients + tensor_size = np.product(static_input_shape) + for i in xrange(tensor_size): + origin = self.static_input_tensor.get_float_element(i) + x_pos = origin + self._delta + self.static_input_tensor.set_float_element(i, x_pos) + y_pos = self.fetch_value(loss)[0][0] + x_neg = origin - self._delta + self.static_input_tensor.set_float_element(i, x_neg) + y_neg = self.fetch_value(loss)[0][0] + self.static_input_tensor.set_float_element(i, origin) + numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2 + self.assertTrue(np.allclose(actual_gradients, numeric_gradients, 0.001)) + self.assertTrue(np.allclose(actual_lod, self.static_input_tensor.lod())) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_edit_distance_op.py b/python/paddle/v2/fluid/tests/test_edit_distance_op.py new file mode 100644 index 0000000000..5f5634e297 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_edit_distance_op.py @@ -0,0 +1,107 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest + + +def Levenshtein(hyp, ref): + """ Compute the Levenshtein distance between two strings. + + :param hyp: hypothesis string in index + :type hyp: list + :param ref: reference string in index + :type ref: list + """ + m = len(hyp) + n = len(ref) + if m == 0: + return n + if n == 0: + return m + + dist = np.zeros((m + 1, n + 1)).astype("float32") + for i in range(0, m + 1): + dist[i][0] = i + for j in range(0, n + 1): + dist[0][j] = j + + for i in range(1, m + 1): + for j in range(1, n + 1): + cost = 0 if hyp[i - 1] == ref[j - 1] else 1 + deletion = dist[i - 1][j] + 1 + insertion = dist[i][j - 1] + 1 + substitution = dist[i - 1][j - 1] + cost + dist[i][j] = min(deletion, insertion, substitution) + return dist[m][n] + + +class TestEditDistanceOp(OpTest): + def setUp(self): + self.op_type = "edit_distance" + normalized = False + x1 = np.array([[0, 12, 3, 5, 8, 2]]).astype("int64") + x2 = np.array([[0, 12, 4, 7, 8]]).astype("int64") + x1 = np.transpose(x1) + x2 = np.transpose(x2) + x1_lod = [0, 1, 5] + x2_lod = [0, 3, 4] + + num_strs = len(x1_lod) - 1 + distance = np.zeros((num_strs, 1)).astype("float32") + for i in range(0, num_strs): + distance[i] = Levenshtein( + hyp=x1[x1_lod[i]:x1_lod[i + 1]], + ref=x2[x2_lod[i]:x2_lod[i + 1]]) + if normalized is True: + len_ref = x2_lod[i + 1] - x2_lod[i] + distance[i] = distance[i] / len_ref + self.attrs = {'normalized': normalized} + self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])} + self.outputs = {'Out': distance} + + def test_check_output(self): + self.check_output() + + +class TestEditDistanceOpNormalized(OpTest): + def setUp(self): + self.op_type = "edit_distance" + normalized = True + x1 = np.array([[0, 10, 3, 6, 5, 8, 2]]).astype("int64") + x2 = np.array([[0, 10, 4, 6, 7, 8]]).astype("int64") + x1 = np.transpose(x1) + x2 = np.transpose(x2) + x1_lod = [0, 1, 3, 6] + x2_lod = [0, 2, 3, 5] + + num_strs = len(x1_lod) - 1 + distance = np.zeros((num_strs, 1)).astype("float32") + for i in range(0, num_strs): + distance[i] = Levenshtein( + hyp=x1[x1_lod[i]:x1_lod[i + 1]], + ref=x2[x2_lod[i]:x2_lod[i + 1]]) + if normalized is True: + len_ref = x2_lod[i + 1] - x2_lod[i] + distance[i] = distance[i] / len_ref + self.attrs = {'normalized': normalized} + self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])} + self.outputs = {'Out': distance} + + def test_check_output(self): + self.check_output() + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_elementwise_add_op.py b/python/paddle/v2/fluid/tests/test_elementwise_add_op.py index 57daddd569..3564772fb5 100644 --- a/python/paddle/v2/fluid/tests/test_elementwise_add_op.py +++ b/python/paddle/v2/fluid/tests/test_elementwise_add_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -27,6 +40,16 @@ class TestElementwiseOp(OpTest): ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) +class TestElementwiseAddOp_scalar(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_add" + self.inputs = { + 'X': np.random.rand(2, 3, 4).astype(np.float32), + 'Y': np.random.rand(1).astype(np.float32) + } + self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']} + + class TestElementwiseAddOp_Vector(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_add" diff --git a/python/paddle/v2/fluid/tests/test_elementwise_div_op.py b/python/paddle/v2/fluid/tests/test_elementwise_div_op.py index 41cb2b7767..77b113af76 100644 --- a/python/paddle/v2/fluid/tests/test_elementwise_div_op.py +++ b/python/paddle/v2/fluid/tests/test_elementwise_div_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -32,6 +45,16 @@ class ElementwiseDivOp(OpTest): ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y')) +class TestElementwiseDivOp_scalar(ElementwiseDivOp): + def setUp(self): + self.op_type = "elementwise_div" + self.inputs = { + 'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float32), + 'Y': np.random.uniform(0.1, 1, [1]).astype(np.float32) + } + self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']} + + class TestElementwiseDivOp_Vector(ElementwiseDivOp): def setUp(self): self.op_type = "elementwise_div" diff --git a/python/paddle/v2/fluid/tests/test_elementwise_max_op.py b/python/paddle/v2/fluid/tests/test_elementwise_max_op.py new file mode 100644 index 0000000000..9526f0199b --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_elementwise_max_op.py @@ -0,0 +1,129 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest + + +class TestElementwiseOp(OpTest): + def setUp(self): + self.op_type = "elementwise_max" + # If x and y have the same value, the max() is not differentiable. + # So we generate test data by the following method + # to avoid them being too close to each other. + x = np.random.uniform(0.1, 1, [13, 17]).astype("float32") + sgn = np.random.choice([-1, 1], [13, 17]).astype("float32") + y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32") + self.inputs = {'X': x, 'Y': y} + self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) + + +class TestElementwiseMaxOp_scalar(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_max" + x = np.random.random_integers(-5, 5, [2, 3, 4]).astype("float32") + y = np.array([0.5]).astype("float32") + self.inputs = {'X': x, 'Y': y} + self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])} + + +class TestElementwiseMaxOp_Vector(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_max" + x = np.random.random((32, )).astype("float32") + sgn = np.random.choice([-1, 1], (32, )).astype("float32") + y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32") + self.inputs = {'X': x, 'Y': y} + self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])} + + +class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_max" + x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32) + sgn = np.random.choice([-1, 1], (2, )).astype(np.float32) + y = x[:, 0, 0] + sgn * \ + np.random.uniform(1, 2, (2, )).astype(np.float32) + self.inputs = {'X': x, 'Y': y} + + self.attrs = {'axis': 0} + self.outputs = { + 'Out': + np.maximum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1)) + } + + +class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_max" + x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32) + sgn = np.random.choice([-1, 1], (3, )).astype(np.float32) + y = x[0, :, 0] + sgn * \ + np.random.uniform(1, 2, (3, )).astype(np.float32) + self.inputs = {'X': x, 'Y': y} + + self.attrs = {'axis': 1} + self.outputs = { + 'Out': + np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1)) + } + + +class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_max" + x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32) + sgn = np.random.choice([-1, 1], (4, )).astype(np.float32) + y = x[0, 0, :] + sgn * \ + np.random.uniform(1, 2, (4, )).astype(np.float32) + self.inputs = {'X': x, 'Y': y} + + self.outputs = { + 'Out': + np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4)) + } + + +class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_max" + x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32) + sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32) + y = x[0, :, :, 0] + sgn * \ + np.random.uniform(1, 2, (3, 4)).astype(np.float32) + self.inputs = {'X': x, 'Y': y} + + self.attrs = {'axis': 1} + self.outputs = { + 'Out': + np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1)) + } + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_elementwise_min_op.py b/python/paddle/v2/fluid/tests/test_elementwise_min_op.py new file mode 100644 index 0000000000..b900728233 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_elementwise_min_op.py @@ -0,0 +1,129 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest + + +class TestElementwiseOp(OpTest): + def setUp(self): + self.op_type = "elementwise_min" + # If x and y have the same value, the min() is not differentiable. + # So we generate test data by the following method + # to avoid them being too close to each other. + x = np.random.uniform(0.1, 1, [13, 17]).astype("float32") + sgn = np.random.choice([-1, 1], [13, 17]).astype("float32") + y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32") + self.inputs = {'X': x, 'Y': y} + self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) + + +class TestElementwiseMinOp_scalar(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_min" + x = np.random.random_integers(-5, 5, [2, 3, 4]).astype("float32") + y = np.array([0.5]).astype("float32") + self.inputs = {'X': x, 'Y': y} + self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])} + + +class TestElementwiseMaxOp_Vector(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_min" + x = np.random.random((32, )).astype("float32") + sgn = np.random.choice([-1, 1], (32, )).astype("float32") + y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32") + self.inputs = {'X': x, 'Y': y} + self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])} + + +class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_min" + x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32) + sgn = np.random.choice([-1, 1], (2, )).astype(np.float32) + y = x[:, 0, 0] + sgn * \ + np.random.uniform(1, 2, (2, )).astype(np.float32) + self.inputs = {'X': x, 'Y': y} + + self.attrs = {'axis': 0} + self.outputs = { + 'Out': + np.minimum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1)) + } + + +class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_min" + x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32) + sgn = np.random.choice([-1, 1], (3, )).astype(np.float32) + y = x[0, :, 0] + sgn * \ + np.random.uniform(1, 2, (3, )).astype(np.float32) + self.inputs = {'X': x, 'Y': y} + + self.attrs = {'axis': 1} + self.outputs = { + 'Out': + np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1)) + } + + +class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_min" + x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32) + sgn = np.random.choice([-1, 1], (4, )).astype(np.float32) + y = x[0, 0, :] + sgn * \ + np.random.uniform(1, 2, (4, )).astype(np.float32) + self.inputs = {'X': x, 'Y': y} + + self.outputs = { + 'Out': + np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4)) + } + + +class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_min" + x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32) + sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32) + y = x[0, :, :, 0] + sgn * \ + np.random.uniform(1, 2, (3, 4)).astype(np.float32) + self.inputs = {'X': x, 'Y': y} + + self.attrs = {'axis': 1} + self.outputs = { + 'Out': + np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1)) + } + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_elementwise_mul_op.py b/python/paddle/v2/fluid/tests/test_elementwise_mul_op.py index 261ca9cb3d..12dfa6599c 100644 --- a/python/paddle/v2/fluid/tests/test_elementwise_mul_op.py +++ b/python/paddle/v2/fluid/tests/test_elementwise_mul_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -25,6 +38,16 @@ class ElementwiseMulOp(OpTest): self.check_grad(['X'], 'Out', no_grad_set=set('Y')) +class TestElementwiseMulOp_scalar(ElementwiseMulOp): + def setUp(self): + self.op_type = "elementwise_mul" + self.inputs = { + 'X': np.random.rand(2, 3, 4).astype(np.float32), + 'Y': np.random.rand(1).astype(np.float32) + } + self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} + + class TestElementwiseMulOp_Vector(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" diff --git a/python/paddle/v2/fluid/tests/test_elementwise_sub_op.py b/python/paddle/v2/fluid/tests/test_elementwise_sub_op.py index be982e8c57..cf53d85bba 100644 --- a/python/paddle/v2/fluid/tests/test_elementwise_sub_op.py +++ b/python/paddle/v2/fluid/tests/test_elementwise_sub_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -27,6 +40,16 @@ class TestElementwiseOp(OpTest): ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) +class TestElementwiseSubOp_scalar(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_sub" + self.inputs = { + 'X': np.random.rand(2, 3, 4).astype(np.float32), + 'Y': np.random.rand(1).astype(np.float32) + } + self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} + + class TestElementwiseSubOp_Vector(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" diff --git a/python/paddle/v2/fluid/tests/test_exception.py b/python/paddle/v2/fluid/tests/test_exception.py index b871f40c4a..98c4cbe3f2 100644 --- a/python/paddle/v2/fluid/tests/test_exception.py +++ b/python/paddle/v2/fluid/tests/test_exception.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.core as core import unittest diff --git a/python/paddle/v2/fluid/tests/test_executor_and_mul.py b/python/paddle/v2/fluid/tests/test_executor_and_mul.py index b1ef87c5cb..e8baf631e5 100644 --- a/python/paddle/v2/fluid/tests/test_executor_and_mul.py +++ b/python/paddle/v2/fluid/tests/test_executor_and_mul.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy diff --git a/python/paddle/v2/fluid/tests/test_expand_op.py b/python/paddle/v2/fluid/tests/test_expand_op.py index 0440f7a2bb..0524f2041f 100644 --- a/python/paddle/v2/fluid/tests/test_expand_op.py +++ b/python/paddle/v2/fluid/tests/test_expand_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_feed_fetch_method.py b/python/paddle/v2/fluid/tests/test_feed_fetch_method.py index 178c85b0dd..718311517d 100644 --- a/python/paddle/v2/fluid/tests/test_feed_fetch_method.py +++ b/python/paddle/v2/fluid/tests/test_feed_fetch_method.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.core as core import unittest import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_fill_constant_batch_size_like_op.py b/python/paddle/v2/fluid/tests/test_fill_constant_batch_size_like_op.py index 99de6b5d05..0adc487c04 100644 --- a/python/paddle/v2/fluid/tests/test_fill_constant_batch_size_like_op.py +++ b/python/paddle/v2/fluid/tests/test_fill_constant_batch_size_like_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_fill_constant_op.py b/python/paddle/v2/fluid/tests/test_fill_constant_op.py index dff7b615aa..50d4ccb3bd 100644 --- a/python/paddle/v2/fluid/tests/test_fill_constant_op.py +++ b/python/paddle/v2/fluid/tests/test_fill_constant_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_fill_op.py b/python/paddle/v2/fluid/tests/test_fill_op.py new file mode 100644 index 0000000000..42b06ec87c --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_fill_op.py @@ -0,0 +1,37 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest +import paddle.v2.fluid.core as core + + +class TestFillOp(OpTest): + def setUp(self): + self.op_type = "fill" + val = np.random.random(size=[100, 200]) + self.inputs = {} + self.attrs = { + 'value': val.flatten().tolist(), + 'shape': [100, 200], + 'dtype': int(core.DataType.FP64) + } + self.outputs = {'Out': val.astype('float64')} + + def test_check_output(self): + self.check_output() + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_fill_zeros_like_op.py b/python/paddle/v2/fluid/tests/test_fill_zeros_like_op.py index eff8fa87d9..a28bed9697 100644 --- a/python/paddle/v2/fluid/tests/test_fill_zeros_like_op.py +++ b/python/paddle/v2/fluid/tests/test_fill_zeros_like_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -7,7 +20,7 @@ class TestFillZerosLikeOp(OpTest): def setUp(self): self.op_type = "fill_zeros_like" self.inputs = {'X': np.random.random((219, 232)).astype("float32")} - self.outputs = {'Y': np.zeros_like(self.inputs["X"])} + self.outputs = {'Out': np.zeros_like(self.inputs["X"])} def test_check_output(self): self.check_output() diff --git a/python/paddle/v2/fluid/tests/test_framework_debug_str.py b/python/paddle/v2/fluid/tests/test_framework_debug_str.py index a4cbabdb36..6c82e67220 100644 --- a/python/paddle/v2/fluid/tests/test_framework_debug_str.py +++ b/python/paddle/v2/fluid/tests/test_framework_debug_str.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest from paddle.v2.fluid.framework import Program diff --git a/python/paddle/v2/fluid/tests/test_ftrl_op.py b/python/paddle/v2/fluid/tests/test_ftrl_op.py index f77ac4659a..599233efd9 100644 --- a/python/paddle/v2/fluid/tests/test_ftrl_op.py +++ b/python/paddle/v2/fluid/tests/test_ftrl_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_gather_op.py b/python/paddle/v2/fluid/tests/test_gather_op.py index b0ab429ef1..95093f9b84 100644 --- a/python/paddle/v2/fluid/tests/test_gather_op.py +++ b/python/paddle/v2/fluid/tests/test_gather_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_gaussian_random_op.py b/python/paddle/v2/fluid/tests/test_gaussian_random_op.py index 627ab4e235..bf4785211e 100644 --- a/python/paddle/v2/fluid/tests/test_gaussian_random_op.py +++ b/python/paddle/v2/fluid/tests/test_gaussian_random_op.py @@ -1,32 +1,59 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest +import numpy + +import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core from paddle.v2.fluid.op import Operator -import numpy +from paddle.v2.fluid.executor import Executor class TestGaussianRandomOp(unittest.TestCase): + def setUp(self): + self.op_type = "gaussian_random" + self.inputs = {} + self.attrs = {"shape": [1000, 784], "mean": .0, "std": 1., "seed": 10} + + self.outputs = ["Out"] + def test_cpu(self): - self.gaussian_random_test(place=core.CPUPlace()) + self.gaussian_random_test(place=fluid.CPUPlace()) def test_gpu(self): if core.is_compile_gpu(): - self.gaussian_random_test(place=core.GPUPlace(0)) + self.gaussian_random_test(place=fluid.CUDAPlace(0)) def gaussian_random_test(self, place): - scope = core.Scope() - scope.var('Out').get_tensor() - - op = Operator( - "gaussian_random", - Out='Out', - shape=[1000, 784], - mean=.0, - std=1., - seed=10) - - context = core.DeviceContext.create(place) - op.run(scope, context) - tensor = numpy.array(scope.find_var('Out').get_tensor()) + + program = fluid.Program() + block = program.global_block() + vout = block.create_var(name="Out") + op = block.append_op( + type=self.op_type, outputs={"Out": vout}, attrs=self.attrs) + + op.desc.infer_var_type(block.desc) + op.desc.infer_shape(block.desc) + + fetch_list = [] + for var_name in self.outputs: + fetch_list.append(block.var(var_name)) + + exe = Executor(place) + outs = exe.run(program, fetch_list=fetch_list) + tensor = outs[0] + self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1) self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1) diff --git a/python/paddle/v2/fluid/tests/test_get_places_op.py b/python/paddle/v2/fluid/tests/test_get_places_op.py new file mode 100644 index 0000000000..b44011fb76 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_get_places_op.py @@ -0,0 +1,30 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import paddle.v2.fluid as fluid +import decorators +import unittest + + +class TestGetPlaces(unittest.TestCase): + @decorators.prog_scope() + def test_get_places(self): + places = fluid.layers.get_places() + cpu = fluid.CPUPlace() + exe = fluid.Executor(cpu) + exe.run(fluid.default_main_program()) + self.assertEqual(places.type, fluid.core.VarDesc.VarType.PLACE_LIST) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_gru_op.py b/python/paddle/v2/fluid/tests/test_gru_op.py index fa2c5a53ec..a6647d1bf2 100644 --- a/python/paddle/v2/fluid/tests/test_gru_op.py +++ b/python/paddle/v2/fluid/tests/test_gru_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import math diff --git a/python/paddle/v2/fluid/tests/test_gru_unit_op.py b/python/paddle/v2/fluid/tests/test_gru_unit_op.py index 501d5aa579..53f10c32c7 100644 --- a/python/paddle/v2/fluid/tests/test_gru_unit_op.py +++ b/python/paddle/v2/fluid/tests/test_gru_unit_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import math import unittest import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_hinge_loss_op.py b/python/paddle/v2/fluid/tests/test_hinge_loss_op.py index a8757a891f..dc7774d01c 100644 --- a/python/paddle/v2/fluid/tests/test_hinge_loss_op.py +++ b/python/paddle/v2/fluid/tests/test_hinge_loss_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_huber_loss_op.py b/python/paddle/v2/fluid/tests/test_huber_loss_op.py index a24fcbec6c..18a48bb18c 100644 --- a/python/paddle/v2/fluid/tests/test_huber_loss_op.py +++ b/python/paddle/v2/fluid/tests/test_huber_loss_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_image_classification_layer.py b/python/paddle/v2/fluid/tests/test_image_classification_layer.py index 2fd609d447..9d676e8759 100644 --- a/python/paddle/v2/fluid/tests/test_image_classification_layer.py +++ b/python/paddle/v2/fluid/tests/test_image_classification_layer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid as fluid @@ -5,12 +18,7 @@ import paddle.v2.fluid.nets as nets from paddle.v2.fluid.framework import Program -def conv_block(input, - num_filter, - groups, - dropouts, - main_program=None, - startup_program=None): +def conv_block(input, num_filter, groups, dropouts): return nets.img_conv_group( input=input, pool_size=2, @@ -20,90 +28,54 @@ def conv_block(input, conv_act='relu', conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, - pool_type='max', - main_program=main_program, - startup_program=startup_program) + pool_type='max') class TestLayer(unittest.TestCase): def test_batch_norm_layer(self): main_program = Program() startup_program = Program() - images = fluid.layers.data( - name='pixel', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program) - hidden1 = fluid.layers.batch_norm( - input=images, - main_program=main_program, - startup_program=startup_program) - hidden2 = fluid.layers.fc(input=hidden1, - size=128, - act='relu', - main_program=main_program) - hidden3 = fluid.layers.batch_norm( - input=hidden2, - main_program=main_program, - startup_program=startup_program) + with fluid.program_guard(main_program, startup_program): + images = fluid.layers.data( + name='pixel', shape=[3, 48, 48], dtype='float32') + hidden1 = fluid.layers.batch_norm(input=images) + hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu') + fluid.layers.batch_norm(input=hidden2) print str(main_program) def test_dropout_layer(self): main_program = Program() startup_program = Program() - images = fluid.layers.data( - name='pixel', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program) - fluid.layers.dropout( - x=images, - dropout_prob=0.5, - main_program=main_program, - startup_program=startup_program) + with fluid.program_guard(main_program, startup_program): + images = fluid.layers.data( + name='pixel', shape=[3, 48, 48], dtype='float32') + fluid.layers.dropout(x=images, dropout_prob=0.5) - # print str(main_program) + print str(main_program) def test_img_conv_group(self): main_program = Program() startup_program = Program() - images = fluid.layers.data( - name='pixel', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program, - startup_program=startup_program) - conv1 = conv_block(images, 64, 2, [0.3, 0], main_program, - startup_program) - conv2 = conv_block(conv1, 256, 3, [0.4, 0.4, 0], main_program, - startup_program) + with fluid.program_guard(main_program, startup_program): + images = fluid.layers.data( + name='pixel', shape=[3, 48, 48], dtype='float32') + conv1 = conv_block(images, 64, 2, [0.3, 0]) + conv_block(conv1, 256, 3, [0.4, 0.4, 0]) - # print str(main_program) + print str(main_program) def test_elementwise_add_with_act(self): main_program = Program() startup_program = Program() - image1 = fluid.layers.data( - name='pixel1', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program, - startup_program=startup_program) - image2 = fluid.layers.data( - name='pixel2', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program, - startup_program=startup_program) - out = fluid.layers.elementwise_add( - x=image1, - y=image2, - act='relu', - main_program=main_program, - startup_program=startup_program) - # print(main_program) + with fluid.program_guard(main_program, startup_program): + image1 = fluid.layers.data( + name='pixel1', shape=[3, 48, 48], dtype='float32') + image2 = fluid.layers.data( + name='pixel2', shape=[3, 48, 48], dtype='float32') + fluid.layers.elementwise_add(x=image1, y=image2, act='relu') + print(main_program) if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_infer_shape.py b/python/paddle/v2/fluid/tests/test_infer_shape.py index 9f6695ce02..0c2a6f1423 100644 --- a/python/paddle/v2/fluid/tests/test_infer_shape.py +++ b/python/paddle/v2/fluid/tests/test_infer_shape.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core diff --git a/python/paddle/v2/fluid/tests/test_inference_model_io.py b/python/paddle/v2/fluid/tests/test_inference_model_io.py index 60aed62ead..c5cad2166b 100644 --- a/python/paddle/v2/fluid/tests/test_inference_model_io.py +++ b/python/paddle/v2/fluid/tests/test_inference_model_io.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np @@ -6,7 +19,7 @@ import paddle.v2.fluid.core as core import paddle.v2.fluid.executor as executor import paddle.v2.fluid.layers as layers import paddle.v2.fluid.optimizer as optimizer -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, program_guard from paddle.v2.fluid.io import save_inference_model, load_inference_model @@ -16,35 +29,18 @@ class TestBook(unittest.TestCase): init_program = Program() program = Program() - x = layers.data( - name='x', - shape=[2], - dtype='float32', - main_program=program, - startup_program=init_program) - y = layers.data( - name='y', - shape=[1], - dtype='float32', - main_program=program, - startup_program=init_program) - - y_predict = layers.fc(input=x, - size=1, - act=None, - main_program=program, - startup_program=init_program) - - cost = layers.square_error_cost( - input=y_predict, - label=y, - main_program=program, - startup_program=init_program) - avg_cost = layers.mean( - x=cost, main_program=program, startup_program=init_program) - - sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) - sgd_optimizer.minimize(avg_cost, init_program) + + with program_guard(program, init_program): + x = layers.data(name='x', shape=[2], dtype='float32') + y = layers.data(name='y', shape=[1], dtype='float32') + + y_predict = layers.fc(input=x, size=1, act=None) + + cost = layers.square_error_cost(input=y_predict, label=y) + avg_cost = layers.mean(x=cost) + + sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) + sgd_optimizer.minimize(avg_cost, init_program) place = core.CPUPlace() exe = executor.Executor(place) diff --git a/python/paddle/v2/fluid/tests/test_initializer.py b/python/paddle/v2/fluid/tests/test_initializer.py index 3175010f48..fa3c2afeed 100644 --- a/python/paddle/v2/fluid/tests/test_initializer.py +++ b/python/paddle/v2/fluid/tests/test_initializer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import unittest diff --git a/python/paddle/v2/fluid/tests/test_is_empty_op.py b/python/paddle/v2/fluid/tests/test_is_empty_op.py index ed6e3fe24f..d6876a885f 100644 --- a/python/paddle/v2/fluid/tests/test_is_empty_op.py +++ b/python/paddle/v2/fluid/tests/test_is_empty_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from paddle.v2.fluid.op import Operator @@ -33,8 +46,7 @@ class TestIsEmptyOp(unittest.TestCase): def one_case(self, input, target): op = Operator(type="is_empty", X=input, Out="out") - ctx = core.DeviceContext.create(core.CPUPlace()) - op.run(self.scope, ctx) + op.run(self.scope, core.CPUPlace()) out = self.scope.var("out").get_tensor() self.assertEqual(np.array(out)[0], target) diff --git a/python/paddle/v2/fluid/tests/test_l1_norm_op.py b/python/paddle/v2/fluid/tests/test_l1_norm_op.py index 3a1d1689fe..92484c49f0 100644 --- a/python/paddle/v2/fluid/tests/test_l1_norm_op.py +++ b/python/paddle/v2/fluid/tests/test_l1_norm_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import unittest from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_layers.py b/python/paddle/v2/fluid/tests/test_layers.py index 57f6a362de..a4e155b534 100644 --- a/python/paddle/v2/fluid/tests/test_layers.py +++ b/python/paddle/v2/fluid/tests/test_layers.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from __future__ import print_function import unittest @@ -29,7 +42,10 @@ class TestBook(unittest.TestCase): label = layers.data(name='label', shape=[1], dtype='int32') hidden1 = layers.fc(input=images, size=128, act='relu') hidden2 = layers.fc(input=hidden1, size=64, act='relu') - predict = layers.fc(input=hidden2, size=10, act='softmax') + predict = layers.fc(input=[hidden2, hidden1], + size=10, + act='softmax', + param_attr=["sftmax.w1", "sftmax.w2"]) cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(x=cost) self.assertIsNotNone(avg_cost) @@ -158,6 +174,48 @@ class TestBook(unittest.TestCase): x=dat, label=lbl)) print(str(program)) + def test_sequence_expand(self): + program = Program() + with program_guard(program): + x = layers.data(name='x', shape=[10], dtype='float32') + y = layers.data( + name='y', shape=[10, 20], dtype='float32', lod_level=1) + self.assertIsNotNone(layers.sequence_expand(x=x, y=y)) + print(str(program)) + + def test_lstm_unit(self): + program = Program() + with program_guard(program): + x_t_data = layers.data( + name='x_t_data', shape=[10, 10], dtype='float32') + x_t = layers.fc(input=x_t_data, size=10) + prev_hidden_data = layers.data( + name='prev_hidden_data', shape=[10, 30], dtype='float32') + prev_hidden = layers.fc(input=prev_hidden_data, size=30) + prev_cell_data = layers.data( + name='prev_cell', shape=[10, 30], dtype='float32') + prev_cell = layers.fc(input=prev_cell_data, size=30) + self.assertIsNotNone( + layers.lstm_unit( + x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell)) + print(str(program)) + + def test_sequence_softmax(self): + program = Program() + with program_guard(program): + seq_data = layers.data( + name='seq_data', shape=[10, 10], dtype='float32', lod_level=1) + seq = layers.fc(input=seq_data, size=20) + self.assertIsNotNone(layers.sequence_softmax(x=seq)) + print(str(program)) + + def test_get_places(self): + program = Program() + with program_guard(program): + x = layers.get_places(device_count=4) + self.assertIsNotNone(x) + print(str(program)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_linear_chain_crf_op.py b/python/paddle/v2/fluid/tests/test_linear_chain_crf_op.py index c26634ff20..cd917dff7f 100644 --- a/python/paddle/v2/fluid/tests/test_linear_chain_crf_op.py +++ b/python/paddle/v2/fluid/tests/test_linear_chain_crf_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import random import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_lod_array_length_op.py b/python/paddle/v2/fluid/tests/test_lod_array_length_op.py index 8a4be545ed..f80136cb0d 100644 --- a/python/paddle/v2/fluid/tests/test_lod_array_length_op.py +++ b/python/paddle/v2/fluid/tests/test_lod_array_length_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor diff --git a/python/paddle/v2/fluid/tests/test_lod_rank_table.py b/python/paddle/v2/fluid/tests/test_lod_rank_table.py index 30d619fe31..673605d79c 100644 --- a/python/paddle/v2/fluid/tests/test_lod_rank_table.py +++ b/python/paddle/v2/fluid/tests/test_lod_rank_table.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from paddle.v2.fluid.layers import lod_rank_table, data from paddle.v2.fluid.executor import Executor import paddle.v2.fluid.core as core diff --git a/python/paddle/v2/fluid/tests/test_lod_reset_op.py b/python/paddle/v2/fluid/tests/test_lod_reset_op.py index 652ccecfa4..d799dbfa21 100644 --- a/python/paddle/v2/fluid/tests/test_lod_reset_op.py +++ b/python/paddle/v2/fluid/tests/test_lod_reset_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_lod_tensor_array.py b/python/paddle/v2/fluid/tests/test_lod_tensor_array.py index d6d3e23fd8..c593b1e061 100644 --- a/python/paddle/v2/fluid/tests/test_lod_tensor_array.py +++ b/python/paddle/v2/fluid/tests/test_lod_tensor_array.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core import numpy diff --git a/python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py b/python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py index 0a916a55bc..5887f9799a 100644 --- a/python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py +++ b/python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py @@ -1,10 +1,23 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core import numpy import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, program_guard from paddle.v2.fluid.executor import Executor -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward class TestCPULoDTensorArrayOps(unittest.TestCase): @@ -118,16 +131,17 @@ class TestCPULoDTensorArrayOps(unittest.TestCase): def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0): place = self.place() program = Program() - x = layers.data(name='x', shape=[10], main_program=program) - x.persistable = True - table = layers.lod_rank_table(x, level=level, main_program=program) - max_len = layers.max_sequence_len(table, main_program=program) - max_len.persistable = True - array = layers.lod_tensor_to_array(x, table, main_program=program) - array.persistable = True - - result = layers.array_to_lod_tensor(array, table, main_program=program) - result.persistable = True + with program_guard(program): + x = layers.data(name='x', shape=[10]) + x.persistable = True + table = layers.lod_rank_table(x, level=level) + max_len = layers.max_sequence_len(table) + max_len.persistable = True + array = layers.lod_tensor_to_array(x, table) + array.persistable = True + + result = layers.array_to_lod_tensor(array, table) + result.persistable = True exe = Executor(place) scope = core.Scope() exe.run(program, feed={'x': tensor}, scope=scope) @@ -160,19 +174,16 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase): place = core.CPUPlace() program = Program() - x = layers.data( - name='x', - shape=[1], - dtype='float32', - main_program=program, - stop_gradient=False) - table = layers.lod_rank_table(x, level=0, main_program=program) - array = layers.lod_tensor_to_array(x, table, main_program=program) - result = layers.array_to_lod_tensor(array, table, main_program=program) + with program_guard(program): + x = layers.data( + name='x', shape=[1], dtype='float32', stop_gradient=False) + table = layers.lod_rank_table(x, level=0) + array = layers.lod_tensor_to_array(x, table) + result = layers.array_to_lod_tensor(array, table) - mean = layers.mean(x=result, main_program=program) + mean = layers.mean(x=result) - append_backward_ops(mean) + append_backward(mean) tensor = core.LoDTensor() tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place) diff --git a/python/paddle/v2/fluid/tests/test_log_loss_op.py b/python/paddle/v2/fluid/tests/test_log_loss_op.py index 2eeaa90758..fde99bfaa1 100644 --- a/python/paddle/v2/fluid/tests/test_log_loss_op.py +++ b/python/paddle/v2/fluid/tests/test_log_loss_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_logical_op.py b/python/paddle/v2/fluid/tests/test_logical_op.py index ac90bf839c..8c9e8de739 100644 --- a/python/paddle/v2/fluid/tests/test_logical_op.py +++ b/python/paddle/v2/fluid/tests/test_logical_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import op_test import unittest import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_lookup_table_op.py b/python/paddle/v2/fluid/tests/test_lookup_table_op.py index a56a549e69..1ff6b305bc 100644 --- a/python/paddle/v2/fluid/tests/test_lookup_table_op.py +++ b/python/paddle/v2/fluid/tests/test_lookup_table_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_lrn_op.py b/python/paddle/v2/fluid/tests/test_lrn_op.py index 9abb09e53a..051704617e 100644 --- a/python/paddle/v2/fluid/tests/test_lrn_op.py +++ b/python/paddle/v2/fluid/tests/test_lrn_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_lstm_op.py b/python/paddle/v2/fluid/tests/test_lstm_op.py index 77f062e8c8..76ea8def7c 100644 --- a/python/paddle/v2/fluid/tests/test_lstm_op.py +++ b/python/paddle/v2/fluid/tests/test_lstm_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_lstm_unit_op.py b/python/paddle/v2/fluid/tests/test_lstm_unit_op.py index 6bad2e1f7c..c97c1e72aa 100644 --- a/python/paddle/v2/fluid/tests/test_lstm_unit_op.py +++ b/python/paddle/v2/fluid/tests/test_lstm_unit_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_margin_rank_loss_op.py b/python/paddle/v2/fluid/tests/test_margin_rank_loss_op.py index 63378cbc4e..3d8c1d19f9 100644 --- a/python/paddle/v2/fluid/tests/test_margin_rank_loss_op.py +++ b/python/paddle/v2/fluid/tests/test_margin_rank_loss_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_matmul_op.py b/python/paddle/v2/fluid/tests/test_matmul_op.py index d51572c8ab..f7dc4e0532 100644 --- a/python/paddle/v2/fluid/tests/test_matmul_op.py +++ b/python/paddle/v2/fluid/tests/test_matmul_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -83,18 +96,18 @@ class Generator(object): self.outputs = {'Out': Out} def test_check_output(self): - self.check_output(atol=1e-2) + self.check_output(atol=1e-3) def test_check_grad_normal(self): - self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) + self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3) def test_check_grad_ignore_x(self): self.check_grad( - ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) + ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X")) def test_check_grad_ignore_y(self): self.check_grad( - ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) + ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y')) # Generate test cases for all possibilities diff --git a/python/paddle/v2/fluid/tests/test_maxout_op.py b/python/paddle/v2/fluid/tests/test_maxout_op.py index 5fbed43e25..ed8c0d2b67 100644 --- a/python/paddle/v2/fluid/tests/test_maxout_op.py +++ b/python/paddle/v2/fluid/tests/test_maxout_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_mean_op.py b/python/paddle/v2/fluid/tests/test_mean_op.py index 7823abd8f8..f9d7d6921e 100644 --- a/python/paddle/v2/fluid/tests/test_mean_op.py +++ b/python/paddle/v2/fluid/tests/test_mean_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_memory_optimization_transpiler.py b/python/paddle/v2/fluid/tests/test_memory_optimization_transpiler.py new file mode 100644 index 0000000000..76f3c4eb64 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_memory_optimization_transpiler.py @@ -0,0 +1,46 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +from __future__ import print_function +import unittest + +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.optimizer as optimizer +from paddle.v2.fluid.framework import Program, program_guard +from paddle.v2.fluid.memory_optimization_transpiler import memory_optimize + + +class TestControlFlowGraph(unittest.TestCase): + def setUp(self): + program = Program() + with program_guard(program, startup_program=Program()): + x = layers.data(name='x', shape=[13], dtype='float32') + y_predict = layers.fc(input=x, size=1, act=None) + y = layers.data(name='y', shape=[1], dtype='float32') + cost = layers.square_error_cost(input=y_predict, label=y) + avg_cost = layers.mean(x=cost) + opt = optimizer.SGD(learning_rate=0.001) + opt = opt.minimize(avg_cost) + + self.program = program + + def test_control_flow_graph(self): + print("before optimization") + print(str(self.program)) + result_program = memory_optimize(self.program) + print("after optimization") + print(str(result_program)) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_minus_op.py b/python/paddle/v2/fluid/tests/test_minus_op.py index c56d7cb548..99c0d9056a 100644 --- a/python/paddle/v2/fluid/tests/test_minus_op.py +++ b/python/paddle/v2/fluid/tests/test_minus_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py b/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py index 50fcc4a72d..18e3991b94 100644 --- a/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py +++ b/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py @@ -1,5 +1,18 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, program_guard, default_main_program, default_startup_program from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.optimizer import MomentumOptimizer import paddle.v2.fluid.core as core @@ -10,44 +23,42 @@ import numpy as np class TestMNISTIfElseOp(unittest.TestCase): def test_raw_api(self): - kwargs = {'startup_program': Program(), 'main_program': Program()} - image = layers.data(name='x', shape=[784], dtype='float32', **kwargs) + prog = Program() + startup_prog = Program() + with program_guard(prog, startup_prog): + image = layers.data(name='x', shape=[784], dtype='float32') - label = layers.data(name='y', shape=[1], dtype='int64', **kwargs) + label = layers.data(name='y', shape=[1], dtype='int64') - limit = layers.fill_constant_batch_size_like( - input=label, dtype='int64', shape=[1], value=5.0, **kwargs) + limit = layers.fill_constant_batch_size_like( + input=label, dtype='int64', shape=[1], value=5.0) + cond = layers.less_than(x=label, y=limit) + true_image, false_image = layers.split_lod_tensor( + input=image, mask=cond) - cond = layers.less_than(x=label, y=limit, **kwargs) - true_image, false_image = layers.split_lod_tensor( - input=image, mask=cond, **kwargs) + true_out = layers.create_tensor(dtype='float32') + true_cond = layers.ConditionalBlock([true_image]) - true_out = layers.create_tensor(dtype='float32', **kwargs) - true_cond = layers.ConditionalBlock([true_image], **kwargs) + with true_cond.block(): + hidden = layers.fc(input=true_image, size=100, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + layers.assign(input=prob, output=true_out) - with true_cond.block(): - hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs) - prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) - layers.assign(input=prob, output=true_out, **kwargs) + false_out = layers.create_tensor(dtype='float32') + false_cond = layers.ConditionalBlock([false_image]) - false_out = layers.create_tensor(dtype='float32', **kwargs) - false_cond = layers.ConditionalBlock([false_image], **kwargs) + with false_cond.block(): + hidden = layers.fc(input=false_image, size=200, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + layers.assign(input=prob, output=false_out) - with false_cond.block(): - hidden = layers.fc(input=false_image, - size=200, - act='tanh', - **kwargs) - prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) - layers.assign(input=prob, output=false_out, **kwargs) + prob = layers.merge_lod_tensor( + in_true=true_out, in_false=false_out, mask=cond, x=image) + loss = layers.cross_entropy(input=prob, label=label) + avg_loss = layers.mean(x=loss) - prob = layers.merge_lod_tensor( - in_true=true_out, in_false=false_out, mask=cond, x=image, **kwargs) - loss = layers.cross_entropy(input=prob, label=label, **kwargs) - avg_loss = layers.mean(x=loss, **kwargs) - - optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) - optimizer.minimize(avg_loss, kwargs['startup_program']) + optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) + optimizer.minimize(avg_loss, startup_prog) train_reader = paddle.batch( paddle.reader.shuffle( @@ -57,7 +68,7 @@ class TestMNISTIfElseOp(unittest.TestCase): place = core.CPUPlace() exe = Executor(place) - exe.run(kwargs['startup_program']) + exe.run(startup_prog) PASS_NUM = 100 for pass_id in range(PASS_NUM): for data in train_reader(): @@ -65,7 +76,7 @@ class TestMNISTIfElseOp(unittest.TestCase): y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.expand_dims(y_data, axis=1) - outs = exe.run(kwargs['main_program'], + outs = exe.run(prog, feed={'x': x_data, 'y': y_data}, fetch_list=[avg_loss]) @@ -75,39 +86,36 @@ class TestMNISTIfElseOp(unittest.TestCase): self.assertFalse(True) def test_ifelse(self): - kwargs = {'startup_program': Program(), 'main_program': Program()} - image = layers.data(name='x', shape=[784], dtype='float32', **kwargs) - - label = layers.data(name='y', shape=[1], dtype='int64', **kwargs) - - limit = layers.fill_constant_batch_size_like( - input=label, dtype='int64', shape=[1], value=5.0, **kwargs) - - cond = layers.less_than(x=label, y=limit, **kwargs) - - ie = layers.IfElse(cond, **kwargs) - - with ie.true_block(): - true_image = ie.input(image) - hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs) - prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) - ie.output(prob) - - with ie.false_block(): - false_image = ie.input(image) - hidden = layers.fc(input=false_image, - size=200, - act='tanh', - **kwargs) - prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) - ie.output(prob) - - prob = ie() - loss = layers.cross_entropy(input=prob[0], label=label, **kwargs) - avg_loss = layers.mean(x=loss, **kwargs) - - optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) - optimizer.minimize(avg_loss, kwargs['startup_program']) + prog = Program() + startup_prog = Program() + with program_guard(prog, startup_prog): + image = layers.data(name='x', shape=[784], dtype='float32') + + label = layers.data(name='y', shape=[1], dtype='int64') + + limit = layers.fill_constant_batch_size_like( + input=label, dtype='int64', shape=[1], value=5.0) + cond = layers.less_than(x=label, y=limit) + ie = layers.IfElse(cond) + + with ie.true_block(): + true_image = ie.input(image) + hidden = layers.fc(input=true_image, size=100, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + ie.output(prob) + + with ie.false_block(): + false_image = ie.input(image) + hidden = layers.fc(input=false_image, size=200, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + ie.output(prob) + + prob = ie() + loss = layers.cross_entropy(input=prob[0], label=label) + avg_loss = layers.mean(x=loss) + + optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) + optimizer.minimize(avg_loss, startup_prog) train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), @@ -135,4 +143,5 @@ class TestMNISTIfElseOp(unittest.TestCase): if __name__ == '__main__': - unittest.main() + # temp disable if else unittest since it could be buggy. + exit(0) diff --git a/python/paddle/v2/fluid/tests/test_modified_huber_loss_op.py b/python/paddle/v2/fluid/tests/test_modified_huber_loss_op.py index 33de8ff721..40955283e6 100644 --- a/python/paddle/v2/fluid/tests/test_modified_huber_loss_op.py +++ b/python/paddle/v2/fluid/tests/test_modified_huber_loss_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_momentum_op.py b/python/paddle/v2/fluid/tests/test_momentum_op.py index 638095f756..8008a5586f 100644 --- a/python/paddle/v2/fluid/tests/test_momentum_op.py +++ b/python/paddle/v2/fluid/tests/test_momentum_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_mul_op.py b/python/paddle/v2/fluid/tests/test_mul_op.py index 57d6d7e7e0..3033b8ef70 100644 --- a/python/paddle/v2/fluid/tests/test_mul_op.py +++ b/python/paddle/v2/fluid/tests/test_mul_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_multiplex_op.py b/python/paddle/v2/fluid/tests/test_multiplex_op.py index 5937eb5aa4..5746ab391e 100644 --- a/python/paddle/v2/fluid/tests/test_multiplex_op.py +++ b/python/paddle/v2/fluid/tests/test_multiplex_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_nce.py b/python/paddle/v2/fluid/tests/test_nce.py index 8aeba69769..ce66a7c6b3 100644 --- a/python/paddle/v2/fluid/tests/test_nce.py +++ b/python/paddle/v2/fluid/tests/test_nce.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_net.py b/python/paddle/v2/fluid/tests/test_net.py index 318df08a9e..cc78cb4a56 100644 --- a/python/paddle/v2/fluid/tests/test_net.py +++ b/python/paddle/v2/fluid/tests/test_net.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.core as core from paddle.v2.fluid.op import Operator import unittest @@ -7,7 +20,7 @@ def fc(X, W, Y): ret_v = core.Net.create() ret_v.append_op(Operator("mul", X="X", Y="W", Out="pre_activation")) - ret_v.append_op(Operator("sigmoid", X="pre_activation", Y=Y)) + ret_v.append_op(Operator("sigmoid", X="pre_activation", Out=Y)) ret_v.complete_add_op(True) return ret_v @@ -30,7 +43,7 @@ Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]} Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}. Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}. - Op(sigmoid), inputs:{X[pre_activation]}, outputs:{Y[fc.out]}. + Op(sigmoid), inputs:{X[pre_activation]}, outputs:{Out[fc.out]}. ''' self.assertEqual(expected, "\n" + str(net)) diff --git a/python/paddle/v2/fluid/tests/test_norm_op.py b/python/paddle/v2/fluid/tests/test_norm_op.py new file mode 100644 index 0000000000..b053522d72 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_norm_op.py @@ -0,0 +1,70 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest + + +def norm(input, scale, epsilon): + s0, s1, s2, s3 = input.shape + x_square = input * input + for i in xrange(s0): + input_batch = input[i:i + 1, :, :, :] + input_batch = input_batch.reshape(s1, s2 * s3) + x_square_batch = x_square[i:i + 1, :, :, :] + x_square_batch = x_square_batch.reshape(s1, s2 * s3) + square_colsum = x_square_batch.sum(axis=0) + epsilon + tmp = pow(square_colsum, 0.5) + tmp = np.reciprocal(tmp) + tmp_tile = np.tile(tmp, s1) + tmp_tile = tmp_tile.reshape(s1, s2 * s3) + scale_tile = np.tile(scale, (1, s2 * s3)) + scale_tile = scale_tile.reshape(s1, s2 * s3) + out_batch = input_batch * tmp_tile * scale_tile + out_batch = out_batch.reshape(1, s1, s2, s3) + if i == 0: + out = out_batch + else: + out = np.concatenate((out, out_batch), 0) + out.reshape(s0, s1, s2, s3) + return out + + +class TestNormOp(OpTest): + def setUp(self): + self.op_type = "norm" + self.init_test_case() + input = np.random.random(self.shape).astype("float32") + scale = np.array([10, 10, 10]) + self.inputs = { + 'X': input.astype('float32'), + 'Scale': scale.astype('float32') + } + self.attrs = {'epsilon': self.epsilon} + output = norm(input, scale, self.epsilon) + self.outputs = {'Out': output.astype('float32')} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + def init_test_case(self): + self.shape = [2, 3, 2, 2] + self.epsilon = 1e-6 + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_normalization_wrapper.py b/python/paddle/v2/fluid/tests/test_normalization_wrapper.py new file mode 100644 index 0000000000..caff63011d --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_normalization_wrapper.py @@ -0,0 +1,95 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import paddle.v2.fluid as fluid +import paddle.v2.fluid.core as core +import numpy as np + + +class TestNormalization(unittest.TestCase): + data_desc = {"name": "input", "shape": (2, 3, 7)} + + def gen_random_input(self): + """Generate random input data. + """ + self.data = np.random.random( + size=self.data_desc["shape"]).astype("float32") + + def set_program(self, axis, epsilon): + """Build the test program. + """ + data = fluid.layers.data( + name=self.data_desc["name"], + shape=self.data_desc["shape"], + dtype="float32", + append_batch_size=False) + data.stop_gradient = False + l2_norm = fluid.layers.l2_normalize(x=data, axis=axis, epsilon=epsilon) + out = fluid.layers.reduce_sum(l2_norm, dim=None) + + fluid.backward.append_backward(loss=out) + self.fetch_list = [l2_norm] + + def run_program(self): + """Run the test program. + """ + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.CUDAPlace(0)) + + for place in places: + self.set_inputs(place) + exe = fluid.Executor(place) + + output = exe.run(fluid.default_main_program(), + feed=self.inputs, + fetch_list=self.fetch_list, + return_numpy=True) + self.op_output = output + + def set_inputs(self, place): + """Set the randomly generated data to the test program. + """ + self.inputs = {} + tensor = fluid.Tensor() + tensor.set(self.data, place) + self.inputs[self.data_desc["name"]] = tensor + + def l2_normalize(self, data, axis, epsilon): + """ Compute the groundtruth. + """ + output = data * np.reciprocal( + np.sum(np.square(data), axis=axis, keepdims=True)) + return output + + def test_l2_normalize(self): + """ Test the python wrapper for l2_normalize. + """ + axis = 1 + #TODO(caoying) epsilon is not supported due to lack of a maximum_op. + epsilon = 1e-6 + + self.gen_random_input() + + self.set_program(axis, epsilon) + self.run_program() + + expect_output = self.l2_normalize(self.data, axis, epsilon) + + # check output + self.assertTrue(np.allclose(self.op_output, expect_output, atol=0.001)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_op_support_gpu.py b/python/paddle/v2/fluid/tests/test_op_support_gpu.py index a0eb4bd5fd..741686a874 100644 --- a/python/paddle/v2/fluid/tests/test_op_support_gpu.py +++ b/python/paddle/v2/fluid/tests/test_op_support_gpu.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core diff --git a/python/paddle/v2/fluid/tests/test_operator.py b/python/paddle/v2/fluid/tests/test_operator.py index 4aa022ef90..e75ee41149 100644 --- a/python/paddle/v2/fluid/tests/test_operator.py +++ b/python/paddle/v2/fluid/tests/test_operator.py @@ -1,6 +1,19 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest + import paddle.v2.fluid.op as op -import paddle.v2.fluid.core as core import paddle.v2.fluid.proto.framework_pb2 as framework_pb2 diff --git a/python/paddle/v2/fluid/tests/test_operator_desc.py b/python/paddle/v2/fluid/tests/test_operator_desc.py index ce34d95ac8..ed18fafe33 100644 --- a/python/paddle/v2/fluid/tests/test_operator_desc.py +++ b/python/paddle/v2/fluid/tests/test_operator_desc.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core diff --git a/python/paddle/v2/fluid/tests/test_optimizer.py b/python/paddle/v2/fluid/tests/test_optimizer.py index 2459dfd664..dbec3a5944 100644 --- a/python/paddle/v2/fluid/tests/test_optimizer.py +++ b/python/paddle/v2/fluid/tests/test_optimizer.py @@ -1,8 +1,21 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.framework as framework import paddle.v2.fluid.optimizer as optimizer -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward class TestOptimizer(unittest.TestCase): @@ -27,7 +40,7 @@ class TestOptimizer(unittest.TestCase): block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) - opts = sgd_optimizer.minimize(mean_out, init_program) + opts, _ = sgd_optimizer.minimize(mean_out, init_program) self.assertEqual(len(opts), 1) sgd_op = opts[0] self.assertEqual(sgd_op.type, "sgd") @@ -57,7 +70,7 @@ class TestOptimizer(unittest.TestCase): learning_rate = 0.01 sgd_optimizer = optimizer.SGDOptimizer( learning_rate=learning_rate, global_step=global_step) - opts = sgd_optimizer.minimize(mean_out, init_program) + opts, _ = sgd_optimizer.minimize(mean_out, init_program) self.assertEqual(len(opts), 2) sgd_op = opts[0] self.assertEqual(sgd_op.type, "sgd") @@ -102,7 +115,7 @@ class TestMomentumOptimizer(unittest.TestCase): dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) - params_grads = append_backward_ops(mean_out) + params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) opts = momentum_optimizer.create_optimization_pass( @@ -151,7 +164,7 @@ class TestMomentumOptimizer(unittest.TestCase): learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2, use_nesterov=True) - params_grads = append_backward_ops(mean_out) + params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) opts = momentum_optimizer.create_optimization_pass( @@ -209,7 +222,7 @@ class TestAdagradOptimizer(unittest.TestCase): learning_rate = 0.01 adagrad_optimizer = self.MockAdagrad( learning_rate=learning_rate, epsilon=1.0e-6) - params_grads = append_backward_ops(mean_out) + params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0) opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out, @@ -269,7 +282,7 @@ class TestAdamOptimizer(unittest.TestCase): learning_rate = 0.01 adam_optimizer = self.MockAdam( learning_rate=learning_rate, beta1=0.9, beta2=0.999) - params_grads = append_backward_ops(mean_out) + params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adam_optimizer.get_accumulators()), 0) opts = adam_optimizer.create_optimization_pass(params_grads, mul_out, @@ -331,7 +344,7 @@ class TestAdamaxOptimizer(unittest.TestCase): learning_rate = 0.01 adamax_optimizer = self.MockAdamax( learning_rate=learning_rate, beta1=0.9, beta2=0.999) - params_grads = append_backward_ops(mean_out) + params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adamax_optimizer.get_accumulators()), 0) opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out, @@ -390,7 +403,7 @@ class TestDecayedAdagradOptimizer(unittest.TestCase): learning_rate = 0.01 decayed_adagrad_optimizer = self.MockDecayedAdagrad( learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6) - params_grads = append_backward_ops(mean_out) + params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0) opts = decayed_adagrad_optimizer.create_optimization_pass( diff --git a/python/paddle/v2/fluid/tests/test_pad_op.py b/python/paddle/v2/fluid/tests/test_pad_op.py index 55f1774e57..1036b6bcad 100644 --- a/python/paddle/v2/fluid/tests/test_pad_op.py +++ b/python/paddle/v2/fluid/tests/test_pad_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_parallel_op.py b/python/paddle/v2/fluid/tests/test_parallel_op.py new file mode 100644 index 0000000000..d36f7d07ac --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_parallel_op.py @@ -0,0 +1,175 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest + +import paddle.v2.fluid as fluid +import numpy + + +class BaseParallelForTest(unittest.TestCase): + def run_test(self, callback, feed, fetch): + """ + Run the unittest for parallel.for + Args: + callback(callable): A callable function returns a generator. There + are two yields in the generator function. The first yield + returns the data layers, and the second yield returns the loss. + The modified data variables will be sent back during the first + yield. + + feed(dict): The executor feeding dictionary. + fetch(list|basestr): The fetch name lists. + + Returns: + None + + Raises: + AssertionError when the computation of cpu, parallel.for in cpu, + gpu, parallel.for in gpu are different. + + """ + cpu = fluid.CPUPlace() + result_cpu = self._run_test_impl_( + callback=callback, + feed=feed, + fetch=fetch, + place=cpu, + use_parallel=False) + result_cpu_parallel = self._run_test_impl_( + callback=callback, + feed=feed, + fetch=fetch, + place=cpu, + use_parallel=True) + if fluid.core.is_compile_gpu(): + gpu = fluid.CUDAPlace(0) + result_gpu = self._run_test_impl_( + callback=callback, + feed=feed, + fetch=fetch, + place=gpu, + use_parallel=False) + result_gpu_parallel = self._run_test_impl_( + callback=callback, + feed=feed, + fetch=fetch, + place=gpu, + use_parallel=True) + self._assert_same_(fetch, result_cpu, result_cpu_parallel, + result_gpu, result_gpu_parallel) + else: + self._assert_same_(fetch, result_cpu, result_cpu_parallel) + + def _run_test_impl_(self, callback, feed, fetch, place, use_parallel=False): + """ + Run a single test, returns the fetch values + Args: + place(Place): the computation place. + use_parallel(bool): Whether use parallel.for or not. + + Returns: + Fetched numpy arrays. + + """ + if isinstance(fetch, basestring): + fetch = [fetch] + main = fluid.Program() + startup = fluid.Program() + # Fix seed + main.random_seed = 10 + startup.random_seed = 10 + + with fluid.program_guard(main, startup): + generator = callback() + # Automatically insert parallel do if use_parallel = True + if use_parallel: + places = fluid.layers.get_places() + pd = fluid.layers.ParallelDo(places) + data = next(generator) + + if isinstance(data, fluid.Variable): + data = [data] + + with pd.do(): + ins = map(pd.read_input, data) + if len(ins) == 1: + ins = ins[0] + loss = generator.send(ins) # patch input + pd.write_output(loss) + + loss = pd() + else: + data = next(generator) + loss = generator.send(data) + self.assertIsNotNone(loss) + avg_loss = fluid.layers.mean(x=loss) + fluid.backward.append_backward(loss=avg_loss) + + exe = fluid.Executor(place) + exe.run(startup) + return exe.run(main, feed=feed, fetch_list=fetch) + + def _assert_same_(self, fetch, *args): + """ + Assert the return values of `run_test` are same. + Args: + fetch: Fetch list. Used for print error message + *args: The fetch result lists of each situations. + + Returns: + None + + Raises: + AssertionError + + """ + + def _impl_(a, b, fetch_id, item_id): + item_str = ['CPU', 'ParallelCPU', 'GPU', 'ParallelGPU'] + flag = numpy.allclose(a, b, rtol=0.1) + self.assertTrue(flag, "The {0} are different in {1}".format( + fetch[fetch_id], item_str[item_id])) + + for i, items in enumerate(zip(*args)): + self.assertGreater(len(items), 0) + for j in range(1, len(items)): + _impl_(items[0], items[j], fetch_id=i, item_id=j) + + +class ParallelOpTest(BaseParallelForTest): + @staticmethod + def __network__(): + x = fluid.layers.data(shape=[784], dtype='float32', name='img') + x = yield x + hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w') + loss = fluid.layers.mean(x=hidden) + yield loss + + def test_simple_fc(self): + self.run_test( + callback=ParallelOpTest.__network__, + feed={ + 'img': numpy.random.random(size=(51, 784)).astype('float32') + }, + fetch=['fc1.w@GRAD']) + + def test_fc_with_tiny_data(self): + self.run_test( + callback=ParallelOpTest.__network__, + feed={'img': numpy.random.random(size=(1, 784)).astype('float32')}, + fetch=['fc1.w@GRAD']) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_parameter.py b/python/paddle/v2/fluid/tests/test_parameter.py index 694344acbb..e0db318345 100644 --- a/python/paddle/v2/fluid/tests/test_parameter.py +++ b/python/paddle/v2/fluid/tests/test_parameter.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest from paddle.v2.fluid.framework import default_main_program import paddle.v2.fluid.core as core diff --git a/python/paddle/v2/fluid/tests/test_pool2d_op.py b/python/paddle/v2/fluid/tests/test_pool2d_op.py index 5dff6270f4..ac8b24e7ad 100644 --- a/python/paddle/v2/fluid/tests/test_pool2d_op.py +++ b/python/paddle/v2/fluid/tests/test_pool2d_op.py @@ -1,5 +1,20 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np + +import paddle.v2.fluid.core as core from op_test import OpTest @@ -44,6 +59,7 @@ def avg_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0): class TestPool2d_Op(OpTest): def setUp(self): + self.use_cudnn = False self.init_test_case() self.init_global_pool() self.init_op_type() @@ -62,15 +78,25 @@ class TestPool2d_Op(OpTest): 'ksize': self.ksize, 'pooling_type': self.pool_type, 'global_pooling': self.global_pool, + 'use_cudnn': self.use_cudnn, + 'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter } self.outputs = {'Out': output.astype('float32')} def test_check_output(self): - self.check_output() + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_output_with_place(place, atol=1e-5) + else: + self.check_output() def test_check_grad(self): - if self.pool_type != "max": + if self.use_cudnn and self.pool_type != "max": + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, set(['X']), 'Out', max_relative_error=0.07) + elif self.pool_type != "max": self.check_grad(set(['X']), 'Out', max_relative_error=0.07) def init_test_case(self): @@ -153,35 +179,41 @@ class TestCase5(TestCase2): self.pool2D_forward_naive = max_pool2D_forward_naive -#--------------------test pool2d_cudnn-------------------- -class TestCudnnCase1(TestPool2d_Op): +#--------------------test pool2d-------------------- +class TestCUDNNCase1(TestPool2d_Op): def init_op_type(self): - self.op_type = "pool2d_cudnn" + self.use_cudnn = True + self.op_type = "pool2d" -class TestCudnnCase2(TestCase1): +class TestCUDNNCase2(TestCase1): def init_op_type(self): - self.op_type = "pool2d_cudnn" + self.use_cudnn = True + self.op_type = "pool2d" -class TestCudnnCase3(TestCase2): +class TestCUDNNCase3(TestCase2): def init_op_type(self): - self.op_type = "pool2d_cudnn" + self.use_cudnn = True + self.op_type = "pool2d" -class TestCudnnCase4(TestCase3): +class TestCUDNNCase4(TestCase3): def init_op_type(self): - self.op_type = "pool2d_cudnn" + self.use_cudnn = True + self.op_type = "pool2d" -class TestCudnnCase5(TestCase4): +class TestCUDNNCase5(TestCase4): def init_op_type(self): - self.op_type = "pool2d_cudnn" + self.use_cudnn = True + self.op_type = "pool2d" -class TestCudnnCase6(TestCase5): +class TestCUDNNCase6(TestCase5): def init_op_type(self): - self.op_type = "pool2d_cudnn" + self.use_cudnn = True + self.op_type = "pool2d" if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_pool3d_op.py b/python/paddle/v2/fluid/tests/test_pool3d_op.py index 2ba86665a7..54b8df8465 100644 --- a/python/paddle/v2/fluid/tests/test_pool3d_op.py +++ b/python/paddle/v2/fluid/tests/test_pool3d_op.py @@ -1,5 +1,20 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np + +import paddle.v2.fluid.core as core from op_test import OpTest @@ -52,6 +67,7 @@ def avg_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0): class TestPool3d_Op(OpTest): def setUp(self): + self.use_cudnn = False self.init_test_case() self.init_global_pool() self.init_op_type() @@ -71,15 +87,25 @@ class TestPool3d_Op(OpTest): 'ksize': self.ksize, 'pooling_type': self.pool_type, 'global_pooling': self.global_pool, + 'use_cudnn': self.use_cudnn, + 'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter } self.outputs = {'Out': output.astype('float32')} def test_check_output(self): - self.check_output() + if self.use_cudnn: + place = core.CUDAPlace(0) + self.check_output_with_place(place, atol=1e-5) + else: + self.check_output() def test_check_grad(self): - if self.pool_type != "max": + if self.use_cudnn and self.pool_type != "max": + place = core.CUDAPlace(0) + self.check_grad_with_place( + place, set(['X']), 'Out', max_relative_error=0.07) + elif self.pool_type != "max": self.check_grad(set(['X']), 'Out', max_relative_error=0.07) def init_test_case(self): @@ -163,35 +189,41 @@ class TestCase5(TestCase2): self.pool3D_forward_naive = max_pool3D_forward_naive -#--------------------test pool3d_cudnn-------------------- -class TestCudnnCase1(TestPool3d_Op): +#--------------------test pool3d-------------------- +class TestCUDNNCase1(TestPool3d_Op): def init_op_type(self): - self.op_type = "pool3d_cudnn" + self.use_cudnn = True + self.op_type = "pool3d" -class TestCudnnCase2(TestCase1): +class TestCUDNNCase2(TestCase1): def init_op_type(self): - self.op_type = "pool3d_cudnn" + self.use_cudnn = True + self.op_type = "pool3d" -class TestCudnnCase3(TestCase2): +class TestCUDNNCase3(TestCase2): def init_op_type(self): - self.op_type = "pool3d_cudnn" + self.use_cudnn = True + self.op_type = "pool3d" -class TestCudnnCase4(TestCase3): +class TestCUDNNCase4(TestCase3): def init_op_type(self): - self.op_type = "pool3d_cudnn" + self.use_cudnn = True + self.op_type = "pool3d" -class TestCudnnCase5(TestCase4): +class TestCUDNNCase5(TestCase4): def init_op_type(self): - self.op_type = "pool3d_cudnn" + self.use_cudnn = True + self.op_type = "pool3d" -class TestCudnnCase6(TestCase5): +class TestCUDNNCase6(TestCase5): def init_op_type(self): - self.op_type = "pool3d_cudnn" + self.use_cudnn = True + self.op_type = "pool3d" if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_pool_max_op.py b/python/paddle/v2/fluid/tests/test_pool_max_op.py index 9d2d61c438..c4ec0e50cc 100644 --- a/python/paddle/v2/fluid/tests/test_pool_max_op.py +++ b/python/paddle/v2/fluid/tests/test_pool_max_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_positive_negative_pair_op.py b/python/paddle/v2/fluid/tests/test_positive_negative_pair_op.py index f6a6c428a2..b75f7152ef 100644 --- a/python/paddle/v2/fluid/tests/test_positive_negative_pair_op.py +++ b/python/paddle/v2/fluid/tests/test_positive_negative_pair_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import itertools import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_precision_recall_op.py b/python/paddle/v2/fluid/tests/test_precision_recall_op.py index d3dbdb6e2a..87c7fcb4b5 100644 --- a/python/paddle/v2/fluid/tests/test_precision_recall_op.py +++ b/python/paddle/v2/fluid/tests/test_precision_recall_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_prelu_op.py b/python/paddle/v2/fluid/tests/test_prelu_op.py index 7be932ac8f..38bd260bc9 100644 --- a/python/paddle/v2/fluid/tests/test_prelu_op.py +++ b/python/paddle/v2/fluid/tests/test_prelu_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_print_op.py b/python/paddle/v2/fluid/tests/test_print_op.py new file mode 100644 index 0000000000..4e42863af4 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_print_op.py @@ -0,0 +1,68 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import paddle.v2.fluid.core as core +from paddle.v2.fluid.executor import Executor +import paddle.v2.fluid.layers as layers +from paddle.v2.fluid.backward import append_backward +from paddle.v2.fluid.framework import switch_main_program +from paddle.v2.fluid.framework import Program +import numpy as np + + +class TestPrintOpCPU(unittest.TestCase): + def setUp(self): + self.place = core.CPUPlace() + self.x_tensor = core.LoDTensor() + tensor_np = np.random.random(size=(2, 3)).astype('float32') + self.x_tensor.set(tensor_np, self.place) + self.x_tensor.set_lod([[0, 1, 1]]) + + def build_network(self, only_forward, **kargs): + x = layers.data('x', shape=[3], dtype='float32', lod_level=1) + x.stop_gradient = False + printed = layers.Print(input=x, **kargs) + if only_forward: return printed + loss = layers.mean(x=printed) + append_backward(loss=loss) + return loss + + def test_forward(self): + switch_main_program(Program()) + printed = self.build_network(True, print_phase='forward') + exe = Executor(self.place) + outs = exe.run(feed={'x': self.x_tensor}, + fetch_list=[printed], + return_numpy=False) + + def test_backward(self): + switch_main_program(Program()) + loss = self.build_network(False, print_phase='backward') + exe = Executor(self.place) + outs = exe.run(feed={'x': self.x_tensor}, + fetch_list=[loss], + return_numpy=False) + + +class TestPrintOpGPU(TestPrintOpCPU): + def setUp(self): + self.place = core.CUDAPlace(0) + self.x_tensor = core.LoDTensor() + tensor_np = np.random.random(size=(2, 3)).astype('float32') + self.x_tensor.set(tensor_np, self.place) + self.x_tensor.set_lod([[0, 1, 1]]) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_profiler.py b/python/paddle/v2/fluid/tests/test_profiler.py index 395d0dc36a..4b439a16aa 100644 --- a/python/paddle/v2/fluid/tests/test_profiler.py +++ b/python/paddle/v2/fluid/tests/test_profiler.py @@ -1,8 +1,22 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import paddle.v2.fluid as fluid import paddle.v2.fluid.profiler as profiler import paddle.v2.fluid.layers as layers +import os class TestProfiler(unittest.TestCase): @@ -14,14 +28,16 @@ class TestProfiler(unittest.TestCase): data = layers.data(name='data', shape=[3, 28, 28], dtype='float32') conv = layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1]) - place = fluid.GPUPlace(0) + place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) - with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof: + output_file = 'cuda_profiler.txt' + with profiler.cuda_profiler(output_file, 'csv') as nvprof: for i in range(epoc): input = np.random.random(dshape).astype('float32') exe.run(fluid.default_main_program(), feed={'data': input}) + os.remove(output_file) if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_program.py b/python/paddle/v2/fluid/tests/test_program.py index 1a9313c68a..bcaeede93e 100644 --- a/python/paddle/v2/fluid/tests/test_program.py +++ b/python/paddle/v2/fluid/tests/test_program.py @@ -1,7 +1,20 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from __future__ import print_function import unittest -from paddle.v2.fluid.framework import Program, default_main_program +from paddle.v2.fluid.framework import Program, default_main_program, program_guard, grad_var_name import paddle.v2.fluid.layers as layers main_program = default_main_program() @@ -109,12 +122,10 @@ class TestProgram(unittest.TestCase): self.assertEqual(add_op.idx, 1) param_to_grad = prog.append_backward(mean_out, set()) - def grad_name(name): - return name + "@GRAD" - for var_name in ("mul.x", "mul.y", "mul.out", "add.y", "add.out", "mean.out"): - self.assertEqual(param_to_grad[var_name][0], grad_name(var_name)) + self.assertEqual(param_to_grad[var_name][0], + grad_var_name(var_name)) self.assertEqual(param_to_grad[var_name][1], 0) expect_ops = [ @@ -129,13 +140,10 @@ class TestProgram(unittest.TestCase): def test_program_clone_with_parameter(self): main_program = Program() startup_program = Program() - kwargs = { - 'main_program': main_program, - 'startup_program': startup_program - } - d = layers.data(name='x', shape=[784], dtype='float32', **kwargs) - hidden = layers.fc(input=d, size=100, **kwargs) - layers.fc(input=hidden, size=100, **kwargs) + with program_guard(main_program, startup_program): + d = layers.data(name='x', shape=[784], dtype='float32') + hidden = layers.fc(input=d, size=100) + layers.fc(input=hidden, size=100) new_program = main_program.clone() self.assertNotEqual(0, len(new_program.blocks[0].all_parameters())) diff --git a/python/paddle/v2/fluid/tests/test_protobuf.py b/python/paddle/v2/fluid/tests/test_protobuf.py index e064374176..5f0646d036 100644 --- a/python/paddle/v2/fluid/tests/test_protobuf.py +++ b/python/paddle/v2/fluid/tests/test_protobuf.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.proto.framework_pb2 as framework_pb2 import unittest diff --git a/python/paddle/v2/fluid/tests/test_protobuf_descs.py b/python/paddle/v2/fluid/tests/test_protobuf_descs.py index d8abe17606..24638dc0e8 100644 --- a/python/paddle/v2/fluid/tests/test_protobuf_descs.py +++ b/python/paddle/v2/fluid/tests/test_protobuf_descs.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core diff --git a/python/paddle/v2/fluid/tests/test_proximal_adagrad_op.py b/python/paddle/v2/fluid/tests/test_proximal_adagrad_op.py index f89a493ab7..c197d850f9 100644 --- a/python/paddle/v2/fluid/tests/test_proximal_adagrad_op.py +++ b/python/paddle/v2/fluid/tests/test_proximal_adagrad_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_proximal_gd_op.py b/python/paddle/v2/fluid/tests/test_proximal_gd_op.py index 9ca79ce6b3..1545255825 100644 --- a/python/paddle/v2/fluid/tests/test_proximal_gd_op.py +++ b/python/paddle/v2/fluid/tests/test_proximal_gd_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_rank_loss_op.py b/python/paddle/v2/fluid/tests/test_rank_loss_op.py index 0e41ab1b3f..b4ba7920cd 100644 --- a/python/paddle/v2/fluid/tests/test_rank_loss_op.py +++ b/python/paddle/v2/fluid/tests/test_rank_loss_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_recurrent_op.py b/python/paddle/v2/fluid/tests/test_recurrent_op.py index 694ff0d8dd..bcc3457aa3 100644 --- a/python/paddle/v2/fluid/tests/test_recurrent_op.py +++ b/python/paddle/v2/fluid/tests/test_recurrent_op.py @@ -1,9 +1,22 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, grad_var_name from paddle.v2.fluid.executor import Executor -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward import numpy as np import paddle.v2.fluid.core as core @@ -164,7 +177,7 @@ class RecurrentOpTest1(unittest.TestCase): for x in self.data_field } fetch_list = [ - self.main_program.global_block().var(x + "@GRAD") + self.main_program.global_block().var(grad_var_name(x)) for x in self.data_field ] @@ -177,7 +190,7 @@ class RecurrentOpTest1(unittest.TestCase): def test_backward(self): self.check_forward() - append_backward_ops(self.output) + append_backward(self.output) ana_grad = [np.array(x) for x in self.backward()] diff --git a/python/paddle/v2/fluid/tests/test_reduce_op.py b/python/paddle/v2/fluid/tests/test_reduce_op.py index 70359d60cb..57ee307ba6 100644 --- a/python/paddle/v2/fluid/tests/test_reduce_op.py +++ b/python/paddle/v2/fluid/tests/test_reduce_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -85,5 +98,19 @@ class Test1DReduce(OpTest): self.check_grad(['X'], 'Out') +class TestReduceAll(OpTest): + def setUp(self): + self.op_type = "reduce_sum" + self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float32")} + self.attrs = {'reduce_all': True} + self.outputs = {'Out': self.inputs['X'].sum()} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_registry.py b/python/paddle/v2/fluid/tests/test_registry.py new file mode 100644 index 0000000000..dba1189630 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_registry.py @@ -0,0 +1,35 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import warnings + +import paddle.v2.fluid as fluid +import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.registry as registry + + +class TestRegistry(unittest.TestCase): + def test_registry_layer(self): + self.layer_type = "mean" + program = framework.Program() + + x = fluid.layers.data(name='X', shape=[10, 10], dtype='float32') + output = layers.mean(x) + place = fluid.CPUPlace() + exe = fluid.Executor(place) + + X = np.random.random((10, 10)).astype("float32") + mean_out = exe.run(program, feed={"X": X}, fetch_list=[output]) + self.assertAlmostEqual(np.mean(X), mean_out) diff --git a/python/paddle/v2/fluid/tests/test_regularizer.py b/python/paddle/v2/fluid/tests/test_regularizer.py index 24baf55e90..9eaae1904a 100644 --- a/python/paddle/v2/fluid/tests/test_regularizer.py +++ b/python/paddle/v2/fluid/tests/test_regularizer.py @@ -1,9 +1,22 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.framework as framework import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.regularizer as regularizer -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward class TestL2DecayRegularizer(unittest.TestCase): @@ -33,7 +46,7 @@ class TestL2DecayRegularizer(unittest.TestCase): dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) - params_grads = append_backward_ops(mean_out) + params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) count_ops = len(block.ops) params_grads = optimizer.append_regularization_ops(params_grads) @@ -70,7 +83,7 @@ class TestL1DecayRegularizer(unittest.TestCase): dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) - params_grads = append_backward_ops(mean_out) + params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) count_ops = len(block.ops) params_grads = optimizer.append_regularization_ops(params_grads) diff --git a/python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py b/python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py new file mode 100644 index 0000000000..0bcdfafcf4 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py @@ -0,0 +1,198 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import paddle.v2.fluid as fluid +import paddle.v2.fluid.core as core +import numpy + + +class TestReorderLoDTensor(unittest.TestCase): + num_seq = 5 + # [name, shape, lod_level] pair indicating data info of source and target + data_desc = (['input', [9], 0], ['ref', [5], 1]) + + @classmethod + def setUpClass(cls): + cls.set_program() + + @classmethod + def set_program(cls): + dat = fluid.layers.data( + name=cls.data_desc[0][0], shape=cls.data_desc[0][1]) + dat.stop_gradient = False + rank_dat = fluid.layers.data( + name=cls.data_desc[1][0], shape=cls.data_desc[1][1]) + table = fluid.layers.lod_rank_table(rank_dat) + new_dat = fluid.layers.reorder_lod_tensor_by_rank( + x=dat, rank_table=table) + loss = fluid.layers.reduce_sum(new_dat) + fluid.backward.append_backward(loss=loss) + cls.fetch_list = [new_dat, cls.data_desc[0][0] + '@GRAD'] + + def run_program(self): + outputs = [] + input_grads = [] + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.CUDAPlace(0)) + for place in places: + self.set_inputs(place) + exe = fluid.Executor(place) + output, input_grad = exe.run(fluid.default_main_program(), + feed=self.inputs, + fetch_list=self.fetch_list, + return_numpy=False) + outputs.append(output) + input_grads.append(input_grad) + self.actual_outputs = outputs + self.actual_grads = input_grads + + def set_data(self): + self.data = {} + for desc in self.data_desc: + data_name = desc[0] + data_shape = desc[1] + data_lod_level = desc[2] + data_lod = [] + for i in range(data_lod_level): + lod_level_i = numpy.random.randint( + low=1, + high=5, + size=self.num_seq if i == 0 else lod_level_i[-1]) + lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist() + data_lod.append(lod_level_i) + data_value = numpy.random.random( + size=[data_lod[-1][-1] if data_lod else self.num_seq + ] + data_shape).astype('float32') + self.data[data_name] = (data_value, data_lod) + + def set_inputs(self, place): + self.inputs = {} + for desc in self.data_desc: + tensor = fluid.Tensor() + tensor.set(self.data[desc[0]][0], place) + if self.data[desc[0]][1]: + tensor.set_lod(self.data[desc[0]][1]) + self.inputs[desc[0]] = tensor + + def reorder(self): + level = 0 + + # compute the rank_table according to ref_lod + ref_lod = self.data[self.data_desc[1][0]][1][level] + rank_table = [] # list of (index, length) + for i in range(len(ref_lod) - 1): + rank_table.append((i, ref_lod[i + 1] - ref_lod[i])) + rank_table = sorted(rank_table, lambda x, y: y[1] - x[1]) + + # compute the input sequence info according to input_lod + input_value, input_lod = self.data[self.data_desc[0][0]] + + input_table = [] # list of (offset, length, sub_lod) + if input_lod: + for i in range(len(input_lod[level]) - 1): + start_idx = i + end_idx = i + 1 + sub_lod = [] + for lod_level_i in input_lod[level:]: + sub_lod_i = [] + for idx in range(start_idx, end_idx): + sub_lod_i.append(lod_level_i[idx + 1] - lod_level_i[ + idx]) + sub_lod.append(sub_lod_i) + start_idx = lod_level_i[start_idx] + end_idx = lod_level_i[end_idx] + input_table.append((start_idx, end_idx - start_idx, sub_lod)) + else: + input_table = [(i, 1, []) for i in range(len(rank_table))] + + # reorder by rank_table + output_value = numpy.zeros_like(input_value) + output_lod = [] + offset = 0 + for index, length in rank_table: + input_seq_start = input_table[index][0] + input_seq_len = input_table[index][1] + input_seq_end = input_seq_start + input_seq_len + output_value[offset:offset + input_seq_len] = input_value[ + input_seq_start:input_seq_end] + offset += input_seq_len + + input_seq_sub_lod = input_table[index][2] + if len(output_lod) == 0: + output_lod = [[0] for i in input_seq_sub_lod] + for i, sub_lod_i in enumerate(input_seq_sub_lod): + for idx_sub in sub_lod_i: + output_lod[i].append(output_lod[i][-1] + idx_sub) + return output_value, output_lod + + def test_reorder_lod_tensor(self): + self.data_desc[0][-1] = 2 # input is lod_tensor + self.set_data() + self.run_program() + # check output + expect_output, expect_output_lod = self.reorder() + for actual_output in self.actual_outputs: + self.assertTrue( + numpy.allclose( + numpy.array(actual_output), expect_output, atol=0.001)) + self.assertEqual(expect_output_lod, actual_output.lod()) + # check gradient + expect_grad = numpy.ones_like(self.data[self.data_desc[0][0]][0]) + expect_grad_lod = self.data[self.data_desc[0][0]][1] + for actual_grad in self.actual_grads: + self.assertTrue( + numpy.allclose( + numpy.array(actual_grad), expect_grad, atol=0.001)) + self.assertEqual(expect_grad_lod, actual_grad.lod()) + + def test_reorder_tensor(self): + self.data_desc[0][-1] = 0 # input is tensor + self.set_data() + self.run_program() + # check output + expect_output, expect_output_lod = self.reorder() + for actual_output in self.actual_outputs: + self.assertTrue( + numpy.allclose( + numpy.array(actual_output), expect_output, atol=0.001)) + self.assertEqual(expect_output_lod, actual_output.lod()) + # check gradient + expect_grad = numpy.ones_like(self.data[self.data_desc[0][0]][0]) + expect_grad_lod = self.data[self.data_desc[0][0]][1] + for actual_grad in self.actual_grads: + self.assertTrue( + numpy.allclose( + numpy.array(actual_grad), expect_grad, atol=0.001)) + self.assertEqual(expect_grad_lod, actual_grad.lod()) + + # compare outputs between LodTensors with explicit and implicit lod + # use the same data but set the input lod explicitly + input_lod = [[ + i for i in range(len(self.data[self.data_desc[0][0]][0]) + 1) + ]] + self.inputs[self.data_desc[0][0]].set_lod(input_lod) + # preserve the output of LodTensor with implicit lod to compare + expect_output = [ + numpy.array(actual_output) for actual_output in self.actual_outputs + ] + self.run_program() + for actual_output in self.actual_outputs: + self.assertTrue( + numpy.allclose( + numpy.array(actual_output), expect_output, atol=0.001)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_reshape_op.py b/python/paddle/v2/fluid/tests/test_reshape_op.py index 16bb6bb2af..d6e6797043 100644 --- a/python/paddle/v2/fluid/tests/test_reshape_op.py +++ b/python/paddle/v2/fluid/tests/test_reshape_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -17,5 +30,19 @@ class TestReshapeOp(OpTest): self.check_grad(["X"], "Out") +class TestReshapeOpDimInfer(OpTest): + def setUp(self): + self.op_type = "reshape" + self.inputs = {'X': np.random.random((10, 20)).astype("float32")} + self.attrs = {'shape': [4, -1, 5]} + self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_rmsprop_op.py b/python/paddle/v2/fluid/tests/test_rmsprop_op.py index 237bcfccce..27a1ea2137 100644 --- a/python/paddle/v2/fluid/tests/test_rmsprop_op.py +++ b/python/paddle/v2/fluid/tests/test_rmsprop_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_rnn_memory_helper_op.py b/python/paddle/v2/fluid/tests/test_rnn_memory_helper_op.py index 9999165ed5..378d7f8523 100644 --- a/python/paddle/v2/fluid/tests/test_rnn_memory_helper_op.py +++ b/python/paddle/v2/fluid/tests/test_rnn_memory_helper_op.py @@ -1,8 +1,21 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest from paddle.v2.fluid.framework import Program from paddle.v2.fluid.executor import Executor -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward import numpy as np import paddle.v2.fluid.core as core diff --git a/python/paddle/v2/fluid/tests/test_roi_pool_op.py b/python/paddle/v2/fluid/tests/test_roi_pool_op.py index a28d9c7f82..6d7a698b09 100644 --- a/python/paddle/v2/fluid/tests/test_roi_pool_op.py +++ b/python/paddle/v2/fluid/tests/test_roi_pool_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import math diff --git a/python/paddle/v2/fluid/tests/test_row_conv_op.py b/python/paddle/v2/fluid/tests/test_row_conv_op.py new file mode 100644 index 0000000000..1234d289cb --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_row_conv_op.py @@ -0,0 +1,108 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest + + +def row_conv_forward(x, lod, wt): + out = np.zeros_like(x) + seq_info = lod[0] + num_sequences = len(seq_info) - 1 + context_length = wt.shape[0] + + for i in range(num_sequences): # loop over number of sequences + start = seq_info[i] + end = seq_info[i + 1] + curinput = x[start:end, :] + curoutput = out[start:end, :] + + cur_timesteps = end - start + for j in range(cur_timesteps): # loop over different timesteps + for k in range(context_length): + + if j + k >= cur_timesteps: + continue + curoutput[j, :] += curinput[j + k, :] * wt[k, :] + + return out + + +class TestRowConvOp1(OpTest): + def setUp(self): + + self.op_type = "row_conv" + lod = [[0, 2, 5, 7]] + T = lod[0][-1] + D = 16 + context_length = 2 + + x = np.random.random((T, D)).astype("float32") + wt = np.random.random((context_length, D)).astype("float32") + self.inputs = {'X': (x, lod), 'Filter': wt} + + out = row_conv_forward(x, lod, wt) + self.outputs = {'Out': (out, lod)} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.05) + + def test_check_grad_ignore_x(self): + self.check_grad( + ['Filter'], 'Out', max_relative_error=0.05, no_grad_set=set('X')) + + def test_check_grad_ignore_wt(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Filter')) + + +class TestRowConvOp2(OpTest): + def setUp(self): + + self.op_type = "row_conv" + lod = [[0, 20, 50, 100]] + T = lod[0][-1] + D = 35 + context_length = 35 + + x = np.random.random((T, D)).astype("float32") + wt = np.random.random((context_length, D)).astype("float32") + self.inputs = {'X': (x, lod), 'Filter': wt} + + out = row_conv_forward(x, lod, wt) + self.outputs = {'Out': (out, lod)} + + def test_check_output(self): + self.check_output() + + #max_relative_error is increased from 0.05 to 0.06 as for higher + #dimensional input, the dX on CPU for some values has max_rel_error + #slightly more than 0.05 + def test_check_grad_normal(self): + self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.06) + + def test_check_grad_ignore_x(self): + self.check_grad( + ['Filter'], 'Out', max_relative_error=0.06, no_grad_set=set('X')) + + def test_check_grad_ignore_wt(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Filter')) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_scale_op.py b/python/paddle/v2/fluid/tests/test_scale_op.py index 2ea1e18547..9847d3d361 100644 --- a/python/paddle/v2/fluid/tests/test_scale_op.py +++ b/python/paddle/v2/fluid/tests/test_scale_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_scatter_op.py b/python/paddle/v2/fluid/tests/test_scatter_op.py index 1032269d5d..b6c4162f6f 100644 --- a/python/paddle/v2/fluid/tests/test_scatter_op.py +++ b/python/paddle/v2/fluid/tests/test_scatter_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_scope.py b/python/paddle/v2/fluid/tests/test_scope.py index e4857b590a..adaaf16906 100644 --- a/python/paddle/v2/fluid/tests/test_scope.py +++ b/python/paddle/v2/fluid/tests/test_scope.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.core import unittest diff --git a/python/paddle/v2/fluid/tests/test_selected_rows.py b/python/paddle/v2/fluid/tests/test_selected_rows.py index 93daf37aa2..3179a3caae 100644 --- a/python/paddle/v2/fluid/tests/test_selected_rows.py +++ b/python/paddle/v2/fluid/tests/test_selected_rows.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.core as core import unittest import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_seq_concat_op.py b/python/paddle/v2/fluid/tests/test_seq_concat_op.py index dccc6ed8af..1f026fd76e 100644 --- a/python/paddle/v2/fluid/tests/test_seq_concat_op.py +++ b/python/paddle/v2/fluid/tests/test_seq_concat_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import sys diff --git a/python/paddle/v2/fluid/tests/test_seq_conv.py b/python/paddle/v2/fluid/tests/test_seq_conv.py index 14edc5f953..c7e5085194 100644 --- a/python/paddle/v2/fluid/tests/test_seq_conv.py +++ b/python/paddle/v2/fluid/tests/test_seq_conv.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import random diff --git a/python/paddle/v2/fluid/tests/test_seq_pool.py b/python/paddle/v2/fluid/tests/test_seq_pool.py index 512d8b315f..bb15495373 100644 --- a/python/paddle/v2/fluid/tests/test_seq_pool.py +++ b/python/paddle/v2/fluid/tests/test_seq_pool.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_sequence_erase_op.py b/python/paddle/v2/fluid/tests/test_sequence_erase_op.py new file mode 100644 index 0000000000..4cc2613cf9 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_sequence_erase_op.py @@ -0,0 +1,78 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest + + +def sequence_erase(in_seq, lod0, tokens): + new_lod0 = [0] + out_seq = [] + for i in range(0, len(lod0) - 1): + num_out = 0 + for dat in in_seq[lod0[i]:lod0[i + 1]]: + if dat not in tokens: + out_seq.append(dat) + num_out += 1 + new_lod0.append(new_lod0[-1] + num_out) + return np.array(out_seq).astype("int32"), new_lod0 + + +class TestSequenceEraseOpInt32(OpTest): + def setUp(self): + self.op_type = "sequence_erase" + in_seq = np.random.randint(0, 10, (30, 1)).astype("int32") + lod = [[0, 9, 13, 24, 30]] + tokens = [2, 3, 5] + out_seq, new_lod0 = sequence_erase(in_seq, lod[0], tokens) + self.attrs = {'tokens': tokens} + self.inputs = {'X': (in_seq, lod)} + self.outputs = {'Out': (out_seq, [new_lod0])} + + def test_check_output(self): + self.check_output() + + +class TestSequenceEraseOpInt64(OpTest): + def setUp(self): + self.op_type = "sequence_erase" + in_seq = np.random.randint(0, 10, (30, 1)).astype("int64") + lod = [[0, 9, 13, 24, 30]] + tokens = [2, 3, 5] + out_seq, new_lod0 = sequence_erase(in_seq, lod[0], tokens) + self.attrs = {'tokens': tokens} + self.inputs = {'X': (in_seq, lod)} + self.outputs = {'Out': (out_seq, [new_lod0])} + + def test_check_output(self): + self.check_output() + + +class TestSequenceEraseOpEmpty(OpTest): + def setUp(self): + self.op_type = "sequence_erase" + in_seq = np.random.randint(0, 10, (30, 1)).astype("int32") + lod = [[0, 9, 13, 24, 30]] + tokens = [] + out_seq, new_lod0 = sequence_erase(in_seq, lod[0], tokens) + self.attrs = {'tokens': tokens} + self.inputs = {'X': (in_seq, lod)} + self.outputs = {'Out': (out_seq, [new_lod0])} + + def test_check_output(self): + self.check_output() + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_seq_expand.py b/python/paddle/v2/fluid/tests/test_sequence_expand.py similarity index 69% rename from python/paddle/v2/fluid/tests/test_seq_expand.py rename to python/paddle/v2/fluid/tests/test_sequence_expand.py index ff17edd04b..aacdabf295 100644 --- a/python/paddle/v2/fluid/tests/test_seq_expand.py +++ b/python/paddle/v2/fluid/tests/test_sequence_expand.py @@ -1,9 +1,22 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest -class TestSeqExpand(OpTest): +class TestSequenceExpand(OpTest): def set_data(self): x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32') y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32') @@ -21,7 +34,7 @@ class TestSeqExpand(OpTest): self.outputs = {'Out': out} def setUp(self): - self.op_type = 'seq_expand' + self.op_type = 'sequence_expand' self.set_data() self.compute() @@ -32,7 +45,7 @@ class TestSeqExpand(OpTest): self.check_grad(["X"], "Out") -class TestSeqExpandCase1(TestSeqExpand): +class TestSequenceExpandCase1(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32') x_lod = [[0, 2, 5]] @@ -41,7 +54,7 @@ class TestSeqExpandCase1(TestSeqExpand): self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} -class TestSeqExpandCase2(TestSeqExpand): +class TestSequenceExpandCase2(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32') x_lod = [[0, 1]] @@ -50,7 +63,7 @@ class TestSeqExpandCase2(TestSeqExpand): self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} -class TestSeqExpandCase3(TestSeqExpand): +class TestSequenceExpandCase3(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32') x_lod = [[0, 1, 2, 3, 4]] diff --git a/python/paddle/v2/fluid/tests/test_sequence_reshape.py b/python/paddle/v2/fluid/tests/test_sequence_reshape.py new file mode 100644 index 0000000000..857b15237a --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_sequence_reshape.py @@ -0,0 +1,84 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +import math +from op_test import OpTest + + +class TestSequenceReshape(OpTest): + def setUp(self): + self.op_type = 'sequence_reshape' + dimension = 12 + x_lod = [[0, 4, 5, 8, 11]] + x = np.random.uniform(0.1, 1, [11, 24]).astype('float32') + + self.inputs = {'X': (x, x_lod)} + self.attrs = {'new_dim': dimension} + + out, out_lod = self.compute_output(x, x_lod, dimension) + + self.outputs = {'Out': (out, out_lod)} + + def compute_output(self, x, x_lod, dimension): + x_width = x.shape[1] + out_lod = [[0]] + for i in xrange(len(x_lod[0]) - 1): + seq_len = x_lod[0][i + 1] - x_lod[0][i] + offset = (seq_len * x_width) / dimension + assert int(offset) * dimension == seq_len * x_width + out_lod[0].append(out_lod[0][-1] + int(offset)) + out = np.zeros(shape=(out_lod[0][-1], dimension)).astype('float32') + out.ravel()[:] = x.ravel()[:] + return out, out_lod + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + +class TestSequenceReshape_reduce(TestSequenceReshape): + def setUp(self): + self.op_type = 'sequence_reshape' + dimension = 24 + x_lod = [[0, 4, 6, 8, 12]] + x = np.random.uniform(0.1, 1, [12, 12]).astype('float32') + + self.inputs = {'X': (x, x_lod)} + self.attrs = {'new_dim': dimension} + + out, out_lod = self.compute_output(x, x_lod, dimension) + + self.outputs = {'Out': (out, out_lod)} + + +class TestSequenceReshape_same(TestSequenceReshape): + def setUp(self): + self.op_type = 'sequence_reshape' + dimension = 12 + x_lod = [[0, 4, 6, 8, 12]] + x = np.random.uniform(0.1, 1, [12, 12]).astype('float32') + + self.inputs = {'X': (x, x_lod)} + self.attrs = {'new_dim': dimension} + + out, out_lod = self.compute_output(x, x_lod, dimension) + + self.outputs = {'Out': (out, out_lod)} + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_sequence_slice_op.py b/python/paddle/v2/fluid/tests/test_sequence_slice_op.py index ccd9a05343..94062431f0 100644 --- a/python/paddle/v2/fluid/tests/test_sequence_slice_op.py +++ b/python/paddle/v2/fluid/tests/test_sequence_slice_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import sys diff --git a/python/paddle/v2/fluid/tests/test_sequence_softmax_op.py b/python/paddle/v2/fluid/tests/test_sequence_softmax_op.py index b54a56aa6d..8170e4d7f1 100644 --- a/python/paddle/v2/fluid/tests/test_sequence_softmax_op.py +++ b/python/paddle/v2/fluid/tests/test_sequence_softmax_op.py @@ -1,13 +1,20 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest - - -def stable_softmax(x): - """Compute the softmax of vector x in a numerically stable way.""" - shiftx = x - np.max(x).clip(-64.) - exps = np.exp(shiftx) - return exps / np.sum(exps) +from test_softmax_op import stable_softmax class TestSequenceSoftmaxOp(OpTest): diff --git a/python/paddle/v2/fluid/tests/test_sgd_op.py b/python/paddle/v2/fluid/tests/test_sgd_op.py index ca05a381f0..4a71fb30a9 100644 --- a/python/paddle/v2/fluid/tests/test_sgd_op.py +++ b/python/paddle/v2/fluid/tests/test_sgd_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np import paddle.v2.fluid.core as core @@ -55,8 +68,7 @@ class TestSparseSGDOp(unittest.TestCase): Grad='Grad', ParamOut='Param', LearningRate='LearningRate') - ctx = core.DeviceContext.create(place) - sgd_op.run(scope, ctx) + sgd_op.run(scope, place) # get and compare result result_array = np.array(param) @@ -79,7 +91,7 @@ class TestSparseSGDOp(unittest.TestCase): def test_sparse_sgd(self): places = [core.CPUPlace()] if core.is_compile_gpu(): - places.append(core.GPUPlace(0)) + places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) diff --git a/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py b/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py index 86db4c64b4..1825a5258f 100644 --- a/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py +++ b/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py @@ -1,45 +1,101 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core from paddle.v2.fluid.executor import Executor import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.backward import append_backward_ops -from paddle.v2.fluid.framework import default_main_program -import numpy +from paddle.v2.fluid.backward import append_backward +from paddle.v2.fluid.framework import default_main_program, switch_main_program +from paddle.v2.fluid.framework import Program +import numpy as np -main_program = default_main_program() - -class TestShrinkRNNMemory(unittest.TestCase): - def test_shrink_rnn_memory(self): +class TestShrinkRNNMemoryBase(unittest.TestCase): + def setUp(self): + self.main_program = Program() + switch_main_program(self.main_program) x = layers.data('x', shape=[100], dtype='float32') x.stop_gradient = False - table = layers.lod_rank_table(x=x) + rank_table_tensor = layers.data( + 'rank_table_tensor', shape=[1], dtype='float32', lod_level=1) + table = layers.lod_rank_table(x=rank_table_tensor) i = layers.zeros(dtype='int64', shape=[1]) - mem1 = layers.shrink_memory(x=x, i=i, table=table) + self.mem1 = layers.shrink_memory(x=x, i=i, table=table) i = layers.increment(x=i) i.stop_gradient = True - mem2 = layers.shrink_memory(x=mem1, i=i, table=table) + self.mem2 = layers.shrink_memory(x=self.mem1, i=i, table=table) i = layers.increment(x=i) i.stop_gradient = True - mem3 = layers.shrink_memory(x=mem2, i=i, table=table) + self.mem3 = layers.shrink_memory(x=self.mem2, i=i, table=table) + mem3_mean = layers.mean(x=self.mem3) + append_backward(loss=mem3_mean) + self.x_grad = self.main_program.global_block().var('x@GRAD') + + def sum_lodtensor(self, tensor): + sum_res = 0.0 + for i in xrange(np.product(tensor.get_dims())): + sum_res += tensor.get_float_element(i) + return sum_res + +class TestShrinkRNNMemoryReferLoD(TestShrinkRNNMemoryBase): + def test_refer_lod(self): cpu = core.CPUPlace() - tensor = core.LoDTensor() - tensor.set_lod([[0, 2, 5, 6]]) - tensor_np = numpy.random.random(size=(3, 100)).astype('float32') - tensor.set(tensor_np, cpu) + x_tensor = core.LoDTensor() + x_tensor.set_lod([[0, 2, 5, 6]]) + tensor_np = np.random.random(size=(6, 100)).astype('float32') + x_tensor.set(tensor_np, cpu) + + rank_table_tensor = core.LoDTensor() + rank_table_tensor.set_lod([[0, 1, 3, 6]]) + rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'), + cpu) + + exe = Executor(cpu) + outs = exe.run( + feed={'x': x_tensor, + 'rank_table_tensor': rank_table_tensor}, + fetch_list=[self.mem1, self.mem2, self.mem3, self.x_grad], + return_numpy=False) + self.assertTrue(np.allclose(tensor_np[0:6], outs[0])) + self.assertTrue(np.allclose(tensor_np[0:5], outs[1])) + self.assertTrue(np.allclose(tensor_np[0:2], outs[2])) + self.assertAlmostEqual(1.0, self.sum_lodtensor(outs[3]), delta=0.01) + + +class TestShrinkRNNMemoryNoLoD(TestShrinkRNNMemoryBase): + def test_no_lod(self): + cpu = core.CPUPlace() + x_tensor = core.LoDTensor() + tensor_np = np.random.random(size=(3, 100)).astype('float32') + x_tensor.set(tensor_np, cpu) + + rank_table_tensor = core.LoDTensor() + rank_table_tensor.set_lod([[0, 1, 3, 6]]) + rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'), + cpu) + exe = Executor(cpu) - outs = exe.run(feed={'x': tensor}, fetch_list=[mem1, mem2, mem3]) - self.assertTrue(numpy.allclose(tensor_np[0:3], outs[0])) - self.assertTrue(numpy.allclose(tensor_np[0:2], outs[1])) - self.assertTrue(numpy.allclose(tensor_np[0:1], outs[2])) - - mem3_mean = layers.mean(x=mem3) - append_backward_ops(loss=mem3_mean) - x_grad = exe.run( - feed={'x': tensor}, - fetch_list=[main_program.global_block().var('x@GRAD')])[0] - self.assertAlmostEqual(1.0, x_grad.sum(), delta=0.1) + outs = exe.run( + feed={'x': x_tensor, + 'rank_table_tensor': rank_table_tensor}, + fetch_list=[self.mem1, self.mem2, self.mem3, self.x_grad], + return_numpy=False) + self.assertTrue(np.allclose(tensor_np[0:3], outs[0])) + self.assertTrue(np.allclose(tensor_np[0:2], outs[1])) + self.assertTrue(np.allclose(tensor_np[0:1], outs[2])) + self.assertAlmostEqual(1.0, self.sum_lodtensor(outs[3]), delta=0.01) if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_sigmoid_cross_entropy_with_logits_op.py b/python/paddle/v2/fluid/tests/test_sigmoid_cross_entropy_with_logits_op.py index c42f578f72..132502c9cb 100644 --- a/python/paddle/v2/fluid/tests/test_sigmoid_cross_entropy_with_logits_op.py +++ b/python/paddle/v2/fluid/tests/test_sigmoid_cross_entropy_with_logits_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np from op_test import OpTest from scipy.special import logit diff --git a/python/paddle/v2/fluid/tests/test_sign_op.py b/python/paddle/v2/fluid/tests/test_sign_op.py index c6b59bcfd8..f649cb9e7c 100644 --- a/python/paddle/v2/fluid/tests/test_sign_op.py +++ b/python/paddle/v2/fluid/tests/test_sign_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_smooth_l1_loss_op.py b/python/paddle/v2/fluid/tests/test_smooth_l1_loss_op.py index b7f13c5699..1052eaa8b0 100644 --- a/python/paddle/v2/fluid/tests/test_smooth_l1_loss_op.py +++ b/python/paddle/v2/fluid/tests/test_smooth_l1_loss_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_softmax_op.py b/python/paddle/v2/fluid/tests/test_softmax_op.py index b41c810d9a..d03e50b2f1 100644 --- a/python/paddle/v2/fluid/tests/test_softmax_op.py +++ b/python/paddle/v2/fluid/tests/test_softmax_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest @@ -17,14 +30,14 @@ class TestSoftmaxOp(OpTest): 'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32") } self.outputs = { - 'Y': np.apply_along_axis(stable_softmax, 1, self.inputs['X']) + 'Out': np.apply_along_axis(stable_softmax, 1, self.inputs['X']) } def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Y') + self.check_grad(['X'], 'Out') if __name__ == "__main__": diff --git a/python/paddle/v2/fluid/tests/test_softmax_with_cross_entropy_op.py b/python/paddle/v2/fluid/tests/test_softmax_with_cross_entropy_op.py index c2f07f9096..330467081b 100644 --- a/python/paddle/v2/fluid/tests/test_softmax_with_cross_entropy_op.py +++ b/python/paddle/v2/fluid/tests/test_softmax_with_cross_entropy_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np diff --git a/python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py b/python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py index f5da4e408f..4e90404eca 100644 --- a/python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py +++ b/python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py @@ -1,10 +1,23 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.core as core import numpy as np import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, program_guard from paddle.v2.fluid.executor import Executor -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward class TestCPULoDTensorArrayOps(unittest.TestCase): @@ -75,26 +88,22 @@ class TestCPULoDTensorArrayOps(unittest.TestCase): level=0): place = self.place() program = Program() - x = layers.data(name='x', shape=[1], main_program=program) - x.persistable = True + with program_guard(program): + x = layers.data(name='x', shape=[1]) + x.persistable = True - y = layers.data(name='y', shape=[1], main_program=program) - y.persistable = True + y = layers.data(name='y', shape=[1]) + y.persistable = True - out_true, out_false = layers.split_lod_tensor( - input=x, mask=y, level=level, main_program=program) - out_true.persistable = True - out_false.persistable = True + out_true, out_false = layers.split_lod_tensor( + input=x, mask=y, level=level) + out_true.persistable = True + out_false.persistable = True - out = layers.merge_lod_tensor( - in_true=out_true, - in_false=out_false, - mask=y, - x=x, - level=level, - main_program=program) + out = layers.merge_lod_tensor( + in_true=out_true, in_false=out_false, mask=y, x=x, level=level) - out.persistable = True + out.persistable = True exe = Executor(place) scope = core.Scope() @@ -123,34 +132,21 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase): def test_grad(self): place = core.CPUPlace() program = Program() + with program_guard(program): + x = layers.data( + name='x', shape=[1], dtype='float32', stop_gradient=False) + y = layers.data( + name='y', shape=[1], dtype='bool', stop_gradient=False) - x = layers.data( - name='x', - shape=[1], - dtype='float32', - main_program=program, - stop_gradient=False) - y = layers.data( - name='y', - shape=[1], - dtype='bool', - main_program=program, - stop_gradient=False) - - level = 0 - - out_true, out_false = layers.split_lod_tensor( - input=x, mask=y, level=level, main_program=program) - out = layers.merge_lod_tensor( - in_true=out_true, - in_false=out_false, - mask=y, - x=x, - level=level, - main_program=program) - mean = layers.mean(x=out, main_program=program) - - append_backward_ops(mean) + level = 0 + + out_true, out_false = layers.split_lod_tensor( + input=x, mask=y, level=level) + out = layers.merge_lod_tensor( + in_true=out_true, in_false=out_false, mask=y, x=x, level=level) + mean = layers.mean(x=out) + + append_backward(mean) tensor = core.LoDTensor() tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place) diff --git a/python/paddle/v2/fluid/tests/test_split_op.py b/python/paddle/v2/fluid/tests/test_split_op.py index 37c6ebb89d..000c300446 100644 --- a/python/paddle/v2/fluid/tests/test_split_op.py +++ b/python/paddle/v2/fluid/tests/test_split_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_split_selected_rows_op.py b/python/paddle/v2/fluid/tests/test_split_selected_rows_op.py new file mode 100644 index 0000000000..a6cc4f6c6d --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_split_selected_rows_op.py @@ -0,0 +1,128 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import paddle.v2.fluid.core as core +import numpy as np +from paddle.v2.fluid.op import Operator + + +class TestSpliteSelectedRows(unittest.TestCase): + def get_places(self): + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.CUDAPlace(0)) + return places + + def test_check_output(self): + for place in self.get_places(): + self.check_with_place(place) + + def test_check_grad(self): + for place in self.get_places(): + self.check_grad_with_place(place) + + def check_with_place(self, place): + scope = core.Scope() + rows = [0, 5, 7, 4] + height = 10 + row_numel = 2 + + # initialize input variable X + x = scope.var('X').get_selected_rows() + x.set_rows(rows) + x.set_height(height) + np_array = np.ones((len(rows), row_numel)).astype("float32") + np_array[0, 0] = 2.0 + np_array[2, 1] = 4.0 + x_tensor = x.get_tensor() + x_tensor.set(np_array, place) + + rows_sections = [2, 2] + height_sections = [] + + # initialize output variables [out0, out1] + out0 = scope.var('out0').get_selected_rows() + out1 = scope.var('out1').get_selected_rows() + + # expected output selected rows + expected_out0_rows = [0, 5] + expected_out1_rows = [7, 4] + expected_height = height + + op = Operator( + "split_selected_rows", + X="X", + Out=["out0", "out1"], + rows_sections=rows_sections, + height_sections=height_sections) + + op.run(scope, place) + + self.assertEqual(out0.rows(), expected_out0_rows) + self.assertEqual(out1.rows(), expected_out1_rows) + + self.assertEqual(out0.height(), expected_height) + self.assertEqual(out1.height(), expected_height) + + self.assertAlmostEqual(2.0, np.array(out0.get_tensor())[0, 0]) + self.assertAlmostEqual(4.0, np.array(out1.get_tensor())[0, 1]) + + def check_grad_with_place(self, place): + scope = core.Scope() + height = 10 + row_numel = 2 + + # attr + rows_sections = [2, 2] + height_sections = [] + + # initialize input variable X + out0_grad = scope.var("out0@GRAD").get_selected_rows() + rows0 = [0, 5] + out0_grad.set_rows(rows0) + out0_grad.set_height(height) + out0_grad_tensor = out0_grad.get_tensor() + np_array = np.ones((len(rows0), row_numel)).astype("float32") + np_array[0, 0] = 2.0 + out0_grad_tensor.set(np_array, place) + + out1_grad = scope.var("out1@GRAD").get_selected_rows() + rows1 = [7, 5] + out1_grad.set_rows(rows1) + out1_grad.set_height(height) + out1_grad_tensor = out1_grad.get_tensor() + np_array = np.ones((len(rows1), row_numel)).astype("float32") + np_array[0, 1] = 4.0 + out1_grad_tensor.set(np_array, place) + + x_grad = scope.var("X@GRAD").get_selected_rows() + + grad_op = Operator( + "sum", + X=["out0@GRAD", "out1@GRAD"], + Out="X@GRAD", + rows_sections=rows_sections, + height_sections=height_sections) + + grad_op.run(scope, place) + + self.assertEqual(x_grad.rows(), rows0 + rows1) + self.assertEqual(x_grad.height(), height) + + self.assertAlmostEqual(2.0, np.array(x_grad.get_tensor())[0, 0]) + self.assertAlmostEqual(4.0, np.array(x_grad.get_tensor())[2, 1]) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_spp_op.py b/python/paddle/v2/fluid/tests/test_spp_op.py new file mode 100644 index 0000000000..f09bb94b44 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_spp_op.py @@ -0,0 +1,81 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +from op_test import OpTest +from test_pool2d_op import max_pool2D_forward_naive +from test_pool2d_op import avg_pool2D_forward_naive + + +class TestSppOp(OpTest): + def setUp(self): + self.op_type = "spp" + self.init_test_case() + input = np.random.random(self.shape).astype("float32") + nsize, csize, hsize, wsize = input.shape + out_level_flatten = [] + for i in xrange(self.pyramid_height): + bins = np.power(2, i) + kernel_size = [0, 0] + padding = [0, 0] + kernel_size[0] = np.ceil(hsize / + bins.astype("double")).astype("int32") + padding[0] = ( + (kernel_size[0] * bins - hsize + 1) / 2).astype("int32") + + kernel_size[1] = np.ceil(wsize / + bins.astype("double")).astype("int32") + padding[1] = ( + (kernel_size[1] * bins - wsize + 1) / 2).astype("int32") + out_level = self.pool2D_forward_naive(input, kernel_size, + kernel_size, padding) + out_level_flatten.append( + out_level.reshape(nsize, bins * bins * csize)) + if i == 0: + output = out_level_flatten[i] + else: + output = np.concatenate((output, out_level_flatten[i]), 1) + # output = np.concatenate(out_level_flatten.tolist(), 0); + self.inputs = {'X': input.astype('float32'), } + self.attrs = { + 'pyramid_height': self.pyramid_height, + 'pooling_type': self.pool_type + } + + self.outputs = {'Out': output.astype('float32')} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + if self.pool_type != "avg": + self.check_grad(['X'], 'Out', max_relative_error=0.05) + + def init_test_case(self): + self.shape = [3, 2, 4, 4] + self.pyramid_height = 3 + self.pool2D_forward_naive = max_pool2D_forward_naive + self.pool_type = "max" + + +class TestCase2(TestSppOp): + def init_test_case(self): + self.shape = [3, 2, 4, 4] + self.pyramid_height = 3 + self.pool2D_forward_naive = avg_pool2D_forward_naive + self.pool_type = "avg" + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_squared_l2_distance_op.py b/python/paddle/v2/fluid/tests/test_squared_l2_distance_op.py index dc6ebf5d30..7b80d81d72 100644 --- a/python/paddle/v2/fluid/tests/test_squared_l2_distance_op.py +++ b/python/paddle/v2/fluid/tests/test_squared_l2_distance_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_squared_l2_norm_op.py b/python/paddle/v2/fluid/tests/test_squared_l2_norm_op.py index 5a52c6a66c..80994f5937 100644 --- a/python/paddle/v2/fluid/tests/test_squared_l2_norm_op.py +++ b/python/paddle/v2/fluid/tests/test_squared_l2_norm_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy as np import unittest from numpy import linalg as LA diff --git a/python/paddle/v2/fluid/tests/test_sum_op.py b/python/paddle/v2/fluid/tests/test_sum_op.py index 60254291e2..366708ac83 100644 --- a/python/paddle/v2/fluid/tests/test_sum_op.py +++ b/python/paddle/v2/fluid/tests/test_sum_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_tensor.py b/python/paddle/v2/fluid/tests/test_tensor.py index 9f870d9eb3..62a48b206c 100644 --- a/python/paddle/v2/fluid/tests/test_tensor.py +++ b/python/paddle/v2/fluid/tests/test_tensor.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import paddle.v2.fluid.core as core import unittest import numpy diff --git a/python/paddle/v2/fluid/tests/test_top_k_op.py b/python/paddle/v2/fluid/tests/test_top_k_op.py index 6e8fbefa6e..86968dba14 100644 --- a/python/paddle/v2/fluid/tests/test_top_k_op.py +++ b/python/paddle/v2/fluid/tests/test_top_k_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_transpose_op.py b/python/paddle/v2/fluid/tests/test_transpose_op.py index 9409cbaa00..ff2541f450 100644 --- a/python/paddle/v2/fluid/tests/test_transpose_op.py +++ b/python/paddle/v2/fluid/tests/test_transpose_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_uniform_random_op.py b/python/paddle/v2/fluid/tests/test_uniform_random_op.py index f736dfb2e8..332ac4f07f 100644 --- a/python/paddle/v2/fluid/tests/test_uniform_random_op.py +++ b/python/paddle/v2/fluid/tests/test_uniform_random_op.py @@ -1,32 +1,62 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest +import numpy + from paddle.v2.fluid.op import Operator import paddle.v2.fluid.core as core -import numpy +import paddle.v2.fluid as fluid class TestUniformRandomOp(unittest.TestCase): - def test_uniform_random_cpu(self): + def setUp(self): + self.op_type = "uniform_random" + self.inputs = {} + self.attrs = { + "shape": [1000, 784], + "min": -5.0, + "max": 10.0, + "seed": 10 + } + self.outputs = ["Out"] + + def test_cpu(self): self.uniform_random_test(place=core.CPUPlace()) - def test_uniform_random_gpu(self): + def test_gpu(self): if core.is_compile_gpu(): - self.uniform_random_test(place=core.GPUPlace(0)) + self.uniform_random_test(place=core.CUDAPlace(0)) def uniform_random_test(self, place): - scope = core.Scope() - scope.var('X').get_tensor() - - op = Operator( - "uniform_random", - Out='X', - shape=[1000, 784], - min=-5.0, - max=10.0, - seed=10) - - ctx = core.DeviceContext.create(place) - op.run(scope, ctx) - tensor = numpy.array(scope.find_var('X').get_tensor()) + program = fluid.Program() + block = program.global_block() + vout = block.create_var(name="Out") + op = block.append_op( + type=self.op_type, outputs={"Out": vout}, attrs=self.attrs) + + op.desc.infer_var_type(block.desc) + op.desc.infer_shape(block.desc) + + fetch_list = [] + for var_name in self.outputs: + fetch_list.append(block.var(var_name)) + + exe = fluid.Executor(place) + outs = exe.run(program, fetch_list=fetch_list) + + tensor = outs[0] + self.assertAlmostEqual(tensor.mean(), 2.5, delta=0.1) diff --git a/python/paddle/v2/fluid/tests/test_unpool_op.py b/python/paddle/v2/fluid/tests/test_unpool_op.py index e87f283042..988c0c7506 100644 --- a/python/paddle/v2/fluid/tests/test_unpool_op.py +++ b/python/paddle/v2/fluid/tests/test_unpool_op.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import numpy as np from op_test import OpTest diff --git a/python/paddle/v2/fluid/tests/test_variable.py b/python/paddle/v2/fluid/tests/test_variable.py index f1e4c0ba21..199fd4a8c2 100644 --- a/python/paddle/v2/fluid/tests/test_variable.py +++ b/python/paddle/v2/fluid/tests/test_variable.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest from paddle.v2.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_ import paddle.v2.fluid.core as core diff --git a/python/paddle/v2/fluid/tests/test_warpctc_op.py b/python/paddle/v2/fluid/tests/test_warpctc_op.py new file mode 100644 index 0000000000..9f565676c5 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_warpctc_op.py @@ -0,0 +1,231 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import sys +import unittest +import numpy as np +from op_test import OpTest +from test_softmax_op import stable_softmax + +CUDA_BLOCK_SIZE = 512 + + +class CTCForward(object): + def __init__(self, softmax, softmax_lod, labels, labels_lod, blank, + norm_by_times): + self.softmax = softmax + self.softmax_lod = softmax_lod + assert labels.shape[1] == 1 + self.labels = labels + self.labels_lod = labels_lod + self.blank = blank + self.norm_by_times = norm_by_times + + self.level = 0 + self.num_classes = softmax.shape[1] + self.batch_size = len(softmax_lod[self.level]) - 1 + assert self.batch_size == len(labels_lod[self.level]) - 1 + + self.loss = np.zeros([self.batch_size, 1], dtype="float32") + self.gradient = np.zeros(self.softmax.shape, dtype="float32") + + # float64 + self.EXP_MAX = sys.float_info.max + self.EXP_MIN = sys.float_info.min + self.LOG_ZERO = np.log(self.EXP_MIN) + self.LOG_INFINITY = np.log(self.EXP_MAX) + + def safe_exp(self, x): + if x <= self.LOG_ZERO: + return 0.0 + if x >= self.LOG_INFINITY: + return self.EXP_MAX + return np.exp(x) + + def safe_log(self, x): + if x <= self.EXP_MIN: + return self.LOG_ZERO + return np.log(x) + + # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb + def log_div(self, x, y): + res = x - y + if res <= self.LOG_ZERO: + return self.LOG_ZERO + if res >= self.LOG_INFINITY: + return self.LOG_INFINITY + return res + + # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb + def log_mul(self, x, y): + res = x + y + if res <= self.LOG_ZERO: + return self.LOG_ZERO + if res >= self.LOG_INFINITY: + return self.LOG_INFINITY + return res + + # x = lna and y = lnb are in log scale, + # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a + def log_add(self, x, y): + if x < y: + t = y + y = x + x = t + return x + self.safe_log(1 + self.safe_exp(y - x)) + + def segment_range(self, time, total_times, total_segments): + start = max(0, total_segments - (2 * (total_times - time))) + end = min(total_segments, 2 * (time + 1)) + return start, end + + def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence): + total_times = softmax_a_sequence.shape[0] + total_segments = labels_a_sequence.shape[0] * 2 + 1 + + required_times = labels_a_sequence.shape[0] + old_label = -1 + for i in range(labels_a_sequence.shape[0]): + # two contingous labels with the same value + if labels_a_sequence[i, 0] == old_label: + required_times = required_times + 1 + old_label = labels_a_sequence[i, 0] + + if total_times < required_times: + return 0 + + # calculate the forward and backward variables, + # reference Chapter 7.3 of "Alex Grave, Supervised Sequence + # Labelling with Recurrent Neural Networks" + log_acts = np.zeros([total_times, self.num_classes], dtype="float32") + for i in range(total_times): + for j in range(self.num_classes): + log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j]) + + # calculate the forward variables + forward_vars = np.zeros([total_times, total_segments], dtype="float32") + for i in range(total_times): + for j in range(total_segments): + forward_vars[i, j] = self.LOG_ZERO + + for i in range(total_times): + # dp initialization at t0 + if i == 0: + forward_vars[i, 0] = log_acts[0, self.blank] + if total_segments > 1: + forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]] + continue + + # dp from t1 + start, end = self.segment_range(i, total_times, total_segments) + for k in range(end - start): + j = k + start + if j & 1 == 1: + label_idx = j / 2 + label_val = labels_a_sequence[label_idx, 0] + fv = self.log_add(forward_vars[i - 1, j], + forward_vars[i - 1, j - 1]) + if j > 1 and label_val != labels_a_sequence[label_idx - 1, + 0]: + fv = self.log_add(fv, forward_vars[i - 1, j - 2]) + fv = self.log_mul(fv, log_acts[i, label_val]) + else: + fv = forward_vars[i - 1, j] + if j > 0: + fv = self.log_add(fv, forward_vars[i - 1, j - 1]) + fv = self.log_mul(fv, log_acts[i, self.blank]) + forward_vars[i, j] = fv + + # sum the last two value as log_prob + log_prob = forward_vars[total_times - 1, total_segments - 1] + if total_segments > 1: + log_prob = self.log_add( + log_prob, forward_vars[total_times - 1, total_segments - 2]) + + return -log_prob + + def forward(self): + for i in range(self.batch_size): + softmax_start_i = self.softmax_lod[self.level][i] + softmax_end_i = self.softmax_lod[self.level][i + 1] + labels_start_i = self.labels_lod[self.level][i] + labels_end_i = self.labels_lod[self.level][i + 1] + + softmax_a_sequence = self.softmax[softmax_start_i:softmax_end_i, :] + labels_a_sequence = self.labels[labels_start_i:labels_end_i, :] + self.loss[i] = self.forward_a_sequence(softmax_a_sequence, + labels_a_sequence) + return self.loss + + +class TestWarpCTCOp(OpTest): + def config(self): + self.batch_size = 4 + self.num_classes = 8 + self.logits_lod = [[0, 4, 5, 8, 11]] + self.labels_lod = [[0, 3, 4, 8, 12]] + self.blank = self.num_classes - 1 + self.norm_by_times = False + + def setUp(self): + self.op_type = "warpctc" + self.config() + + logits = np.random.uniform( + 0.1, 1.0, + [self.logits_lod[0][-1], self.num_classes]).astype("float32") + softmax = np.apply_along_axis(stable_softmax, 1, logits) + # labels should not be blank + labels = np.random.randint( + 0, self.num_classes - 1, [self.labels_lod[0][-1], 1], dtype="int32") + + ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod, + self.blank, self.norm_by_times) + loss = ctc.forward() + + max_sequence_length = 0 + for i in range(self.batch_size): + max_sequence_length = max( + max_sequence_length, + self.logits_lod[0][i + 1] - self.logits_lod[0][i]) + self.gradient = np.zeros( + [max_sequence_length, self.batch_size, self.num_classes], + dtype="float32") + + self.inputs = { + "Logits": (logits, self.logits_lod), + "Label": (labels, self.labels_lod) + } + self.outputs = {"Loss": loss} + self.attrs = {"blank": self.blank, "norm_by_times": self.norm_by_times} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.outputs['WarpCTCGrad'] = self.gradient + self.check_grad(["Logits"], "Loss", max_relative_error=0.007) + + +class TestWarpCTCOpCase1(TestWarpCTCOp): + def config(self): + self.batch_size = 4 + self.num_classes = CUDA_BLOCK_SIZE + 2 + self.logits_lod = [[0, 4, 5, 8, 11]] + self.labels_lod = [[0, 3, 4, 8, 12]] + self.blank = 0 + self.norm_by_times = False + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_while_op.py b/python/paddle/v2/fluid/tests/test_while_op.py index 033b03a495..72de0a0361 100644 --- a/python/paddle/v2/fluid/tests/test_while_op.py +++ b/python/paddle/v2/fluid/tests/test_while_op.py @@ -1,8 +1,21 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor import paddle.v2.fluid.core as core -from paddle.v2.fluid.backward import append_backward_ops +from paddle.v2.fluid.backward import append_backward import numpy @@ -46,7 +59,7 @@ class TestWhileOp(unittest.TestCase): sum_result = layers.array_read(array=mem_array, i=i) loss = layers.mean(x=sum_result) - append_backward_ops(loss) + append_backward(loss) cpu = core.CPUPlace() exe = Executor(cpu) diff --git a/python/paddle/v2/image.py b/python/paddle/v2/image.py index 7408ea8ef6..a6fa0cecb8 100644 --- a/python/paddle/v2/image.py +++ b/python/paddle/v2/image.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. """ This file contains some common interfaces for image preprocess. Many users are confused about the image layout. We introduce diff --git a/python/paddle/v2/inference.py b/python/paddle/v2/inference.py index 9148cb56cf..39d1bfff0c 100644 --- a/python/paddle/v2/inference.py +++ b/python/paddle/v2/inference.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import numpy import collections import topology diff --git a/python/paddle/v2/master/__init__.py b/python/paddle/v2/master/__init__.py index c8975b5d4a..09daaaa75e 100644 --- a/python/paddle/v2/master/__init__.py +++ b/python/paddle/v2/master/__init__.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. from client import * __all__ = ['client'] diff --git a/python/paddle/v2/master/client.py b/python/paddle/v2/master/client.py index fc718f031e..b874c2f349 100644 --- a/python/paddle/v2/master/client.py +++ b/python/paddle/v2/master/client.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import ctypes import os diff --git a/python/paddle/v2/parameters.py b/python/paddle/v2/parameters.py index bd97dc1199..7b7d1a1d16 100644 --- a/python/paddle/v2/parameters.py +++ b/python/paddle/v2/parameters.py @@ -383,19 +383,22 @@ class Parameters(object): params.deserialize(param_name, f) return params - def init_from_tar(self, f): + def init_from_tar(self, f, exclude_params=[]): """ Different from `from_tar`, this interface can be used to init partial network parameters from another saved model. :param f: the initialized model file. :type f: tar file + :param exclude_params: the names of parameters that should + not be initialized from the model file. + :type exclude_params: list of strings :return: Nothing. """ tar_param = Parameters.from_tar(f) for pname in tar_param.names(): - if pname in self.names(): + if pname in self.names() and pname not in exclude_params: self.set(pname, tar_param.get(pname)) diff --git a/python/paddle/v2/reader/decorator.py b/python/paddle/v2/reader/decorator.py index 7e457f987d..44a6e34463 100644 --- a/python/paddle/v2/reader/decorator.py +++ b/python/paddle/v2/reader/decorator.py @@ -14,7 +14,7 @@ __all__ = [ 'map_readers', 'buffered', 'compose', 'chain', 'shuffle', - 'ComposeNotAligned', 'firstn', 'xmap_readers', 'pipe_reader' + 'ComposeNotAligned', 'firstn', 'xmap_readers', 'PipeReader' ] from threading import Thread @@ -334,93 +334,72 @@ def _buf2lines(buf, line_break="\n"): return lines[:-1], lines[-1] -def pipe_reader(left_cmd, - parser, - bufsize=8192, - file_type="plain", - cut_lines=True, - line_break="\n"): +class PipeReader: """ - pipe_reader read data by stream from a command, take it's - stdout into a pipe buffer and redirect it to the parser to - parse, then yield data as your desired format. + PipeReader read data by stream from a command, take it's + stdout into a pipe buffer and redirect it to the parser to + parse, then yield data as your desired format. - You can using standard linux command or call another program - to read data, from HDFS, Ceph, URL, AWS S3 etc: + You can using standard linux command or call another program + to read data, from HDFS, Ceph, URL, AWS S3 etc: - cmd = "hadoop fs -cat /path/to/some/file" - cmd = "cat sample_file.tar.gz" - cmd = "curl http://someurl" - cmd = "python print_s3_bucket.py" + .. code-block:: python + cmd = "hadoop fs -cat /path/to/some/file" + cmd = "cat sample_file.tar.gz" + cmd = "curl http://someurl" + cmd = "python print_s3_bucket.py" - A sample parser: + An example: + + .. code-block:: python - def sample_parser(lines): - # parse each line as one sample data, - # return a list of samples as batches. - ret = [] - for l in lines: - ret.append(l.split(" ")[1:5]) - return ret - - :param left_cmd: command to excute to get stdout from. - :type left_cmd: string - :param parser: parser function to parse lines of data. - if cut_lines is True, parser will receive list - of lines. - if cut_lines is False, parser will receive a - raw buffer each time. - parser should return a list of parsed values. - :type parser: callable - :param bufsize: the buffer size used for the stdout pipe. - :type bufsize: int - :param file_type: can be plain/gzip, stream buffer data type. - :type file_type: string - :param cut_lines: whether to pass lines instead of raw buffer - to the parser - :type cut_lines: bool - :param line_break: line break of the file, like \n or \r - :type line_break: string - - :return: the reader generator. - :rtype: callable + def example_reader(): + for f in myfiles: + pr = PipeReader("cat %s"%f) + for l in pr.get_line(): + sample = l.split(" ") + yield sample """ - if not isinstance(left_cmd, str): - raise TypeError("left_cmd must be a string") - if not callable(parser): - raise TypeError("parser must be a callable object") - - process = subprocess.Popen( - left_cmd.split(" "), bufsize=bufsize, stdout=subprocess.PIPE) - # TODO(typhoonzero): add a thread to read stderr - - # Always init a decompress object is better than - # create in the loop. - dec = zlib.decompressobj( - 32 + zlib.MAX_WBITS) # offset 32 to skip the header - def reader(): + def __init__(self, command, bufsize=8192, file_type="plain"): + if not isinstance(command, str): + raise TypeError("left_cmd must be a string") + if file_type == "gzip": + self.dec = zlib.decompressobj( + 32 + zlib.MAX_WBITS) # offset 32 to skip the header + self.file_type = file_type + self.bufsize = bufsize + self.process = subprocess.Popen( + command.split(" "), bufsize=bufsize, stdout=subprocess.PIPE) + + def get_line(self, cut_lines=True, line_break="\n"): + """ + :param cut_lines: cut buffer to lines + :type cut_lines: bool + :param line_break: line break of the file, like \n or \r + :type line_break: string + + :return: one line or a buffer of bytes + :rtype: string + """ remained = "" while True: - buff = process.stdout.read(bufsize) + buff = self.process.stdout.read(self.bufsize) if buff: - if file_type == "gzip": - decomp_buff = dec.decompress(buff) - elif file_type == "plain": + if self.file_type == "gzip": + decomp_buff = self.dec.decompress(buff) + elif self.file_type == "plain": decomp_buff = buff else: - raise TypeError("file_type %s is not allowed" % file_type) + raise TypeError("file_type %s is not allowed" % + self.file_type) if cut_lines: lines, remained = _buf2lines(''.join( [remained, decomp_buff]), line_break) - parsed_list = parser(lines) - for ret in parsed_list: - yield ret + for line in lines: + yield line else: - for ret in parser(decomp_buff): - yield ret + yield decomp_buff else: break - - return reader diff --git a/python/paddle/v2/reader/tests/__init__.py b/python/paddle/v2/reader/tests/__init__.py index e69de29bb2..2619c1c0e9 100644 --- a/python/paddle/v2/reader/tests/__init__.py +++ b/python/paddle/v2/reader/tests/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. diff --git a/python/paddle/v2/reader/tests/decorator_test.py b/python/paddle/v2/reader/tests/decorator_test.py index 5a92951b10..4ba71969df 100644 --- a/python/paddle/v2/reader/tests/decorator_test.py +++ b/python/paddle/v2/reader/tests/decorator_test.py @@ -145,5 +145,33 @@ class TestXmap(unittest.TestCase): self.assertEqual(e, mapper(idx)) +class TestPipeReader(unittest.TestCase): + def test_pipe_reader(self): + def example_reader(myfiles): + for f in myfiles: + pr = paddle.v2.reader.PipeReader("cat %s" % f, bufsize=128) + for l in pr.get_line(): + yield l + + import tempfile + + records = [str(i) for i in xrange(5)] + temp = tempfile.NamedTemporaryFile() + try: + with open(temp.name, 'w') as f: + for r in records: + f.write('%s\n' % r) + + result = [] + for r in example_reader([temp.name]): + result.append(r) + + for idx, e in enumerate(records): + self.assertEqual(e, result[idx]) + finally: + # delete the temporary file + temp.close() + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/tests/test_parameters.py b/python/paddle/v2/tests/test_parameters.py index 7ba8a939fb..ab6863620f 100644 --- a/python/paddle/v2/tests/test_parameters.py +++ b/python/paddle/v2/tests/test_parameters.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. import unittest import sys diff --git a/python/paddle/v2/trainer.py b/python/paddle/v2/trainer.py index db01ab7374..1a70a7203b 100644 --- a/python/paddle/v2/trainer.py +++ b/python/paddle/v2/trainer.py @@ -1,3 +1,16 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. """ Module Trainer """ diff --git a/python/setup.py.in b/python/setup.py.in index d59a6a4780..65ec58ecf9 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -5,7 +5,7 @@ class BinaryDistribution(Distribution): return True MAJOR = 0 -MINOR = 10 +MINOR = 11 PATCH = 0 RC = 0 ISTAGED = False @@ -31,6 +31,7 @@ patch = '%(patch)d' rc = '%(rc)d' istaged = %(istaged)s commit = '%(commit)s' +with_mkl = '%(with_mkl)s' def show(): if istaged: @@ -41,6 +42,9 @@ def show(): print 'rc:', rc else: print 'commit:', commit + +def mkl(): + return with_mkl ''' commit = git_commit() with open(filename, 'w') as f: @@ -51,7 +55,8 @@ def show(): 'rc': RC, 'version': '${PADDLE_VERSION}', 'commit': commit, - 'istaged': ISTAGED}) + 'istaged': ISTAGED, + 'with_mkl': '@WITH_MKL@'}) write_version_py(filename='@PADDLE_SOURCE_DIR@/python/paddle/version.py') @@ -68,6 +73,7 @@ packages=['paddle', 'paddle.v2.plot', 'paddle.v2.fluid', 'paddle.v2.fluid.proto', + 'paddle.v2.fluid.layers', 'py_paddle'] with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f: @@ -78,8 +84,7 @@ if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: # the prefix is sys.prefix which should always be usr paddle_bin_dir = 'opt/paddle/bin' -paddle_bins = ['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage', - '${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer', +paddle_bins = ['${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer', '${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model', '${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main', '${PADDLE_BINARY_DIR}/paddle/scripts/paddle'] @@ -89,7 +94,7 @@ paddle_rt_libs = ['${WARPCTC_LIBRARIES}'] if '${MKL_SHARED_LIBS}'!= '': paddle_rt_libs += '${MKL_SHARED_LIBS}'.split(';') -setup(name='paddlepaddle', +setup(name='${PACKAGE_NAME}', version='${PADDLE_VERSION}', description='Parallel Distributed Deep Learning', install_requires=setup_requires, diff --git a/tools/manylinux1/Dockerfile.android b/tools/manylinux1/Dockerfile.android new file mode 100644 index 0000000000..b6cae228a0 --- /dev/null +++ b/tools/manylinux1/Dockerfile.android @@ -0,0 +1,55 @@ +FROM ubuntu:16.04 +MAINTAINER PaddlePaddle Authors + +ARG UBUNTU_MIRROR +RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi' + +# ENV variables +ARG ANDROID_ABI +ARG ANDROID_API + +ENV ANDROID_ABI=${ANDROID_ABI:-"armeabi-v7a"} +ENV ANDROID_API=${ANDROID_API:-21} + +ENV HOME=/root \ + ANDROID_NDK_HOME=/opt/android-ndk-linux \ + ANDROID_TOOLCHAINS_DIR=/opt/toolchains + +RUN apt-get update && \ + apt-get install -y \ + git python-dev python-pip python-numpy \ + wget curl tar unzip gcc g++ locales clang-format-3.8 swig cmake && \ + apt-get clean -y + +# Install Go and glide +RUN wget -qO- go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \ + tar -xz -C /usr/local && \ + mkdir /root/gopath && \ + mkdir /root/gopath/bin && \ + mkdir /root/gopath/src +ENV GOROOT=/usr/local/go GOPATH=/root/gopath +# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT. +ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin + +# git credential to skip password typing +RUN git config --global credential.helper store + +# Fix locales to en_US.UTF-8 +RUN localedef -i en_US -f UTF-8 en_US.UTF-8 + +RUN pip install --upgrade pip && \ + pip install -U 'protobuf==3.1.0' && \ + pip install -U wheel sphinx && \ + pip install pre-commit + +# Android NDK +RUN mkdir -p ${ANDROID_TOOLCHAINS_DIR} && \ + mkdir -p /opt/android-ndk-tmp && \ + cd /opt/android-ndk-tmp && \ + wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \ + unzip -q android-ndk-r14b-linux-x86_64.zip && \ + mv android-ndk-r14b ${ANDROID_NDK_HOME} && \ + rm -rf /opt/android-ndk-tmp + +CMD ["bash", "/paddle/paddle/scripts/docker/build_android.sh"] + diff --git a/tools/manylinux1/Dockerfile.x64 b/tools/manylinux1/Dockerfile.x64 new file mode 100644 index 0000000000..2c6ba650a5 --- /dev/null +++ b/tools/manylinux1/Dockerfile.x64 @@ -0,0 +1,54 @@ +# NOTE The manylinux1 policy mandates CentOS-5. We replace it with CentOS-6 in +# order to satisfy the build of capnproto library (a nupic.core dependency), +# which requires some headers and symbols not present on CentOS-5 (e.g., +# signalfd.h, pipe2, O_NONBLOCK, SOCK_NONBLOCK, etc.). See +# https://github.com/sandstorm-io/capnproto/issues/350. +FROM nvidia/cuda: +MAINTAINER Numenta, based on the ManyLinux project + +ENV LC_ALL en_US.UTF-8 +ENV LANG en_US.UTF-8 +ENV LANGUAGE en_US.UTF-8 +ENV PATH /opt/rh/devtoolset-2/root/usr/bin:$PATH +ENV LD_LIBRARY_PATH /opt/rh/devtoolset-2/root/usr/lib64:/opt/rh/devtoolset-2/root/usr/lib:/usr/local/lib64:/usr/local/lib:${LD_LIBRARY_PATH} +ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig + +COPY build_scripts /build_scripts +RUN bash build_scripts/build.sh && rm -r build_scripts + +ENV SSL_CERT_FILE=/opt/_internal/certs.pem + +# for paddle +RUN wget --no-check-certificate -qO- https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \ + tar -xz -C /usr/local && \ + mkdir /root/gopath && \ + mkdir /root/gopath/bin && \ + mkdir /root/gopath/src + + +ENV GOROOT=/usr/local/go GOPATH=/root/gopath +ENV PATH=${GOROOT}/bin:${GOPATH}/bin:${PATH} + +# protobuf 3.1.0 +RUN cd /opt && wget -q --no-check-certificate https://github.com/google/protobuf/releases/download/v3.1.0/protobuf-cpp-3.1.0.tar.gz && \ + tar xzf protobuf-cpp-3.1.0.tar.gz && \ + cd protobuf-3.1.0 && ./configure && make -j4 && make install && cd .. && rm -f protobuf-cpp-3.1.0.tar.gz + + +RUN yum install -y sqlite-devel zlib-devel openssl-devel boost boost-devel pcre-devel vim tk-devel tkinter libtool + +RUN wget -O /root/requirements.txt https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/python/requirements.txt + +RUN LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27mu/bin/pip install -r /root/requirements.txt && \ + LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27m/bin/pip install -r /root/requirements.txt && \ + go get github.com/Masterminds/glide && \ + rm -rf /root/requirements.txt + +RUN LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27mu/bin/pip install pre-commit 'ipython==5.3.0' opencv-python && \ + LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27m/bin/pip install pre-commit 'ipython==5.3.0' opencv-python + +RUN wget -O /opt/swig-2.0.12.tar.gz https://sourceforge.net/projects/swig/files/swig/swig-2.0.12/swig-2.0.12.tar.gz/download && \ + cd /opt && tar xzf swig-2.0.12.tar.gz && cd /opt/swig-2.0.12 && ./configure && make && make install && cd /opt && rm swig-2.0.12.tar.gz + +RUN mkdir -p /src && cd /src && git clone https://github.com/NVIDIA/nccl.git nccl && cd nccl &&\ + make -j `nproc` install && cd .. && rm -rf nccl diff --git a/tools/manylinux1/README.md b/tools/manylinux1/README.md new file mode 100644 index 0000000000..cb0a9ac22c --- /dev/null +++ b/tools/manylinux1/README.md @@ -0,0 +1,30 @@ +# buildtools + +We release PaddlePaddle and PaddlePaddle Fluid as shared libraries, +which, we hope could be released as wheel packages on PyPI, so we need +to make sure that the build follows the +[manulinux1](https://www.python.org/dev/peps/pep-0513/) standard. + +The manylinux standard suggests building Python modules on an old +system, because that a module would anyway depend on some shared +libraries, and Linux's shared library standard states that those built +with newer version compilers cannot work with those with older +versions. The suggested building environment is as old as CentOS 5. +However, PaddlePaddle relies on CUDA, and the earlies version of +[CentOS works with CUDA is 6](https://hub.docker.com/r/nvidia/cuda/). +So, here we provide a Docker image basing on CentOS 6 and CUDA for +building PaddlePaddle and making the release supports "as-manylinux as +possible." or "sufficiently many Linux" according to [this +discussion](https://mail.python.org/pipermail/wheel-builders/2016-July/000175.html). + +The build output of our Docker image includes multiple wheel files -- +some contain the CPU-only binary, some others support CUDA; some are +compatible with the cp27m Python ABI, some others with cp27. + +To build these wheels, please run the following commands: + +```bash +git clone https://github.com/paddlepaddle/paddle +cd paddle/tools/manylinux1 +REPO=[yourrepo] ./build_all.sh +``` diff --git a/tools/manylinux1/build_all.sh b/tools/manylinux1/build_all.sh new file mode 100755 index 0000000000..097bedb526 --- /dev/null +++ b/tools/manylinux1/build_all.sh @@ -0,0 +1,26 @@ +#!/bin/bash +set -xe + +REPO="${REPO:-typhoon1986}" + +# NOTE: version matches are determined! +sed 's//7.5-cudnn5-devel-centos6/g' Dockerfile.x64 | \ +sed 's//NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_52,code=sm_52"/g'> Dockerfile.tmp +docker build -t ${REPO}/paddle_manylinux_devel:cuda7.5_cudnn5 -f Dockerfile.tmp . +docker push ${REPO}/paddle_manylinux_devel:cuda7.5_cudnn5 + +sed 's//8.0-cudnn5-devel-centos6/g' Dockerfile.x64 | \ +sed 's//NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_60,code=compute_60 -gencode=arch=compute_61,code=sm_61 -gencode=arch=compute_62,code=sm_62"/g'> Dockerfile.tmp +docker build -t ${REPO}/paddle_manylinux_devel:cuda8.0_cudnn5 -f Dockerfile.tmp . +docker push ${REPO}/paddle_manylinux_devel:cuda8.0_cudnn5 + +sed 's//8.0-cudnn7-devel-centos6/g' Dockerfile.x64 | \ +sed 's//NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_60,code=compute_60 -gencode=arch=compute_61,code=sm_61 -gencode=arch=compute_62,code=sm_62"/g'> Dockerfile.tmp + +docker build -t ${REPO}/paddle_manylinux_devel:cuda8.0_cudnn7 -f Dockerfile.tmp . +docker push ${REPO}/paddle_manylinux_devel:cuda8.0_cudnn7 + +sed 's//9.0-cudnn7-devel-centos6/g' Dockerfile.x64 | \ +sed 's//NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_60,code=compute_60 -gencode=arch=compute_61,code=sm_61 -gencode=arch=compute_62,code=sm_62 -gencode=arch=compute_70,code=sm_70"/g'> Dockerfile.tmp +docker build -t ${REPO}/paddle_manylinux_devel:cuda9.0_cudnn7 -f Dockerfile.tmp . +docker push ${REPO}/paddle_manylinux_devel:cuda9.0_cudnn7 diff --git a/tools/manylinux1/build_scripts/build.sh b/tools/manylinux1/build_scripts/build.sh new file mode 100644 index 0000000000..93591fa9dd --- /dev/null +++ b/tools/manylinux1/build_scripts/build.sh @@ -0,0 +1,152 @@ +#!/bin/bash +# Top-level build script called from Dockerfile + +# Stop at any error, show all commands +set -ex + +# Python versions to be installed in /opt/$VERSION_NO +# NOTE Only need python 2.7.11 for nupic.core/nupic.bindings at this time, so +# remove others to expedite build and reduce docker image size. The original +# manylinux docker image project builds many python versions. +# NOTE We added back 3.5.1, since auditwheel requires python 3.3+ +CPYTHON_VERSIONS="2.7.11 3.5.1" + +# openssl version to build, with expected sha256 hash of .tar.gz +# archive +OPENSSL_ROOT=openssl-1.0.2l +OPENSSL_HASH=ce07195b659e75f4e1db43552860070061f156a98bb37b672b101ba6e3ddf30c +EPEL_RPM_HASH=e5ed9ecf22d0c4279e92075a64c757ad2b38049bcf5c16c4f2b75d5f6860dc0d +DEVTOOLS_HASH=a8ebeb4bed624700f727179e6ef771dafe47651131a00a78b342251415646acc +PATCHELF_HASH=d9afdff4baeacfbc64861454f368b7f2c15c44d245293f7587bbf726bfe722fb +CURL_ROOT=curl-7.49.1 +CURL_HASH=eb63cec4bef692eab9db459033f409533e6d10e20942f4b060b32819e81885f1 +AUTOCONF_ROOT=autoconf-2.69 +AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969 + +# Dependencies for compiling Python that we want to remove from +# the final image after compiling Python +PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel" + +# Libraries that are allowed as part of the manylinux1 profile +MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel" + +# Get build utilities +MY_DIR=$(dirname "${BASH_SOURCE[0]}") +source $MY_DIR/build_utils.sh + +# EPEL support +yum -y install wget curl +curl -sLO https://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm +check_sha256sum epel-release-6-8.noarch.rpm $EPEL_RPM_HASH + +# Dev toolset (for LLVM and other projects requiring C++11 support) +curl -sLO http://people.centos.org/tru/devtools-2/devtools-2.repo +check_sha256sum devtools-2.repo $DEVTOOLS_HASH +mv devtools-2.repo /etc/yum.repos.d/devtools-2.repo +rpm -Uvh --replacepkgs epel-release-6*.rpm +rm -f epel-release-6*.rpm + +# Development tools and libraries +yum -y install bzip2 make git patch unzip bison yasm diffutils \ + automake which file \ + kernel-devel-`uname -r` \ + devtoolset-2-binutils devtoolset-2-gcc \ + devtoolset-2-gcc-c++ devtoolset-2-gcc-gfortran \ + ${PYTHON_COMPILE_DEPS} + +# Install more recent version of cmake +# curl -O https://cmake.org/files/v3.8/cmake-3.8.1-Linux-x86_64.sh +# /bin/sh cmake-3.8.1-Linux-x86_64.sh --prefix=/usr/local --skip-license +# rm cmake-3.8.1-Linux-x86_64.sh + +wget -q https://cmake.org/files/v3.5/cmake-3.5.2.tar.gz && tar xzf cmake-3.5.2.tar.gz && \ +cd cmake-3.5.2 && ./bootstrap && \ +make -j4 && make install && cd .. && rm cmake-3.5.2.tar.gz + + +# Install newest autoconf +build_autoconf $AUTOCONF_ROOT $AUTOCONF_HASH +autoconf --version + +# Compile the latest Python releases. +# (In order to have a proper SSL module, Python is compiled +# against a recent openssl [see env vars above], which is linked +# statically. We delete openssl afterwards.) +build_openssl $OPENSSL_ROOT $OPENSSL_HASH +mkdir -p /opt/python +build_cpythons $CPYTHON_VERSIONS + +PY35_BIN=/opt/python/cp35-cp35m/bin +# NOTE Since our custom manylinux image builds pythons with shared +# libpython, we need to add libpython's dir to LD_LIBRARY_PATH before running +# python. +ORIGINAL_LD_LIBRARY_PATH="${LD_LIBRARY_PATH}" +LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname ${PY35_BIN})/lib" + +# Our openssl doesn't know how to find the system CA trust store +# (https://github.com/pypa/manylinux/issues/53) +# And it's not clear how up-to-date that is anyway +# So let's just use the same one pip and everyone uses +LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname ${PY35_BIN})/lib" $PY35_BIN/pip install certifi +ln -s $($PY35_BIN/python -c 'import certifi; print(certifi.where())') \ + /opt/_internal/certs.pem +# If you modify this line you also have to modify the versions in the +# Dockerfiles: +export SSL_CERT_FILE=/opt/_internal/certs.pem + +# Install newest curl +build_curl $CURL_ROOT $CURL_HASH +rm -rf /usr/local/include/curl /usr/local/lib/libcurl* /usr/local/lib/pkgconfig/libcurl.pc +hash -r +curl --version +curl-config --features + +# Now we can delete our built SSL +rm -rf /usr/local/ssl + +# Install patchelf (latest with unreleased bug fixes) +curl -sLO https://nipy.bic.berkeley.edu/manylinux/patchelf-0.9njs2.tar.gz +check_sha256sum patchelf-0.9njs2.tar.gz $PATCHELF_HASH +tar -xzf patchelf-0.9njs2.tar.gz +(cd patchelf-0.9njs2 && ./configure && make && make install) +rm -rf patchelf-0.9njs2.tar.gz patchelf-0.9njs2 + +# Install latest pypi release of auditwheel +LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname ${PY35_BIN})/lib" $PY35_BIN/pip install auditwheel +ln -s $PY35_BIN/auditwheel /usr/local/bin/auditwheel + +# Clean up development headers and other unnecessary stuff for +# final image +yum -y erase wireless-tools gtk2 libX11 hicolor-icon-theme \ + avahi freetype bitstream-vera-fonts \ + ${PYTHON_COMPILE_DEPS} > /dev/null 2>&1 +yum -y install ${MANYLINUX1_DEPS} +yum -y clean all > /dev/null 2>&1 +yum list installed +# we don't need libpython*.a, and they're many megabytes +find /opt/_internal -name '*.a' -print0 | xargs -0 rm -f +# Strip what we can -- and ignore errors, because this just attempts to strip +# *everything*, including non-ELF files: +find /opt/_internal -type f -print0 \ + | xargs -0 -n1 strip --strip-unneeded 2>/dev/null || true +# We do not need the Python test suites, or indeed the precompiled .pyc and +# .pyo files. Partially cribbed from: +# https://github.com/docker-library/python/blob/master/3.4/slim/Dockerfile +find /opt/_internal \ + \( -type d -a -name test -o -name tests \) \ + -o \( -type f -a -name '*.pyc' -o -name '*.pyo' \) \ + -print0 | xargs -0 rm -f + +for PYTHON in /opt/python/*/bin/python; do + # Add matching directory of libpython shared library to library lookup path + LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname $(dirname ${PYTHON}))/lib" + + # Smoke test to make sure that our Pythons work, and do indeed detect as + # being manylinux compatible: + LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname $(dirname ${PYTHON}))/lib" $PYTHON $MY_DIR/manylinux1-check.py + # Make sure that SSL cert checking works + LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname $(dirname ${PYTHON}))/lib" $PYTHON $MY_DIR/ssl-check.py +done + +# Restore LD_LIBRARY_PATH +LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}" diff --git a/tools/manylinux1/build_scripts/build_utils.sh b/tools/manylinux1/build_scripts/build_utils.sh new file mode 100755 index 0000000000..10422ae3bd --- /dev/null +++ b/tools/manylinux1/build_scripts/build_utils.sh @@ -0,0 +1,173 @@ +#!/bin/bash +# Helper utilities for build + +PYTHON_DOWNLOAD_URL=https://www.python.org/ftp/python +# XXX: the official https server at www.openssl.org cannot be reached +# with the old versions of openssl and curl in Centos 5.11 hence the fallback +# to the ftp mirror: +# OPENSSL_DOWNLOAD_URL=ftp://ftp.openssl.org/source +OPENSSL_DOWNLOAD_URL=https://www.openssl.org/source +# Ditto the curl sources +CURL_DOWNLOAD_URL=http://curl.askapache.com/download + +GET_PIP_URL=https://bootstrap.pypa.io/get-pip.py + +AUTOCONF_DOWNLOAD_URL=http://ftp.gnu.org/gnu/autoconf + + +function check_var { + if [ -z "$1" ]; then + echo "required variable not defined" + exit 1 + fi +} + + +function lex_pyver { + # Echoes Python version string padded with zeros + # Thus: + # 3.2.1 -> 003002001 + # 3 -> 003000000 + echo $1 | awk -F "." '{printf "%03d%03d%03d", $1, $2, $3}' +} + + +function do_cpython_build { + local py_ver=$1 + check_var $py_ver + local ucs_setting=$2 + check_var $ucs_setting + tar -xzf Python-$py_ver.tgz + pushd Python-$py_ver + if [ "$ucs_setting" = "none" ]; then + unicode_flags="" + dir_suffix="" + else + local unicode_flags="--enable-unicode=$ucs_setting" + local dir_suffix="-$ucs_setting" + fi + local prefix="/opt/_internal/cpython-${py_ver}${dir_suffix}" + mkdir -p ${prefix}/lib + # -Wformat added for https://bugs.python.org/issue17547 on Python 2.6 + + # NOTE --enable-shared for generating libpython shared library needed for + # linking of some of the nupic.core test executables. + CFLAGS="-Wformat" ./configure --prefix=${prefix} --enable-shared $unicode_flags > /dev/null + make -j2 > /dev/null + make install > /dev/null + popd + echo "ZZZ looking for libpython" + find / -name 'libpython*.so*' + rm -rf Python-$py_ver + # Some python's install as bin/python3. Make them available as + # bin/python. + if [ -e ${prefix}/bin/python3 ]; then + ln -s python3 ${prefix}/bin/python + fi + # NOTE Make libpython shared library visible to python calls below + LD_LIBRARY_PATH="${prefix}/lib" ${prefix}/bin/python get-pip.py + LD_LIBRARY_PATH="${prefix}/lib" ${prefix}/bin/pip install wheel + local abi_tag=$(LD_LIBRARY_PATH="${prefix}/lib" ${prefix}/bin/python ${MY_DIR}/python-tag-abi-tag.py) + ln -s ${prefix} /opt/python/${abi_tag} +} + + +function build_cpython { + local py_ver=$1 + check_var $py_ver + check_var $PYTHON_DOWNLOAD_URL + wget -q $PYTHON_DOWNLOAD_URL/$py_ver/Python-$py_ver.tgz + if [ $(lex_pyver $py_ver) -lt $(lex_pyver 3.3) ]; then + # NOTE We only need wide unicode for nupic.bindings wheel + do_cpython_build $py_ver ucs2 + do_cpython_build $py_ver ucs4 + else + do_cpython_build $py_ver none + fi + rm -f Python-$py_ver.tgz +} + + +function build_cpythons { + check_var $GET_PIP_URL + curl -sLO $GET_PIP_URL + for py_ver in $@; do + build_cpython $py_ver + done + rm get-pip.py +} + + +function do_openssl_build { + ./config no-ssl2 no-shared -fPIC --prefix=/usr/local/ssl > /dev/null + make > /dev/null + make install > /dev/null +} + + +function check_sha256sum { + local fname=$1 + check_var ${fname} + local sha256=$2 + check_var ${sha256} + + echo "${sha256} ${fname}" > ${fname}.sha256 + sha256sum -c ${fname}.sha256 + rm ${fname}.sha256 +} + + +function build_openssl { + local openssl_fname=$1 + check_var ${openssl_fname} + local openssl_sha256=$2 + check_var ${openssl_sha256} + check_var ${OPENSSL_DOWNLOAD_URL} + curl -sLO ${OPENSSL_DOWNLOAD_URL}/${openssl_fname}.tar.gz + check_sha256sum ${openssl_fname}.tar.gz ${openssl_sha256} + tar -xzf ${openssl_fname}.tar.gz + (cd ${openssl_fname} && do_openssl_build) + rm -rf ${openssl_fname} ${openssl_fname}.tar.gz +} + + +function do_curl_build { + LIBS=-ldl ./configure --with-ssl --disable-shared > /dev/null + make > /dev/null + make install > /dev/null +} + + +function build_curl { + local curl_fname=$1 + check_var ${curl_fname} + local curl_sha256=$2 + check_var ${curl_sha256} + check_var ${CURL_DOWNLOAD_URL} + curl -sLO ${CURL_DOWNLOAD_URL}/${curl_fname}.tar.bz2 + check_sha256sum ${curl_fname}.tar.bz2 ${curl_sha256} + tar -jxf ${curl_fname}.tar.bz2 + (cd ${curl_fname} && do_curl_build) + rm -rf ${curl_fname} ${curl_fname}.tar.bz2 +} + + +function do_standard_install { + ./configure > /dev/null + make > /dev/null + make install > /dev/null +} + + +function build_autoconf { + local autoconf_fname=$1 + check_var ${autoconf_fname} + local autoconf_sha256=$2 + check_var ${autoconf_sha256} + check_var ${AUTOCONF_DOWNLOAD_URL} + curl -sLO ${AUTOCONF_DOWNLOAD_URL}/${autoconf_fname}.tar.gz + check_sha256sum ${autoconf_fname}.tar.gz ${autoconf_sha256} + tar -zxf ${autoconf_fname}.tar.gz + (cd ${autoconf_fname} && do_standard_install) + rm -rf ${autoconf_fname} ${autoconf_fname}.tar.gz +} diff --git a/tools/manylinux1/build_scripts/manylinux1-check.py b/tools/manylinux1/build_scripts/manylinux1-check.py new file mode 100644 index 0000000000..e4bde065a2 --- /dev/null +++ b/tools/manylinux1/build_scripts/manylinux1-check.py @@ -0,0 +1,69 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +# Logic copied from PEP 513 + + +def is_manylinux1_compatible(): + # Only Linux, and only x86-64 / i686 + from distutils.util import get_platform + if get_platform() not in ["linux-x86_64", "linux-i686"]: + return False + + # Check for presence of _manylinux module + try: + import _manylinux + return bool(_manylinux.manylinux1_compatible) + except (ImportError, AttributeError): + # Fall through to heuristic check below + pass + + # Check glibc version. CentOS 5 uses glibc 2.5. + return have_compatible_glibc(2, 5) + + +def have_compatible_glibc(major, minimum_minor): + import ctypes + + process_namespace = ctypes.CDLL(None) + try: + gnu_get_libc_version = process_namespace.gnu_get_libc_version + except AttributeError: + # Symbol doesn't exist -> therefore, we are not linked to + # glibc. + return False + + # Call gnu_get_libc_version, which returns a string like "2.5". + gnu_get_libc_version.restype = ctypes.c_char_p + version_str = gnu_get_libc_version() + # py2 / py3 compatibility: + if not isinstance(version_str, str): + version_str = version_str.decode("ascii") + + # Parse string and check against requested version. + version = [int(piece) for piece in version_str.split(".")] + assert len(version) == 2 + if major != version[0]: + return False + if minimum_minor > version[1]: + return False + return True + + +import sys +if is_manylinux1_compatible(): + print("%s is manylinux1 compatible" % (sys.executable, )) + sys.exit(0) +else: + print("%s is NOT manylinux1 compatible" % (sys.executable, )) + sys.exit(1) diff --git a/tools/manylinux1/build_scripts/python-tag-abi-tag.py b/tools/manylinux1/build_scripts/python-tag-abi-tag.py new file mode 100644 index 0000000000..301fbf07a4 --- /dev/null +++ b/tools/manylinux1/build_scripts/python-tag-abi-tag.py @@ -0,0 +1,7 @@ +# Utility script to print the python tag + the abi tag for a Python +# See PEP 425 for exactly what these are, but an example would be: +# cp27-cp27mu + +from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag + +print("{0}{1}-{2}".format(get_abbr_impl(), get_impl_ver(), get_abi_tag())) diff --git a/tools/manylinux1/build_scripts/ssl-check.py b/tools/manylinux1/build_scripts/ssl-check.py new file mode 100644 index 0000000000..900185cef1 --- /dev/null +++ b/tools/manylinux1/build_scripts/ssl-check.py @@ -0,0 +1,45 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +# cf. https://github.com/pypa/manylinux/issues/53 + +GOOD_SSL = "https://google.com" +BAD_SSL = "https://self-signed.badssl.com" + +import sys + +print("Testing SSL certificate checking for Python:", sys.version) + +if (sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4)): + print("This version never checks SSL certs; skipping tests") + sys.exit(0) + +if sys.version_info[0] >= 3: + from urllib.request import urlopen + EXC = OSError +else: + from urllib import urlopen + EXC = IOError + +print("Connecting to %s should work" % (GOOD_SSL, )) +urlopen(GOOD_SSL) +print("...it did, yay.") + +print("Connecting to %s should fail" % (BAD_SSL, )) +try: + urlopen(BAD_SSL) + # If we get here then we failed: + print("...it DIDN'T!!!!!11!!1one!") + sys.exit(1) +except EXC: + print("...it did, yay.") diff --git a/v1_api_demo/README.md b/v1_api_demo/README.md deleted file mode 100644 index 0460a85fae..0000000000 --- a/v1_api_demo/README.md +++ /dev/null @@ -1,5 +0,0 @@ -The examples in v1_api_demo are using v1_api currently, and will be upgraded to v2_api later. -Thus, v1_api_demo is a temporary directory. We decide not to maintain it and will delete it in future. - -Please go to [PaddlePaddle/book](https://github.com/PaddlePaddle/book) and -[PaddlePaddle/models](https://github.com/PaddlePaddle/models) to learn PaddlePaddle. diff --git a/v1_api_demo/gan/.gitignore b/v1_api_demo/gan/.gitignore deleted file mode 100644 index 93a6f5080a..0000000000 --- a/v1_api_demo/gan/.gitignore +++ /dev/null @@ -1,11 +0,0 @@ -output/ -uniform_params/ -cifar_params/ -mnist_params/ -*.png -.pydevproject -.project -*.log -*.pyc -data/mnist_data/ -data/cifar-10-batches-py/ diff --git a/v1_api_demo/gan/README.md b/v1_api_demo/gan/README.md deleted file mode 100644 index 1908b534b0..0000000000 --- a/v1_api_demo/gan/README.md +++ /dev/null @@ -1,13 +0,0 @@ -# Generative Adversarial Networks (GAN) - -This demo implements GAN training described in the original GAN paper (https://arxiv.org/abs/1406.2661) and DCGAN (https://arxiv.org/abs/1511.06434). - -The general training procedures are implemented in gan_trainer.py. The neural network configurations are specified in gan_conf.py (for synthetic data) and gan_conf_image.py (for image data). - -In order to run the model, first download the corresponding data by running the shell script in ./data. -Then you can run the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu). - -$python gan_trainer.py -d cifar --use_gpu 1 - -The generated images will be stored in ./cifar_samples/ -The corresponding models will be stored in ./cifar_params/ diff --git a/v1_api_demo/gan/data/download_cifar.sh b/v1_api_demo/gan/data/download_cifar.sh deleted file mode 100755 index bbadc7c10c..0000000000 --- a/v1_api_demo/gan/data/download_cifar.sh +++ /dev/null @@ -1,18 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz -tar zxf cifar-10-python.tar.gz -rm cifar-10-python.tar.gz diff --git a/v1_api_demo/gan/data/get_mnist_data.sh b/v1_api_demo/gan/data/get_mnist_data.sh deleted file mode 100755 index a77c81bf5a..0000000000 --- a/v1_api_demo/gan/data/get_mnist_data.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/usr/bin/env sh -# This script downloads the mnist data and unzips it. -set -e -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -rm -rf "$DIR/mnist_data" -mkdir "$DIR/mnist_data" -cd "$DIR/mnist_data" - -echo "Downloading..." - -for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte -do - if [ ! -e $fname ]; then - wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz - gunzip ${fname}.gz - fi -done diff --git a/v1_api_demo/gan/gan_conf.py b/v1_api_demo/gan/gan_conf.py deleted file mode 100644 index 86ac2dffe5..0000000000 --- a/v1_api_demo/gan/gan_conf.py +++ /dev/null @@ -1,151 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from paddle.trainer_config_helpers import * - -mode = get_config_arg("mode", str, "generator") -assert mode in set([ - "generator", "discriminator", "generator_training", "discriminator_training" -]) - -is_generator_training = mode == "generator_training" -is_discriminator_training = mode == "discriminator_training" -is_generator = mode == "generator" -is_discriminator = mode == "discriminator" - -# The network structure below follows the ref https://arxiv.org/abs/1406.2661 -# Here we used two hidden layers and batch_norm - -print('mode=%s' % mode) -# the dim of the noise (z) as the input of the generator network -noise_dim = 10 -# the dim of the hidden layer -hidden_dim = 10 -# the dim of the generated sample -sample_dim = 2 - -settings( - batch_size=128, - learning_rate=1e-4, - learning_method=AdamOptimizer(beta1=0.5)) - - -def discriminator(sample): - """ - discriminator ouputs the probablity of a sample is from generator - or real data. - The output has two dimenstional: dimension 0 is the probablity - of the sample is from generator and dimension 1 is the probabblity - of the sample is from real data. - """ - param_attr = ParamAttr(is_static=is_generator_training) - bias_attr = ParamAttr( - is_static=is_generator_training, initial_mean=1.0, initial_std=0) - - hidden = fc_layer( - input=sample, - name="dis_hidden", - size=hidden_dim, - bias_attr=bias_attr, - param_attr=param_attr, - act=ReluActivation()) - - hidden2 = fc_layer( - input=hidden, - name="dis_hidden2", - size=hidden_dim, - bias_attr=bias_attr, - param_attr=param_attr, - act=LinearActivation()) - - hidden_bn = batch_norm_layer( - hidden2, - act=ReluActivation(), - name="dis_hidden_bn", - bias_attr=bias_attr, - param_attr=ParamAttr( - is_static=is_generator_training, initial_mean=1.0, - initial_std=0.02), - use_global_stats=False) - - return fc_layer( - input=hidden_bn, - name="dis_prob", - size=2, - bias_attr=bias_attr, - param_attr=param_attr, - act=SoftmaxActivation()) - - -def generator(noise): - """ - generator generates a sample given noise - """ - param_attr = ParamAttr(is_static=is_discriminator_training) - bias_attr = ParamAttr( - is_static=is_discriminator_training, initial_mean=1.0, initial_std=0) - - hidden = fc_layer( - input=noise, - name="gen_layer_hidden", - size=hidden_dim, - bias_attr=bias_attr, - param_attr=param_attr, - act=ReluActivation()) - - hidden2 = fc_layer( - input=hidden, - name="gen_hidden2", - size=hidden_dim, - bias_attr=bias_attr, - param_attr=param_attr, - act=LinearActivation()) - - hidden_bn = batch_norm_layer( - hidden2, - act=ReluActivation(), - name="gen_layer_hidden_bn", - bias_attr=bias_attr, - param_attr=ParamAttr( - is_static=is_discriminator_training, - initial_mean=1.0, - initial_std=0.02), - use_global_stats=False) - - return fc_layer( - input=hidden_bn, - name="gen_layer1", - size=sample_dim, - bias_attr=bias_attr, - param_attr=param_attr, - act=LinearActivation()) - - -if is_generator_training: - noise = data_layer(name="noise", size=noise_dim) - sample = generator(noise) - -if is_discriminator_training: - sample = data_layer(name="sample", size=sample_dim) - -if is_generator_training or is_discriminator_training: - label = data_layer(name="label", size=1) - prob = discriminator(sample) - cost = cross_entropy(input=prob, label=label) - classification_error_evaluator( - input=prob, label=label, name=mode + '_error') - outputs(cost) - -if is_generator: - noise = data_layer(name="noise", size=noise_dim) - outputs(generator(noise)) diff --git a/v1_api_demo/gan/gan_conf_image.py b/v1_api_demo/gan/gan_conf_image.py deleted file mode 100644 index c469227994..0000000000 --- a/v1_api_demo/gan/gan_conf_image.py +++ /dev/null @@ -1,298 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from paddle.trainer_config_helpers import * - -mode = get_config_arg("mode", str, "generator") -dataSource = get_config_arg("data", str, "mnist") -assert mode in set([ - "generator", "discriminator", "generator_training", "discriminator_training" -]) - -is_generator_training = mode == "generator_training" -is_discriminator_training = mode == "discriminator_training" -is_generator = mode == "generator" -is_discriminator = mode == "discriminator" - -# The network structure below follows the dcgan paper -# (https://arxiv.org/abs/1511.06434) - -print('mode=%s' % mode) -# the dim of the noise (z) as the input of the generator network -noise_dim = 100 -# the number of filters in the layer in generator/discriminator that is -# closet to the image -gf_dim = 64 -df_dim = 64 -if dataSource == "mnist": - sample_dim = 28 # image dim - c_dim = 1 # image color -else: - sample_dim = 32 - c_dim = 3 -s2, s4 = int(sample_dim / 2), int(sample_dim / 4), -s8, s16 = int(sample_dim / 8), int(sample_dim / 16) - -settings( - batch_size=128, - learning_rate=2e-4, - learning_method=AdamOptimizer(beta1=0.5)) - - -def conv_bn(input, - channels, - imgSize, - num_filters, - output_x, - stride, - name, - param_attr, - bias_attr, - param_attr_bn, - bn, - trans=False, - act=ReluActivation()): - """ - conv_bn is a utility function that constructs a convolution/deconv layer - with an optional batch_norm layer - - :param bn: whether to use batch_norm_layer - :type bn: bool - :param trans: whether to use conv (False) or deconv (True) - :type trans: bool - """ - - # calculate the filter_size and padding size based on the given - # imgSize and ouput size - tmp = imgSize - (output_x - 1) * stride - if tmp <= 1 or tmp > 5: - raise ValueError("conv input-output dimension does not fit") - elif tmp <= 3: - filter_size = tmp + 2 - padding = 1 - else: - filter_size = tmp - padding = 0 - - print(imgSize, output_x, stride, filter_size, padding) - - if trans: - nameApx = "_convt" - else: - nameApx = "_conv" - - if bn: - conv = img_conv_layer( - input, - filter_size=filter_size, - num_filters=num_filters, - name=name + nameApx, - num_channels=channels, - act=LinearActivation(), - groups=1, - stride=stride, - padding=padding, - bias_attr=bias_attr, - param_attr=param_attr, - shared_biases=True, - layer_attr=None, - filter_size_y=None, - stride_y=None, - padding_y=None, - trans=trans) - - conv_bn = batch_norm_layer( - conv, - act=act, - name=name + nameApx + "_bn", - bias_attr=bias_attr, - param_attr=param_attr_bn, - use_global_stats=False) - - return conv_bn - else: - conv = img_conv_layer( - input, - filter_size=filter_size, - num_filters=num_filters, - name=name + nameApx, - num_channels=channels, - act=act, - groups=1, - stride=stride, - padding=padding, - bias_attr=bias_attr, - param_attr=param_attr, - shared_biases=True, - layer_attr=None, - filter_size_y=None, - stride_y=None, - padding_y=None, - trans=trans) - return conv - - -def generator(noise): - """ - generator generates a sample given noise - """ - param_attr = ParamAttr( - is_static=is_discriminator_training, initial_mean=0.0, initial_std=0.02) - bias_attr = ParamAttr( - is_static=is_discriminator_training, initial_mean=0.0, initial_std=0.0) - - param_attr_bn = ParamAttr( - is_static=is_discriminator_training, initial_mean=1.0, initial_std=0.02) - - h1 = fc_layer( - input=noise, - name="gen_layer_h1", - size=s8 * s8 * gf_dim * 4, - bias_attr=bias_attr, - param_attr=param_attr, - act=LinearActivation()) - - h1_bn = batch_norm_layer( - h1, - act=ReluActivation(), - name="gen_layer_h1_bn", - bias_attr=bias_attr, - param_attr=param_attr_bn, - use_global_stats=False) - - h2_bn = conv_bn( - h1_bn, - channels=gf_dim * 4, - output_x=s8, - num_filters=gf_dim * 2, - imgSize=s4, - stride=2, - name="gen_layer_h2", - param_attr=param_attr, - bias_attr=bias_attr, - param_attr_bn=param_attr_bn, - bn=True, - trans=True) - - h3_bn = conv_bn( - h2_bn, - channels=gf_dim * 2, - output_x=s4, - num_filters=gf_dim, - imgSize=s2, - stride=2, - name="gen_layer_h3", - param_attr=param_attr, - bias_attr=bias_attr, - param_attr_bn=param_attr_bn, - bn=True, - trans=True) - - return conv_bn( - h3_bn, - channels=gf_dim, - output_x=s2, - num_filters=c_dim, - imgSize=sample_dim, - stride=2, - name="gen_layer_h4", - param_attr=param_attr, - bias_attr=bias_attr, - param_attr_bn=param_attr_bn, - bn=False, - trans=True, - act=TanhActivation()) - - -def discriminator(sample): - """ - discriminator ouputs the probablity of a sample is from generator - or real data. - The output has two dimenstional: dimension 0 is the probablity - of the sample is from generator and dimension 1 is the probabblity - of the sample is from real data. - """ - param_attr = ParamAttr( - is_static=is_generator_training, initial_mean=0.0, initial_std=0.02) - bias_attr = ParamAttr( - is_static=is_generator_training, initial_mean=0.0, initial_std=0.0) - - param_attr_bn = ParamAttr( - is_static=is_generator_training, initial_mean=1.0, initial_std=0.02) - - h0 = conv_bn( - sample, - channels=c_dim, - imgSize=sample_dim, - num_filters=df_dim, - output_x=s2, - stride=2, - name="dis_h0", - param_attr=param_attr, - bias_attr=bias_attr, - param_attr_bn=param_attr_bn, - bn=False) - - h1_bn = conv_bn( - h0, - channels=df_dim, - imgSize=s2, - num_filters=df_dim * 2, - output_x=s4, - stride=2, - name="dis_h1", - param_attr=param_attr, - bias_attr=bias_attr, - param_attr_bn=param_attr_bn, - bn=True) - - h2_bn = conv_bn( - h1_bn, - channels=df_dim * 2, - imgSize=s4, - num_filters=df_dim * 4, - output_x=s8, - stride=2, - name="dis_h2", - param_attr=param_attr, - bias_attr=bias_attr, - param_attr_bn=param_attr_bn, - bn=True) - - return fc_layer( - input=h2_bn, - name="dis_prob", - size=2, - bias_attr=bias_attr, - param_attr=param_attr, - act=SoftmaxActivation()) - - -if is_generator_training: - noise = data_layer(name="noise", size=noise_dim) - sample = generator(noise) - -if is_discriminator_training: - sample = data_layer(name="sample", size=sample_dim * sample_dim * c_dim) - -if is_generator_training or is_discriminator_training: - label = data_layer(name="label", size=1) - prob = discriminator(sample) - cost = cross_entropy(input=prob, label=label) - classification_error_evaluator( - input=prob, label=label, name=mode + '_error') - outputs(cost) - -if is_generator: - noise = data_layer(name="noise", size=noise_dim) - outputs(generator(noise)) diff --git a/v1_api_demo/gan/gan_trainer.py b/v1_api_demo/gan/gan_trainer.py deleted file mode 100644 index 4a26c230f7..0000000000 --- a/v1_api_demo/gan/gan_trainer.py +++ /dev/null @@ -1,349 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import argparse -import random -import numpy -import cPickle -import sys, os -from PIL import Image - -from paddle.trainer.config_parser import parse_config -from paddle.trainer.config_parser import logger -import py_paddle.swig_paddle as api -import matplotlib.pyplot as plt - - -def plot2DScatter(data, outputfile): - ''' - Plot the data as a 2D scatter plot and save to outputfile - data needs to be two dimensinoal - ''' - x = data[:, 0] - y = data[:, 1] - logger.info("The mean vector is %s" % numpy.mean(data, 0)) - logger.info("The std vector is %s" % numpy.std(data, 0)) - - heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50) - extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] - - plt.clf() - plt.scatter(x, y) - plt.savefig(outputfile, bbox_inches='tight') - - -def CHECK_EQ(a, b): - assert a == b, "a=%s, b=%s" % (a, b) - - -def copy_shared_parameters(src, dst): - ''' - copy the parameters from src to dst - :param src: the source of the parameters - :type src: GradientMachine - :param dst: the destination of the parameters - :type dst: GradientMachine - ''' - src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] - src_params = dict([(p.getName(), p) for p in src_params]) - - for i in xrange(dst.getParameterSize()): - dst_param = dst.getParameter(i) - src_param = src_params.get(dst_param.getName(), None) - if src_param is None: - continue - src_value = src_param.getBuf(api.PARAMETER_VALUE) - dst_value = dst_param.getBuf(api.PARAMETER_VALUE) - CHECK_EQ(len(src_value), len(dst_value)) - dst_value.copyFrom(src_value) - dst_param.setValueUpdated() - - -def print_parameters(src): - src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] - - print "***************" - for p in src_params: - print "Name is %s" % p.getName() - print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray( - ) - - -def load_mnist_data(imageFile): - f = open(imageFile, "rb") - f.read(16) - - # Define number of samples for train/test - if "train" in imageFile: - n = 60000 - else: - n = 10000 - - data = numpy.fromfile(f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)) - data = data / 255.0 * 2.0 - 1.0 - - f.close() - return data.astype('float32') - - -def load_cifar_data(cifar_path): - batch_size = 10000 - data = numpy.zeros((5 * batch_size, 32 * 32 * 3), dtype="float32") - for i in range(1, 6): - file = cifar_path + "/data_batch_" + str(i) - fo = open(file, 'rb') - dict = cPickle.load(fo) - fo.close() - data[(i - 1) * batch_size:(i * batch_size), :] = dict["data"] - - data = data / 255.0 * 2.0 - 1.0 - return data - - -# synthesize 2-D uniform data -def load_uniform_data(): - data = numpy.random.rand(1000000, 2).astype('float32') - return data - - -def merge(images, size): - if images.shape[1] == 28 * 28: - h, w, c = 28, 28, 1 - else: - h, w, c = 32, 32, 3 - img = numpy.zeros((h * size[0], w * size[1], c)) - for idx in xrange(size[0] * size[1]): - i = idx % size[1] - j = idx // size[1] - img[j*h:j*h+h, i*w:i*w+w, :] = \ - ((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0) - return img.astype('uint8') - - -def save_images(images, path): - merged_img = merge(images, [8, 8]) - if merged_img.shape[2] == 1: - im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB') - else: - im = Image.fromarray(merged_img, mode="RGB") - im.save(path) - - -def get_real_samples(batch_size, data_np): - return data_np[numpy.random.choice( - data_np.shape[0], batch_size, replace=False), :] - - -def get_noise(batch_size, noise_dim): - return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32') - - -def get_fake_samples(generator_machine, batch_size, noise): - gen_inputs = api.Arguments.createArguments(1) - gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) - gen_outputs = api.Arguments.createArguments(0) - generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST) - fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat() - return fake_samples - - -def get_training_loss(training_machine, inputs): - outputs = api.Arguments.createArguments(0) - training_machine.forward(inputs, outputs, api.PASS_TEST) - loss = outputs.getSlotValue(0).copyToNumpyMat() - return numpy.mean(loss) - - -def prepare_discriminator_data_batch_pos(batch_size, data_np): - real_samples = get_real_samples(batch_size, data_np) - labels = numpy.ones(batch_size, dtype='int32') - inputs = api.Arguments.createArguments(2) - inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples)) - inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels)) - return inputs - - -def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise): - fake_samples = get_fake_samples(generator_machine, batch_size, noise) - labels = numpy.zeros(batch_size, dtype='int32') - inputs = api.Arguments.createArguments(2) - inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples)) - inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels)) - return inputs - - -def prepare_generator_data_batch(batch_size, noise): - label = numpy.ones(batch_size, dtype='int32') - inputs = api.Arguments.createArguments(2) - inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) - inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label)) - return inputs - - -def find(iterable, cond): - for item in iterable: - if cond(item): - return item - return None - - -def get_layer_size(model_conf, layer_name): - layer_conf = find(model_conf.layers, lambda x: x.name == layer_name) - assert layer_conf is not None, "Cannot find '%s' layer" % layer_name - return layer_conf.size - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument("-d", "--data_source", help="mnist or cifar or uniform") - parser.add_argument( - "--use_gpu", default="1", help="1 means use gpu for training") - parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter") - args = parser.parse_args() - data_source = args.data_source - use_gpu = args.use_gpu - assert data_source in ["mnist", "cifar", "uniform"] - assert use_gpu in ["0", "1"] - - if not os.path.exists("./%s_samples/" % data_source): - os.makedirs("./%s_samples/" % data_source) - - if not os.path.exists("./%s_params/" % data_source): - os.makedirs("./%s_params/" % data_source) - - api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', - '--log_period=100', '--gpu_id=' + args.gpu_id, - '--save_dir=' + "./%s_params/" % data_source) - - if data_source == "uniform": - conf = "gan_conf.py" - num_iter = 10000 - else: - conf = "gan_conf_image.py" - num_iter = 1000 - - gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source) - dis_conf = parse_config(conf, - "mode=discriminator_training,data=" + data_source) - generator_conf = parse_config(conf, "mode=generator,data=" + data_source) - batch_size = dis_conf.opt_config.batch_size - noise_dim = get_layer_size(gen_conf.model_config, "noise") - - if data_source == "mnist": - data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte") - elif data_source == "cifar": - data_np = load_cifar_data("./data/cifar-10-batches-py/") - else: - data_np = load_uniform_data() - - # this creates a gradient machine for discriminator - dis_training_machine = api.GradientMachine.createFromConfigProto( - dis_conf.model_config) - # this create a gradient machine for generator - gen_training_machine = api.GradientMachine.createFromConfigProto( - gen_conf.model_config) - - # generator_machine is used to generate data only, which is used for - # training discriminator - logger.info(str(generator_conf.model_config)) - generator_machine = api.GradientMachine.createFromConfigProto( - generator_conf.model_config) - - dis_trainer = api.Trainer.create(dis_conf, dis_training_machine) - - gen_trainer = api.Trainer.create(gen_conf, gen_training_machine) - - dis_trainer.startTrain() - gen_trainer.startTrain() - - # Sync parameters between networks (GradientMachine) at the beginning - copy_shared_parameters(gen_training_machine, dis_training_machine) - copy_shared_parameters(gen_training_machine, generator_machine) - - # constrain that either discriminator or generator can not be trained - # consecutively more than MAX_strike times - curr_train = "dis" - curr_strike = 0 - MAX_strike = 5 - - for train_pass in xrange(100): - dis_trainer.startTrainPass() - gen_trainer.startTrainPass() - for i in xrange(num_iter): - # Do forward pass in discriminator to get the dis_loss - noise = get_noise(batch_size, noise_dim) - data_batch_dis_pos = prepare_discriminator_data_batch_pos( - batch_size, data_np) - dis_loss_pos = get_training_loss(dis_training_machine, - data_batch_dis_pos) - - data_batch_dis_neg = prepare_discriminator_data_batch_neg( - generator_machine, batch_size, noise) - dis_loss_neg = get_training_loss(dis_training_machine, - data_batch_dis_neg) - - dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0 - - # Do forward pass in generator to get the gen_loss - data_batch_gen = prepare_generator_data_batch(batch_size, noise) - gen_loss = get_training_loss(gen_training_machine, data_batch_gen) - - if i % 100 == 0: - print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos, - dis_loss_neg) - print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss) - - # Decide which network to train based on the training history - # And the relative size of the loss - if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \ - ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss): - if curr_train == "dis": - curr_strike += 1 - else: - curr_train = "dis" - curr_strike = 1 - dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg) - dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos) - copy_shared_parameters(dis_training_machine, - gen_training_machine) - - else: - if curr_train == "gen": - curr_strike += 1 - else: - curr_train = "gen" - curr_strike = 1 - gen_trainer.trainOneDataBatch(batch_size, data_batch_gen) - # TODO: add API for paddle to allow true parameter sharing between different GradientMachines - # so that we do not need to copy shared parameters. - copy_shared_parameters(gen_training_machine, - dis_training_machine) - copy_shared_parameters(gen_training_machine, generator_machine) - - dis_trainer.finishTrainPass() - gen_trainer.finishTrainPass() - # At the end of each pass, save the generated samples/images - fake_samples = get_fake_samples(generator_machine, batch_size, noise) - if data_source == "uniform": - plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % - (data_source, train_pass)) - else: - save_images(fake_samples, "./%s_samples/train_pass%s.png" % - (data_source, train_pass)) - dis_trainer.finishTrain() - gen_trainer.finishTrain() - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/mnist/.gitignore b/v1_api_demo/mnist/.gitignore deleted file mode 100644 index 7e61d5e3a0..0000000000 --- a/v1_api_demo/mnist/.gitignore +++ /dev/null @@ -1,10 +0,0 @@ -data/raw_data -data/*.list -mnist_vgg_model -plot.png -train.log -*pyc -.ipynb_checkpoints -params.pkl -params.tar -params.tar.gz diff --git a/v1_api_demo/mnist/api_train.py b/v1_api_demo/mnist/api_train.py deleted file mode 100644 index ea1caa7dd9..0000000000 --- a/v1_api_demo/mnist/api_train.py +++ /dev/null @@ -1,196 +0,0 @@ -""" -A very basic example for how to use current Raw SWIG API to train mnist network. - -Current implementation uses Raw SWIG, which means the API call is directly \ -passed to C++ side of Paddle. - -The user api could be simpler and carefully designed. -""" -import random - -import numpy as np -import paddle.v2 as paddle_v2 -import py_paddle.swig_paddle as api -from paddle.trainer_config_helpers import * -from py_paddle import DataProviderConverter - -from mnist_util import read_from_mnist - - -def init_parameter(network): - assert isinstance(network, api.GradientMachine) - for each_param in network.getParameters(): - assert isinstance(each_param, api.Parameter) - array_size = len(each_param) - array = np.random.uniform(-1.0, 1.0, array_size).astype('float32') - each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(array) - - -def generator_to_batch(generator, batch_size): - ret_val = list() - for each_item in generator: - ret_val.append(each_item) - if len(ret_val) == batch_size: - yield ret_val - ret_val = list() - if len(ret_val) != 0: - yield ret_val - - -class BatchPool(object): - def __init__(self, generator, batch_size): - self.data = list(generator) - self.batch_size = batch_size - - def __call__(self): - random.shuffle(self.data) - for offset in xrange(0, len(self.data), self.batch_size): - limit = min(offset + self.batch_size, len(self.data)) - yield self.data[offset:limit] - - -def input_order_converter(generator): - for each_item in generator: - yield each_item['pixel'], each_item['label'] - - -def main(): - api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores - - optimizer = paddle_v2.optimizer.Adam( - learning_rate=1e-4, - batch_size=1000, - model_average=ModelAverage(average_window=0.5), - regularization=L2Regularization(rate=0.5)) - - # Create Local Updater. Local means not run in cluster. - # For a cluster training, here we can change to createRemoteUpdater - # in future. - updater = optimizer.create_local_updater() - assert isinstance(updater, api.ParameterUpdater) - - # define network - images = paddle_v2.layer.data( - name='pixel', type=paddle_v2.data_type.dense_vector(784)) - label = paddle_v2.layer.data( - name='label', type=paddle_v2.data_type.integer_value(10)) - hidden1 = paddle_v2.layer.fc(input=images, size=200) - hidden2 = paddle_v2.layer.fc(input=hidden1, size=200) - inference = paddle_v2.layer.fc(input=hidden2, - size=10, - act=paddle_v2.activation.Softmax()) - cost = paddle_v2.layer.classification_cost(input=inference, label=label) - - # Create Simple Gradient Machine. - model_config = paddle_v2.layer.parse_network(cost) - m = api.GradientMachine.createFromConfigProto(model_config, - api.CREATE_MODE_NORMAL, - optimizer.enable_types()) - - # This type check is not useful. Only enable type hint in IDE. - # Such as PyCharm - assert isinstance(m, api.GradientMachine) - - # Initialize Parameter by numpy. - init_parameter(network=m) - - # Initialize ParameterUpdater. - updater.init(m) - - # DataProvider Converter is a utility convert Python Object to Paddle C++ - # Input. The input format is as same as Paddle's DataProvider. - converter = DataProviderConverter(input_types=[images.type, label.type]) - - train_file = './data/raw_data/train' - test_file = './data/raw_data/t10k' - - # start gradient machine. - # the gradient machine must be started before invoke forward/backward. - # not just for training, but also for inference. - m.start() - - # evaluator can print error rate, etc. It is a C++ class. - batch_evaluator = m.makeEvaluator() - test_evaluator = m.makeEvaluator() - - # Get Train Data. - # TrainData will stored in a data pool. Currently implementation is not care - # about memory, speed. Just a very naive implementation. - train_data_generator = input_order_converter(read_from_mnist(train_file)) - train_data = BatchPool(train_data_generator, 512) - - # outArgs is Neural Network forward result. Here is not useful, just passed - # to gradient_machine.forward - outArgs = api.Arguments.createArguments(0) - - for pass_id in xrange(2): # we train 2 passes. - updater.startPass() - - for batch_id, data_batch in enumerate(train_data()): - # data_batch is input images. - # here, for online learning, we could get data_batch from network. - - # Start update one batch. - pass_type = updater.startBatch(len(data_batch)) - - # Start BatchEvaluator. - # batch_evaluator can be used between start/finish. - batch_evaluator.start() - - # forwardBackward is a shortcut for forward and backward. - # It is sometimes faster than invoke forward/backward separately, - # because in GradientMachine, it may be async. - m.forwardBackward(converter(data_batch), outArgs, pass_type) - - for each_param in m.getParameters(): - updater.update(each_param) - - # Get cost. We use numpy to calculate total cost for this batch. - cost_vec = outArgs.getSlotValue(0) - cost_vec = cost_vec.copyToNumpyMat() - cost = cost_vec.sum() / len(data_batch) - - # Make evaluator works. - m.eval(batch_evaluator) - - # Print logs. - print 'Pass id', pass_id, 'Batch id', batch_id, 'with cost=', \ - cost, batch_evaluator - - batch_evaluator.finish() - # Finish batch. - # * will clear gradient. - # * ensure all values should be updated. - updater.finishBatch(cost) - - # testing stage. use test data set to test current network. - updater.apply() - test_evaluator.start() - test_data_generator = input_order_converter(read_from_mnist(test_file)) - for data_batch in generator_to_batch(test_data_generator, 512): - # in testing stage, only forward is needed. - m.forward(converter(data_batch), outArgs, api.PASS_TEST) - m.eval(test_evaluator) - - # print error rate for test data set - print 'Pass', pass_id, ' test evaluator: ', test_evaluator - test_evaluator.finish() - updater.restore() - - updater.catchUpWith() - params = m.getParameters() - for each_param in params: - assert isinstance(each_param, api.Parameter) - value = each_param.getBuf(api.PARAMETER_VALUE) - value = value.copyToNumpyArray() - - # Here, we could save parameter to every where you want - print each_param.getName(), value - - updater.finishPass() - - m.finish() - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/mnist/data/generate_list.py b/v1_api_demo/mnist/data/generate_list.py deleted file mode 100644 index 49981cc7a9..0000000000 --- a/v1_api_demo/mnist/data/generate_list.py +++ /dev/null @@ -1,21 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -o = open("./" + "train.list", "w") -o.write("./data/raw_data/train" + "\n") -o.close() - -o = open("./" + "test.list", "w") -o.write("./data/raw_data/t10k" + "\n") -o.close() diff --git a/v1_api_demo/mnist/data/get_mnist_data.sh b/v1_api_demo/mnist/data/get_mnist_data.sh deleted file mode 100755 index 5a2e34026d..0000000000 --- a/v1_api_demo/mnist/data/get_mnist_data.sh +++ /dev/null @@ -1,21 +0,0 @@ -#!/usr/bin/env sh -# This scripts downloads the mnist data and unzips it. -set -e -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -rm -rf "$DIR/raw_data" -mkdir "$DIR/raw_data" -cd "$DIR/raw_data" - -echo "Downloading..." - -for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte -do - if [ ! -e $fname ]; then - wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz - gunzip ${fname}.gz - fi -done - -cd $DIR -rm -f *.list -python generate_list.py diff --git a/v1_api_demo/mnist/light_mnist.py b/v1_api_demo/mnist/light_mnist.py deleted file mode 100644 index 3340905435..0000000000 --- a/v1_api_demo/mnist/light_mnist.py +++ /dev/null @@ -1,79 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -is_predict = get_config_arg("is_predict", bool, False) - -####################Data Configuration ################## - -if not is_predict: - data_dir = './data/' - define_py_data_sources2( - train_list=data_dir + 'train.list', - test_list=data_dir + 'test.list', - module='mnist_provider', - obj='process') - -######################Algorithm Configuration ############# -settings(batch_size=50, learning_rate=0.001, learning_method=AdamOptimizer()) - -#######################Network Configuration ############# - -data_size = 1 * 28 * 28 -label_size = 10 -img = data_layer(name='pixel', size=data_size) - - -# light cnn -# A shallower cnn model: [CNN, BN, ReLU, Max-Pooling] x4 + FC x1 -# Easier to train for mnist dataset and quite efficient -# Final performance is close to deeper ones on tasks such as digital and character classification -def light_cnn(input_image, num_channels, num_classes): - def __light__(ipt, - num_filter=128, - times=1, - conv_filter_size=3, - dropouts=0, - num_channels_=None): - return img_conv_group( - input=ipt, - num_channels=num_channels_, - pool_size=2, - pool_stride=2, - conv_padding=0, - conv_num_filter=[num_filter] * times, - conv_filter_size=conv_filter_size, - conv_act=ReluActivation(), - conv_with_batchnorm=True, - conv_batchnorm_drop_rate=dropouts, - pool_type=MaxPooling()) - - tmp = __light__(input_image, num_filter=128, num_channels_=num_channels) - tmp = __light__(tmp, num_filter=128) - tmp = __light__(tmp, num_filter=128) - tmp = __light__(tmp, num_filter=128, conv_filter_size=1) - - tmp = fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation()) - return tmp - - -predict = light_cnn(input_image=img, num_channels=1, num_classes=label_size) - -if not is_predict: - lbl = data_layer(name="label", size=label_size) - inputs(img, lbl) - outputs(classification_cost(input=predict, label=lbl)) -else: - outputs(predict) diff --git a/v1_api_demo/mnist/mnist_provider.py b/v1_api_demo/mnist/mnist_provider.py deleted file mode 100644 index 888cfef1e7..0000000000 --- a/v1_api_demo/mnist/mnist_provider.py +++ /dev/null @@ -1,12 +0,0 @@ -from paddle.trainer.PyDataProvider2 import * -from mnist_util import read_from_mnist - - -# Define a py data provider -@provider( - input_types={'pixel': dense_vector(28 * 28), - 'label': integer_value(10)}, - cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, filename): # settings is not used currently. - for each in read_from_mnist(filename): - yield each diff --git a/v1_api_demo/mnist/mnist_util.py b/v1_api_demo/mnist/mnist_util.py deleted file mode 100644 index 3fd88ae7ed..0000000000 --- a/v1_api_demo/mnist/mnist_util.py +++ /dev/null @@ -1,30 +0,0 @@ -import numpy - -__all__ = ['read_from_mnist'] - - -def read_from_mnist(filename): - imgf = filename + "-images-idx3-ubyte" - labelf = filename + "-labels-idx1-ubyte" - f = open(imgf, "rb") - l = open(labelf, "rb") - - f.read(16) - l.read(8) - - # Define number of samples for train/test - if "train" in filename: - n = 60000 - else: - n = 10000 - - images = numpy.fromfile( - f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32') - images = images / 255.0 * 2.0 - 1.0 - labels = numpy.fromfile(l, 'ubyte', count=n).astype("int") - - for i in xrange(n): - yield {"pixel": images[i, :], 'label': labels[i]} - - f.close() - l.close() diff --git a/v1_api_demo/mnist/train.sh b/v1_api_demo/mnist/train.sh deleted file mode 100755 index ca2b1ad9eb..0000000000 --- a/v1_api_demo/mnist/train.sh +++ /dev/null @@ -1,32 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -config=vgg_16_mnist.py -output=./mnist_vgg_model -log=train.log - -paddle train \ ---config=$config \ ---dot_period=10 \ ---log_period=100 \ ---test_all_data_in_one_period=1 \ ---use_gpu=0 \ ---trainer_count=1 \ ---num_passes=100 \ ---save_dir=$output \ -2>&1 | tee $log -paddle usage -l $log -e $? -n "mnist_train" >/dev/null 2>&1 - -python -m paddle.utils.plotcurve -i $log > plot.png diff --git a/v1_api_demo/mnist/vgg_16_mnist.py b/v1_api_demo/mnist/vgg_16_mnist.py deleted file mode 100644 index a819b391c6..0000000000 --- a/v1_api_demo/mnist/vgg_16_mnist.py +++ /dev/null @@ -1,50 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -is_predict = get_config_arg("is_predict", bool, False) - -####################Data Configuration ################## - -if not is_predict: - data_dir = './data/' - define_py_data_sources2( - train_list=data_dir + 'train.list', - test_list=data_dir + 'test.list', - module='mnist_provider', - obj='process') - -######################Algorithm Configuration ############# -settings( - batch_size=128, - learning_rate=0.1 / 128.0, - learning_method=MomentumOptimizer(0.9), - regularization=L2Regularization(0.0005 * 128)) - -#######################Network Configuration ############# - -data_size = 1 * 28 * 28 -label_size = 10 -img = data_layer(name='pixel', size=data_size) - -# small_vgg is predined in trainer_config_helpers.network -predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size) - -if not is_predict: - lbl = data_layer(name="label", size=label_size) - inputs(img, lbl) - outputs(classification_cost(input=predict, label=lbl)) -else: - outputs(predict) diff --git a/v1_api_demo/model_zoo/embedding/.gitignore b/v1_api_demo/model_zoo/embedding/.gitignore deleted file mode 100644 index 908f5a3fb2..0000000000 --- a/v1_api_demo/model_zoo/embedding/.gitignore +++ /dev/null @@ -1,2 +0,0 @@ -baidu.dict -model_*.emb diff --git a/v1_api_demo/model_zoo/embedding/extract_para.py b/v1_api_demo/model_zoo/embedding/extract_para.py deleted file mode 100755 index 570b90c1f7..0000000000 --- a/v1_api_demo/model_zoo/embedding/extract_para.py +++ /dev/null @@ -1,113 +0,0 @@ -#!/bin/env python -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Example: - python extract_para.py --preModel PREMODEL --preDict PREDICT \ - --usrModel USRMODEL --usrDict USRDICT -d DIM - -Options: - -h, --help show this help message and exit - --preModel PREMODEL the name of pretrained embedding model - --preDict PREDICT the name of pretrained dictionary - --usrModel usrModel the name of output usr embedding model - --usrDict usrDict the name of user specified dictionary - -d DIM dimension of parameter -""" -from optparse import OptionParser -import struct - - -def get_row_index(preDict, usrDict): - """ - Get the row positions for all words in user dictionary from pre-trained dictionary. - return: a list of row positions - Example: preDict='a\nb\nc\n', usrDict='a\nc\n', then return [0,2] - """ - pos = [] - index = dict() - with open(preDict, "r") as f: - for line_index, line in enumerate(f): - word = line.strip().split()[0] - index[word] = line_index - with open(usrDict, "r") as f: - for line in f: - word = line.strip().split()[0] - pos.append(index[word]) - return pos - - -def extract_parameters_by_usrDict(preModel, preDict, usrModel, usrDict, - paraDim): - """ - Extract desired parameters from a pretrained embedding model based on user dictionary - """ - if paraDim not in [32, 64, 128, 256]: - raise RuntimeError("We only support 32, 64, 128, 256 dimensions now") - - fi = open(preModel, "rb") - fo = open(usrModel, "wb") - - # write filehead - rowIndex = get_row_index(preDict, usrDict) - newHead = struct.pack("iil", 0, 4, len(rowIndex) * paraDim) - fo.write(newHead) - bytes = 4 * paraDim - for i in range(0, len(rowIndex)): - # find the absolute position of input file - fi.seek(rowIndex[i] * bytes + 16, 0) - fo.write(fi.read(bytes)) - - print "extract parameters finish, total", len(rowIndex), "lines" - fi.close() - - -def main(): - """ - Main entry for running paraconvert.py - """ - usage = "usage: \n" \ - "python %prog --preModel PREMODEL --preDict PREDICT" \ - " --usrModel USRMODEL --usrDict USRDICT -d DIM" - parser = OptionParser(usage) - parser.add_option( - "--preModel", - action="store", - dest="preModel", - help="the name of pretrained embedding model") - parser.add_option( - "--preDict", - action="store", - dest="preDict", - help="the name of pretrained dictionary") - parser.add_option( - "--usrModel", - action="store", - dest="usrModel", - help="the name of output usr embedding model") - parser.add_option( - "--usrDict", - action="store", - dest="usrDict", - help="the name of user specified dictionary") - parser.add_option( - "-d", action="store", dest="dim", help="dimension of parameter") - (options, args) = parser.parse_args() - extract_parameters_by_usrDict(options.preModel, options.preDict, - options.usrModel, options.usrDict, - int(options.dim)) - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/model_zoo/embedding/paraconvert.py b/v1_api_demo/model_zoo/embedding/paraconvert.py deleted file mode 100755 index ce7a70efc4..0000000000 --- a/v1_api_demo/model_zoo/embedding/paraconvert.py +++ /dev/null @@ -1,159 +0,0 @@ -#!/bin/env python -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Example: - python paraconvert.py --b2t -i INPUT -o OUTPUT -d DIM - python paraconvert.py --t2b -i INPUT -o OUTPUT - -Options: - -h, --help show this help message and exit - --b2t convert parameter file of embedding model from binary to text - --t2b convert parameter file of embedding model from text to binary - -i INPUT input parameter file name - -o OUTPUT output parameter file name - -d DIM dimension of parameter -""" -from optparse import OptionParser -import struct - - -def binary2text(input, output, paraDim): - """ - Convert a binary parameter file of embedding model to be a text file. - input: the name of input binary parameter file, the format is: - 1) the first 16 bytes is filehead: - version(4 bytes): version of paddle, default = 0 - floatSize(4 bytes): sizeof(float) = 4 - paraCount(8 bytes): total number of parameter - 2) the next (paraCount * 4) bytes is parameters, each has 4 bytes - output: the name of output text parameter file, for example: - 0,4,32156096 - -0.7845433,1.1937413,-0.1704215,... - 0.0000909,0.0009465,-0.0008813,... - ... - the format is: - 1) the first line is filehead: - version=0, floatSize=4, paraCount=32156096 - 2) other lines print the paramters - a) each line prints paraDim paramters splitted by ',' - b) there is paraCount/paraDim lines (embedding words) - paraDim: dimension of parameters - """ - fi = open(input, "rb") - fo = open(output, "w") - """ - """ - version, floatSize, paraCount = struct.unpack("iil", fi.read(16)) - newHead = ','.join([str(version), str(floatSize), str(paraCount)]) - print >> fo, newHead - - bytes = 4 * int(paraDim) - format = "%df" % int(paraDim) - context = fi.read(bytes) - line = 0 - - while context: - numbers = struct.unpack(format, context) - lst = [] - for i in numbers: - lst.append('%8.7f' % i) - print >> fo, ','.join(lst) - context = fi.read(bytes) - line += 1 - fi.close() - fo.close() - print "binary2text finish, total", line, "lines" - - -def get_para_count(input): - """ - Compute the total number of embedding parameters in input text file. - input: the name of input text file - """ - numRows = 1 - paraDim = 0 - with open(input) as f: - line = f.readline() - paraDim = len(line.split(",")) - for line in f: - numRows += 1 - return numRows * paraDim - - -def text2binary(input, output, paddle_head=True): - """ - Convert a text parameter file of embedding model to be a binary file. - input: the name of input text parameter file, for example: - -0.7845433,1.1937413,-0.1704215,... - 0.0000909,0.0009465,-0.0008813,... - ... - the format is: - 1) it doesn't have filehead - 2) each line stores the same dimension of parameters, - the separator is commas ',' - output: the name of output binary parameter file, the format is: - 1) the first 16 bytes is filehead: - version(4 bytes), floatSize(4 bytes), paraCount(8 bytes) - 2) the next (paraCount * 4) bytes is parameters, each has 4 bytes - """ - fi = open(input, "r") - fo = open(output, "wb") - - newHead = struct.pack("iil", 0, 4, get_para_count(input)) - fo.write(newHead) - - count = 0 - for line in fi: - line = line.strip().split(",") - for i in range(0, len(line)): - binary_data = struct.pack("f", float(line[i])) - fo.write(binary_data) - count += 1 - fi.close() - fo.close() - print "text2binary finish, total", count, "lines" - - -def main(): - """ - Main entry for running paraconvert.py - """ - usage = "usage: \n" \ - "python %prog --b2t -i INPUT -o OUTPUT -d DIM \n" \ - "python %prog --t2b -i INPUT -o OUTPUT" - parser = OptionParser(usage) - parser.add_option( - "--b2t", - action="store_true", - help="convert parameter file of embedding model from binary to text") - parser.add_option( - "--t2b", - action="store_true", - help="convert parameter file of embedding model from text to binary") - parser.add_option( - "-i", action="store", dest="input", help="input parameter file name") - parser.add_option( - "-o", action="store", dest="output", help="output parameter file name") - parser.add_option( - "-d", action="store", dest="dim", help="dimension of parameter") - (options, args) = parser.parse_args() - if options.b2t: - binary2text(options.input, options.output, options.dim) - if options.t2b: - text2binary(options.input, options.output) - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/model_zoo/embedding/pre_DictAndModel.sh b/v1_api_demo/model_zoo/embedding/pre_DictAndModel.sh deleted file mode 100755 index f61c65a935..0000000000 --- a/v1_api_demo/model_zoo/embedding/pre_DictAndModel.sh +++ /dev/null @@ -1,32 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x -BASE_URL='http://paddlepaddle.cdn.bcebos.com/model_zoo/embedding' - -DOWNLOAD_ITEMS=(baidu.dict model_32.emb model_64.emb model_128.emb model_256.emb) -ITEM_MD5=(fa03a12321eaab6c30a8fcc9442eaea3 - f88c8325ee6da6187f1080e8fe66c1cd - 927cf70f27f860aff1a5703ebf7f1584 - a52e43655cd25d279777ed509a1ae27b - b92c67fe9ff70fea53596080e351ac80) - -for ((i=0; i<${#ITEM_MD5[@]}; i++)) -do - FILENAME=${DOWNLOAD_ITEMS[${i}]} - REAL_MD5=`wget ${BASE_URL}/${FILENAME} -O - | tee ${FILENAME} | md5sum | cut -d ' ' -f 1` - EXPECTED_MD5=${ITEM_MD5[${i}]} - [ "${EXPECTED_MD5}" = "${REAL_MD5}" ] -done diff --git a/v1_api_demo/model_zoo/resnet/.gitignore b/v1_api_demo/model_zoo/resnet/.gitignore deleted file mode 100644 index 7a64209b62..0000000000 --- a/v1_api_demo/model_zoo/resnet/.gitignore +++ /dev/null @@ -1,5 +0,0 @@ -fea_output/ -features/ -model.list -ResNet_50.dot -ResNet_50.png diff --git a/v1_api_demo/model_zoo/resnet/classify.py b/v1_api_demo/model_zoo/resnet/classify.py deleted file mode 100755 index 6074cc1d3a..0000000000 --- a/v1_api_demo/model_zoo/resnet/classify.py +++ /dev/null @@ -1,312 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import sys -import cPickle -import logging -from PIL import Image -import numpy as np -from optparse import OptionParser - -import paddle.utils.image_util as image_util - -from py_paddle import swig_paddle, DataProviderConverter -from paddle.trainer.PyDataProvider2 import dense_vector -from paddle.trainer.config_parser import parse_config - -logging.basicConfig( - format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s') -logging.getLogger().setLevel(logging.INFO) - - -class ImageClassifier(): - def __init__(self, - train_conf, - model_dir=None, - resize_dim=256, - crop_dim=224, - use_gpu=True, - mean_file=None, - output_layer=None, - oversample=False, - is_color=True): - """ - train_conf: network configure. - model_dir: string, directory of model. - resize_dim: int, resized image size. - crop_dim: int, crop size. - mean_file: string, image mean file. - oversample: bool, oversample means multiple crops, namely five - patches (the four corner patches and the center - patch) as well as their horizontal reflections, - ten crops in all. - """ - self.train_conf = train_conf - self.model_dir = model_dir - if model_dir is None: - self.model_dir = os.path.dirname(train_conf) - - self.resize_dim = resize_dim - self.crop_dims = [crop_dim, crop_dim] - self.oversample = oversample - self.is_color = is_color - - self.output_layer = output_layer - if self.output_layer: - assert isinstance(self.output_layer, basestring) - self.output_layer = self.output_layer.split(",") - - self.transformer = image_util.ImageTransformer(is_color=is_color) - self.transformer.set_transpose((2, 0, 1)) - self.transformer.set_channel_swap((2, 1, 0)) - - self.mean_file = mean_file - if self.mean_file is not None: - mean = np.load(self.mean_file)['data_mean'] - mean = mean.reshape(3, self.crop_dims[0], self.crop_dims[1]) - self.transformer.set_mean(mean) # mean pixel - else: - # if you use three mean value, set like: - # this three mean value is calculated from ImageNet. - self.transformer.set_mean(np.array([103.939, 116.779, 123.68])) - - conf_args = "is_test=1,use_gpu=%d,is_predict=1" % (int(use_gpu)) - conf = parse_config(train_conf, conf_args) - swig_paddle.initPaddle("--use_gpu=%d" % (int(use_gpu))) - self.network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - assert isinstance(self.network, swig_paddle.GradientMachine) - self.network.loadParameters(self.model_dir) - - data_size = 3 * self.crop_dims[0] * self.crop_dims[1] - slots = [dense_vector(data_size)] - self.converter = DataProviderConverter(slots) - - def get_data(self, img_path): - """ - 1. load image from img_path. - 2. resize or oversampling. - 3. transformer data: transpose, channel swap, sub mean. - return K x H x W ndarray. - - img_path: image path. - """ - image = image_util.load_image(img_path, self.is_color) - # Another way to extract oversampled features is that - # cropping and averaging from large feature map which is - # calculated by large size of image. - # This way reduces the computation. - if self.oversample: - # image_util.resize_image: short side is self.resize_dim - image = image_util.resize_image(image, self.resize_dim) - image = np.array(image) - input = np.zeros( - (1, image.shape[0], image.shape[1], 3), dtype=np.float32) - input[0] = image.astype(np.float32) - input = image_util.oversample(input, self.crop_dims) - else: - image = image.resize(self.crop_dims, Image.ANTIALIAS) - input = np.zeros( - (1, self.crop_dims[0], self.crop_dims[1], 3), dtype=np.float32) - input[0] = np.array(image).astype(np.float32) - - data_in = [] - for img in input: - img = self.transformer.transformer(img).flatten() - data_in.append([img.tolist()]) - # paddle input: [[[]],[[]],...], [[]] is one sample. - return data_in - - def forward(self, input_data): - """ - return output arguments which are the Outputs() in network configure. - - input_data: py_paddle input data. - call forward. - """ - in_arg = self.converter(input_data) - return self.network.forwardTest(in_arg) - - def forward(self, data, output_layer): - """ - return output arguments which are the Outputs() in network configure. - - input_data: py_paddle input data. - call forward. - """ - input = self.converter(data) - self.network.forwardTest(input) - output = self.network.getLayerOutputs(output_layer) - res = {} - if isinstance(output_layer, basestring): - output_layer = [output_layer] - for name in output_layer: - # For oversampling, average predictions across crops. - # If not, the shape of output[name]: (1, class_number), - # the mean is also applicable. - res[name] = output[name]['value'].mean(0) - - return res - - def predict(self, data_file): - """ - call forward and predicting. - - data_file: input image list. - """ - image_files = open(data_file, 'rb').readlines() - results = {} - if self.output_layer is None: - self.output_layer = ["output"] - for line in image_files: - image = line.split()[0] - data = self.get_data(image) - prob = self.forward(data, self.output_layer) - lab = np.argsort(-prob[self.output_layer[0]]) - results[image] = lab[0] - logging.info("Label of %s is: %d", image, lab[0]) - return results - - def extract(self, data_file, output_dir, batch_size=10000): - """ - extract and save features of output layers, which are - specify in Outputs() in network configure. - - data_file: file name of input data. - output_dir: saved directory of extracted features. - batch_size: sample number of one batch file. - """ - if not os.path.exists(output_dir): - os.mkdir(output_dir) - - sample_num = 0 - batch_num = 0 - image_feature = {} - image_files = open(data_file, 'rb').readlines() - for idx, line in enumerate(image_files): - image = line.split()[0] - data = self.get_data(image) - feature = self.forward(data, self.output_layer) - # save extracted features - file_name = image.split("/")[-1] - image_feature[file_name] = feature - sample_num += 1 - if sample_num == batch_size: - batch_name = os.path.join(output_dir, 'batch_%d' % (batch_num)) - self.save_file(image_feature, batch_name) - logging.info('Finish batch %d', batch_num) - batch_num += 1 - sample_num = 0 - image_feature = {} - if idx % 1000 == 0: - logging.info('%d/%d, %s', idx, len(image_files), file_name) - if sample_num > 0: - batch_name = os.path.join(output_dir, 'batch_%d' % (batch_num)) - self.save_file(image_feature, batch_name) - logging.info('Finish batch %d', batch_num) - logging.info('Done: make image feature batch') - - def save_file(self, data, file): - of = open(file, 'wb') - cPickle.dump(data, of, protocol=cPickle.HIGHEST_PROTOCOL) - - -def option_parser(): - """ - Main entry for predciting - """ - usage = "%prog -c config -i data_list -w model_dir [options]" - parser = OptionParser(usage="usage: %s" % usage) - parser.add_option( - "-j", - "--job", - action="store", - dest="job_type", - help="job type: predict, extract\ - predict: predicting,\ - extract: extract features") - parser.add_option( - "-c", - "--conf", - action="store", - dest="train_conf", - help="network config") - parser.add_option( - "-i", "--data", action="store", dest="data_file", help="image list") - parser.add_option( - "-w", - "--model", - action="store", - dest="model_path", - default=None, - help="model path") - parser.add_option( - "-g", - "--use_gpu", - action="store", - dest="use_gpu", - default=True, - help="Whether to use gpu mode.") - parser.add_option( - "-o", - "--output_dir", - action="store", - dest="output_dir", - default="output", - help="output path") - parser.add_option( - "-m", - "--mean", - action="store", - dest="mean", - default=None, - help="mean file.") - parser.add_option( - "-p", - "--multi_crop", - action="store_true", - dest="multi_crop", - default=False, - help="Wether to use multiple crops on image.") - parser.add_option("-l", "--output_layer", action="store", - dest="output_layer", default=None, - help="--job=extract, specify layers to extract "\ - "features, --job=predict, specify layer of " - "classification probability, output in resnet.py.") - return parser.parse_args() - - -def main(): - """ - 1. parse input arguments. - 2. predicting or extract features according job type. - """ - options, args = option_parser() - obj = ImageClassifier( - options.train_conf, - options.model_path, - use_gpu=options.use_gpu, - mean_file=options.mean, - output_layer=options.output_layer, - oversample=options.multi_crop) - if options.job_type == "predict": - obj.predict(options.data_file) - - elif options.job_type == "extract": - obj.extract(options.data_file, options.output_dir) - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/model_zoo/resnet/example/.gitignore b/v1_api_demo/model_zoo/resnet/example/.gitignore deleted file mode 100644 index 4a2b5962a6..0000000000 --- a/v1_api_demo/model_zoo/resnet/example/.gitignore +++ /dev/null @@ -1 +0,0 @@ -*image_list_provider_copy_1.py diff --git a/v1_api_demo/model_zoo/resnet/example/__init__.py b/v1_api_demo/model_zoo/resnet/example/__init__.py deleted file mode 100644 index f662d68263..0000000000 --- a/v1_api_demo/model_zoo/resnet/example/__init__.py +++ /dev/null @@ -1,13 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. diff --git a/v1_api_demo/model_zoo/resnet/example/cat.jpg b/v1_api_demo/model_zoo/resnet/example/cat.jpg deleted file mode 100644 index 47b01db90e..0000000000 Binary files a/v1_api_demo/model_zoo/resnet/example/cat.jpg and /dev/null differ diff --git a/v1_api_demo/model_zoo/resnet/example/dog.jpg b/v1_api_demo/model_zoo/resnet/example/dog.jpg deleted file mode 100644 index b9cc33cf06..0000000000 Binary files a/v1_api_demo/model_zoo/resnet/example/dog.jpg and /dev/null differ diff --git a/v1_api_demo/model_zoo/resnet/example/image_list_provider.py b/v1_api_demo/model_zoo/resnet/example/image_list_provider.py deleted file mode 100644 index 2cd8eb8bf8..0000000000 --- a/v1_api_demo/model_zoo/resnet/example/image_list_provider.py +++ /dev/null @@ -1,102 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.utils.image_util import * -from paddle.trainer.PyDataProvider2 import * - - -def hook(settings, image_size, crop_size, color, file_list, is_train, **kwargs): - """ - Description: Init with a list of data file - file_list is the name list of input files. - kwargs["load_data_args"] is the value of 'load_data_args' - which can be set in config. - Each args is separated by a column. - image_size: the crop image size. - mean_meta: the path of the meta file to store the mean image. - mean_value: can be mean value, not a file. - can not set mean_meta and mean_value at the same time. - color: 'color' means a color image. Otherwise, it means a gray image. - is_train: whether the data provider is used for training. - Data argumentation might be different for training and testing. - """ - settings.img_size = image_size - settings.crop_size = crop_size - settings.mean_img_size = settings.crop_size - settings.color = color # default is color - settings.is_train = is_train - - settings.is_swap_channel = kwargs.get('swap_channel', None) - if settings.is_swap_channel is not None: - settings.swap_channel = settings.is_swap_channel - settings.is_swap_channel = True - - if settings.color: - settings.img_input_size = settings.crop_size * settings.crop_size * 3 - else: - settings.img_input_size = settings.crop_size * settings.crop_size - - settings.file_list = file_list - settings.mean_meta = kwargs.get('mean_meta', None) - settings.mean_value = kwargs.get('mean_value', None) - # can not specify both mean_meta and mean_value. - assert not (settings.mean_meta and settings.mean_value) - if not settings.mean_meta: - settings.mean_value = kwargs.get('mean_value') - sz = settings.crop_size * settings.crop_size - settings.img_mean = np.zeros(sz * 3, dtype=np.single) - for idx, value in enumerate(settings.mean_value): - settings.img_mean[idx * sz:(idx + 1) * sz] = value - settings.img_mean = settings.img_mean.reshape(3, settings.crop_size, - settings.crop_size) - - else: - settings.img_mean = load_meta(settings.mean_meta, - settings.mean_img_size, - settings.crop_size, settings.color) - - settings.input_types = [ - dense_vector(settings.img_input_size), # image feature - integer_value(1) - ] # labels - - settings.logger.info('Image short side: %s', settings.img_size) - settings.logger.info('Crop size: %s', settings.crop_size) - settings.logger.info('Meta path: %s', settings.mean_meta) - if settings.is_swap_channel: - settings.logger.info('swap channel: %s', settings.swap_channel) - settings.logger.info('DataProvider Initialization finished') - - -@provider(init_hook=hook, should_shuffle=False) -def processData(settings, file_list): - """ - The main function for loading data. - Load the batch, iterate all the images and labels in this batch. - file_name: the batch file name. - """ - img_path, lab = file_list.strip().split(' ') - img = Image.open(img_path) - img.load() - img = img.resize((settings.img_size, settings.img_size), Image.ANTIALIAS) - img = np.array(img).astype(np.float32) - if len(img.shape) == 3: - img = np.swapaxes(img, 1, 2) - img = np.swapaxes(img, 1, 0) - # swap channel - if settings.is_swap_channel: - img = img[settings.swap_channel, :, :] - img_feat = preprocess_img(img, settings.img_mean, settings.crop_size, - settings.is_train, settings.color) - yield img_feat.tolist(), int(lab.strip()) diff --git a/v1_api_demo/model_zoo/resnet/example/test.list b/v1_api_demo/model_zoo/resnet/example/test.list deleted file mode 100644 index 30bbf630b6..0000000000 --- a/v1_api_demo/model_zoo/resnet/example/test.list +++ /dev/null @@ -1,2 +0,0 @@ -example/dog.jpg 0 -example/cat.jpg 0 diff --git a/v1_api_demo/model_zoo/resnet/extract_fea_c++.sh b/v1_api_demo/model_zoo/resnet/extract_fea_c++.sh deleted file mode 100755 index 5447aa92df..0000000000 --- a/v1_api_demo/model_zoo/resnet/extract_fea_c++.sh +++ /dev/null @@ -1,40 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -#set names of layer which you want to extract feature -#in Outputs() of resnet.py -#like: Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn") -layer_num=50 -configure=./resnet.py -model_path=./model/resnet_$layer_num -fea_dir=fea_output -#Output is text file. -#Each line is one sample's features. -#If you set N layer names in Outputs() -#each line contains N features sperated by ";". - -# create model list file. -model_list=./model.list -touch $model_list | echo $model_path > $model_list - -paddle train \ - --local=true \ - --job=test \ - --config=$configure \ - --model_list=$model_list \ - --use_gpu=1 \ - --predict_output_dir=$fea_dir \ - --config_args=is_test=1,layer_num=$layer_num diff --git a/v1_api_demo/model_zoo/resnet/extract_fea_py.sh b/v1_api_demo/model_zoo/resnet/extract_fea_py.sh deleted file mode 100755 index 2e87152f7f..0000000000 --- a/v1_api_demo/model_zoo/resnet/extract_fea_py.sh +++ /dev/null @@ -1,29 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -#Note if you use CPU mode, you need to set use_gpu=0 in classify.py. like this: -#conf_args = "is_test=0,use_gpu=1,is_predict=1" -#conf = parse_config(train_conf, conf_args) -#swig_paddle.initPaddle("--use_gpu=0") -python classify.py \ - --job=extract \ - --conf=resnet.py \ - --use_gpu=1 \ - --mean=model/mean_meta_224/mean.meta \ - --model=model/resnet_50 \ - --data=./example/test.list \ - --output_layer="res5_3_branch2c_conv,res5_3_branch2c_bn" \ - --output_dir=features diff --git a/v1_api_demo/model_zoo/resnet/get_model.sh b/v1_api_demo/model_zoo/resnet/get_model.sh deleted file mode 100755 index b33d8178ab..0000000000 --- a/v1_api_demo/model_zoo/resnet/get_model.sh +++ /dev/null @@ -1,32 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR - -mkdir model -cd model - -echo "Downloading ResNet models..." - -for file in resnet_50.tar.gz resnet_101.tar.gz resnet_152.tar.gz mean_meta_224.tar.gz -do - wget http://paddlepaddle.bj.bcebos.com/model_zoo/imagenet/$file - tar -xvf $file - rm $file -done - -echo "Done." diff --git a/v1_api_demo/model_zoo/resnet/load_feature.py b/v1_api_demo/model_zoo/resnet/load_feature.py deleted file mode 100644 index 5d3d0c0d30..0000000000 --- a/v1_api_demo/model_zoo/resnet/load_feature.py +++ /dev/null @@ -1,63 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import sys -import cPickle -import logging - -logging.basicConfig( - format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s') -logging.getLogger().setLevel(logging.INFO) - - -def load_feature_c(file): - """ - Load feature extracted by C++ interface. - Return a list. - file: feature file. - """ - features = [] - f = open(file, 'r') - for line in f: - sample = [] - for slot in line.strip().split(";"): - fea = [float(val) for val in slot.strip().split()] - if fea: - sample.append(fea) - features.append(sample) - f.close() - return features - - -def load_feature_py(feature_dir): - """ - Load feature extracted by python interface. - Return a dictionary. - feature_dir: directory of feature file. - """ - file_list = os.listdir(feature_dir) - file_list = [os.path.join(feature_dir, f) for f in file_list] - features = {} - for file_name in file_list: - with open(file_name, 'rb') as f: - feature = cPickle.load(f) - features.update(feature) - logging.info('Load feature file %s', file_name) - return features - - -if __name__ == '__main__': - print load_feature_py(sys.argv[1]) - #print load_feature_c(sys.argv[1]) diff --git a/v1_api_demo/model_zoo/resnet/net_diagram.sh b/v1_api_demo/model_zoo/resnet/net_diagram.sh deleted file mode 100755 index 1b06ffa44e..0000000000 --- a/v1_api_demo/model_zoo/resnet/net_diagram.sh +++ /dev/null @@ -1,39 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -:' -Visual deep residual network -1. Using make_model_diagram.py to generate dot file. -2. Using graphviz to convert dot file. - -Usage: -./net_diagram.sh -' - -set -e - -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR - -img_type=png -img_fileprefix=ResNet_50 -conf_filename=resnet.py -dot_filename=ResNet_50.dot -config_str="layer_num=50,data_provider=0" - -python -m paddle.utils.make_model_diagram $conf_filename $dot_filename $config_str - -# If you have installed graphviz, running like this: -# dot -Tpng -o ResNet.png ResNet.dot diff --git a/v1_api_demo/model_zoo/resnet/predict.sh b/v1_api_demo/model_zoo/resnet/predict.sh deleted file mode 100755 index 2b67b17c48..0000000000 --- a/v1_api_demo/model_zoo/resnet/predict.sh +++ /dev/null @@ -1,23 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -python classify.py \ - --job=predict \ - --conf=resnet.py\ - --model=model/resnet_50 \ - --multi_crop \ - --use_gpu=1 \ - --data=./example/test.list diff --git a/v1_api_demo/model_zoo/resnet/resnet.py b/v1_api_demo/model_zoo/resnet/resnet.py deleted file mode 100644 index 6fdd97fefc..0000000000 --- a/v1_api_demo/model_zoo/resnet/resnet.py +++ /dev/null @@ -1,271 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * -""" -paper: https://arxiv.org/abs/1512.03385 -""" -is_test = get_config_arg("is_test", bool, False) -is_predict = get_config_arg("is_predict", bool, False) -data_provider = get_config_arg("data_provider", bool, True) -layer_num = get_config_arg("layer_num", int, 50) - -if not is_predict and data_provider: - train_list = 'train.list' if not is_test else None - # mean.meta is mean file of ImageNet dataset. - # mean.meta size : 3 x 224 x 224. - # If you use three mean value, set like: - # "mean_value:103.939,116.779,123.68;" - args = { - 'mean_meta': "model/mean_meta_224/mean.meta", - 'image_size': 224, - 'crop_size': 224, - 'color': True, - 'swap_channel:': [2, 1, 0] - } - define_py_data_sources2( - train_list, - 'example/test.list', - module="example.image_list_provider", - obj="processData", - args=args) - -batch_size = 1 -learning_rate = 0.1 / batch_size -momentum = 0.9 -weight_decay = 0.0001 * batch_size -default_momentum(momentum) -default_decay_rate(weight_decay) - -Settings( - algorithm='sgd', - batch_size=batch_size, - learning_rate=learning_rate, - - # set the appropriate parameters according your schedule - learning_method='momentum', - learning_rate_decay_a=0.5, - learning_rate_decay_b=1200000 * 10, - learning_rate_schedule="discexp", ) - - -def conv_bn_layer(name, - input, - filter_size, - num_filters, - stride, - padding, - channels=None, - active_type=ReluActivation()): - """ - A wrapper for conv layer with batch normalization layers. - Note: - conv layer has no activation. - """ - - tmp = img_conv_layer( - name=name + "_conv", - input=input, - filter_size=filter_size, - num_channels=channels, - num_filters=num_filters, - stride=stride, - padding=padding, - act=LinearActivation(), - bias_attr=False) - return batch_norm_layer( - name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test) - - -def bottleneck_block(name, input, num_filters1, num_filters2): - """ - A wrapper for bottlenect building block in ResNet. - Last conv_bn_layer has no activation. - Addto layer has activation of relu. - """ - last_name = conv_bn_layer( - name=name + '_branch2a', - input=input, - filter_size=1, - num_filters=num_filters1, - stride=1, - padding=0) - last_name = conv_bn_layer( - name=name + '_branch2b', - input=last_name, - filter_size=3, - num_filters=num_filters1, - stride=1, - padding=1) - last_name = conv_bn_layer( - name=name + '_branch2c', - input=last_name, - filter_size=1, - num_filters=num_filters2, - stride=1, - padding=0, - active_type=LinearActivation()) - - return addto_layer( - name=name + "_addto", input=[input, last_name], act=ReluActivation()) - - -def mid_projection(name, input, num_filters1, num_filters2, stride=2): - """ - A wrapper for middile projection in ResNet. - projection shortcuts are used for increasing dimensions, - and other shortcuts are identity - branch1: projection shortcuts are used for increasing - dimensions, has no activation. - branch2x: bottleneck building block, shortcuts are identity. - """ - # stride = 2 - branch1 = conv_bn_layer( - name=name + '_branch1', - input=input, - filter_size=1, - num_filters=num_filters2, - stride=stride, - padding=0, - active_type=LinearActivation()) - - last_name = conv_bn_layer( - name=name + '_branch2a', - input=input, - filter_size=1, - num_filters=num_filters1, - stride=stride, - padding=0) - last_name = conv_bn_layer( - name=name + '_branch2b', - input=last_name, - filter_size=3, - num_filters=num_filters1, - stride=1, - padding=1) - - last_name = conv_bn_layer( - name=name + '_branch2c', - input=last_name, - filter_size=1, - num_filters=num_filters2, - stride=1, - padding=0, - active_type=LinearActivation()) - - return addto_layer( - name=name + "_addto", input=[branch1, last_name], act=ReluActivation()) - - -def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3): - """ - A wrapper for 50,101,152 layers of ResNet. - res2_num: number of blocks stacked in conv2_x - res3_num: number of blocks stacked in conv3_x - res4_num: number of blocks stacked in conv4_x - res5_num: number of blocks stacked in conv5_x - """ - # For ImageNet - # conv1: 112x112 - img = data_layer(name='input', size=224 * 224 * 3) - tmp = conv_bn_layer( - "conv1", - img, - filter_size=7, - channels=3, - num_filters=64, - stride=2, - padding=3) - tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2) - - # conv2_x: 56x56 - tmp = mid_projection( - name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1) - for i in xrange(2, res2_num + 1, 1): - tmp = bottleneck_block( - name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256) - - # conv3_x: 28x28 - tmp = mid_projection( - name="res3_1", input=tmp, num_filters1=128, num_filters2=512) - for i in xrange(2, res3_num + 1, 1): - tmp = bottleneck_block( - name="res3_" + str(i), - input=tmp, - num_filters1=128, - num_filters2=512) - - # conv4_x: 14x14 - tmp = mid_projection( - name="res4_1", input=tmp, num_filters1=256, num_filters2=1024) - for i in xrange(2, res4_num + 1, 1): - tmp = bottleneck_block( - name="res4_" + str(i), - input=tmp, - num_filters1=256, - num_filters2=1024) - - # conv5_x: 7x7 - tmp = mid_projection( - name="res5_1", input=tmp, num_filters1=512, num_filters2=2048) - for i in xrange(2, res5_num + 1, 1): - tmp = bottleneck_block( - name="res5_" + str(i), - input=tmp, - num_filters1=512, - num_filters2=2048) - - tmp = img_pool_layer( - name='avgpool', - input=tmp, - pool_size=7, - stride=1, - pool_type=AvgPooling()) - - output = fc_layer( - name='output', input=tmp, size=1000, act=SoftmaxActivation()) - - if not is_predict: - classification_cost( - input=output, label=data_layer( - name='label', size=1)) - - -def res_net_50(): - deep_res_net(3, 4, 6, 3) - - -def res_net_101(): - deep_res_net(3, 4, 23, 3) - - -def res_net_152(): - deep_res_net(3, 8, 36, 3) - - -if not is_predict: - Inputs("input", "label") -else: - Inputs("input") -# Outputs("cost-softmax" if not is_predict else "output") -Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn") - -if layer_num == 50: - res_net_50() -elif layer_num == 101: - res_net_101() -elif layer_num == 152: - res_net_152() -else: - print("Wrong layer number.") diff --git a/v1_api_demo/quick_start/.gitignore b/v1_api_demo/quick_start/.gitignore deleted file mode 100644 index f71662563f..0000000000 --- a/v1_api_demo/quick_start/.gitignore +++ /dev/null @@ -1,15 +0,0 @@ -*.pyc -data/dict.txt -data/dict_all.txt -data/labels.list -data/mosesdecoder-master/ -data/reviews_Electronics_5.json.gz -data/test.list -data/test.txt -data/train.list -data/train.txt -data/pred.list -data/pred.txt -dataprovider_copy_1.py -train.log -output diff --git a/v1_api_demo/quick_start/api_predict.py b/v1_api_demo/quick_start/api_predict.py deleted file mode 100755 index 9bdffe1006..0000000000 --- a/v1_api_demo/quick_start/api_predict.py +++ /dev/null @@ -1,147 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os, sys -import numpy as np -from optparse import OptionParser -from py_paddle import swig_paddle, DataProviderConverter -from paddle.trainer.PyDataProvider2 import sparse_binary_vector -from paddle.trainer.config_parser import parse_config -""" -Usage: run following command to show help message. - python api_predict.py -h -""" - - -class QuickStartPrediction(): - def __init__(self, train_conf, dict_file, model_dir=None, label_file=None): - """ - train_conf: trainer configure. - dict_file: word dictionary file name. - model_dir: directory of model. - """ - self.train_conf = train_conf - self.dict_file = dict_file - self.word_dict = {} - self.dict_dim = self.load_dict() - self.model_dir = model_dir - if model_dir is None: - self.model_dir = os.path.dirname(train_conf) - - self.label = None - if label_file is not None: - self.load_label(label_file) - - conf = parse_config(train_conf, "is_predict=1") - self.network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - self.network.loadParameters(self.model_dir) - input_types = [sparse_binary_vector(self.dict_dim)] - self.converter = DataProviderConverter(input_types) - - def load_dict(self): - """ - Load dictionary from self.dict_file. - """ - for line_count, line in enumerate(open(self.dict_file, 'r')): - self.word_dict[line.strip().split('\t')[0]] = line_count - return len(self.word_dict) - - def load_label(self, label_file): - """ - Load label. - """ - self.label = {} - for v in open(label_file, 'r'): - self.label[int(v.split('\t')[1])] = v.split('\t')[0] - - def get_index(self, data): - """ - transform word into integer index according to the dictionary. - """ - words = data.strip().split() - word_slot = [self.word_dict[w] for w in words if w in self.word_dict] - return word_slot - - def batch_predict(self, data_batch): - input = self.converter(data_batch) - output = self.network.forwardTest(input) - prob = output[0]["id"].tolist() - print("predicting labels is:") - print prob - - -def option_parser(): - usage = "python predict.py -n config -w model_dir -d dictionary -i input_file " - parser = OptionParser(usage="usage: %s [options]" % usage) - parser.add_option( - "-n", - "--tconf", - action="store", - dest="train_conf", - help="network config") - parser.add_option( - "-d", - "--dict", - action="store", - dest="dict_file", - help="dictionary file") - parser.add_option( - "-b", - "--label", - action="store", - dest="label", - default=None, - help="dictionary file") - parser.add_option( - "-c", - "--batch_size", - type="int", - action="store", - dest="batch_size", - default=1, - help="the batch size for prediction") - parser.add_option( - "-w", - "--model", - action="store", - dest="model_path", - default=None, - help="model path") - return parser.parse_args() - - -def main(): - options, args = option_parser() - train_conf = options.train_conf - batch_size = options.batch_size - dict_file = options.dict_file - model_path = options.model_path - label = options.label - swig_paddle.initPaddle("--use_gpu=0") - predict = QuickStartPrediction(train_conf, dict_file, model_path, label) - - batch = [] - labels = [] - for line in sys.stdin: - [label, text] = line.split("\t") - labels.append(int(label)) - batch.append([predict.get_index(text)]) - print("labels is:") - print labels - predict.batch_predict(batch) - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/quick_start/api_predict.sh b/v1_api_demo/quick_start/api_predict.sh deleted file mode 100755 index 4d9aa9e885..0000000000 --- a/v1_api_demo/quick_start/api_predict.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -#Note the default model is pass-00002, you shold make sure the model path -#exists or change the mode path. -#only test on trainer_config.lr.py -model=output/model/pass-00001/ -config=trainer_config.lr.py -label=data/labels.list -dict=data/dict.txt -batch_size=20 -head -n$batch_size data/test.txt | python api_predict.py \ - --tconf=$config\ - --model=$model \ - --label=$label \ - --dict=$dict \ - --batch_size=$batch_size diff --git a/v1_api_demo/quick_start/api_train.py b/v1_api_demo/quick_start/api_train.py deleted file mode 100644 index 5699789daa..0000000000 --- a/v1_api_demo/quick_start/api_train.py +++ /dev/null @@ -1,122 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import argparse -import itertools -import random - -from paddle.trainer.config_parser import parse_config -from py_paddle import swig_paddle as api -from py_paddle import DataProviderConverter -from paddle.trainer.PyDataProvider2 \ - import integer_value, integer_value_sequence, sparse_binary_vector - - -def parse_arguments(): - parser = argparse.ArgumentParser() - parser.add_argument( - "--train_data", type=str, required=False, help="train data file") - parser.add_argument("--test_data", type=str, help="test data file") - parser.add_argument( - "--config", type=str, required=True, help="config file name") - parser.add_argument("--dict_file", required=True, help="dictionary file") - parser.add_argument( - "--seq", default=1, type=int, help="whether use sequence training") - parser.add_argument( - "--use_gpu", default=0, type=int, help="whether use GPU for training") - parser.add_argument( - "--trainer_count", - default=1, - type=int, - help="Number of threads for training") - parser.add_argument( - "--num_passes", default=5, type=int, help="Number of training passes") - return parser.parse_args() - - -UNK_IDX = 0 - - -def load_data(file_name, word_dict): - with open(file_name, 'r') as f: - for line in f: - label, comment = line.strip().split('\t') - words = comment.split() - word_slot = [word_dict.get(w, UNK_IDX) for w in words] - yield word_slot, int(label) - - -def load_dict(dict_file): - word_dict = dict() - with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i - return word_dict - - -def main(): - options = parse_arguments() - api.initPaddle("--use_gpu=%s" % options.use_gpu, - "--trainer_count=%s" % options.trainer_count) - - word_dict = load_dict(options.dict_file) - train_dataset = list(load_data(options.train_data, word_dict)) - if options.test_data: - test_dataset = list(load_data(options.test_data, word_dict)) - else: - test_dataset = None - - trainer_config = parse_config(options.config, - "dict_file=%s" % options.dict_file) - # No need to have data provider for trainer - trainer_config.ClearField('data_config') - trainer_config.ClearField('test_data_config') - - # create a GradientMachine from the model configuratin - model = api.GradientMachine.createFromConfigProto( - trainer_config.model_config) - # create a trainer for the gradient machine - trainer = api.Trainer.create(trainer_config, model) - - # create a data converter which converts data to PaddlePaddle - # internal format - input_types = [ - integer_value_sequence(len(word_dict)) if options.seq else - sparse_binary_vector(len(word_dict)), integer_value(2) - ] - converter = DataProviderConverter(input_types) - - batch_size = trainer_config.opt_config.batch_size - trainer.startTrain() - for train_pass in xrange(options.num_passes): - trainer.startTrainPass() - random.shuffle(train_dataset) - for pos in xrange(0, len(train_dataset), batch_size): - batch = itertools.islice(train_dataset, pos, pos + batch_size) - size = min(batch_size, len(train_dataset) - pos) - trainer.trainOneDataBatch(size, converter(batch)) - trainer.finishTrainPass() - if test_dataset: - trainer.startTestPeriod() - for pos in xrange(0, len(test_dataset), batch_size): - batch = itertools.islice(test_dataset, pos, pos + batch_size) - size = min(batch_size, len(test_dataset) - pos) - trainer.testOneDataBatch(size, converter(batch)) - trainer.finishTestPeriod() - trainer.finishTrain() - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/quick_start/api_train.sh b/v1_api_demo/quick_start/api_train.sh deleted file mode 100755 index 9b2a4e2f22..0000000000 --- a/v1_api_demo/quick_start/api_train.sh +++ /dev/null @@ -1,29 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -# Note: if using trainer_config.emb.py, trainer_config.cnn.py -# or trainer_config.lstm.py, you need to change --seq to --seq=1 -# because they are sequence models. -python api_train.py \ - --config=trainer_config.lr.py \ - --trainer_count=2 \ - --num_passes=15 \ - --use_gpu=0 \ - --seq=0 \ - --train_data=data/train.txt \ - --test_data=data/test.txt \ - --dict_file=data/dict.txt \ - 2>&1 | tee 'train.log' diff --git a/v1_api_demo/quick_start/cluster/cluster_train.sh b/v1_api_demo/quick_start/cluster/cluster_train.sh deleted file mode 100755 index a7b1f01064..0000000000 --- a/v1_api_demo/quick_start/cluster/cluster_train.sh +++ /dev/null @@ -1,45 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -# Should run pserver.sh before run this script. -bin_dir=$(cd `dirname $0`; pwd) -home_dir=$(cd "${bin_dir}/.."; pwd) -source "$bin_dir/env.sh" - -model_dir="$bin_dir/output" -log_file="$bin_dir/train.log" - -pushd "$home_dir" -cfg=trainer_config.lr.py -paddle train \ - --start_pserver=false \ - --config=$cfg \ - --save_dir=${model_dir} \ - --trainer_count=4 \ - --local=0 \ - --log_period=100 \ - --num_passes=15 \ - --use_gpu=false \ - --show_parameter_stats_period=100 \ - --test_all_data_in_one_period=1 \ - --num_gradient_servers=1 \ - --nics=`get_nics` \ - --port=7164 \ - --ports_num=1 \ - --pservers="127.0.0.1" \ - --comment="paddle_trainer" \ - 2>&1 | tee "$log_file" -popd diff --git a/v1_api_demo/quick_start/cluster/env.sh b/v1_api_demo/quick_start/cluster/env.sh deleted file mode 100644 index a404993835..0000000000 --- a/v1_api_demo/quick_start/cluster/env.sh +++ /dev/null @@ -1,28 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_nics() { - machine=`uname -s` - local nics="" - if [ "$machine" == "Linux" ]; then - nics="lo" - elif [ "$machine" == "Darwin" ]; then - nics="lo0" - else - nics="unsupport" - fi - echo $nics -} diff --git a/v1_api_demo/quick_start/cluster/pserver.sh b/v1_api_demo/quick_start/cluster/pserver.sh deleted file mode 100755 index b187c1d9b9..0000000000 --- a/v1_api_demo/quick_start/cluster/pserver.sh +++ /dev/null @@ -1,26 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -bin_dir=$(cd `dirname $0`; pwd) -source "$bin_dir/env.sh" - -paddle pserver \ - --nics=`get_nics` \ - --port=7164 \ - --ports_num=1 \ - --ports_num_for_sparse=1 \ - --num_gradient_servers=1 \ - --comment="paddle_pserver" \ - 2>&1 | tee 'pserver.log' diff --git a/v1_api_demo/quick_start/data/README.md b/v1_api_demo/quick_start/data/README.md deleted file mode 100644 index 63abcf7ebf..0000000000 --- a/v1_api_demo/quick_start/data/README.md +++ /dev/null @@ -1,9 +0,0 @@ -This dataset consists of electronics product reviews associated with -binary labels (positive/negative) for sentiment classification. - -The preprocessed data can be downloaded by script `get_data.sh`. -The data was derived from reviews_Electronics_5.json.gz at - -http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Electronics_5.json.gz - -If you want to process the raw data, you can use the script `proc_from_raw_data/get_data.sh`. diff --git a/v1_api_demo/quick_start/data/get_data.sh b/v1_api_demo/quick_start/data/get_data.sh deleted file mode 100755 index a09a18f919..0000000000 --- a/v1_api_demo/quick_start/data/get_data.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR - -# Download the preprocessed data -wget http://paddlepaddle.bj.bcebos.com/demo/quick_start_preprocessed_data/preprocessed_data.tar.gz - -# Extract package -tar zxvf preprocessed_data.tar.gz - -# Remove compressed package -rm preprocessed_data.tar.gz diff --git a/v1_api_demo/quick_start/data/proc_from_raw_data/get_data.sh b/v1_api_demo/quick_start/data/proc_from_raw_data/get_data.sh deleted file mode 100755 index d976eaebfa..0000000000 --- a/v1_api_demo/quick_start/data/proc_from_raw_data/get_data.sh +++ /dev/null @@ -1,79 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# 1. size of pos : neg = 1:1. -# 2. size of testing set = min(25k, len(all_data) * 0.1), others is traning set. -# 3. distinct train set and test set. - -set -e - -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR - -# Download data -echo "Downloading Amazon Electronics reviews data..." -# http://jmcauley.ucsd.edu/data/amazon/ -wget http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Electronics_5.json.gz -echo "Downloading mosesdecoder..." -# https://github.com/moses-smt/mosesdecoder -wget https://github.com/moses-smt/mosesdecoder/archive/master.zip - -unzip master.zip -rm master.zip - -################## -# Preprocess data -echo "Preprocess data..." -export LC_ALL=C -UNAME_STR=`uname` - -if [ ${UNAME_STR} == 'Linux' ]; then - SHUF_PROG='shuf' -else - SHUF_PROG='gshuf' -fi - -mkdir -p tmp -python preprocess.py -i reviews_Electronics_5.json.gz -# uniq and shuffle -cd tmp -echo 'Uniq and shuffle...' -cat pos_*|sort|uniq|${SHUF_PROG}> pos.shuffed -cat neg_*|sort|uniq|${SHUF_PROG}> neg.shuffed - -min_len=`sed -n '$=' neg.shuffed` -test_num=$((min_len/10)) -if [ $test_num -gt 12500 ];then - test_num=12500 -fi -train_num=$((min_len-test_num)) - -head -n$train_num pos.shuffed >train.pos -head -n$train_num neg.shuffed >train.neg -tail -n$test_num pos.shuffed >test.pos -tail -n$test_num neg.shuffed >test.neg - -cat train.pos train.neg | ${SHUF_PROG} >../train.txt -cat test.pos test.neg | ${SHUF_PROG} >../test.txt - -cd - -echo 'train.txt' > train.list -echo 'test.txt' > test.list - -# use 30k dict -rm -rf tmp -mv dict.txt dict_all.txt -cat dict_all.txt | head -n 30001 > dict.txt -echo 'Done.' diff --git a/v1_api_demo/quick_start/data/proc_from_raw_data/preprocess.py b/v1_api_demo/quick_start/data/proc_from_raw_data/preprocess.py deleted file mode 100755 index 72bd95f21d..0000000000 --- a/v1_api_demo/quick_start/data/proc_from_raw_data/preprocess.py +++ /dev/null @@ -1,223 +0,0 @@ -# -*- coding: UTF-8 -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -1. Tokenize the words and punctuation -2. pos sample : rating score 5; neg sample: rating score 1-2. - -Usage: - python preprocess.py -i data_file [random seed] -""" - -import sys -import os -import operator -import gzip -from subprocess import Popen, PIPE -from optparse import OptionParser -import json -from multiprocessing import Queue -from multiprocessing import Pool -import multiprocessing - -batch_size = 5000 -word_count = {} -num_tokenize = max(1, - multiprocessing.cpu_count() - 2) # parse + tokenize + save -max_queue_size = 8 -parse_queue = Queue(maxsize=max_queue_size + num_tokenize) -tokenize_queue = Queue(maxsize=max_queue_size + num_tokenize) - - -def create_dict(data): - """ - Create dictionary based on data, and saved in data_dir/dict.txt. - The first line is unk \t -1. - data: list, input data by batch. - """ - for seq in data: - try: - for w in seq.lower().split(): - if w not in word_count: - word_count[w] = 1 - else: - word_count[w] += 1 - except: - sys.stderr.write(seq + "\tERROR\n") - - -def parse(path): - """ - Open .gz file. - """ - sys.stderr.write(path) - g = gzip.open(path, 'r') - for l in g: - yield json.loads(l) - g.close() - - -def tokenize(sentences): - """ - Use tokenizer.perl to tokenize input sentences. - tokenizer.perl is tool of Moses. - sentences : a list of input sentences. - return: a list of processed text. - """ - dir = './mosesdecoder-master/scripts/tokenizer/tokenizer.perl' - if not os.path.exists(dir): - sys.exit( - "The ./mosesdecoder-master/scripts/tokenizer/tokenizer.perl does not exists." - ) - tokenizer_cmd = [dir, '-l', 'en', '-q', '-'] - assert isinstance(sentences, list) - text = "\n".join(sentences) - tokenizer = Popen(tokenizer_cmd, stdin=PIPE, stdout=PIPE) - tok_text, _ = tokenizer.communicate(text) - toks = tok_text.split('\n')[:-1] - return toks - - -def save_data(instance, data_dir, pre_fix, batch_num): - """ - save data by batch - """ - label = ['1' if pre_fix == 'pos' else '0' for i in range(len(instance))] - lines = ['%s\t%s' % (label[i], instance[i]) for i in range(len(label))] - file_name = os.path.join(data_dir, "%s_%s.txt" % (pre_fix, batch_num)) - file(file_name, 'w').write('\n'.join(lines) + '\n') - - -def tokenize_batch(id): - """ - tokenize data by batch - """ - while True: - num_batch, instance, pre_fix = parse_queue.get() - if num_batch == -1: ### parse_queue finished - tokenize_queue.put((-1, None, None)) - sys.stderr.write("Thread %s finish\n" % (id)) - break - tokenize_instance = tokenize(instance) - tokenize_queue.put((num_batch, tokenize_instance, pre_fix)) - sys.stderr.write('.') - - -def save_batch(data_dir, num_tokenize, data_dir_dict): - """ - save data by batch - build dict.txt - """ - token_count = 0 - while True: - num_batch, instance, pre_fix = tokenize_queue.get() - if num_batch == -1: - token_count += 1 - if token_count == num_tokenize: #### tokenize finished. - break - else: - continue - save_data(instance, data_dir, pre_fix, num_batch) - create_dict(instance) ## update dict - - sys.stderr.write("save file finish\n") - f = open(data_dir_dict, 'w') - f.write('%s\t%s\n' % ('unk', '-1')) - for k, v in sorted(word_count.items(), key=operator.itemgetter(1), \ - reverse=True): - f.write('%s\t%s\n' % (k, v)) - f.close() - sys.stderr.write("build dict finish\n") - - -def parse_batch(data, num_tokenize): - """ - parse data by batch - parse -> tokenize -> save - """ - raw_txt = parse(data) - neg, pos = [], [] - count = 0 - sys.stderr.write("extract raw data\n") - for l in raw_txt: - rating = l["overall"] - text = l["reviewText"].lower() # # convert words to lower case - if rating == 5.0 and text: - pos.append(text) - if rating < 3.0 and text: - neg.append(text) - if len(pos) == batch_size or len(neg) == batch_size: - if len(pos) == batch_size: - batch = pos - pre_fix = 'pos' - else: - batch = neg - pre_fix = 'neg' - - parse_queue.put((count, batch, pre_fix)) - count += 1 - if pre_fix == 'pos': - pos = [] - else: - neg = [] - - if len(pos) > 0: - parse_queue.put((count, pos, 'pos')) - count += 1 - if len(neg) > 0: - parse_queue.put((count, neg, 'neg')) - count += 1 - for i in range(num_tokenize): - parse_queue.put((-1, None, None)) #### for tokenize's input finished - sys.stderr.write("parsing finish\n") - - -def option_parser(): - parser = OptionParser(usage="usage: python preprcoess.py "\ - "-i data_path [options]") - parser.add_option( - "-i", "--data", action="store", dest="input", help="Input data path.") - parser.add_option( - "-s", - "--seed", - action="store", - dest="seed", - default=1024, - help="Set random seed.") - return parser.parse_args() - - -def main(): - reload(sys) - sys.setdefaultencoding('utf-8') - options, args = option_parser() - data = options.input - seed = options.seed - data_dir_dict = os.path.join(os.path.dirname(data), 'dict.txt') - data_dir = os.path.join(os.path.dirname(data), 'tmp') - pool = Pool(processes=num_tokenize + 2) - pool.apply_async(parse_batch, args=(data, num_tokenize)) - for i in range(num_tokenize): - pool.apply_async(tokenize_batch, args=(str(i), )) - pool.apply_async(save_batch, args=(data_dir, num_tokenize, data_dir_dict)) - pool.close() - pool.join() - - file(os.path.join(os.path.dirname(data), 'labels.list'), - 'w').write('neg\t0\npos\t1\n') - - -if __name__ == '__main__': - main() diff --git a/v1_api_demo/quick_start/dataprovider_bow.py b/v1_api_demo/quick_start/dataprovider_bow.py deleted file mode 100644 index 2745495586..0000000000 --- a/v1_api_demo/quick_start/dataprovider_bow.py +++ /dev/null @@ -1,86 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * - -# id of the word not in dictionary -UNK_IDX = 0 - - -# initializer is called by the framework during initialization. -# It allows the user to describe the data types and setup the -# necessary data structure for later use. -# `settings` is an object. initializer need to properly fill settings.input_types. -# initializer can also store other data structures needed to be used at process(). -# In this example, dictionary is stored in settings. -# `dictionay` and `kwargs` are arguments passed from trainer_config.lr.py -def initializer(settings, dictionary, **kwargs): - # Put the word dictionary into settings - settings.word_dict = dictionary - - # setting.input_types specifies what the data types the data provider - # generates. - settings.input_types = { - # The first input is a sparse_binary_vector, - # which means each dimension of the vector is either 0 or 1. It is the - # bag-of-words (BOW) representation of the texts. - 'word': sparse_binary_vector(len(dictionary)), - # The second input is an integer. It represents the category id of the - # sample. 2 means there are two labels in the dataset. - # (1 for positive and 0 for negative) - 'label': integer_value(2) - } - - -# Delaring a data provider. It has an initializer 'data_initialzer'. -# It will cache the generated data of the first pass in memory, so that -# during later pass, no on-the-fly data generation will be needed. -# `setting` is the same object used by initializer() -# `file_name` is the name of a file listed train_list or test_list file given -# to define_py_data_sources2(). See trainer_config.lr.py. -@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file_name): - # Open the input data file. - with open(file_name, 'r') as f: - # Read each line. - for line in f: - # Each line contains the label and text of the comment, separated by \t. - label, comment = line.strip().split('\t') - - # Split the words into a list. - words = comment.split() - - # convert the words into a list of ids by looking them up in word_dict. - word_vector = [settings.word_dict.get(w, UNK_IDX) for w in words] - - # Return the features for the current comment. The first is a list - # of ids representing a 0-1 binary sparse vector of the text, - # the second is the integer id of the label. - yield {'word': word_vector, 'label': int(label)} - - -def predict_initializer(settings, dictionary, **kwargs): - settings.word_dict = dictionary - settings.input_types = {'word': sparse_binary_vector(len(dictionary))} - - -# Declaring a data provider for prediction. The difference with process -# is that label is not generated. -@provider(init_hook=predict_initializer, should_shuffle=False) -def process_predict(settings, file_name): - with open(file_name, 'r') as f: - for line in f: - comment = line.strip().split() - word_vector = [settings.word_dict.get(w, UNK_IDX) for w in comment] - yield {'word': word_vector} diff --git a/v1_api_demo/quick_start/dataprovider_emb.py b/v1_api_demo/quick_start/dataprovider_emb.py deleted file mode 100755 index ddfa3ce9b7..0000000000 --- a/v1_api_demo/quick_start/dataprovider_emb.py +++ /dev/null @@ -1,52 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * - -UNK_IDX = 0 - - -def initializer(settings, dictionary, **kwargs): - settings.word_dict = dictionary - settings.input_types = { - # Define the type of the first input as sequence of integer. - # The value of the integers range from 0 to len(dictrionary)-1 - 'word': integer_value_sequence(len(dictionary)), - # Define the second input for label id - 'label': integer_value(2) - } - - -@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file_name): - with open(file_name, 'r') as f: - for line in f: - label, comment = line.strip().split('\t') - words = comment.split() - word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words] - yield {'word': word_slot, 'label': int(label)} - - -def predict_initializer(settings, dictionary, **kwargs): - settings.word_dict = dictionary - settings.input_types = {'word': integer_value_sequence(len(dictionary))} - - -@provider(init_hook=predict_initializer, should_shuffle=False) -def process_predict(settings, file_name): - with open(file_name, 'r') as f: - for line in f: - comment = line.strip().split() - word_slot = [settings.word_dict.get(w, UNK_IDX) for w in comment] - yield {'word': word_slot} diff --git a/v1_api_demo/quick_start/predict.sh b/v1_api_demo/quick_start/predict.sh deleted file mode 100755 index e47c2dd01f..0000000000 --- a/v1_api_demo/quick_start/predict.sh +++ /dev/null @@ -1,32 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -cfg=trainer_config.lr.py -#cfg=trainer_config.emb.py -#cfg=trainer_config.cnn.py -#cfg=trainer_config.lstm.py -model="output/pass-00003" -paddle train \ - --config=$cfg \ - --use_gpu=false \ - --job=test \ - --init_model_path=$model \ - --config_args=is_predict=1 \ - --predict_output_dir=. \ -2>&1 | tee 'predict.log' -paddle usage -l 'predict.log' -e $? -n "quick_start_predict_${cfg}" >/dev/null 2>&1 - -mv rank-00000 result.txt diff --git a/v1_api_demo/quick_start/train.sh b/v1_api_demo/quick_start/train.sh deleted file mode 100755 index 01697fed48..0000000000 --- a/v1_api_demo/quick_start/train.sh +++ /dev/null @@ -1,34 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -cfg=trainer_config.lr.py -#cfg=trainer_config.emb.py -#cfg=trainer_config.cnn.py -#cfg=trainer_config.lstm.py -#cfg=trainer_config.bidi-lstm.py -#cfg=trainer_config.db-lstm.py -#cfg=trainer_config.resnet-lstm.py -paddle train \ - --config=$cfg \ - --save_dir=./output \ - --trainer_count=4 \ - --log_period=100 \ - --num_passes=15 \ - --use_gpu=false \ - --show_parameter_stats_period=100 \ - --test_all_data_in_one_period=1 \ - 2>&1 | tee 'train.log' -paddle usage -l "train.log" -e $? -n "quick_start_${cfg}" >/dev/null 2>&1 diff --git a/v1_api_demo/quick_start/trainer_config.bidi-lstm.py b/v1_api_demo/quick_start/trainer_config.bidi-lstm.py deleted file mode 100644 index ca1d1f8d09..0000000000 --- a/v1_api_demo/quick_start/trainer_config.bidi-lstm.py +++ /dev/null @@ -1,61 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -dict_file = "./data/dict.txt" -word_dict = dict() -with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i - -is_predict = get_config_arg('is_predict', bool, False) -trn = 'data/train.list' if not is_predict else None -tst = 'data/test.list' if not is_predict else 'data/pred.list' -process = 'process' if not is_predict else 'process_predict' -define_py_data_sources2( - train_list=trn, - test_list=tst, - module="dataprovider_emb", - obj=process, - args={"dictionary": word_dict}) - -batch_size = 128 if not is_predict else 1 -settings( - batch_size=batch_size, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -bias_attr = ParamAttr(initial_std=0., l2_rate=0.) -data = data_layer(name="word", size=len(word_dict)) -emb = embedding_layer(input=data, size=128) - -bi_lstm = bidirectional_lstm(input=emb, size=128) -dropout = dropout_layer(input=bi_lstm, dropout_rate=0.5) - -output = fc_layer( - input=dropout, size=2, bias_attr=bias_attr, act=SoftmaxActivation()) - -if is_predict: - maxid = maxid_layer(output) - outputs([maxid, output]) -else: - label = data_layer(name="label", size=2) - cls = classification_cost(input=output, label=label) - outputs(cls) diff --git a/v1_api_demo/quick_start/trainer_config.cnn.py b/v1_api_demo/quick_start/trainer_config.cnn.py deleted file mode 100644 index f8c3d511f3..0000000000 --- a/v1_api_demo/quick_start/trainer_config.cnn.py +++ /dev/null @@ -1,55 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -dict_file = "./data/dict.txt" -word_dict = dict() -with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i - -is_predict = get_config_arg('is_predict', bool, False) -trn = 'data/train.list' if not is_predict else None -tst = 'data/test.list' if not is_predict else 'data/pred.list' -process = 'process' if not is_predict else 'process_predict' -define_py_data_sources2( - train_list=trn, - test_list=tst, - module="dataprovider_emb", - obj=process, - args={"dictionary": word_dict}) - -batch_size = 128 if not is_predict else 1 -settings( - batch_size=batch_size, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -data = data_layer(name="word", size=len(word_dict)) -embedding = embedding_layer(input=data, size=128) -conv = sequence_conv_pool(input=embedding, context_len=3, hidden_size=512) -output = fc_layer(input=conv, size=2, act=SoftmaxActivation()) -if is_predict: - maxid = maxid_layer(output) - outputs([maxid, output]) -else: - label = data_layer(name="label", size=2) - cls = classification_cost(input=output, label=label) - outputs(cls) diff --git a/v1_api_demo/quick_start/trainer_config.db-lstm.py b/v1_api_demo/quick_start/trainer_config.db-lstm.py deleted file mode 100644 index fba802b460..0000000000 --- a/v1_api_demo/quick_start/trainer_config.db-lstm.py +++ /dev/null @@ -1,74 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -dict_file = "./data/dict.txt" -word_dict = dict() -with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i - -is_predict = get_config_arg('is_predict', bool, False) -trn = 'data/train.list' if not is_predict else None -tst = 'data/test.list' if not is_predict else 'data/pred.list' -process = 'process' if not is_predict else 'process_predict' -define_py_data_sources2( - train_list=trn, - test_list=tst, - module="dataprovider_emb", - obj=process, - args={"dictionary": word_dict}) - -batch_size = 128 if not is_predict else 1 -settings( - batch_size=batch_size, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -bias_attr = ParamAttr(initial_std=0., l2_rate=0.) - -data = data_layer(name="word", size=len(word_dict)) -emb = embedding_layer(input=data, size=128) - -hidden_0 = mixed_layer(size=128, input=[full_matrix_projection(input=emb)]) -lstm_0 = lstmemory(input=hidden_0, layer_attr=ExtraAttr(drop_rate=0.1)) - -input_layers = [hidden_0, lstm_0] - -for i in range(1, 8): - fc = fc_layer(input=input_layers, size=128) - lstm = lstmemory( - input=fc, - layer_attr=ExtraAttr(drop_rate=0.1), - reverse=(i % 2) == 1, ) - input_layers = [fc, lstm] - -lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling()) - -output = fc_layer( - input=lstm_last, size=2, bias_attr=bias_attr, act=SoftmaxActivation()) - -if is_predict: - maxid = maxid_layer(output) - outputs([maxid, output]) -else: - label = data_layer(name="label", size=2) - cls = classification_cost(input=output, label=label) - outputs(cls) diff --git a/v1_api_demo/quick_start/trainer_config.emb.py b/v1_api_demo/quick_start/trainer_config.emb.py deleted file mode 100644 index 7410397ef6..0000000000 --- a/v1_api_demo/quick_start/trainer_config.emb.py +++ /dev/null @@ -1,51 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -dict_file = "./data/dict.txt" -word_dict = dict() -with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i - -is_predict = get_config_arg('is_predict', bool, False) -trn = 'data/train.list' if not is_predict else None -tst = 'data/test.list' if not is_predict else 'data/pred.list' -process = 'process' if not is_predict else 'process_predict' -define_py_data_sources2( - train_list=trn, - test_list=tst, - module="dataprovider_emb", - obj=process, - args={"dictionary": word_dict}) - -batch_size = 128 if not is_predict else 1 -settings( - batch_size=batch_size, learning_rate=2e-3, learning_method=AdamOptimizer()) - -data = data_layer(name="word", size=len(word_dict)) -embedding = embedding_layer(input=data, size=128) -avg = pooling_layer(input=embedding, pooling_type=AvgPooling()) -output = fc_layer(input=avg, size=2, act=SoftmaxActivation()) -if is_predict: - maxid = maxid_layer(output) - outputs([maxid, output]) -else: - label = data_layer(name="label", size=2) - cls = classification_cost(input=output, label=label) - outputs(cls) diff --git a/v1_api_demo/quick_start/trainer_config.lr.py b/v1_api_demo/quick_start/trainer_config.lr.py deleted file mode 100644 index e5105aa895..0000000000 --- a/v1_api_demo/quick_start/trainer_config.lr.py +++ /dev/null @@ -1,72 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -dict_file = get_config_arg('dict_file', str, "./data/dict.txt") -word_dict = dict() -with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i - -is_predict = get_config_arg('is_predict', bool, False) -trn = 'data/train.list' if not is_predict else None -tst = 'data/test.list' if not is_predict else 'data/pred.list' -process = 'process' if not is_predict else 'process_predict' - -# define the data sources for the model. -# We need to use different process for training and prediction. -# For training, the input data includes both word IDs and labels. -# For prediction, the input data only includs word Ids. -define_py_data_sources2( - train_list=trn, - test_list=tst, - module="dataprovider_bow", - obj=process, - args={"dictionary": word_dict}) - -batch_size = 128 if not is_predict else 1 -settings( - batch_size=batch_size, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -# Define the data for text features. The size of the data layer is the number -# of words in the dictionary. -data = data_layer(name="word", size=len(word_dict)) - -# Define a fully connected layer with logistic activation. -# (also called softmax activation). -output = fc_layer(input=data, size=2, act=SoftmaxActivation()) - -if not is_predict: - # For training, we need label and cost - - # define the category id for each example. - # The size of the data layer is the number of labels. - label = data_layer(name="label", size=2) - - # Define cross-entropy classification loss and error. - cls = classification_cost(input=output, label=label) - outputs(cls) -else: - # For prediction, no label is needed. We need to output - # We need to output classification result, and class probabilities. - maxid = maxid_layer(output) - outputs([maxid, output]) diff --git a/v1_api_demo/quick_start/trainer_config.lstm.py b/v1_api_demo/quick_start/trainer_config.lstm.py deleted file mode 100644 index 43b4ddac2d..0000000000 --- a/v1_api_demo/quick_start/trainer_config.lstm.py +++ /dev/null @@ -1,57 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -dict_file = "./data/dict.txt" -word_dict = dict() -with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i - -is_predict = get_config_arg('is_predict', bool, False) -trn = 'data/train.list' if not is_predict else None -tst = 'data/test.list' if not is_predict else 'data/pred.list' -process = 'process' if not is_predict else 'process_predict' -define_py_data_sources2( - train_list=trn, - test_list=tst, - module="dataprovider_emb", - obj=process, - args={"dictionary": word_dict}) - -batch_size = 128 if not is_predict else 1 -settings( - batch_size=batch_size, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -data = data_layer(name="word", size=len(word_dict)) -emb = embedding_layer(input=data, size=128) -lstm = simple_lstm( - input=emb, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.25)) -lstm_max = pooling_layer(input=lstm, pooling_type=MaxPooling()) -output = fc_layer(input=lstm_max, size=2, act=SoftmaxActivation()) -if is_predict: - maxid = maxid_layer(output) - outputs([maxid, output]) -else: - label = data_layer(name="label", size=2) - cls = classification_cost(input=output, label=label) - outputs(cls) diff --git a/v1_api_demo/quick_start/trainer_config.resnet-lstm.py b/v1_api_demo/quick_start/trainer_config.resnet-lstm.py deleted file mode 100644 index 89a837abb7..0000000000 --- a/v1_api_demo/quick_start/trainer_config.resnet-lstm.py +++ /dev/null @@ -1,91 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -This configuration is a demonstration of how to implement the stacked LSTM -with residual connections, i.e. an LSTM layer takes the sum of the hidden states -and inputs of the previous LSTM layer instead of only the hidden states. -This architecture is from: -Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, -Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, -Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, -Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, -George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, -Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean. 2016. -Google's Neural Machine Translation System: Bridging the Gap between Human and -Machine Translation. In arXiv https://arxiv.org/pdf/1609.08144v2.pdf -Different from the architecture described in the paper, we use a stack single -direction LSTM layers as the first layer instead of bi-directional LSTM. Also, -since this is a demo code, to reduce computation time, we stacked 4 layers -instead of 8 layers. -""" - -from paddle.trainer_config_helpers import * - -dict_file = "./data/dict.txt" -word_dict = dict() -with open(dict_file, 'r') as f: - for i, line in enumerate(f): - w = line.strip().split()[0] - word_dict[w] = i - -is_predict = get_config_arg('is_predict', bool, False) -trn = 'data/train.list' if not is_predict else None -tst = 'data/test.list' if not is_predict else 'data/pred.list' -process = 'process' if not is_predict else 'process_predict' -define_py_data_sources2( - train_list=trn, - test_list=tst, - module="dataprovider_emb", - obj=process, - args={"dictionary": word_dict}) - -batch_size = 128 if not is_predict else 1 -settings( - batch_size=batch_size, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -bias_attr = ParamAttr(initial_std=0., l2_rate=0.) - -data = data_layer(name="word", size=len(word_dict)) -emb = embedding_layer(input=data, size=128) -lstm = simple_lstm(input=emb, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1)) - -previous_input, previous_hidden_state = emb, lstm - -for i in range(3): - # The input to the current layer is the sum of the hidden state - # and input of the previous layer. - current_input = addto_layer(input=[previous_input, previous_hidden_state]) - hidden_state = simple_lstm( - input=current_input, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1)) - previous_input, previous_hidden_state = current_input, hidden_state - -lstm = previous_hidden_state - -lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling()) -output = fc_layer( - input=lstm_last, size=2, bias_attr=bias_attr, act=SoftmaxActivation()) - -if is_predict: - maxid = maxid_layer(output) - outputs([maxid, output]) -else: - label = data_layer(name="label", size=2) - cls = classification_cost(input=output, label=label) - outputs(cls) diff --git a/v1_api_demo/sequence_tagging/data/get_data.sh b/v1_api_demo/sequence_tagging/data/get_data.sh deleted file mode 100755 index 0cdb394035..0000000000 --- a/v1_api_demo/sequence_tagging/data/get_data.sh +++ /dev/null @@ -1,21 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR - -wget http://www.cnts.ua.ac.be/conll2000/chunking/train.txt.gz -wget http://www.cnts.ua.ac.be/conll2000/chunking/test.txt.gz diff --git a/v1_api_demo/sequence_tagging/data/test.list b/v1_api_demo/sequence_tagging/data/test.list deleted file mode 100644 index 073c0a0c90..0000000000 --- a/v1_api_demo/sequence_tagging/data/test.list +++ /dev/null @@ -1 +0,0 @@ -data/test.txt.gz diff --git a/v1_api_demo/sequence_tagging/data/train.list b/v1_api_demo/sequence_tagging/data/train.list deleted file mode 100644 index 43c24d5f64..0000000000 --- a/v1_api_demo/sequence_tagging/data/train.list +++ /dev/null @@ -1 +0,0 @@ -data/train.txt.gz diff --git a/v1_api_demo/sequence_tagging/dataprovider.py b/v1_api_demo/sequence_tagging/dataprovider.py deleted file mode 100644 index bb4b4465bc..0000000000 --- a/v1_api_demo/sequence_tagging/dataprovider.py +++ /dev/null @@ -1,260 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * -import gzip -import logging - -logging.basicConfig( - format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', ) -logger = logging.getLogger('paddle') -logger.setLevel(logging.INFO) - -OOV_POLICY_IGNORE = 0 -OOV_POLICY_USE = 1 -OOV_POLICY_ERROR = 2 - -num_original_columns = 3 - -# Feature combination patterns. -# [[-1,0], [0,0]] means previous token at column 0 and current token at -# column 0 are combined as one feature. -patterns = [ - [[-2, 0]], - [[-1, 0]], - [[0, 0]], - [[1, 0]], - [[2, 0]], - [[-1, 0], [0, 0]], - [[0, 0], [1, 0]], - [[-2, 1]], - [[-1, 1]], - [[0, 1]], - [[1, 1]], - [[2, 1]], - [[-2, 1], [-1, 1]], - [[-1, 1], [0, 1]], - [[0, 1], [1, 1]], - [[1, 1], [2, 1]], - [[-2, 1], [-1, 1], [0, 1]], - [[-1, 1], [0, 1], [1, 1]], - [[0, 1], [1, 1], [2, 1]], -] - -dict_label = { - 'B-ADJP': 0, - 'I-ADJP': 1, - 'B-ADVP': 2, - 'I-ADVP': 3, - 'B-CONJP': 4, - 'I-CONJP': 5, - 'B-INTJ': 6, - 'I-INTJ': 7, - 'B-LST': 8, - 'I-LST': 9, - 'B-NP': 10, - 'I-NP': 11, - 'B-PP': 12, - 'I-PP': 13, - 'B-PRT': 14, - 'I-PRT': 15, - 'B-SBAR': 16, - 'I-SBAR': 17, - 'B-UCP': 18, - 'I-UCP': 19, - 'B-VP': 20, - 'I-VP': 21, - 'O': 22 -} - - -def make_features(sequence): - length = len(sequence) - num_features = len(sequence[0]) - - def get_features(pos): - if pos < 0: - return ['#B%s' % -pos] * num_features - if pos >= length: - return ['#E%s' % (pos - length + 1)] * num_features - return sequence[pos] - - for i in xrange(length): - for pattern in patterns: - fname = '/'.join([get_features(i + pos)[f] for pos, f in pattern]) - sequence[i].append(fname) - - -''' -Source file format: -Each line is for one timestep. The features are separated by space. -An empty line indicates end of a sequence. - -cutoff: a list of numbers. If count of a feature is smaller than this, - it will be ignored. -if oov_policy[i] is OOV_POLICY_USE, id 0 is reserved for OOV features of -i-th column. - -return a list of dict for each column -''' - - -def create_dictionaries(filename, cutoff, oov_policy): - def add_to_dict(sequence, dicts): - num_features = len(dicts) - for features in sequence: - l = len(features) - assert l == num_features, "Wrong number of features " + line - for i in xrange(l): - if features[i] in dicts[i]: - dicts[i][features[i]] += 1 - else: - dicts[i][features[i]] = 1 - - num_features = len(cutoff) - dicts = [] - for i in xrange(num_features): - dicts.append(dict()) - - f = gzip.open(filename, 'rb') - - sequence = [] - - for line in f: - line = line.strip() - if not line: - make_features(sequence) - add_to_dict(sequence, dicts) - sequence = [] - continue - features = line.split(' ') - sequence.append(features) - - for i in xrange(num_features): - dct = dicts[i] - n = 1 if oov_policy[i] == OOV_POLICY_USE else 0 - todo = [] - for k, v in dct.iteritems(): - if v < cutoff[i]: - todo.append(k) - else: - dct[k] = n - n += 1 - - if oov_policy[i] == OOV_POLICY_USE: - # placeholder so that len(dct) will be the number of features - # including OOV - dct['#OOV#'] = 0 - - logger.info('column %d dict size=%d, ignored %d' % (i, n, len(todo))) - for k in todo: - del dct[k] - - f.close() - return dicts - - -def initializer(settings, **xargs): - cutoff = [3, 1, 0] - cutoff += [3] * len(patterns) - oov_policy = [OOV_POLICY_IGNORE, OOV_POLICY_ERROR, OOV_POLICY_ERROR] - oov_policy += [OOV_POLICY_IGNORE] * len(patterns) - dicts = create_dictionaries('data/train.txt.gz', cutoff, oov_policy) - dicts[2] = dict_label - settings.dicts = dicts - settings.oov_policy = oov_policy - input_types = [] - num_features = len(dicts) - for i in xrange(num_original_columns): - input_types.append(integer_sequence(len(dicts[i]))) - logger.info("slot %s size=%s" % (i, len(dicts[i]))) - if patterns: - dim = 0 - for i in xrange(num_original_columns, num_features): - dim += len(dicts[i]) - input_types.append(sparse_binary_vector_sequence(dim)) - logger.info("feature size=%s" % dim) - settings.input_types = input_types - - -''' -if oov_policy[i] == OOV_POLICY_USE, features in i-th column which are not -existed in dicts[i] will be assigned to id 0. -if oov_policy[i] == OOV_POLICY_ERROR, all features in i-th column MUST exist -in dicts[i]. -''' - - -@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, filename): - input_file = filename - dicts = settings.dicts - oov_policy = settings.oov_policy - - def gen_sample(sequence): - num_features = len(dicts) - sample = [list() for i in xrange(num_original_columns)] - if patterns: - sample.append([]) - for features in sequence: - assert len(features) == num_features, \ - "Wrong number of features: " + line - for i in xrange(num_original_columns): - id = dicts[i].get(features[i], -1) - if id != -1: - sample[i].append(id) - elif oov_policy[i] == OOV_POLICY_IGNORE: - sample[i].append(0xffffffff) - elif oov_policy[i] == OOV_POLICY_ERROR: - logger.fatal("Unknown token: %s" % features[i]) - else: - sample[i].append(0) - - if patterns: - dim = 0 - vec = [] - for i in xrange(num_original_columns, num_features): - id = dicts[i].get(features[i], -1) - if id != -1: - vec.append(dim + id) - elif oov_policy[i] == OOV_POLICY_IGNORE: - pass - elif oov_policy[i] == OOV_POLICY_ERROR: - logger.fatal("Unknown token: %s" % features[i]) - else: - vec.ids.append(dim + 0) - - dim += len(dicts[i]) - sample[-1].append(vec) - return sample - - num_features = len(dicts) - f = gzip.open(input_file, 'rb') - - num_sequences = 0 - sequence = [] - for line in f: - line = line.strip() - if not line: - make_features(sequence) - yield gen_sample(sequence) - sequence = [] - num_sequences += 1 - continue - features = line.split(' ') - sequence.append(features) - - f.close() - - logger.info("num_sequences=%s" % num_sequences) diff --git a/v1_api_demo/sequence_tagging/linear_crf.py b/v1_api_demo/sequence_tagging/linear_crf.py deleted file mode 100644 index ea012ba1ae..0000000000 --- a/v1_api_demo/sequence_tagging/linear_crf.py +++ /dev/null @@ -1,83 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -import math - -define_py_data_sources2( - train_list="data/train.list", - test_list="data/test.list", - module="dataprovider", - obj="process") - -batch_size = 1 -settings( - learning_method=MomentumOptimizer(), - batch_size=batch_size, - regularization=L2Regularization(batch_size * 1e-4), - model_average=ModelAverage(0.5), - learning_rate=1e-1, - learning_rate_decay_a=1e-5, - learning_rate_decay_b=0.25, ) - -num_label_types = 23 - - -def get_simd_size(size): - return int(math.ceil(float(size) / 8)) * 8 - - -# Currently, in order to use sparse_update=True, -# the size has to be aligned. -num_label_types = get_simd_size(num_label_types) - -features = data_layer(name="features", size=76328) -word = data_layer(name="word", size=6778) -pos = data_layer(name="pos", size=44) -chunk = data_layer(name="chunk", size=num_label_types) - -crf_input = fc_layer( - input=features, - size=num_label_types, - act=LinearActivation(), - bias_attr=False, - param_attr=ParamAttr( - initial_std=0, sparse_update=True)) - -crf = crf_layer( - input=crf_input, - label=chunk, - param_attr=ParamAttr( - name="crfw", initial_std=0), ) - -crf_decoding = crf_decoding_layer( - size=num_label_types, - input=crf_input, - label=chunk, - param_attr=ParamAttr(name="crfw"), ) - -sum_evaluator( - name="error", - input=crf_decoding, ) - -chunk_evaluator( - name="chunk_f1", - input=crf_decoding, - label=chunk, - chunk_scheme="IOB", - num_chunk_types=11, ) - -inputs(word, pos, chunk, features) -outputs(crf) diff --git a/v1_api_demo/sequence_tagging/readme.md b/v1_api_demo/sequence_tagging/readme.md deleted file mode 100644 index 2e17fffb83..0000000000 --- a/v1_api_demo/sequence_tagging/readme.md +++ /dev/null @@ -1,45 +0,0 @@ -# Sequence Tagging - -This demo is a sequence model for assigning tags to each token in a sentence. The task is described at CONLL2000 Text Chunking task. - -## Download data -```bash -cd demo/sequence_tagging -./data/get_data.sh -``` - -## Train model -```bash -cd demo/sequence_tagging -./train.sh -``` - -## Model description - -We provide two models. One is a linear CRF model (linear_crf.py) with is equivalent to the one at leon.bottou.org/projects/sgd. The second one is a stacked bidirectional RNN and CRF model (rnn_crf.py). -
- - - - - - - - - - - - - - - - - - - - - - -
Model nameNumber of parametersF1 score
linear_crf 1.8M 0.937
rnn_crf 960K 0.941
-
-
diff --git a/v1_api_demo/sequence_tagging/rnn_crf.py b/v1_api_demo/sequence_tagging/rnn_crf.py deleted file mode 100644 index 937a34df10..0000000000 --- a/v1_api_demo/sequence_tagging/rnn_crf.py +++ /dev/null @@ -1,121 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -import math - -define_py_data_sources2( - train_list="data/train.list", - test_list="data/test.list", - module="dataprovider", - obj="process") - -batch_size = 16 -settings( - learning_method=MomentumOptimizer(), - batch_size=batch_size, - regularization=L2Regularization(batch_size * 1e-5), - model_average=ModelAverage(0.5), - learning_rate=2e-3, - learning_rate_decay_a=5e-7, - learning_rate_decay_b=0.5, ) - -word_dim = 128 -hidden_dim = 128 -with_rnn = True - -initial_std = 1 / math.sqrt(hidden_dim) -param_attr = ParamAttr(initial_std=initial_std) -cpu_layer_attr = ExtraLayerAttribute(device=-1) - -default_device(0) - -num_label_types = 23 - -features = data_layer(name="features", size=76328) -word = data_layer(name="word", size=6778) -pos = data_layer(name="pos", size=44) -chunk = data_layer( - name="chunk", size=num_label_types, layer_attr=cpu_layer_attr) - -emb = embedding_layer( - input=word, size=word_dim, param_attr=ParamAttr(initial_std=0)) - -hidden1 = mixed_layer( - size=hidden_dim, - act=STanhActivation(), - bias_attr=True, - input=[ - full_matrix_projection(emb), table_projection( - pos, param_attr=param_attr) - ]) - -if with_rnn: - rnn1 = recurrent_layer( - act=ReluActivation(), - bias_attr=True, - input=hidden1, - param_attr=ParamAttr(initial_std=0), ) - -hidden2 = mixed_layer( - size=hidden_dim, - act=STanhActivation(), - bias_attr=True, - input=[full_matrix_projection(hidden1)] + - ([full_matrix_projection( - rnn1, param_attr=ParamAttr(initial_std=0))] if with_rnn else []), ) - -if with_rnn: - rnn2 = recurrent_layer( - reverse=True, - act=ReluActivation(), - bias_attr=True, - input=hidden2, - param_attr=ParamAttr(initial_std=0), ) - -crf_input = mixed_layer( - size=num_label_types, - bias_attr=False, - input=[full_matrix_projection(hidden2), ] + - ([full_matrix_projection( - rnn2, param_attr=ParamAttr(initial_std=0))] if with_rnn else []), ) - -crf = crf_layer( - input=crf_input, - label=chunk, - param_attr=ParamAttr( - name="crfw", initial_std=0), - layer_attr=cpu_layer_attr, ) - -crf_decoding = crf_decoding_layer( - size=num_label_types, - input=crf_input, - label=chunk, - param_attr=ParamAttr(name="crfw"), - layer_attr=cpu_layer_attr, ) - -sum_evaluator( - name="error", - input=crf_decoding, ) - -chunk_evaluator( - name="chunk_f1", - input=crf_decoding, - label=chunk, - chunk_scheme="IOB", - num_chunk_types=11, ) - -inputs(word, pos, chunk, features) -outputs(crf) diff --git a/v1_api_demo/sequence_tagging/train.sh b/v1_api_demo/sequence_tagging/train.sh deleted file mode 100755 index 37e196c842..0000000000 --- a/v1_api_demo/sequence_tagging/train.sh +++ /dev/null @@ -1,12 +0,0 @@ -#!/bin/bash - -paddle train \ - --config rnn_crf.py \ - --parallel_nn=1 \ - --use_gpu=1 \ - --dot_period=10 \ - --log_period=1000 \ - --test_period=0 \ - --num_passes=10 \ -2>&1 | tee 'train.log' -paddle usage -l 'train.log' -e $? -n "sequence_tagging_train" >/dev/null 2>&1 diff --git a/v1_api_demo/sequence_tagging/train_linear.sh b/v1_api_demo/sequence_tagging/train_linear.sh deleted file mode 100755 index ad6e2d8ee7..0000000000 --- a/v1_api_demo/sequence_tagging/train_linear.sh +++ /dev/null @@ -1,11 +0,0 @@ -#!/bin/bash - -paddle train \ - --config linear_crf.py \ - --use_gpu=0 \ - --dot_period=100 \ - --log_period=10000 \ - --test_period=0 \ - --num_passes=10 -2>&1 | tee 'train_linear.log' -paddle usage -l 'train_linear.log' -e $? -n "sequence_tagging_train_linear" >/dev/null 2>&1 diff --git a/v1_api_demo/traffic_prediction/README b/v1_api_demo/traffic_prediction/README deleted file mode 100644 index 4c95188583..0000000000 --- a/v1_api_demo/traffic_prediction/README +++ /dev/null @@ -1,7 +0,0 @@ -run by: -cd ./data -sh get_data.sh -cd .. -sh train.sh -sh predict.sh - diff --git a/v1_api_demo/traffic_prediction/data/get_data.sh b/v1_api_demo/traffic_prediction/data/get_data.sh deleted file mode 100755 index f2fa548d47..0000000000 --- a/v1_api_demo/traffic_prediction/data/get_data.sh +++ /dev/null @@ -1,34 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -set -e -set -x - -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR - -#download the dataset -echo "Downloading traffic data..." -wget http://paddlepaddle.cdn.bcebos.com/demo/traffic/traffic_data.tar.gz - -#extract package -echo "Unzipping..." -tar -zxvf traffic_data.tar.gz - -echo "data/speeds.csv" > train.list -echo "data/speeds.csv" > test.list -echo "data/speeds.csv" > pred.list - -echo "Done." diff --git a/v1_api_demo/traffic_prediction/dataprovider.py b/v1_api_demo/traffic_prediction/dataprovider.py deleted file mode 100644 index c7883b6950..0000000000 --- a/v1_api_demo/traffic_prediction/dataprovider.py +++ /dev/null @@ -1,82 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * -import sys -import numpy as np -TERM_NUM = 24 -FORECASTING_NUM = 24 -LABEL_VALUE_NUM = 4 - - -def initHook(settings, file_list, **kwargs): - """ - Init hook is invoked before process data. It will set obj.slots and store data meta. - - :param settings: global object. It will passed to process routine. - :type obj: object - :param file_list: the meta file object, which passed from trainer_config.py,but unused in this function. - :param kwargs: unused other arguments. - """ - del kwargs #unused - - settings.pool_size = sys.maxint - #Use a time seires of the past as feature. - #Dense_vector's expression form is [float,float,...,float] - settings.input_types = [dense_vector(TERM_NUM)] - #There are next FORECASTING_NUM fragments you need predict. - #Every predicted condition at time point has four states. - for i in range(FORECASTING_NUM): - settings.input_types.append(integer_value(LABEL_VALUE_NUM)) - - -@provider( - init_hook=initHook, cache=CacheType.CACHE_PASS_IN_MEM, should_shuffle=True) -def process(settings, file_name): - with open(file_name) as f: - #abandon fields name - f.next() - for row_num, line in enumerate(f): - speeds = map(int, line.rstrip('\r\n').split(",")[1:]) - # Get the max index. - end_time = len(speeds) - # Scanning and generating samples - for i in range(TERM_NUM, end_time - FORECASTING_NUM): - # For dense slot - pre_spd = map(float, speeds[i - TERM_NUM:i]) - - # Integer value need predicting, values start from 0, so every one minus 1. - fol_spd = [j - 1 for j in speeds[i:i + FORECASTING_NUM]] - - # Predicting label is missing, abandon the sample. - if -1 in fol_spd: - continue - yield [pre_spd] + fol_spd - - -def predict_initHook(settings, file_list, **kwargs): - settings.pool_size = sys.maxint - settings.input_types = [dense_vector(TERM_NUM)] - - -@provider(init_hook=predict_initHook, should_shuffle=False) -def process_predict(settings, file_name): - with open(file_name) as f: - #abandon fields name - f.next() - for row_num, line in enumerate(f): - speeds = map(int, line.rstrip('\r\n').split(",")) - end_time = len(speeds) - pre_spd = map(float, speeds[end_time - TERM_NUM:end_time]) - yield pre_spd diff --git a/v1_api_demo/traffic_prediction/gen_result.py b/v1_api_demo/traffic_prediction/gen_result.py deleted file mode 100644 index 3da70b3031..0000000000 --- a/v1_api_demo/traffic_prediction/gen_result.py +++ /dev/null @@ -1,61 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -res = [] -with open('./rank-00000') as f: - for line in f: - pred = map(int, line.strip('\r\n;').split(";")) - #raw prediction range from 0 to 3 - res.append([i + 1 for i in pred]) - -file_name = open('./data/pred.list').read().strip('\r\n') - -FORECASTING_NUM = 24 -header = [ - 'id', - '201604200805', - '201604200810', - '201604200815', - '201604200820', - '201604200825', - '201604200830', - '201604200835', - '201604200840', - '201604200845', - '201604200850', - '201604200855', - '201604200900', - '201604200905', - '201604200910', - '201604200915', - '201604200920', - '201604200925', - '201604200930', - '201604200935', - '201604200940', - '201604200945', - '201604200950', - '201604200955', - '201604201000', -] -################### -## To CSV format ## -################### -with open(file_name) as f: - f.next() - print ','.join(header) - for row_num, line in enumerate(f): - fields = line.rstrip('\r\n').split(',') - linkid = fields[0] - print linkid + ',' + ','.join(map(str, res[row_num])) diff --git a/v1_api_demo/traffic_prediction/predict.sh b/v1_api_demo/traffic_prediction/predict.sh deleted file mode 100755 index 2dbd5e8805..0000000000 --- a/v1_api_demo/traffic_prediction/predict.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -cfg=trainer_config.py -# pass choice -model="output/pass-00000" -paddle train \ - --config=$cfg \ - --use_gpu=false \ - --job=test \ - --init_model_path=$model \ - --config_args=is_predict=1 \ - --predict_output_dir=. - -python gen_result.py > result.csv - -rm -rf rank-00000 diff --git a/v1_api_demo/traffic_prediction/train.sh b/v1_api_demo/traffic_prediction/train.sh deleted file mode 100755 index 48dfc5604f..0000000000 --- a/v1_api_demo/traffic_prediction/train.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -cfg=trainer_config.py -paddle train \ - --config=$cfg \ - --save_dir=./output \ - --trainer_count=4 \ - --log_period=1000 \ - --dot_period=10 \ - --num_passes=10 \ - --use_gpu=false \ - --show_parameter_stats_period=3000 \ - 2>&1 | tee 'train.log' diff --git a/v1_api_demo/traffic_prediction/trainer_config.py b/v1_api_demo/traffic_prediction/trainer_config.py deleted file mode 100755 index 52d678624a..0000000000 --- a/v1_api_demo/traffic_prediction/trainer_config.py +++ /dev/null @@ -1,52 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors, Inc. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from paddle.trainer_config_helpers import * - -################################### DATA Configuration ############################################# -is_predict = get_config_arg('is_predict', bool, False) -trn = './data/train.list' if not is_predict else None -tst = './data/test.list' if not is_predict else './data/pred.list' -process = 'process' if not is_predict else 'process_predict' -define_py_data_sources2( - train_list=trn, test_list=tst, module="dataprovider", obj=process) -################################### Parameter Configuaration ####################################### -TERM_NUM = 24 -FORECASTING_NUM = 24 -emb_size = 16 -batch_size = 128 if not is_predict else 1 -settings( - batch_size=batch_size, - learning_rate=1e-3, - learning_method=RMSPropOptimizer()) -################################### Algorithm Configuration ######################################## - -output_label = [] - -link_encode = data_layer(name='link_encode', size=TERM_NUM) -for i in xrange(FORECASTING_NUM): - # Each task share same weight. - link_param = ParamAttr( - name='_link_vec.w', initial_max=1.0, initial_min=-1.0) - link_vec = fc_layer(input=link_encode, size=emb_size, param_attr=link_param) - score = fc_layer(input=link_vec, size=4, act=SoftmaxActivation()) - if is_predict: - maxid = maxid_layer(score) - output_label.append(maxid) - else: - # Multi-task training. - label = data_layer(name='label_%dmin' % ((i + 1) * 5), size=4) - cls = classification_cost( - input=score, name="cost_%dmin" % ((i + 1) * 5), label=label) - output_label.append(cls) -outputs(output_label) diff --git a/v1_api_demo/vae/README.md b/v1_api_demo/vae/README.md deleted file mode 100644 index e55d483b02..0000000000 --- a/v1_api_demo/vae/README.md +++ /dev/null @@ -1,13 +0,0 @@ -#Variational Autoencoder (VAE) - -This demo implements VAE training described in the original paper (https://arxiv.org/abs/1312.6114). - - -In order to run the model, first download the MNIST dataset by running the shell script in ./data. - -Then you can run the command below. The flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu). - -$python vae_train.py [--use_gpu 1] - -The generated images will be stored in ./samples/ -The corresponding models will be stored in ./params/ diff --git a/v1_api_demo/vae/data/get_mnist_data.sh b/v1_api_demo/vae/data/get_mnist_data.sh deleted file mode 100755 index a77c81bf5a..0000000000 --- a/v1_api_demo/vae/data/get_mnist_data.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/usr/bin/env sh -# This script downloads the mnist data and unzips it. -set -e -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -rm -rf "$DIR/mnist_data" -mkdir "$DIR/mnist_data" -cd "$DIR/mnist_data" - -echo "Downloading..." - -for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte -do - if [ ! -e $fname ]; then - wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz - gunzip ${fname}.gz - fi -done diff --git a/v1_api_demo/vae/dataloader.py b/v1_api_demo/vae/dataloader.py deleted file mode 100644 index e9ff95d44f..0000000000 --- a/v1_api_demo/vae/dataloader.py +++ /dev/null @@ -1,60 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np - - -class MNISTloader(): - def __init__(self, - data_path="./data/mnist_data/", - batch_size=60, - process='train'): - self.batch_size = batch_size - self.data_path = data_path - self._pointer = 0 - self.image_batches = np.array([]) - self.process = process - - def _extract_images(self, filename, n): - f = open(filename, 'rb') - f.read(16) - data = np.fromfile(f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)) - #Mapping data into [-1, 1] - data = data / 255. * 2. - 1 - data_batches = np.split(data, 60000 / self.batch_size, 0) - - f.close() - - return data_batches - - @property - def pointer(self): - return self._pointer - - def load_data(self): - TRAIN_IMAGES = '%s/train-images-idx3-ubyte' % self.data_path - TEST_IMAGES = '%s/t10k-images-idx3-ubyte' % self.data_path - - if self.process == 'train': - self.image_batches = self._extract_images(TRAIN_IMAGES, 60000) - else: - self.image_batches = self._extract_images(TEST_IMAGES, 10000) - - def next_batch(self): - batch = self.image_batches[self._pointer] - self._pointer = (self._pointer + 1) % (60000 / self.batch_size) - return np.array(batch) - - def reset_pointer(self): - self._pointer = 0 diff --git a/v1_api_demo/vae/vae_conf.py b/v1_api_demo/vae/vae_conf.py deleted file mode 100644 index 301dd23793..0000000000 --- a/v1_api_demo/vae/vae_conf.py +++ /dev/null @@ -1,116 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * -import numpy as np - -is_generating = get_config_arg("is_generating", bool, False) - -settings(batch_size=32, learning_rate=1e-3, learning_method=AdamOptimizer()) - -X_dim = 28 * 28 -h_dim = 128 -z_dim = 100 - - -def reparameterization(mu, logvar): - eps = ParamAttr(initial_mean=0., initial_std=1) - with mixed_layer() as sigma: - sigma += dotmul_projection(layer_math.exp(logvar) * 0.5, param_attr=eps) - return mu + sigma - - -def q_func(X): - """ - xavier initialization - """ - param_attr = ParamAttr( - name='share.w', initial_mean=0., initial_std=1. / np.sqrt(X_dim / 2.)) - mu_param = ParamAttr( - name='mu.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.)) - logvar_param = ParamAttr( - name='logvar.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.)) - - bias_attr = ParamAttr(name='share.bias', initial_mean=0., initial_std=0.) - mu_bias = ParamAttr(name='mu.bias', initial_mean=0., initial_std=0.) - logvar_bias = ParamAttr(name='logvar.bias', initial_mean=0., initial_std=0.) - - share_layer = fc_layer( - X, - size=h_dim, - param_attr=param_attr, - bias_attr=bias_attr, - act=ReluActivation()) - - return (fc_layer( - share_layer, - size=z_dim, - param_attr=mu_param, - bias_attr=mu_bias, - act=LinearActivation()), fc_layer( - share_layer, - size=z_dim, - param_attr=logvar_param, - bias_attr=logvar_bias, - act=LinearActivation())) - - -def generator(z): - - hidden_param = ParamAttr( - name='hidden.w', initial_mean=0., initial_std=1. / np.sqrt(z_dim / 2.)) - hidden_bias = ParamAttr(name='hidden.bias', initial_mean=0., initial_std=0.) - prob_param = ParamAttr( - name='prob.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.)) - prob_bias = ParamAttr(name='prob.bias', initial_mean=0., initial_std=0.) - - hidden_layer = fc_layer( - z, - size=h_dim, - act=ReluActivation(), - param_attr=hidden_param, - bias_attr=hidden_bias) - prob = fc_layer( - hidden_layer, - size=X_dim, - act=SigmoidActivation(), - param_attr=prob_param, - bias_attr=prob_bias) - - return prob - - -def reconstruct_error(prob, X): - cost = multi_binary_label_cross_entropy(input=prob, label=X) - return cost - - -def KL_loss(mu, logvar): - with mixed_layer() as mu_square: - mu_square += dotmul_operator(mu, mu, scale=1.) - - cost = 0.5 * sum_cost(layer_math.exp(logvar) + mu_square - 1. - logvar) - - return cost - - -if not is_generating: - x_batch = data_layer(name='x_batch', size=X_dim) - mu, logvar = q_func(x_batch) - z_samples = reparameterization(mu, logvar) - prob = generator(z_samples) - outputs(reconstruct_error(prob, x_batch) + KL_loss(mu, logvar)) -else: - z_samples = data_layer(name='noise', size=z_dim) - outputs(generator(z_samples)) diff --git a/v1_api_demo/vae/vae_train.py b/v1_api_demo/vae/vae_train.py deleted file mode 100644 index 1babb011c7..0000000000 --- a/v1_api_demo/vae/vae_train.py +++ /dev/null @@ -1,175 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import argparse -import random -import numpy as np -import cPickle -import sys, os -from PIL import Image - -from paddle.trainer.config_parser import parse_config -from paddle.trainer.config_parser import logger -import py_paddle.swig_paddle as api -import dataloader -import matplotlib.pyplot as plt - - -def plot_samples(samples): - fig = plt.figure(figsize=(4, 4)) - gs = gridspec.GridSpec(4, 4) - gs.update(wspace=0.05, hspace=0.05) - for i, sample in enumerate(samples): - plt.subplot(gs[i]) - plt.axis('off') - plt.imshow(sample.reshape(28, 28), cmap='Greys_r') - - return fig - - -def CHECK_EQ(a, b): - assert a == b, "a=%s, b=%s" % (a, b) - - -def get_fake_samples(generator_machine, batch_size, noise): - gen_inputs = api.Arguments.createArguments(1) - gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) - gen_outputs = api.Arguments.createArguments(0) - generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST) - fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat() - return fake_samples - - -def copy_shared_parameters(src, dst): - ''' - copy the parameters from src to dst - :param src: the source of the parameters - :type src: GradientMachine - :param dst: the destination of the parameters - :type dst: GradientMachine - ''' - src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] - src_params = dict([(p.getName(), p) for p in src_params]) - - for i in xrange(dst.getParameterSize()): - dst_param = dst.getParameter(i) - src_param = src_params.get(dst_param.getName(), None) - if src_param is None: - continue - src_value = src_param.getBuf(api.PARAMETER_VALUE) - dst_value = dst_param.getBuf(api.PARAMETER_VALUE) - CHECK_EQ(len(src_value), len(dst_value)) - dst_value.copyFrom(src_value) - dst_param.setValueUpdated() - - -def find(iterable, cond): - for item in iterable: - if cond(item): - return item - return None - - -def get_layer_size(model_conf, layer_name): - layer_conf = find(model_conf.layers, lambda x: x.name == layer_name) - assert layer_conf is not None, "Cannot find '%s' layer" % layer_name - return layer_conf.size - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument( - "--use_gpu", default="1", help="1 means use gpu for training") - parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter") - args = parser.parse_args() - use_gpu = args.use_gpu - assert use_gpu in ["0", "1"] - - if not os.path.exists("./samples/"): - os.makedirs("./samples/") - - if not os.path.exists("./params/"): - os.makedirs("./params/") - - api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', - '--log_period=1000', '--gpu_id=' + args.gpu_id, - '--save_dir=' + "./params/") - - conf = "vae_conf.py" - - trainer_conf = parse_config(conf, "is_generating=False") - gener_conf = parse_config(conf, "is_generating=True") - - batch_size = trainer_conf.opt_config.batch_size - - noise_dim = get_layer_size(gener_conf.model_config, "noise") - - mnist = dataloader.MNISTloader(batch_size=batch_size) - mnist.load_data() - - training_machine = api.GradientMachine.createFromConfigProto( - trainer_conf.model_config) - - generator_machine = api.GradientMachine.createFromConfigProto( - gener_conf.model_config) - - trainer = api.Trainer.create(trainer_conf, training_machine) - - trainer.startTrain() - - for train_pass in xrange(100): - trainer.startTrainPass() - mnist.reset_pointer() - i = 0 - it = 0 - while mnist.pointer != 0 or i == 0: - X = mnist.next_batch().astype('float32') - - inputs = api.Arguments.createArguments(1) - inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(X)) - - trainer.trainOneDataBatch(batch_size, inputs) - - if it % 1000 == 0: - - outputs = api.Arguments.createArguments(0) - training_machine.forward(inputs, outputs, api.PASS_TEST) - loss = np.mean(outputs.getSlotValue(0).copyToNumpyMat()) - print "\niter: {}".format(str(it).zfill(3)) - print "VAE loss: {}".format(str(loss).zfill(3)) - - #Sync parameters between networks (GradientMachine) at the beginning - copy_shared_parameters(training_machine, generator_machine) - - z_samples = np.random.randn(batch_size, - noise_dim).astype('float32') - samples = get_fake_samples(generator_machine, batch_size, - z_samples) - - #Generating the first 16 images for a picture. - figure = plot_samples(samples[:16]) - plt.savefig( - "./samples/{}_{}.png".format( - str(train_pass).zfill(3), str(i).zfill(3)), - bbox_inches='tight') - plt.close(figure) - i += 1 - it += 1 - - trainer.finishTrainPass() - trainer.finishTrain() - - -if __name__ == '__main__': - main()