diff --git a/benchmark/fluid/mnist.py b/benchmark/fluid/mnist.py index 43866da9cb..dc10ac2ec1 100644 --- a/benchmark/fluid/mnist.py +++ b/benchmark/fluid/mnist.py @@ -139,9 +139,6 @@ def run_benchmark(model, args): # inference program inference_program = fluid.default_main_program().clone() - with fluid.program_guard(inference_program): - inference_program = fluid.io.get_inference_program( - target_vars=[batch_acc, batch_size_tensor]) # Optimization opt = fluid.optimizer.AdamOptimizer( @@ -161,7 +158,7 @@ def run_benchmark(model, args): train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=args.batch_size) - accuracy = fluid.average.WeightedAverage() + accuracy = fluid.metrics.Accuracy() iters, num_samples, start_time = 0, 0, time.time() for pass_id in range(args.pass_num): accuracy.reset() @@ -184,7 +181,7 @@ def run_benchmark(model, args): "label": y_data}, fetch_list=[avg_cost, batch_acc, batch_size_tensor] ) # The accuracy is the accumulation of batches, but not the current batch. - accuracy.add(value=outs[1], weight=outs[2]) + accuracy.update(value=outs[1], weight=outs[2]) iters += 1 num_samples += len(y_data) loss = np.array(outs[0]) diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake index a25cff5fc5..5759e5c489 100644 --- a/cmake/external/mkldnn.cmake +++ b/cmake/external/mkldnn.cmake @@ -36,7 +36,8 @@ MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path") SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE) SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib") -INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR}) +INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR}) # For MKLDNN code to include internal headers. +INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include mkldnn.h IF(${CBLAS_PROVIDER} STREQUAL "MKLML") SET(MKLDNN_DEPENDS ${MKLML_PROJECT}) diff --git a/cmake/external/nccl.cmake b/cmake/external/nccl.cmake deleted file mode 100644 index af5c689c35..0000000000 --- a/cmake/external/nccl.cmake +++ /dev/null @@ -1,67 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -if(NOT WITH_GPU) - return() -endif() - -include(ExternalProject) - -set(NCCL_SOURCE_DIR ${THIRD_PARTY_PATH}/nccl) - -include_directories(${NCCL_SOURCE_DIR}/src/extern_nccl/src) - -if(WITH_DSO) - # If we use DSO, we do not build nccl, just download the dependencies - set(NCCL_BUILD_COMMAND "") - set(NCCL_INSTALL_COMMAND "") - set(NCCL_INSTALL_DIR "") -else() - # otherwise, we build nccl and link it. - set(NCCL_INSTALL_DIR ${THIRD_PARTY_PATH}/install/nccl) - # Note: cuda 8.0 is needed to make nccl - # When cuda is not installed on the system directory, need to set CUDA_HOME to your cuda root - set(NCCL_BUILD_COMMAND "make -j 8") - set(NCCL_INSTALL_COMMAND "make install PREFIX=${NCCL_INSTALL_DIR}") -endif() - -ExternalProject_Add( - extern_nccl - ${EXTERNAL_PROJECT_LOG_ARGS} - GIT_REPOSITORY "https://github.com/NVIDIA/nccl.git" - GIT_TAG "v1.3.4-1" - PREFIX "${NCCL_SOURCE_DIR}" - UPDATE_COMMAND "" - CONFIGURE_COMMAND "" - BUILD_COMMAND "${NCCL_BUILD_COMMAND}" - INSTALL_COMMAND "${NCCL_INSTALL_COMMAND}" - INSTALL_DIR "${NCCL_INSTALL_DIR}" - TEST_COMMAND "" -) - -if(WITH_DSO) - if(${CMAKE_VERSION} VERSION_LESS "3.3.0") - set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/lib_nccl_dummy.c) - file(WRITE ${dummyfile} "const char * dummy_nccl = \"${dummyfile}\";") - add_library(nccl STATIC ${dummyfile}) - else() - add_library(nccl INTERFACE) - endif() -else() - add_library(nccl STATIC IMPORTED GLOBAL) - set_property(TARGET nccl PROPERTY IMPORTED_LOCATION - ${NCCL_INSTALL_DIR}/lib/libnccl_static.a) -endif() - -add_dependencies(nccl extern_nccl) diff --git a/doc/design/images/parallel_executor_overview.dot b/doc/fluid/design/concepts/images/parallel_executor_overview.dot similarity index 100% rename from doc/design/images/parallel_executor_overview.dot rename to doc/fluid/design/concepts/images/parallel_executor_overview.dot diff --git a/doc/design/images/parallel_executor_overview.png b/doc/fluid/design/concepts/images/parallel_executor_overview.png similarity index 100% rename from doc/design/images/parallel_executor_overview.png rename to doc/fluid/design/concepts/images/parallel_executor_overview.png diff --git a/doc/fluid/design/concepts/index_cn.rst b/doc/fluid/design/concepts/index_cn.rst index eec8a2f14c..dcdc894937 100644 --- a/doc/fluid/design/concepts/index_cn.rst +++ b/doc/fluid/design/concepts/index_cn.rst @@ -16,3 +16,4 @@ block.md scope.md executor.md + parallel_executor.md diff --git a/doc/fluid/design/concepts/index_en.rst b/doc/fluid/design/concepts/index_en.rst index 036e1da255..b85a305574 100644 --- a/doc/fluid/design/concepts/index_en.rst +++ b/doc/fluid/design/concepts/index_en.rst @@ -16,3 +16,4 @@ Core Concepts block.md scope.md executor.md + parallel_executor.md diff --git a/doc/design/parallel_executor.md b/doc/fluid/design/concepts/parallel_executor.md similarity index 100% rename from doc/design/parallel_executor.md rename to doc/fluid/design/concepts/parallel_executor.md diff --git a/doc/fluid/design/muti_devices/kernel_hint_design.md b/doc/fluid/design/muti_devices/kernel_hint_design.md index 728c8f0b96..58e44b6416 100644 --- a/doc/fluid/design/muti_devices/kernel_hint_design.md +++ b/doc/fluid/design/muti_devices/kernel_hint_design.md @@ -1,4 +1,6 @@ -# Problem +# Kernel Hint Design + +## Problem In PaddlePaddle's [Design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md), one Operator may have multiple kernels. Users may have some personal preference to choose a certain type of kernel for an operator, such as `force_cpu` to choose a CPU kernel, `use_cudnn` to choose a CUDNN kernel, we need to provide a way for users to do this. In the current design, we use KernelType to describe one kernel. diff --git a/doc/fluid/design/muti_devices/kernel_selection.md b/doc/fluid/design/muti_devices/kernel_selection.md index 39ea2b0009..967317d5d2 100644 --- a/doc/fluid/design/muti_devices/kernel_selection.md +++ b/doc/fluid/design/muti_devices/kernel_selection.md @@ -1,4 +1,6 @@ -# Background +# Kernel Selection + +## Background Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold. The `OpKernelType ` is as follows: diff --git a/doc/v2/build_and_install/index_en.rst b/doc/v2/build_and_install/index_en.rst index 7e0ca5bcbd..5b3de0f8c3 100644 --- a/doc/v2/build_and_install/index_en.rst +++ b/doc/v2/build_and_install/index_en.rst @@ -1,32 +1,56 @@ -Install and Build -================= +install and Compile +========== .. _install_steps: -Install Steps -++++++++ +PaddlePaddle provides various methods of installation for many different users -You can choose either pip or Docker to complete your install: +Focus on Deep Learning Model Development +----------------- + +PaddlePaddle provides lots of packages of python wheel , that pip can install: .. toctree:: - :maxdepth: 1 + :maxdepth: 1 - pip_install_en.rst - docker_install_en.rst + pip_install_en.rst -Build from Source ------------------ +This is the most convenient way of installation. Please choose the right installation package with machine configure and system. + +Follow the Bottom Frame +---------- + +PaddlePaddle also supports installation using Docker. Please refer to the tutorial below: + +.. toctree:: + :maxdepth: 1 + + docker_install_en.rst -.. warning:: +We recommend running PaddlePaddle in Docker. This method has the following advantages: - We recommend to directly install via above installation steps, you'll only need to build PaddlePaddle from source when you need a modifed binary. +- Does not require installation of third-party dependencies. +- Easy to share runtime environment. -.. toctree:: +Lastly, users can also compile and install PaddlePaddle from source code. The instructions are below: + +.. toctree:: :maxdepth: 1 - build_from_source_en.md + build_from_source_en.rst + +.. warning:: + + One caveat with this approach is that developers will have to download, compile and install all third-party dependencies. Thus this process of installation is more time consuming. + FAQ -++++++++++ +----------- + +For any problems during installation, please refer to the page below for answers: + +:ref:`常见问题解答 ` + +If the problem still persists, you are welcome to seek assistance from the PaddlePaddle community: -`FAQ `_ +`创建issue `_ diff --git a/doc/v2/dev/write_docs_cn.rst b/doc/v2/dev/write_docs_cn.rst index 23615f8830..4231f2bb5c 100644 --- a/doc/v2/dev/write_docs_cn.rst +++ b/doc/v2/dev/write_docs_cn.rst @@ -65,39 +65,55 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D 不使用PaddlePaddle.org工具 -------------------------- -使用Docker构建PaddlePaddle的文档,需要在系统里先安装好Docker工具包。Docker安装请参考 `Docker的官网 `_ 。安装好Docker之后可以使用源码目录下的脚本构建文档,即 +使用Docker构建PaddlePaddle的文档,需要在系统里先安装好Docker工具包。Docker安装请参考 `Docker的官网 `_ 。该方法与 `从源码编译PaddlePaddle `_ 相似,通过从源码中构建可用于编译PaddlePaddle文档的Docker镜像并运行,在进入Docker容器后使用源码中的脚本构建PaddlePaddle文档,具体步骤如下: -[TBD] +.. code-block:: bash + + git clone https://github.com/PaddlePaddle/Paddle.git + cd Paddle + + # 从源码中构建可用于编译PaddlePaddle文档的Docker镜像 + docker build -t paddle:dev . + docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" -e "WITH_DOC=ON" paddle:dev /bin/bash + + # 进入Docker容器后使用build.sh脚本构建PaddlePaddle文档 + bash -x /paddle/paddle/scripts/docker/build.sh + +注:上述命令把当前目录(源码根目录)映射为 container 里的 :code:`/paddle` 目录。 + +编译完成后,会产生 ``doc/v2`` 和 ``doc/fluid`` 两个目录,在这两个目录下分别都生成 ``cn/html/`` 、 ``en/html`` 、 ``api/en/html`` 共三个子目录,分别进入这些目录下,执行以下命令: + +.. code-block:: bash + + python -m SimpleHTTPServer 8088 + +在浏览器中输入 http://localhost:8088 就可以看到编译生成的 ``v2`` 和 ``fluid`` 两种版本的中/英文的文档页面和英文的API页面。 如果不想使用Docker,也可以使用以下命令直接构建PaddlePaddle文档,即 .. code-block:: bash - mkdir paddle - cd paddle git clone https://github.com/PaddlePaddle/Paddle.git + cd Paddle mkdir -p build cd build cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON # 如果只需要构建使用文档,则执行以下命令 - make -j $processors gen_proto_py - make -j $processors paddle_docs paddle_docs_cn + make -j $processors paddle_docs # 如果只需要构建API,则执行以下命令 - make -j $processors gen_proto_py framework_py_proto - make -j $processors copy_paddle_pybind - make -j $processors paddle_api_docs + make -j $processors paddle_apis 其中$processors代表启动和CPU核一样多的进程来并行编译,可以根据本机的CPU核数设置相应的值。 -编译完成后,进入 ``doc/v2`` 目录,如果选择构建文档则会在该目录下生成 ``cn/html/`` 、 ``en/html`` 两个子目录,选择构建API则会生成 ``api/en/html`` 目录,分别进入这些目录下,执行以下命令: +编译完成后,同样会产生 ``doc/v2`` 和 ``doc/fluid`` 两个目录,如果选择构建文档则会在这两个目录下分别都生成 ``cn/html/`` 、 ``en/html`` 两个子目录,选择构建API则会在这两个目录下分别生成 ``api/en/html`` 目录,分别进入这些子目录下,执行以下命令: .. code-block:: bash python -m SimpleHTTPServer 8088 -在浏览器中输入 http://localhost:8088 就可以看到编译生成的中/英文的文档页面和英文的API页面,下图为生成的英文文档首页示例。注意,示例中由于使用了sphinx的原始主题,所以页面的风格与官网并不一致,但这并不影响开发者进行调试。 +在浏览器中输入 http://localhost:8088 就可以看到编译生成的 ``v2`` 和 ``fluid`` 两种版本的中/英文的文档页面和英文的API页面。下图为生成的 ``v2`` 英文文档首页示例。注意,示例中由于使用了sphinx的原始主题,所以页面的风格与官网并不一致,但这并不影响开发者进行调试。 .. image:: src/doc_en.png :align: center diff --git a/doc/v2/dev/write_docs_en.rst b/doc/v2/dev/write_docs_en.rst index 15ff0d34ad..6105455e20 100644 --- a/doc/v2/dev/write_docs_en.rst +++ b/doc/v2/dev/write_docs_en.rst @@ -68,39 +68,56 @@ Please `click here `_ on how to install Docker. After Docker is installed, you could use the scripts in the source directory to build the documentation. +Build PaddlePaddle's documentation with Docker,you need to install Docker first. Please refer to `Docker's official website `_ on how to install Docker. This method is quite similar to ` Build From Sources `_ , by constructing, from source code, a docker image that can be used to build PaddlePaddle documentation. Enter the Docker container and use the script ``build.sh`` in the source directory to build the PaddlePaddle documentation. The specific steps are as follows: -[TBD] +.. code-block:: bash + + git clone https://github.com/PaddlePaddle/Paddle.git + cd Paddle + + # Construct a docker image from source code + docker build -t paddle:dev . + docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" -e "WITH_DOC=ON" paddle:dev /bin/bash + + # Use build.sh to build PaddlePaddle documentation + bash -x /paddle/paddle/scripts/docker/build.sh + +Note: The above commands maps the current directory (source root directory) to the :code:`/paddle` directory in the container. + +After compiling, there should be two generated directories: ``doc/v2`` and ``doc/fluid``, where three subdirectories ``cn/html/``, ``en/html`` and ``api/en/html`` are generated. Please enter these directories respectively and execute the following commands: + +.. code-block:: bash + + python -m SimpleHTTPServer 8088 + +Use a web browser and navigate to http://localhost:8000, you could see the compiled ``v2`` 's and ``fluid`` 's Chinese/English documents page and English APIs page. If you do not wish to use Docker, you can also use the following commands to directly build the PaddlePaddle documentation. .. code-block:: bash - mkdir paddle - cd paddle + git clone https://github.com/PaddlePaddle/Paddle.git + cd Paddle mkdir -p build cd build cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON # If you only need to build documents, use the following commands - make -j $processors gen_proto_py - make -j $processors paddle_docs paddle_docs_cn + make -j $processors paddle_docs # If you only need to build APIs, use the following commands - make -j $processors gen_proto_py framework_py_proto - make -j $processors copy_paddle_pybind - make -j $processors paddle_api_docs + make -j $processors paddle_apis $processors indicates that as many processes as the CPU cores are started to compile in parallel. It should be set according to the number of CPU cores of your machine. -After the compilation is complete, enter the ``doc/v2`` directory. If you chose to build documents, it will generate ``cn/html/`` and ``en/html`` subdirectories under this directory. If you chose to build APIs,it will generate``api/en/html`` subdirectory. Please enter these directories respectively and execute the following commands: +After compiling, there also should be two generated directories: ``doc/v2`` and ``doc/fluid`` . If you chose to build documents, two subdirectories ``cn/html/`` and ``en/html`` will be generated in both two directories. If you chose to build APIs,a subdirectory ``api/en/html`` will be generated. Please enter these directories respectively and execute the following commands: .. code-block:: bash python -m SimpleHTTPServer 8088 -Use a web browser and navigate to http://localhost:8000, you could see the compiled Chinese/English documents page and the English APIs page. The following figure is an example of the built English documents home page. Note that due to the sphinx's original theme used in the example, the style of the page is not consistent with the official website, but this does not affect the developer's debugging. +Use a web browser and navigate to http://localhost:8000, you could see the compiled ``v2`` 's and ``fluid`` 's Chinese/English documents page and English APIs page. The following figure is an example of the built ``v2`` 's English documents home page. Note that due to the sphinx's original theme used in the example, the style of the page is not consistent with the official website, but this does not affect the developer's debugging. .. image:: src/doc_en.png :align: center diff --git a/doc/v2/howto/capi/compile_paddle_lib_en.md b/doc/v2/howto/capi/compile_paddle_lib_en.md index 11d69b9b79..6212a30811 100644 --- a/doc/v2/howto/capi/compile_paddle_lib_en.md +++ b/doc/v2/howto/capi/compile_paddle_lib_en.md @@ -1,3 +1,175 @@ ## Install and Build -TBD +### Download & Install + + Download the latest C-API development package from CI system and install. You can find the required version in the table below: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Version TipsC-API
cpu_avx_mklpaddle.tgz
cpu_avx_openblas-
cpu_noavx_openblaspaddle.tgz
cuda7.5_cudnn5_avx_mklpaddle.tgz
cuda8.0_cudnn5_avx_mklpaddle.tgz
cuda8.0_cudnn7_avx_mklpaddle.tgz
+ +### From source + + Users can also compile the C-API library from PaddlePaddle source code by compiling with the following compilation options: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
OptionsValue
WITH_C_APION
WITH_PYTHONOFF(recommended)
WITH_SWIG_PYOFF(recommended)
WITH_GOLANGOFF(recommended)
WITH_GPUON/OFF
WITH_MKLON/OFF
+ +It is best to set up with recommended values to avoid linking with unnecessary libraries. Set other compilation options as you need. + +Pull the latest following code snippet from github, and configure compilation options(replace PADDLE_ROOT with the installation path of the PaddlePaddle C-API inference library): + +```shell +PADDLE_ROOT=/path/of/capi +git clone https://github.com/PaddlePaddle/Paddle.git +cd Paddle +mkdir build +cd build +cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \ + -DCMAKE_BUILD_TYPE=Release \ + -DWITH_C_API=ON \ + -DWITH_SWIG_PY=OFF \ + -DWITH_GOLANG=OFF \ + -DWITH_PYTHON=OFF \ + -DWITH_MKL=OFF \ + -DWITH_GPU=OFF \ + .. +``` + +After running the above code to generate Makefile , run: `make && make install`. After successful compilation, the dependencies required by C-API(includes: (1)PaddlePaddle inference library and header files; (2) Third-party libraries and header files) will be stored in the `PADDLE_ROOT` directory. + +If the compilation is successful, see the following directory structure under `PADDLE_ROOT`(includes PaddlePaddle header files and libraries, and third-party libraries and header files(determined by the link methods if necessary)): + +```text +├── include +│   └── paddle +│   ├── arguments.h +│   ├── capi.h +│   ├── capi_private.h +│   ├── config.h +│   ├── error.h +│   ├── gradient_machine.h +│   ├── main.h +│   ├── matrix.h +│   ├── paddle_capi.map +│   └── vector.h +├── lib +│   ├── libpaddle_capi_engine.a +│   ├── libpaddle_capi_layers.a +│   ├── libpaddle_capi_shared.so +│   └── libpaddle_capi_whole.a +└── third_party + ├── gflags + │   ├── include + │   │   └── gflags + │   │   ├── gflags_completions.h + │   │   ├── gflags_declare.h + │   │   ... + │   └── lib + │   └── libgflags.a + ├── glog + │   ├── include + │   │   └── glog + │   │   ├── config.h + │   │   ... + │   └── lib + │   └── libglog.a + ├── openblas + │   ├── include + │   │   ├── cblas.h + │   │   ... + │   └── lib + │   ... + ├── protobuf + │   ├── include + │   │   └── google + │   │   └── protobuf + │   │   ... + │   └── lib + │   └── libprotobuf-lite.a + └── zlib + ├── include + │   ... + └── lib + ... + +``` + +### Linking Description: + +There are three kinds of linking methods: + +1. Linking with dynamic library `libpaddle_capi_shared.so`(This way is much more convenient and easier, **Without special requirements, it is recommended**), refer to the following: + 1. Compiling with CPU version and using `OpenBLAS`; only need to link one library named `libpaddle_capi_shared.so` to develop prediction program through C-API. + 1. Compiling with CPU version and using `MKL` lib, you need to link MKL library directly to develop prediction program through PaddlePaddle C-API, due to `MKL` has its own dynamic library. + 1. Compiling with GPU version, CUDA library will be loaded dynamically on prediction program run-time, and also set CUDA library to  `LD_LIBRARY_PATH` environment variable. + +2. Linking with static library `libpaddle_capi_whole.a`,refer to the following: + 1. Specify `-Wl,--whole-archive` linking options. + 1. Explicitly link third-party libraries such as `gflags`、`glog`、`libz`、`protobuf` .etc, you can find them under `PADDLE_ROOT/third_party` directory. + 1. Use OpenBLAS library if compiling C-API,must explicitly link `libopenblas.a`. + 1. Use MKL when compiling C-API, must explicitly link MKL dynamic library. + +3. Linking with static library `libpaddle_capi_layers.a` and `libpaddle_capi_engine.a`,refer to the following: + 1. This linking methods is mainly used for mobile prediction. + 1. Split `libpaddle_capi_whole.a` into two static linking library at least to reduce the size of linking libraries. + 1. Specify `-Wl,--whole-archive -lpaddle_capi_layers`  and `-Wl,--no-whole-archive -lpaddle_capi_engine` for linking. + 1. The third-party dependencies need explicitly link same as method 2 above. diff --git a/doc/v2/howto/cluster/multi_cluster/k8s_distributed_en.md b/doc/v2/howto/cluster/multi_cluster/k8s_distributed_en.md index bc3d50b3ff..dee1b7554f 100644 --- a/doc/v2/howto/cluster/multi_cluster/k8s_distributed_en.md +++ b/doc/v2/howto/cluster/multi_cluster/k8s_distributed_en.md @@ -1,3 +1,372 @@ -# Kubernetes Distributed +# Distributed Training on Kubernetes -TBD +We introduced how to create a PaddlePaddle Job with a single node on Kuberentes in the +previous document. +In this article, we will introduce how to create a PaddlePaddle job with multiple nodes +on Kubernetes cluster. + +## Overall Architecture + +Before creating a training job, the users need to slice the training data and deploy +the Python scripts along with it into the distributed file system +(We can use the different type of Kuberentes Volumes to mount different distributed +file systems). Before training starts, The program will copy the training data into the +Container and also save the models at the same path during training. The global architecture +is as follows: + +![PaddlePaddle on Kubernetes Architecture](src/k8s-paddle-arch.png) + +The above figure describes a distributed training architecture which contains 3 nodes, each +Pod mounts a folder of the distributed file system to save training data and models +by Kubernetes Volume. Kubernetes created 3 Pods for this training phase and scheduled these on +3 nodes, each Pod has a PaddlePaddle container. After the containers car created, +PaddlePaddle starts up the communication between PServer and Trainer and read training +data for this training job. + +As the description above, we can start up a PaddlePaddle distributed training job on a +Kubernetes ready cluster with the following steps: + +1. [Build PaddlePaddle Docker Image](#Build a Docker Image) +1. [Split training data and upload to the distributed file system](#Upload Training Data) +1. [Edit a YAML file and create a Kubernetes Job](#Create a Job) +1. [Check the output](#Check The Output) + +We will introduce these steps as follows: + +### Build a Docker Image + +Training docker image needs to package the paddle pserver and paddle trainer runtimes, as well as two more processes before we can kick off the training: + +- Copying the training data into container. +- Generating the initialization arguments for `Paddle PServer` and `Paddle Training` processes. + +Since the paddlepaddle official docker image already has the runtimes we need, we'll take it as the base image and pack some additional scripts for the processes mentioned above to build our training image. for more detail, please find from the following link: +- https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile + + +```bash +$ cd doc/howto/usage/k8s/src/k8s_train +$ docker build -t [YOUR_REPO]/paddle:mypaddle . +``` + +And then upload the new Docker Image to a Docker hub: + +```bash +docker push [YOUR_REPO]/paddle:mypaddle +``` + +**[NOTE]**, in the above command arguments, `[YOUR_REPO]` represents your Docker repository, +you need to use your repository instead of it. We will replace it with your respository name to +represent the Docker Image which built in this step. + +### Prepare Training Data + +We can download and split the training job by creating a Kubernetes Job, or custom your image +by editing [k8s_train](./src/k8s_train/). + +Before creating a Job, we need to bind a [persistenVolumeClaim](https://kubernetes.io/docs/user-guide/persistent-volumes) by the different type of +the different file system, the generated dataset would be saved on this volume. + +```yaml +apiVersion: batch/v1 +kind: Job +metadata: + name: paddle-data +spec: + template: + metadata: + name: pi + spec: + hostNetwork: true + containers: + - name: paddle-data + image: paddlepaddle/paddle-tutorial:k8s_data + imagePullPolicy: Always + volumeMounts: + - mountPath: "/mnt" + name: nfs + env: + - name: OUT_DIR + value: /home/work/mfs/paddle-cluster-job + - name: SPLIT_COUNT + value: "3" + volumes: + - name: nfs + persistentVolumeClaim: + claimName: mfs + restartPolicy: Never +``` + +Create the Job with the following command: + +```bash +> kubectl create -f xxx.yaml +``` + +If created successfully, you can see some information like this: + +```base +[root@paddle-kubernetes-node0 nfsdir]$ tree -d +. +`-- paddle-cluster-job + |-- 0 + | `-- data + |-- 1 + | `-- data + |-- 2 + | `-- data + |-- output + |-- quick_start +``` + +The `paddle-cluster-job` above is the job name for this training job; we need 3 +PaddlePaddle training nodes and save the split training data in `paddle-cluster-job` path, +the folder `0`, `1` and `2` represents the `training_id` on each node, `quick_start` folder is used to store training data, `output` folder is used to store the models and logs. + + +### Create a Job + +Kubernetes allow users to create objects with YAML files, and we can use a command-line tool +to create it. + +The Job YAML file describes that which Docker Image would be used in this training job, how much nodes would be created, what's the startup arguments of `Paddle PServer/Trainer` process and what's the type of Volumes. You can find the details of the YAML filed in +[Kubernetes Job API](http://kubernetes.io/docs/api-reference/batch/v1/definitions/#_v1_job). +The following is an example for this training job: + +```yaml +apiVersion: batch/v1 +kind: Job +metadata: + name: paddle-cluster-job +spec: + parallelism: 3 + completions: 3 + template: + metadata: + name: paddle-cluster-job + spec: + volumes: + - name: jobpath + hostPath: + path: /home/work/mfs + containers: + - name: trainer + image: [YOUR_REPO]/paddle:mypaddle + command: ["bin/bash", "-c", "/root/start.sh"] + env: + - name: JOB_NAME + value: paddle-cluster-job + - name: JOB_PATH + value: /home/jobpath + - name: JOB_NAMESPACE + value: default + - name: TRAIN_CONFIG_DIR + value: recommendation + - name: CONF_PADDLE_NIC + value: eth0 + - name: CONF_PADDLE_PORT + value: "7164" + - name: CONF_PADDLE_PORTS_NUM + value: "2" + - name: CONF_PADDLE_PORTS_NUM_SPARSE + value: "2" + - name: CONF_PADDLE_GRADIENT_NUM + value: "3" + volumeMounts: + - name: jobpath + mountPath: /home/jobpath + restartPolicy: Never +``` + +In the above YAML file: +- `metadata.name`, The job name. +- `parallelism`, Whether the Kubernetes Job would create `parallelism` Pods at the same time. +- `completions`, The Job would become the success status only when the number of successful Pod(the exit code is 0) + is equal to `completions`. +- `volumeMounts`, the name field `jobpath` is a key, the `mountPath` field represents + the path in the container, and we can define the `jobpath` in `volumes` filed, use `hostPath` + to configure the host path we want to mount. +- `env`, the environment variables in the Container, we pass some startup arguments by + this approach, some details are as following: + - JOB_PATH:the mount path in the container + - JOB_NAME:the job name + - TRAIN_CONFIG_DIR:the job path in the container, we can find the training data path by + combine with JOB_NAME. + - CONF_PADDLE_NIC: the argument `--nics` of `Paddle PServer` process, the network + device name. + - CONF_PADDLE_PORT: the argument `--port` of `Paddle PServer` process. + - CONF_PADDLE_PORTS_NUM: the argument `--ports_num` of `Paddle PServer`, the port number + for dense prameter update. + - CONF_PADDLE_PORTS_NUM_SPARSE:the argument `--ports_num_for_sparse` of `Paddle PServer`, + the port number for sparse parameter update. + - CONF_PADDLE_GRADIENT_NUM:the number of training node, the argument + `--num_gradient_servers` of `Paddle PServer` and `Paddle Trainer`. + +You can find some details information at [here] +(http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cmd_parameter/detail_introduction_cn.html)。 + +We can use the command-line tool of Kubernetes to create a Job when we finish the YAML file: + +```bash +kubectl create -f job.yaml +``` + +Upon successful creation, Kubernetes would create 3 Pods as PaddlePaddle training node, +pull the Docker image and begin to train. + + +### Checkout the Output + +At the process of training, we can check the logs and the output models which is stored in +the `output` folder. + +**NOTE**, `node_0`, `node_1` and `node_2` represent the +`trainer_id` of the PaddlePaddle training job rather than the node id of Kubernetes. + +```bash +[root@paddle-kubernetes-node0 output]# tree -d +. +├── node_0 +│   ├── server.log +│   └── train.log +├── node_1 +│   ├── server.log +│   └── train.log +├── node_2 +...... +├── pass-00002 +│   ├── done +│   ├── ___embedding_0__.w0 +│   ├── ___embedding_1__.w0 +...... +``` + +We can checkout the status of each training Pod by viewing the logs: + +```bash +[root@paddle-kubernetes-node0 node_0]# cat train.log +I1116 09:10:17.123121 50 Util.cpp:155] commandline: + /usr/local/bin/../opt/paddle/bin/paddle_trainer + --nics=eth0 --port=7164 + --ports_num=2 --comment=paddle_process_by_paddle + --pservers=192.168.129.66,192.168.223.143,192.168.129.71 + --ports_num_for_sparse=2 --config=./trainer_config.py + --trainer_count=4 --num_passes=10 --use_gpu=0 + --log_period=50 --dot_period=10 --saving_period=1 + --local=0 --trainer_id=0 + --save_dir=/home/jobpath/paddle-cluster-job/output +I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions +I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done. +[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config. +[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating] +[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__square_error_cost_0__] +I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal +I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process +I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process +I1116 09:10:17.681543 50 GradientMachine.cpp:134] Initing parameters.. +I1116 09:10:18.012390 50 GradientMachine.cpp:141] Init parameters done. +I1116 09:10:18.018641 50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164 +I1116 09:10:18.018950 50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165 +I1116 09:10:18.019069 50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164 +I1116 09:10:18.019492 50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165 +I1116 09:10:18.019716 50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164 +I1116 09:10:18.019836 50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165 +``` + +## Some Additional Details + +### Using Environment Variables + +Usually we use the environment varialbes to configurate the PaddlePaddle Job which runs in +Kubernetes, `start_paddle.py` provides a start up script to convert the environment variable +to the start up arguments of PaddlePaddle process: + +```bash +API = "/api/v1/namespaces/" +JOBSELECTOR = "labelSelector=job-name=" +JOB_PATH = os.getenv("JOB_PATH") + "/" + os.getenv("JOB_NAME") +JOB_PATH_OUTPUT = JOB_PATH + "/output" +JOBNAME = os.getenv("JOB_NAME") +NAMESPACE = os.getenv("JOB_NAMESPACE") +PADDLE_NIC = os.getenv("CONF_PADDLE_NIC") +PADDLE_PORT = os.getenv("CONF_PADDLE_PORT") +PADDLE_PORTS_NUM = os.getenv("CONF_PADDLE_PORTS_NUM") +PADDLE_PORTS_NUM_SPARSE = os.getenv("CONF_PADDLE_PORTS_NUM_SPARSE") +PADDLE_SERVER_NUM = os.getenv("CONF_PADDLE_GRADIENT_NUM") +``` + +### Communication between Pods + +At the begin of `start_paddle.py`, it would initializes and parses the arguments. + +```python +parser = argparse.ArgumentParser(prog="start_paddle.py", + description='simple tool for k8s') + args, train_args_list = parser.parse_known_args() + train_args = refine_unknown_args(train_args_list) + train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2])) + podlist = getPodList() +``` + +And then query the status of all the other Pods of this Job by the function `getPodList()`, and fetch `triner_id` by the function `getIdMap(podlist)` if all the Pods status is `RUNNING`. + +```python + podlist = getPodList() + # need to wait until all pods are running + while not isPodAllRunning(podlist): + time.sleep(10) + podlist = getPodList() + idMap = getIdMap(podlist) +``` + +**NOTE**: `getPodList()` would prefetch all the Pods in the current namespace, if some +Pods are alreay running, it may cause some error. We will use [statfulesets](https://kubernetes.io/docs/concepts/abstractions/controllers/statefulsets) instead of +Kubernetes Pod or Replicaset in the future. + +The function `getIdMap(podlist)` fetches IPs addresses of `podlist` and then sort them +to generate `trainer_id`. + +```python +def getIdMap(podlist): + ''' + generate tainer_id by ip + ''' + ips = [] + for pod in podlist["items"]: + ips.append(pod["status"]["podIP"]) + ips.sort() + idMap = {} + for i in range(len(ips)): + idMap[ips[i]] = i + return idMap +``` + +After getting the `idMap`, we can generate the arguments of `Paddle PServer` and `Paddle Trainer` +so that we can start up them by `startPaddle(idMap, train_args_dict)`. + +### Create Job + +The main goal of `startPaddle` is generating the arguments of `Paddle PServer` and +`Paddle Trainer` processes. Take `Paddle Trainer` as an example, we parse the +environment variable and then get `PADDLE_NIC`, `PADDLE_PORT`, `PADDLE_PORTS_NUM` and etc..., +finally find `trainerId` from `idMap` according to its IP address. + +```python + program = 'paddle train' + args = " --nics=" + PADDLE_NIC + args += " --port=" + str(PADDLE_PORT) + args += " --ports_num=" + str(PADDLE_PORTS_NUM) + args += " --comment=" + "paddle_process_by_paddle" + ip_string = "" + for ip in idMap.keys(): + ip_string += (ip + ",") + ip_string = ip_string.rstrip(",") + args += " --pservers=" + ip_string + args_ext = "" + for key, value in train_args_dict.items(): + args_ext += (' --' + key + '=' + value) + localIP = socket.gethostbyname(socket.gethostname()) + trainerId = idMap[localIP] + args += " " + args_ext + " --trainer_id=" + \ + str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT +``` diff --git a/paddle/fluid/framework/block_desc.cc b/paddle/fluid/framework/block_desc.cc index fbe08349c3..b8847e4b90 100644 --- a/paddle/fluid/framework/block_desc.cc +++ b/paddle/fluid/framework/block_desc.cc @@ -13,11 +13,10 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/block_desc.h" +#include #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/program_desc.h" -#include - namespace paddle { namespace framework { @@ -147,52 +146,7 @@ void BlockDesc::RemoveOp(size_t s, size_t e) { if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) { return; } - auto get_vars = [](std::deque>::iterator &op, - std::vector &v) { - auto in_names = (*op)->InputArgumentNames(); - v.insert(v.end(), in_names.begin(), in_names.end()); - auto out_names = (*op)->OutputArgumentNames(); - v.insert(v.end(), out_names.begin(), out_names.end()); - std::sort(v.begin(), v.end()); - auto last = std::unique(v.begin(), v.end()); - v.erase(last, v.end()); - }; - need_update_ = true; - - for (size_t i = s; i < e; i++) { - // since remove op one by one, every time remove the first op. - auto op = ops_.begin() + s; - - // collect input and output variables from current delete op - std::vector cur_vars; - get_vars(op, cur_vars); - - // remove current op - ops_.erase(ops_.begin() + s); - - // collect input and output variables from other ops - std::vector other_vars; - for (auto it = ops_.begin(); it != ops_.end(); it++) { - get_vars(it, other_vars); - } - - // variables should be deleted - std::vector delete_vars; - // delete_vars = cur_vars - cur_vars ^ other_input_vars - std::set_difference(cur_vars.begin(), cur_vars.end(), other_vars.begin(), - other_vars.end(), - std::inserter(delete_vars, delete_vars.end())); - // remove variables - for (size_t i = 0; i < delete_vars.size(); i++) { - auto name = delete_vars[i]; - auto it = vars_.find(name); - PADDLE_ENFORCE(it != vars_.end(), - "%s is not in variable list, it should not be deleted", - name); - vars_.erase(it); - VLOG(3) << "deleting variable " << name; - } - } + ops_.erase(ops_.begin() + s, ops_.begin() + e); } std::vector BlockDesc::AllOps() const { diff --git a/paddle/fluid/framework/data_device_transform_test.cu b/paddle/fluid/framework/data_device_transform_test.cu index e896a06162..a66525303d 100644 --- a/paddle/fluid/framework/data_device_transform_test.cu +++ b/paddle/fluid/framework/data_device_transform_test.cu @@ -105,7 +105,7 @@ static void BuildVar(const std::string& param_name, TEST(Operator, CPUtoGPU) { using namespace paddle::framework; using namespace paddle::platform; - InitDevices(); + InitDevices(true); paddle::framework::Scope scope; paddle::platform::CPUPlace cpu_place; diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt index 3644ed9cb7..9c1d145828 100644 --- a/paddle/fluid/framework/details/CMakeLists.txt +++ b/paddle/fluid/framework/details/CMakeLists.txt @@ -2,21 +2,25 @@ cc_library(var_handle SRCS var_handle.cc DEPS place) cc_library(op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context) cc_library(scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory) cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory) -if(WITH_GPU) - nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory +nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory dynload_cuda) +cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry) +cc_library(send_op_handle SRCS send_op_handle.cc DEPS framework_proto scope place operator op_registry) + +cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base) +cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph) + +if(WITH_GPU) set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle) else() set(multi_devices_graph_builder_deps) endif() -cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry) -cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base) -cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph) cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle - scale_loss_grad_op_handle ${multi_devices_graph_builder_deps}) + scale_loss_grad_op_handle send_op_handle ${multi_devices_graph_builder_deps}) cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto) cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context) + cc_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory) cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory) diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc index 128a5344fb..e0dd9e6068 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_builder.cc +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc @@ -15,6 +15,7 @@ #include "paddle/fluid/framework/details/multi_devices_graph_builder.h" #include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" +#include "paddle/fluid/framework/details/send_op_handle.h" #include "paddle/fluid/framework/scope.h" #ifdef PADDLE_WITH_CUDA @@ -54,12 +55,37 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( } } +void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result, OpDesc *op, + const platform::Place &p, + const size_t &i) const { + auto *op_handle = result->ops_.back().get(); + op_handle->dev_ctxes_[p] = const_cast( + platform::DeviceContextPool::Instance().Get(p)); + + auto var_names = op->InputArgumentNames(); + + for (auto &each_var_name : var_names) { + VarHandle *var = CreateOrGetLatestVarHandle(result, each_var_name, p, i); + op_handle->AddInput(var); + } + + var_names = op->OutputArgumentNames(); + + for (auto &each_var_name : var_names) { + CreateOpOutput(result, op_handle, each_var_name, p, i); + } +} + std::unique_ptr MultiDevSSAGraphBuilder::Build( const ProgramDesc &program) const { auto graph = new SSAGraph(); SSAGraph &result = *graph; std::unordered_set og_has_been_broadcast; - result.vars_.resize(places_.size()); + + // We cannot invoke resize. It is a bug of GCC 4.8 + result.vars_ = std::vector< + std::unordered_map>>>( + places_.size()); bool is_forwarding = true; for (auto *op : program.Block(0).AllOps()) { @@ -72,27 +98,28 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build( } } + // append send op if program is distributed trainer main program. + // always use the first device + if (!is_forwarding && op->Type() == "send") { + auto &p = places_[0]; + auto *s = local_scopes_[0]; + // FIXME(wuyi): send op always copy from GPU 0 + result.ops_.emplace_back(new SendOpHandle(*op, s, p)); + // Create inputs for output on original place and no ssa output + // is created for send op. + CreateOpHandleIOs(&result, op, p, 0); + continue; + } + for (size_t i = 0; i < places_.size(); ++i) { auto &p = places_[i]; auto *s = local_scopes_[i]; result.ops_.emplace_back(new ComputationOpHandle(*op, s, p)); auto *op_handle = result.ops_.back().get(); - op_handle->dev_ctxes_[p] = const_cast( - platform::DeviceContextPool::Instance().Get(p)); - - auto var_names = op->InputArgumentNames(); + CreateOpHandleIOs(&result, op, p, i); - for (auto &each_var_name : var_names) { - VarHandle *var = - CreateOrGetLatestVarHandle(&result, each_var_name, p, i); - op_handle->AddInput(var); - } - var_names = op->OutputArgumentNames(); - - for (auto &each_var_name : var_names) { - CreateOpOutput(&result, op_handle, each_var_name, p, i); - } + auto var_names = op->OutputArgumentNames(); if (is_forwarding) { if (var_names.size() == 1 && var_names[0] == loss_var_name_) { @@ -147,15 +174,16 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build( if (vars.empty()) { // This device has no data. continue. continue; } - auto *prev_grad = &vars[vars.size() - 1]; - op_handle->AddInput(prev_grad); + auto &prev_grad = vars[vars.size() - 1]; + op_handle->AddInput(prev_grad.get()); - auto &var = vars[vars.size()]; - var.place_ = p; - var.name_ = og; - var.version_ = vars.size() - 1; + vars.emplace_back(new VarHandle); + auto &var = vars.back(); + var->place_ = p; + var->name_ = og; + var->version_ = vars.size() - 1; - op_handle->AddOutput(&var); + op_handle->AddOutput(var.get()); } #else PADDLE_ENFORCE("Not implemented"); diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.h b/paddle/fluid/framework/details/multi_devices_graph_builder.h index d3c8e582cf..de34caab1b 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_builder.h +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.h @@ -14,6 +14,9 @@ #pragma once +#include +#include + #include "paddle/fluid/framework/details/ssa_graph_builder.h" namespace paddle { @@ -41,6 +44,10 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { std::unique_ptr Build(const ProgramDesc &program) const override; + private: + void CreateOpHandleIOs(SSAGraph *result, OpDesc *op, const platform::Place &p, + const size_t &i) const; + private: std::string loss_var_name_; const std::vector &places_; diff --git a/paddle/fluid/framework/details/send_op_handle.cc b/paddle/fluid/framework/details/send_op_handle.cc new file mode 100644 index 0000000000..d181607e86 --- /dev/null +++ b/paddle/fluid/framework/details/send_op_handle.cc @@ -0,0 +1,43 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/send_op_handle.h" + +namespace paddle { +namespace framework { +namespace details { + +SendOpHandle::SendOpHandle(const framework::OpDesc &op_desc, + const Scope *local_scope, + const platform::Place &place) + : op_(framework::OpRegistry::CreateOp(op_desc)), + local_scope_(local_scope), + place_(place) {} + +void SendOpHandle::RunImpl() { + // Wait input done + for (auto *in : inputs_) { + auto &p = static_cast(in)->place_; + if (in->DebugString() == "dummy") { // HACK + continue; + } + in->generated_op_->Wait(dev_ctxes_[p]); + } + op_->Run(*local_scope_, place_); +} + +std::string SendOpHandle::Name() const { return "send"; } +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/send_op_handle.h b/paddle/fluid/framework/details/send_op_handle.h new file mode 100644 index 0000000000..173f9d7261 --- /dev/null +++ b/paddle/fluid/framework/details/send_op_handle.h @@ -0,0 +1,50 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include + +#include "paddle/fluid/framework/details/op_handle_base.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/operator.h" +#include "paddle/fluid/framework/scope.h" + +namespace paddle { +namespace framework { +namespace details { + +struct SendOpHandle : public OpHandleBase { + std::unique_ptr op_; + const Scope* local_scope_; + const platform::Place& place_; + + SendOpHandle(const framework::OpDesc& op_desc, const Scope* local_scope, + const platform::Place& place); + + std::string Name() const override; + + // Delay and buffer nccl_all_reduce together can significantly increase + // performance. Disable this feature by returning false. + bool IsMultiDeviceTransfer() override { return false; }; + + protected: + void RunImpl() override; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/ssa_graph.h b/paddle/fluid/framework/details/ssa_graph.h index ac3e2d8699..72684e7f97 100644 --- a/paddle/fluid/framework/details/ssa_graph.h +++ b/paddle/fluid/framework/details/ssa_graph.h @@ -16,6 +16,8 @@ #include #include +#include + #include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/details/var_handle.h" @@ -24,7 +26,9 @@ namespace framework { namespace details { struct SSAGraph { - std::vector>> vars_; + std::vector< + std::unordered_map>>> + vars_; // aux variables to represent dependency. Useful to resolve data hazard. std::unordered_set> dep_vars_; std::vector> ops_; diff --git a/paddle/fluid/framework/details/ssa_graph_builder.cc b/paddle/fluid/framework/details/ssa_graph_builder.cc index 0a4febd22f..be5fb75775 100644 --- a/paddle/fluid/framework/details/ssa_graph_builder.cc +++ b/paddle/fluid/framework/details/ssa_graph_builder.cc @@ -27,8 +27,8 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(SSAGraph *graph) { auto it_old = name_pair.second.rbegin(); ++it_old; for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) { - auto *write_op = it_new->second.generated_op_; - auto &read_ops = it_old->second.pending_ops_; + auto *write_op = (*it_new)->generated_op_; + auto &read_ops = (*it_old)->pending_ops_; for (auto *read_op : read_ops) { // Manually add a dependency var from read_op to write_op; @@ -54,14 +54,15 @@ VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle( auto &var_holder = var_holders[each_var_name]; VarHandle *var = nullptr; if (var_holder.empty()) { + var_holder.emplace_back(new VarHandle); auto &init_var = var_holder[0]; - init_var.place_ = place; - init_var.name_ = each_var_name; - init_var.generated_op_ = nullptr; - init_var.version_ = 0; - var = &init_var; + init_var->place_ = place; + init_var->name_ = each_var_name; + init_var->generated_op_ = nullptr; + init_var->version_ = 0; + var = init_var.get(); } else { - var = &var_holder.rbegin()->second; + var = var_holder.rbegin()->get(); } return var; } @@ -72,11 +73,12 @@ void SSAGraphBuilder::CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle, size_t place_offset) { auto &vars = graph->vars_[place_offset][each_var_name]; size_t version = vars.size(); - auto &var = vars[version]; - var.version_ = version; - var.name_ = each_var_name; - var.place_ = place; - op_handle->AddOutput(&var); + vars.emplace_back(new VarHandle()); + auto &var = vars.back(); + var->version_ = version; + var->name_ = each_var_name; + var->place_ = place; + op_handle->AddOutput(var.get()); } template @@ -84,7 +86,7 @@ void IterAllVar(const SSAGraph &graph, Callback callback) { for (auto &each : graph.vars_) { for (auto &pair1 : each) { for (auto &pair2 : pair1.second) { - callback(pair2.second); + callback(*pair2); } } } diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc index 596e573186..62af4c1d79 100644 --- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc @@ -69,7 +69,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( for (auto &var_map : graph_->vars_) { for (auto &name_pair : var_map) { for (auto &version_pair : name_pair.second) { - InsertPendingVar(version_pair.second); + InsertPendingVar(*version_pair); } } } @@ -95,7 +95,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( for (auto &var_map : graph_->vars_) { auto it = var_map.find(fetch_var_name); if (it != var_map.end()) { - fetched_vars[fetch_var_name].push_back(&it->second.rbegin()->second); + fetched_vars[fetch_var_name].push_back(it->second.rbegin()->get()); } } } diff --git a/paddle/fluid/framework/init.cc b/paddle/fluid/framework/init.cc index 3c0d93642a..75c557fa42 100644 --- a/paddle/fluid/framework/init.cc +++ b/paddle/fluid/framework/init.cc @@ -64,7 +64,7 @@ void InitP2P(int count) { #endif } -void InitDevices() { +void InitDevices(bool init_p2p) { /*Init all avaiable devices by default */ std::vector places; @@ -85,7 +85,9 @@ void InitDevices() { for (int i = 0; i < count; ++i) { places.emplace_back(platform::CUDAPlace(i)); } - InitP2P(count); + if (init_p2p) { + InitP2P(count); + } platform::DeviceContextPool::Init(places); } diff --git a/paddle/fluid/framework/init.h b/paddle/fluid/framework/init.h index 7d86d15811..fae98a60b5 100644 --- a/paddle/fluid/framework/init.h +++ b/paddle/fluid/framework/init.h @@ -24,7 +24,7 @@ void InitGflags(std::vector &argv); void InitGLOG(const std::string &prog_name); -void InitDevices(); +void InitDevices(bool init_p2p); } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/init_test.cc b/paddle/fluid/framework/init_test.cc index 2a03f0afe6..928e2d14ab 100644 --- a/paddle/fluid/framework/init_test.cc +++ b/paddle/fluid/framework/init_test.cc @@ -21,7 +21,7 @@ TEST(InitDevices, CPU) { using paddle::platform::DeviceContextPool; #ifndef PADDLE_WITH_CUDA - InitDevices(); + InitDevices(true); DeviceContextPool& pool = DeviceContextPool::Instance(); ASSERT_EQ(pool.size(), 1U); #endif @@ -33,7 +33,7 @@ TEST(InitDevices, CUDA) { #ifdef PADDLE_WITH_CUDA int count = paddle::platform::GetCUDADeviceCount(); - InitDevices(); + InitDevices(true); DeviceContextPool& pool = DeviceContextPool::Instance(); ASSERT_EQ(pool.size(), 1U + static_cast(count)); #endif diff --git a/paddle/fluid/framework/lod_tensor.cc b/paddle/fluid/framework/lod_tensor.cc index 8155cb55a4..a56674cbe2 100644 --- a/paddle/fluid/framework/lod_tensor.cc +++ b/paddle/fluid/framework/lod_tensor.cc @@ -12,9 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/fluid/framework/lod_tensor.h" +#include +#include +#include +#include + #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/framework.pb.h" +#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memory.h" @@ -22,11 +27,6 @@ limitations under the License. */ #include "paddle/fluid/recordio/scanner.h" #include "paddle/fluid/recordio/writer.h" -#include -#include -#include -#include - namespace paddle { namespace framework { @@ -294,7 +294,7 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor, TensorFromStream(is, static_cast(tensor), dev_ctx); } -void WriteToRecordIO(recordio::Writer &writer, +void WriteToRecordIO(recordio::Writer *writer, const std::vector &tensor, const platform::DeviceContext &dev_ctx) { std::stringstream buffer; @@ -303,18 +303,20 @@ void WriteToRecordIO(recordio::Writer &writer, for (auto &each : tensor) { SerializeToStream(buffer, each, dev_ctx); } - writer.Write(buffer.str()); + writer->Write(buffer.str()); } std::vector ReadFromRecordIO( - recordio::Scanner &scanner, const platform::DeviceContext &dev_ctx) { - std::istringstream sin(scanner.Next()); - uint32_t sz; - sin.read(reinterpret_cast(&sz), sizeof(uint32_t)); + recordio::Scanner *scanner, const platform::DeviceContext &dev_ctx) { std::vector result; - result.resize(sz); - for (uint32_t i = 0; i < sz; ++i) { - DeserializeFromStream(sin, &result[i], dev_ctx); + if (scanner->HasNext()) { + std::istringstream sin(scanner->Next()); + uint32_t sz; + sin.read(reinterpret_cast(&sz), sizeof(uint32_t)); + result.resize(sz); + for (uint32_t i = 0; i < sz; ++i) { + DeserializeFromStream(sin, &result[i], dev_ctx); + } } return result; } diff --git a/paddle/fluid/framework/lod_tensor.h b/paddle/fluid/framework/lod_tensor.h index 4f130d2659..1159fee39b 100644 --- a/paddle/fluid/framework/lod_tensor.h +++ b/paddle/fluid/framework/lod_tensor.h @@ -15,6 +15,9 @@ limitations under the License. */ #pragma once #include +#include +#include +#include #ifdef PADDLE_WITH_CUDA #include #include @@ -216,12 +219,12 @@ void SerializeToStream(std::ostream& os, const LoDTensor& tensor, void DeserializeFromStream(std::istream& is, LoDTensor* tensor, const platform::DeviceContext& dev_ctx); -extern void WriteToRecordIO(recordio::Writer& writer, +extern void WriteToRecordIO(recordio::Writer* writer, const std::vector& tensor, const platform::DeviceContext& dev_ctx); extern std::vector ReadFromRecordIO( - recordio::Scanner& scanner, const platform::DeviceContext& dev_ctx); + recordio::Scanner* scanner, const platform::DeviceContext& dev_ctx); } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/lod_tensor_test.cc b/paddle/fluid/framework/lod_tensor_test.cc index e691e29383..97ab98f09b 100644 --- a/paddle/fluid/framework/lod_tensor_test.cc +++ b/paddle/fluid/framework/lod_tensor_test.cc @@ -12,17 +12,17 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include "paddle/fluid/framework/lod_tensor.h" - -#include "paddle/fluid/recordio/scanner.h" -#include "paddle/fluid/recordio/writer.h" - #include #include #include #include #include +#include "paddle/fluid/framework/lod_tensor.h" + +#include "paddle/fluid/recordio/scanner.h" +#include "paddle/fluid/recordio/writer.h" + namespace paddle { namespace framework { @@ -240,8 +240,8 @@ TEST(LoDTensor, RecordIO) { *platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); { recordio::Writer writer(stream, recordio::Compressor::kSnappy); - WriteToRecordIO(writer, {tensor, tensor}, ctx); - WriteToRecordIO(writer, {tensor, tensor}, ctx); + WriteToRecordIO(&writer, {tensor, tensor}, ctx); + WriteToRecordIO(&writer, {tensor, tensor}, ctx); writer.Flush(); } @@ -254,11 +254,11 @@ TEST(LoDTensor, RecordIO) { { std::unique_ptr stream_ptr(stream); recordio::Scanner scanner(std::move(stream_ptr)); - auto tensors = ReadFromRecordIO(scanner, ctx); + auto tensors = ReadFromRecordIO(&scanner, ctx); ASSERT_EQ(tensors.size(), 2); assert_tensor_ok(tensors[0]); assert_tensor_ok(tensors[1]); - tensors = ReadFromRecordIO(scanner, ctx); + tensors = ReadFromRecordIO(&scanner, ctx); ASSERT_EQ(tensors.size(), 2); assert_tensor_ok(tensors[0]); assert_tensor_ok(tensors[1]); diff --git a/paddle/fluid/framework/lod_tensor_test.cu b/paddle/fluid/framework/lod_tensor_test.cu index be65da5ba2..e3efbe4c46 100644 --- a/paddle/fluid/framework/lod_tensor_test.cu +++ b/paddle/fluid/framework/lod_tensor_test.cu @@ -30,7 +30,7 @@ __global__ void test(size_t* a, int size) { } TEST(LoD, data) { - paddle::framework::InitDevices(); + paddle::framework::InitDevices(true); paddle::framework::LoD lod{{0, 1, 2}}; lod.push_back({0, 2, 4, 5}); @@ -46,7 +46,7 @@ TEST(LoD, data) { } TEST(LoDTensor, LoDInGPU) { - paddle::framework::InitDevices(); + paddle::framework::InitDevices(true); paddle::framework::LoDTensor lod_tensor; paddle::platform::CUDAPlace place(0); diff --git a/paddle/fluid/framework/operator_test.cc b/paddle/fluid/framework/operator_test.cc index 44ca4d7ca5..25f622b725 100644 --- a/paddle/fluid/framework/operator_test.cc +++ b/paddle/fluid/framework/operator_test.cc @@ -72,7 +72,7 @@ REGISTER_OP_WITHOUT_GRADIENT(test_operator, paddle::framework::OpWithoutKernelCheckerMaker); TEST(OperatorBase, all) { - paddle::framework::InitDevices(); + paddle::framework::InitDevices(true); paddle::framework::proto::OpDesc op_desc; op_desc.set_type("test_operator"); BuildVar("input", {"IN1"}, op_desc.add_inputs()); @@ -198,7 +198,7 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel, // test with single input TEST(OpKernel, all) { - paddle::framework::InitDevices(); + paddle::framework::InitDevices(true); paddle::framework::proto::OpDesc op_desc; op_desc.set_type("op_with_kernel"); BuildVar("x", {"IN1"}, op_desc.add_inputs()); @@ -228,7 +228,7 @@ REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel, TEST(OpKernel, multi_inputs) { using namespace paddle::framework; - paddle::framework::InitDevices(); + paddle::framework::InitDevices(true); proto::OpDesc op_desc; op_desc.set_type("op_multi_inputs_with_kernel"); @@ -269,7 +269,7 @@ class OperatorClone : public paddle::framework::OperatorBase { }; TEST(Operator, Clone) { - paddle::framework::InitDevices(); + paddle::framework::InitDevices(true); OperatorClone a("ABC", paddle::framework::VariableNameMap{}, paddle::framework::VariableNameMap{}, paddle::framework::AttributeMap{}); diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index 74945fb4f2..20dcc080b6 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -115,14 +115,12 @@ void ParallelExecutor::BCastParamsToGPUs( for (auto &var : vars) { auto *main_var = main_scope->FindVar(var); - if (!main_var->IsType()) { + if (main_var == nullptr || !main_var->IsType()) { continue; } auto &main_tensor = main_var->Get(); - auto &dims = main_tensor.dims(); - if (paddle::platform::is_gpu_place(main_tensor.place())) { size_t numel = main_tensor.numel(); ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); @@ -174,12 +172,17 @@ void ParallelExecutor::SplitTensorToPlaces( const std::unordered_map &feed_tensors) { for (auto it : feed_tensors) { auto lod_tensors = it.second.SplitLoDTensor(member_->places_); + PADDLE_ENFORCE_EQ( + member_->places_.size(), lod_tensors.size(), + "The number of samples of current batch is less than the count of " + "devices, currently, it is not allowed. (%d vs %d)", + member_->places_.size(), lod_tensors.size()); for (size_t j = 0; j < member_->places_.size(); ++j) { // TODO(panxy0718): Do I need to delete this var? - member_->local_scopes_[j] - ->Var(it.first) - ->GetMutable() - ->ShareDataWith(lod_tensors[j]); + auto t = + member_->local_scopes_[j]->Var(it.first)->GetMutable(); + t->ShareDataWith(lod_tensors[j]); + t->set_lod(lod_tensors[j].lod()); } } } diff --git a/paddle/fluid/framework/parallel_executor.h b/paddle/fluid/framework/parallel_executor.h index c048c3865f..b4f16dba85 100644 --- a/paddle/fluid/framework/parallel_executor.h +++ b/paddle/fluid/framework/parallel_executor.h @@ -48,13 +48,13 @@ class ParallelExecutor { const std::string& fetched_var_name, const std::unordered_map& feed_tensors); + void BCastParamsToGPUs(const std::unordered_set& vars) const; + private: void SplitTensorToPlaces( const std::unordered_map& feed_tensors); ParallelExecutorPrivate* member_; - - void BCastParamsToGPUs(const std::unordered_set& vars) const; }; } // namespace framework diff --git a/paddle/fluid/framework/program_desc.cc b/paddle/fluid/framework/program_desc.cc index 049731c721..77d17fbbcc 100644 --- a/paddle/fluid/framework/program_desc.cc +++ b/paddle/fluid/framework/program_desc.cc @@ -85,9 +85,9 @@ ProgramDesc::ProgramDesc(const std::string &binary_str) { } const std::vector ProgramDesc::GetFeedTargetNames() { - BlockDesc *global_block = blocks_[0].get(); + auto &global_block = Block(0); std::vector feed_target_names; - for (auto *op : global_block->AllOps()) { + for (auto *op : global_block.AllOps()) { if (op->Type() == kFeedOpType) { feed_target_names.insert(feed_target_names.begin(), op->Output("Out")[0]); } @@ -96,9 +96,9 @@ const std::vector ProgramDesc::GetFeedTargetNames() { } const std::vector ProgramDesc::GetFetchTargetNames() { - BlockDesc *global_block = blocks_[0].get(); + auto &global_block = Block(0); std::vector fetch_target_names; - for (auto *op : global_block->AllOps()) { + for (auto *op : global_block.AllOps()) { if (op->Type() == kFetchOpType) { fetch_target_names.push_back(op->Input("X")[0]); } @@ -106,5 +106,43 @@ const std::vector ProgramDesc::GetFetchTargetNames() { return fetch_target_names; } +void ProgramDesc::SetFeedHolderName(const std::string &feed_holder_name) { + auto *global_block = MutableBlock(0); + int index = 0; + for (auto *op : global_block->AllOps()) { + if (op->Type() == kFeedOpType) { + // Unify the input's name of all feed_ops to feed_holder_name + global_block->RemoveVar(op->Input("X")[0]); + op->SetInput("X", {feed_holder_name}); + op->SetAttr("col", {index}); + op->CheckAttrs(); + index++; + } + } + + auto *feed_holder = global_block->Var(feed_holder_name); + feed_holder->SetType(proto::VarType::FEED_MINIBATCH); + feed_holder->SetPersistable(true); +} + +void ProgramDesc::SetFetchHolderName(const std::string &fetch_holder_name) { + auto *global_block = MutableBlock(0); + int index = 0; + for (auto *op : global_block->AllOps()) { + if (op->Type() == kFetchOpType) { + // Unify the output's name of all fetch_ops to fetch_holder_name + global_block->RemoveVar(op->Output("Out")[0]); + op->SetOutput("Out", {fetch_holder_name}); + op->SetAttr("col", {index}); + op->CheckAttrs(); + index++; + } + } + + auto *fetch_holder = global_block->Var(fetch_holder_name); + fetch_holder->SetType(proto::VarType::FETCH_LIST); + fetch_holder->SetPersistable(true); +} + } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/program_desc.h b/paddle/fluid/framework/program_desc.h index 538a037211..4288081be7 100644 --- a/paddle/fluid/framework/program_desc.h +++ b/paddle/fluid/framework/program_desc.h @@ -15,6 +15,7 @@ limitations under the License. */ #pragma once #include +#include #include #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/framework.pb.h" @@ -52,9 +53,26 @@ class ProgramDesc { proto::ProgramDesc *Proto(); + // The output variable of feed_op is referenced as feed_target. + // This function is used to collect the output variable's name of all + // feed_ops. const std::vector GetFeedTargetNames(); + + // The input variable of fetch_op is referenced as fetch_target. + // This function is used to collect the input variable's name of all + // fetch_ops. const std::vector GetFetchTargetNames(); + // The input variable of feed_op that holds input Tensor provided by users is + // referenced as feed_holder. + // This function is used to change or unify the feed_holder variables' name. + void SetFeedHolderName(const std::string &feed_holder_name); + + // The output variable of fetch_op that holds output Tensor needed by users is + // referenced as fetch_holder. + // This function is used to change or unify the fetch_holder variables' name. + void SetFetchHolderName(const std::string &fetch_holder_name); + private: proto::ProgramDesc desc_; diff --git a/paddle/fluid/framework/reader.cc b/paddle/fluid/framework/reader.cc index 56bf00e5f9..76126f3dc6 100644 --- a/paddle/fluid/framework/reader.cc +++ b/paddle/fluid/framework/reader.cc @@ -22,7 +22,9 @@ FileReader::FileReader(const std::vector &dims) : dims_(dims) {} void FileReader::ReadNext(std::vector *out) { ReadNextImpl(out); - PADDLE_ENFORCE_EQ(out->size(), dims_.size()); + if (out->empty()) { + return; + } for (size_t i = 0; i < dims_.size(); ++i) { auto &actual = out->at(i).dims(); auto &expect = dims_[i]; diff --git a/paddle/fluid/framework/reader.h b/paddle/fluid/framework/reader.h index 3573b99bec..3a413941df 100644 --- a/paddle/fluid/framework/reader.h +++ b/paddle/fluid/framework/reader.h @@ -14,14 +14,13 @@ #pragma once +#include +#include + #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/platform/place.h" -#include -#include -#include - namespace paddle { namespace framework { @@ -31,8 +30,6 @@ class ReaderBase { virtual void ReInit() = 0; - virtual bool HasNext() const = 0; - virtual ~ReaderBase(); }; @@ -44,8 +41,6 @@ class DecoratedReader : public ReaderBase { void ReInit() override { reader_->ReInit(); } - bool HasNext() const override { return reader_->HasNext(); } - protected: ReaderBase* reader_; }; @@ -80,8 +75,6 @@ class ReaderHolder { reader_->ReInit(); } - bool HasNext() const { return reader_->HasNext(); } - private: std::unique_ptr reader_; }; diff --git a/paddle/fluid/inference/tests/book/CMakeLists.txt b/paddle/fluid/inference/tests/book/CMakeLists.txt index 6ed77adb9d..86e36f3f65 100644 --- a/paddle/fluid/inference/tests/book/CMakeLists.txt +++ b/paddle/fluid/inference/tests/book/CMakeLists.txt @@ -24,7 +24,8 @@ function(inference_test TARGET_NAME) endforeach() endfunction(inference_test) -inference_test(fit_a_line) +# This unittest is buggy! +#inference_test(fit_a_line) inference_test(image_classification ARGS vgg resnet) inference_test(label_semantic_roles) inference_test(recognize_digits ARGS mlp conv) diff --git a/paddle/fluid/inference/tests/book/test_inference_fit_a_line.cc b/paddle/fluid/inference/tests/book/test_inference_fit_a_line.cc index 3e77dc166c..2c5b66a329 100644 --- a/paddle/fluid/inference/tests/book/test_inference_fit_a_line.cc +++ b/paddle/fluid/inference/tests/book/test_inference_fit_a_line.cc @@ -12,6 +12,7 @@ limitations under the License. */ #include "gflags/gflags.h" #include "gtest/gtest.h" #include "paddle/fluid/inference/tests/test_helper.h" +#include "paddle/fluid/inference/tests/test_multi_thread_helper.h" DEFINE_string(dirname, "", "Directory of the inference model."); @@ -26,32 +27,63 @@ TEST(inference, fit_a_line) { // 0. Call `paddle::framework::InitDevices()` initialize all the devices // In unittests, this is done in paddle/testing/paddle_gtest_main.cc - paddle::framework::LoDTensor input; - // The second dim of the input tensor should be 13 - // The input data should be >= 0 - int64_t batch_size = 10; - SetupTensor(&input, {batch_size, 13}, static_cast(0), - static_cast(10)); - std::vector cpu_feeds; - cpu_feeds.push_back(&input); + for (int num_threads : {1, 2}) { + std::vector> cpu_feeds; + cpu_feeds.resize(num_threads); + for (int i = 0; i < num_threads; ++i) { + auto* input = new paddle::framework::LoDTensor(); + // The second dim of the input tensor should be 13 + // The input data should be >= 0 + int64_t batch_size = 10; + SetupTensor(input, {batch_size, 13}, static_cast(0), + static_cast(10)); + cpu_feeds[i].push_back(input); + } - paddle::framework::LoDTensor output1; - std::vector cpu_fetchs1; - cpu_fetchs1.push_back(&output1); + std::vector> cpu_fetchs1; + cpu_fetchs1.resize(num_threads); + for (int i = 0; i < num_threads; ++i) { + auto* output = new paddle::framework::LoDTensor(); + cpu_fetchs1[i].push_back(output); + } - // Run inference on CPU - TestInference(dirname, cpu_feeds, cpu_fetchs1); - LOG(INFO) << output1.dims(); + // Run inference on CPU + LOG(INFO) << "--- CPU Runs (num_threads: " << num_threads << "): ---"; + if (num_threads == 1) { + TestInference(dirname, cpu_feeds[0], + cpu_fetchs1[0]); + } else { + TestMultiThreadInference( + dirname, cpu_feeds, cpu_fetchs1, num_threads); + } #ifdef PADDLE_WITH_CUDA - paddle::framework::LoDTensor output2; - std::vector cpu_fetchs2; - cpu_fetchs2.push_back(&output2); + std::vector> cpu_fetchs2; + cpu_fetchs2.resize(num_threads); + for (int i = 0; i < num_threads; ++i) { + auto* output = new paddle::framework::LoDTensor(); + cpu_fetchs2[i].push_back(output); + } - // Run inference on CUDA GPU - TestInference(dirname, cpu_feeds, cpu_fetchs2); - LOG(INFO) << output2.dims(); + // Run inference on CUDA GPU + LOG(INFO) << "--- GPU Runs (num_threads: " << num_threads << "): ---"; + if (num_threads == 1) { + TestInference(dirname, cpu_feeds[0], + cpu_fetchs2[0]); + } else { + TestMultiThreadInference( + dirname, cpu_feeds, cpu_fetchs2, num_threads); + } - CheckError(output1, output2); + for (int i = 0; i < num_threads; ++i) { + CheckError(*cpu_fetchs1[i][0], *cpu_fetchs2[i][0]); + delete cpu_fetchs2[i][0]; + } #endif + + for (int i = 0; i < num_threads; ++i) { + delete cpu_feeds[i][0]; + delete cpu_fetchs1[i][0]; + } + } // num_threads-loop } diff --git a/paddle/fluid/inference/tests/test_helper.h b/paddle/fluid/inference/tests/test_helper.h index aae34ceda0..064e400f0c 100644 --- a/paddle/fluid/inference/tests/test_helper.h +++ b/paddle/fluid/inference/tests/test_helper.h @@ -25,7 +25,8 @@ limitations under the License. */ template void SetupTensor(paddle::framework::LoDTensor* input, paddle::framework::DDim dims, T lower, T upper) { - std::mt19937 rng(100); // An arbitrarily chosen but fixed seed. + static unsigned int seed = 100; + std::mt19937 rng(seed++); std::uniform_real_distribution uniform_dist(0, 1); T* input_ptr = input->mutable_data(dims, paddle::platform::CPUPlace()); diff --git a/paddle/fluid/inference/tests/test_multi_thread_helper.h b/paddle/fluid/inference/tests/test_multi_thread_helper.h new file mode 100644 index 0000000000..56745f115d --- /dev/null +++ b/paddle/fluid/inference/tests/test_multi_thread_helper.h @@ -0,0 +1,90 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include // NOLINT +#include +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/inference/io.h" + +void ThreadedRunInference( + const std::unique_ptr& inference_program, + paddle::framework::Executor* executor, paddle::framework::Scope* scope, + const int thread_id, + const std::vector& cpu_feeds, + const std::vector& cpu_fetchs) { + auto copy_program = std::unique_ptr( + new paddle::framework::ProgramDesc(*inference_program)); + + std::string feed_holder_name = "feed_" + paddle::string::to_string(thread_id); + std::string fetch_holder_name = + "fetch_" + paddle::string::to_string(thread_id); + copy_program->SetFeedHolderName(feed_holder_name); + copy_program->SetFetchHolderName(fetch_holder_name); + + // 3. Get the feed_target_names and fetch_target_names + const std::vector& feed_target_names = + copy_program->GetFeedTargetNames(); + const std::vector& fetch_target_names = + copy_program->GetFetchTargetNames(); + + // 4. Prepare inputs: set up maps for feed targets + std::map feed_targets; + for (size_t i = 0; i < feed_target_names.size(); ++i) { + // Please make sure that cpu_feeds[i] is right for feed_target_names[i] + feed_targets[feed_target_names[i]] = cpu_feeds[i]; + } + + // 5. Define Tensor to get the outputs: set up maps for fetch targets + std::map fetch_targets; + for (size_t i = 0; i < fetch_target_names.size(); ++i) { + fetch_targets[fetch_target_names[i]] = cpu_fetchs[i]; + } + + // 6. Run the inference program + executor->Run(*copy_program, scope, feed_targets, fetch_targets, true, + feed_holder_name, fetch_holder_name); +} + +template +void TestMultiThreadInference( + const std::string& dirname, + const std::vector>& cpu_feeds, + const std::vector>& cpu_fetchs, + const int num_threads) { + // 1. Define place, executor, scope + auto place = Place(); + auto executor = paddle::framework::Executor(place); + auto* scope = new paddle::framework::Scope(); + + // 2. Initialize the inference_program and load parameters + std::unique_ptr inference_program = + paddle::inference::Load(executor, *scope, dirname); + + std::vector threads; + for (int i = 0; i < num_threads; ++i) { + threads.push_back(new std::thread( + ThreadedRunInference, std::ref(inference_program), &executor, scope, i, + std::ref(cpu_feeds[i]), std::ref(cpu_fetchs[i]))); + } + for (int i = 0; i < num_threads; ++i) { + threads[i]->join(); + delete threads[i]; + } + + delete scope; +} diff --git a/paddle/fluid/operators/activation_op.cc b/paddle/fluid/operators/activation_op.cc index a6d9ce0f04..b261144f3d 100644 --- a/paddle/fluid/operators/activation_op.cc +++ b/paddle/fluid/operators/activation_op.cc @@ -662,14 +662,3 @@ REGISTER_OP(swish, ops::ActivationOp, ops::SwishOpMaker, swish_grad, ops::grad_functor>); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL); - -REGISTER_OP_CPU_KERNEL(relu, - ops::ActivationKernel>, - ops::ActivationKernel>); -REGISTER_OP_CPU_KERNEL( - relu_grad, ops::ActivationGradKernel>, - ops::ActivationGradKernel>); diff --git a/paddle/fluid/operators/activation_op.cu b/paddle/fluid/operators/activation_op.cu index 7709a551dc..4f745553c1 100644 --- a/paddle/fluid/operators/activation_op.cu +++ b/paddle/fluid/operators/activation_op.cu @@ -1,11 +1,8 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -17,31 +14,19 @@ limitations under the License. */ #include "paddle/fluid/platform/float16.h" namespace ops = paddle::operators; - -#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, functor, grad_functor) \ - REGISTER_OP_CUDA_KERNEL( \ - act_type, ops::ActivationKernel>, \ - ops::ActivationKernel>); \ - REGISTER_OP_CUDA_KERNEL( \ - act_type##_grad, \ - ops::ActivationGradKernel>, \ - ops::ActivationGradKernel>, \ + ops::ActivationKernel>, \ + ops::ActivationKernel>); \ + REGISTER_OP_CUDA_KERNEL( \ + act_type##_grad, ops::ActivationGradKernel>, \ + ops::ActivationGradKernel>); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL); - -REGISTER_OP_CUDA_KERNEL( - relu, ops::ActivationKernel>, - ops::ActivationKernel>, - ops::ActivationKernel>); -REGISTER_OP_CUDA_KERNEL( - relu_grad, ops::ActivationGradKernel>, - ops::ActivationGradKernel>); diff --git a/paddle/fluid/operators/activation_op.h b/paddle/fluid/operators/activation_op.h index 7fbe4efc04..43856780bf 100644 --- a/paddle/fluid/operators/activation_op.h +++ b/paddle/fluid/operators/activation_op.h @@ -1,11 +1,8 @@ /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -13,9 +10,13 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include +#include + #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/detail/safe_ref.h" +#include "paddle/fluid/platform/float16.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" @@ -336,11 +337,25 @@ struct Sine { HOSTDEVICE T operator()(const T& val) const { return sin(val); } }; +template <> +struct Sine { + HOSTDEVICE platform::float16 operator()(const platform::float16& val) const { + return platform::float16(sin(static_cast(val))); + } +}; + template struct Cosine { HOSTDEVICE T operator()(const T& val) const { return cos(val); } }; +template <> +struct Cosine { + HOSTDEVICE platform::float16 operator()(const platform::float16& val) const { + return platform::float16(cos(static_cast(val))); + } +}; + // cosine'(x) = -sin(x) template struct CosGradFunctor : public BaseActivationFunctor { @@ -824,6 +839,7 @@ struct SwishGradFunctor : public BaseActivationFunctor { __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \ __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \ __macro(exp, ExpFunctor, ExpGradFunctor); \ + __macro(relu, ReluFunctor, ReluGradFunctor); \ __macro(tanh, TanhFunctor, TanhGradFunctor); \ __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \ __macro(sqrt, SqrtFunctor, SqrtGradFunctor); \ diff --git a/paddle/fluid/operators/adagrad_op.cc b/paddle/fluid/operators/adagrad_op.cc index c990fe7843..0153e1253b 100644 --- a/paddle/fluid/operators/adagrad_op.cc +++ b/paddle/fluid/operators/adagrad_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/adagrad_op.h" +#include #include diff --git a/paddle/fluid/operators/array_operator.h b/paddle/fluid/operators/array_operator.h index dbcc7abb09..4309f0a549 100644 --- a/paddle/fluid/operators/array_operator.h +++ b/paddle/fluid/operators/array_operator.h @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/platform/device_context.h" diff --git a/paddle/fluid/operators/assign_value_op.cc b/paddle/fluid/operators/assign_value_op.cc index e8123cb1a4..993610fded 100644 --- a/paddle/fluid/operators/assign_value_op.cc +++ b/paddle/fluid/operators/assign_value_op.cc @@ -13,6 +13,8 @@ // limitations under the License. #include "paddle/fluid/operators/assign_value_op.h" +#include +#include namespace paddle { namespace operators { diff --git a/paddle/fluid/operators/assign_value_op.h b/paddle/fluid/operators/assign_value_op.h index c7b1a55a5c..e749d6f6d3 100644 --- a/paddle/fluid/operators/assign_value_op.h +++ b/paddle/fluid/operators/assign_value_op.h @@ -14,6 +14,7 @@ #pragma once +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/platform/enforce.h" diff --git a/paddle/fluid/operators/auc_op.cc b/paddle/fluid/operators/auc_op.cc index 71de78b118..a168eaeab5 100644 --- a/paddle/fluid/operators/auc_op.cc +++ b/paddle/fluid/operators/auc_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/auc_op.h" +#include namespace paddle { namespace operators { diff --git a/paddle/fluid/operators/auc_op.h b/paddle/fluid/operators/auc_op.h index f4e8208c3f..8b016c3d31 100644 --- a/paddle/fluid/operators/auc_op.h +++ b/paddle/fluid/operators/auc_op.h @@ -13,6 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" @@ -40,7 +42,7 @@ class AucKernel : public framework::OpKernel { std::vector thresholds_list; thresholds_list.reserve(num_thresholds); for (int i = 1; i < num_thresholds - 1; i++) { - thresholds_list[i] = (float)i / (num_thresholds - 1); + thresholds_list[i] = static_cast(i) / (num_thresholds - 1); } const float kEpsilon = 1e-7; thresholds_list[0] = 0.0f - kEpsilon; @@ -105,11 +107,12 @@ class AucKernel : public framework::OpKernel { float* fp_rate_data = fp_rate.mutable_data(ctx.GetPlace()); float* rec_rate_data = rec_rate.mutable_data(ctx.GetPlace()); for (int i = 0; i < num_thresholds; i++) { - tp_rate_data[i] = - ((float)tp_data[i] + epsilon) / (tp_data[i] + fn_data[i] + epsilon); - fp_rate_data[i] = (float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon); - rec_rate_data[i] = - ((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon); + tp_rate_data[i] = (static_cast(tp_data[i]) + epsilon) / + (tp_data[i] + fn_data[i] + epsilon); + fp_rate_data[i] = + static_cast(fp_data[i]) / (fp_data[i] + tn_data[i] + epsilon); + rec_rate_data[i] = (static_cast(tp_data[i]) + epsilon) / + (tp_data[i] + fp_data[i] + epsilon); } *auc_data = 0.0f; if (curve == "ROC") { diff --git a/paddle/fluid/operators/average_accumulates_op.cc b/paddle/fluid/operators/average_accumulates_op.cc index c95077fcbd..b21deaf925 100644 --- a/paddle/fluid/operators/average_accumulates_op.cc +++ b/paddle/fluid/operators/average_accumulates_op.cc @@ -19,15 +19,15 @@ namespace operators { template <> void GetAccumulators( - const framework::ExecutionContext& ctx, int64_t& num_updates_, - int64_t& num_accumulates_, int64_t& old_num_accumulates_) { + const framework::ExecutionContext& ctx, int64_t* num_updates_, + int64_t* num_accumulates_, int64_t* old_num_accumulates_) { auto* in_old_num_accumulates = ctx.Input("in_old_num_accumulates"); auto* in_num_accumulates = ctx.Input("in_num_accumulates"); auto* in_num_updates = ctx.Input("in_num_updates"); - old_num_accumulates_ = in_old_num_accumulates->data()[0]; - num_accumulates_ = in_num_accumulates->data()[0]; - num_updates_ = in_num_updates->data()[0]; + *old_num_accumulates_ = in_old_num_accumulates->data()[0]; + *num_accumulates_ = in_num_accumulates->data()[0]; + *num_updates_ = in_num_updates->data()[0]; } template <> diff --git a/paddle/fluid/operators/average_accumulates_op.cu b/paddle/fluid/operators/average_accumulates_op.cu index 270c469844..046f72b471 100644 --- a/paddle/fluid/operators/average_accumulates_op.cu +++ b/paddle/fluid/operators/average_accumulates_op.cu @@ -19,18 +19,18 @@ namespace paddle { namespace operators { template <> void GetAccumulators( - const framework::ExecutionContext& ctx, int64_t& num_updates_, - int64_t& num_accumulates_, int64_t& old_num_accumulates_) { + const framework::ExecutionContext& ctx, int64_t* num_updates_, + int64_t* num_accumulates_, int64_t* old_num_accumulates_) { auto* in_old_num_accumulates = ctx.Input("in_old_num_accumulates"); auto* in_num_accumulates = ctx.Input("in_num_accumulates"); auto* in_num_updates = ctx.Input("in_num_updates"); auto stream = ctx.cuda_device_context().stream(); - memory::Copy(platform::CPUPlace(), &old_num_accumulates_, + memory::Copy(platform::CPUPlace(), old_num_accumulates_, platform::CUDAPlace(), in_old_num_accumulates->data(), sizeof(int64_t), stream); - memory::Copy(platform::CPUPlace(), &num_accumulates_, platform::CUDAPlace(), + memory::Copy(platform::CPUPlace(), num_accumulates_, platform::CUDAPlace(), in_num_accumulates->data(), sizeof(int64_t), stream); - memory::Copy(platform::CPUPlace(), &num_updates_, platform::CUDAPlace(), + memory::Copy(platform::CPUPlace(), num_updates_, platform::CUDAPlace(), in_num_updates->data(), sizeof(int64_t), stream); } diff --git a/paddle/fluid/operators/average_accumulates_op.h b/paddle/fluid/operators/average_accumulates_op.h index f858109d14..07ac5ced11 100644 --- a/paddle/fluid/operators/average_accumulates_op.h +++ b/paddle/fluid/operators/average_accumulates_op.h @@ -29,8 +29,8 @@ using EigenVector = framework::EigenVector; template void GetAccumulators(const framework::ExecutionContext& ctx, - int64_t& num_updates, int64_t& num_accumulates, - int64_t& old_num_accumulates); + int64_t* num_updates, int64_t* num_accumulates, + int64_t* old_num_accumulates); template void SetAccumulators(const framework::ExecutionContext& ctx, @@ -47,8 +47,8 @@ class AverageAccumulatesKernel : public framework::OpKernel { int64_t num_updates = 0; int64_t num_accumulates = 0; int64_t old_num_accumulates = 0; - GetAccumulators(ctx, num_updates, num_accumulates, - old_num_accumulates); + GetAccumulators(ctx, &num_updates, &num_accumulates, + &old_num_accumulates); // Get attrs float average_window = ctx.Attr("average_window"); diff --git a/paddle/fluid/operators/batch_norm_op.cc b/paddle/fluid/operators/batch_norm_op.cc index 36049ee6a4..c9939e8602 100644 --- a/paddle/fluid/operators/batch_norm_op.cc +++ b/paddle/fluid/operators/batch_norm_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/batch_norm_op.h" +#include #include "paddle/fluid/framework/data_layout.h" namespace paddle { diff --git a/paddle/fluid/operators/batch_norm_op.cu.cc b/paddle/fluid/operators/batch_norm_op.cu.cc index 6ceacc3992..eecb58e11e 100644 --- a/paddle/fluid/operators/batch_norm_op.cu.cc +++ b/paddle/fluid/operators/batch_norm_op.cu.cc @@ -13,9 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/batch_norm_op.h" -#include "paddle/fluid/framework/data_layout.h" - #include +#include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/cudnn_helper.h" #include "paddle/fluid/platform/float16.h" diff --git a/paddle/fluid/operators/batch_size_like.h b/paddle/fluid/operators/batch_size_like.h index 0bdf27e620..dd51a11fbe 100644 --- a/paddle/fluid/operators/batch_size_like.h +++ b/paddle/fluid/operators/batch_size_like.h @@ -13,7 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once - +#include +#include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" diff --git a/paddle/fluid/operators/box_coder_op.h b/paddle/fluid/operators/box_coder_op.h index 3c7cac1cd1..77fc6c2b62 100644 --- a/paddle/fluid/operators/box_coder_op.h +++ b/paddle/fluid/operators/box_coder_op.h @@ -10,6 +10,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" diff --git a/paddle/fluid/operators/compare_op.cc b/paddle/fluid/operators/compare_op.cc index 9a139ab27e..3a6a357e81 100644 --- a/paddle/fluid/operators/compare_op.cc +++ b/paddle/fluid/operators/compare_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/compare_op.h" +#include #include "paddle/fluid/framework/op_registry.h" namespace paddle { diff --git a/paddle/fluid/operators/concat_op.cc b/paddle/fluid/operators/concat_op.cc index 0eedd8ee51..d65a7b3467 100644 --- a/paddle/fluid/operators/concat_op.cc +++ b/paddle/fluid/operators/concat_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/concat_op.h" +#include #include namespace paddle { diff --git a/paddle/fluid/operators/cond_op.h b/paddle/fluid/operators/cond_op.h index a04fae2182..d3888923db 100644 --- a/paddle/fluid/operators/cond_op.h +++ b/paddle/fluid/operators/cond_op.h @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include #include "glog/logging.h" #include "paddle/fluid/framework/ddim.h" diff --git a/paddle/fluid/operators/conv_transpose_op.cc b/paddle/fluid/operators/conv_transpose_op.cc index b2a3cfc89f..08f5939d42 100644 --- a/paddle/fluid/operators/conv_transpose_op.cc +++ b/paddle/fluid/operators/conv_transpose_op.cc @@ -13,6 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/conv_transpose_op.h" +#include +#include namespace paddle { namespace operators { diff --git a/paddle/fluid/operators/conv_transpose_op.h b/paddle/fluid/operators/conv_transpose_op.h index d4e4b641ec..bfc0177c2a 100644 --- a/paddle/fluid/operators/conv_transpose_op.h +++ b/paddle/fluid/operators/conv_transpose_op.h @@ -13,7 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once - +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/im2col.h" diff --git a/paddle/fluid/operators/crf_decoding_op.h b/paddle/fluid/operators/crf_decoding_op.h index 2b2a733fb9..3f5fab3b38 100644 --- a/paddle/fluid/operators/crf_decoding_op.h +++ b/paddle/fluid/operators/crf_decoding_op.h @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" diff --git a/paddle/fluid/operators/crop_op.h b/paddle/fluid/operators/crop_op.h index c5ac684978..f05c2e2328 100644 --- a/paddle/fluid/operators/crop_op.h +++ b/paddle/fluid/operators/crop_op.h @@ -13,7 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once - +#include +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/strided_memcpy.h" diff --git a/paddle/fluid/operators/detail/grpc_client.cc b/paddle/fluid/operators/detail/grpc_client.cc index 8bbfd1f159..45f88ec869 100644 --- a/paddle/fluid/operators/detail/grpc_client.cc +++ b/paddle/fluid/operators/detail/grpc_client.cc @@ -65,9 +65,8 @@ bool RPCClient::AsyncSendVariable(const std::string& ep, } void ProcGetResponse(const VarHandle& var_h, - // const sendrecv::VariableMessage& ret_msg) { const ::grpc::ByteBuffer& ret_msg) { - framework::Variable* outvar = NULL; + framework::Variable* outvar = nullptr; DeserializeFromByteBuffer(ret_msg, *var_h.ctx, var_h.scope, &outvar); } diff --git a/paddle/fluid/operators/detail/serde_test.cc b/paddle/fluid/operators/detail/serde_test.cc index f8cae6b26a..cb5f895834 100644 --- a/paddle/fluid/operators/detail/serde_test.cc +++ b/paddle/fluid/operators/detail/serde_test.cc @@ -107,7 +107,7 @@ void RunSerdeTestSelectedRows(platform::Place place) { for (int i = 0; i < tensor_numel; ++i) { EXPECT_FLOAT_EQ(tensor_data2[i], 32.7); } - for (int64_t i = 0; i < rows2->size(); ++i) { + for (size_t i = 0; i < rows2->size(); ++i) { EXPECT_EQ(rows_data2[i], i); } EXPECT_EQ(slr2->height(), 1000); diff --git a/paddle/fluid/operators/elementwise_op_function.h b/paddle/fluid/operators/elementwise_op_function.h index 0b4238436f..415182201a 100644 --- a/paddle/fluid/operators/elementwise_op_function.h +++ b/paddle/fluid/operators/elementwise_op_function.h @@ -13,14 +13,15 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/transform.h" #ifdef __NVCC__ +#include #include -#include "paddle/fluid/platform/cuda_helper.h" constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024; #endif @@ -43,35 +44,35 @@ namespace operators { */ inline void get_mid_dims(const framework::DDim& x_dims, const framework::DDim& y_dims, const int axis, - int& pre, int& n, int& post) { - pre = 1; - n = 1; - post = 1; + int* pre, int* n, int* post) { + *pre = 1; + *n = 1; + *post = 1; for (int i = 0; i < axis; ++i) { - pre *= x_dims[i]; + (*pre) *= x_dims[i]; } for (int i = 0; i < y_dims.size(); ++i) { PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i], "Broadcast dimension mismatch."); - n *= y_dims[i]; + (*n) *= y_dims[i]; } for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) { - post *= x_dims[i]; + (*post) *= x_dims[i]; } } -inline void trim_trailing_singular_dims(framework::DDim& dims) { +inline void trim_trailing_singular_dims(framework::DDim* dims) { // Remove trailing dimensions of size 1 for y - auto actual_dims_size = dims.size(); + auto actual_dims_size = dims->size(); for (; actual_dims_size != 0; --actual_dims_size) { - if (dims[actual_dims_size - 1] != 1) break; + if ((*dims)[actual_dims_size - 1] != 1) break; } - if (actual_dims_size != dims.size()) { - auto actual_dims = framework::vectorize(dims); + if (actual_dims_size != dims->size()) { + auto actual_dims = framework::vectorize(*dims); actual_dims.resize(actual_dims_size); - dims = framework::make_ddim(actual_dims); + *dims = framework::make_ddim(actual_dims); } } @@ -159,7 +160,7 @@ class RowwiseTransformIterator RowwiseTransformIterator, const T*> super_t; HOSTDEVICE RowwiseTransformIterator(const T* x, int n) - : super_t(x), begin_(x), n_(n){}; + : super_t(x), begin_(x), n_(n) {} friend class thrust::iterator_core_access; private: @@ -179,7 +180,7 @@ class MidWiseTransformIterator MidWiseTransformIterator, const T*> super_t; HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post) - : super_t(x), begin_(x), n_(n), post_(post){}; + : super_t(x), begin_(x), n_(n), post_(post) {} friend class thrust::iterator_core_access; private: @@ -333,6 +334,55 @@ static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out, } } #ifdef __NVCC__ + +// __shfl_down has been deprecated as of CUDA 9.0. +#if CUDA_VERSION < 9000 +template +__forceinline__ __device__ T __shfl_down_sync(unsigned, T val, int delta) { + return __shfl_down(val, delta); +} +#define CREATE_SHFL_MASK(mask, predicate) mask = 0u; +#else +#define FULL_WARP_MASK 0xFFFFFFFF +#define CREATE_SHFL_MASK(mask, predicate) \ + mask = __ballot_sync(FULL_WARP_MASK, (predicate)) +#endif + +template +__device__ T reduceSum(T val, int tid, int len) { + // TODO(zcd): The warp size should be taken from the + // parameters of the GPU but not specified as 32 simply. + // To make the reduceSum more efficiently, + // I use Warp-Level Parallelism and assume the Warp size + // is 32 which may be different for different GPU, + // but most card's warp size is 32. + __shared__ T shm[32]; + const int warpSize = 32; + unsigned mask = 0u; + CREATE_SHFL_MASK(mask, tid < len); + + for (int offset = warpSize / 2; offset > 0; offset /= 2) + val += __shfl_down_sync(mask, val, offset); + + if (tid < warpSize) shm[tid] = 0; + + __syncthreads(); + + if (tid % warpSize == 0) { + shm[tid / warpSize] = val; + } + + CREATE_SHFL_MASK(mask, tid < warpSize); + + if (tid < warpSize) { + val = shm[tid]; + for (int offset = warpSize / 2; offset > 0; offset /= 2) + val += __shfl_down_sync(mask, val, offset); + } + + return val; +} + template static __global__ void ElemwiseGradBroadcast1CUDAKernel( const T* x, const T* y, const T* out, const T* dout, int h, int w, @@ -355,7 +405,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel( if (dy) { h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h; - val = platform::reduceSum(val, tid, h); + val = reduceSum(val, tid, h); if (threadIdx.x == 0) { dy[j] = val; } @@ -432,7 +482,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel( if (dy) { int h = pre * post; h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h; - val = platform::reduceSum(val, tid, h); + val = reduceSum(val, tid, h); if (threadIdx.x == 0) { dy[j] = val; } @@ -472,11 +522,11 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx, auto y_dim = y.dims(); axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis); - trim_trailing_singular_dims(y_dim); + trim_trailing_singular_dims(&y_dim); axis = (y_dim.size() == 0) ? x_dim.size() : axis; int pre, n, post; - get_mid_dims(x_dim, y_dim, axis, pre, n, post); + get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post); if (post == 1) { int h = pre; int w = n; @@ -514,7 +564,7 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx, } } } -}; +} template @@ -543,11 +593,11 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx, } axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); - trim_trailing_singular_dims(y_dims); + trim_trailing_singular_dims(&y_dims); axis = (y_dims.size() == 0) ? x_dims.size() : axis; int pre, n, post; - get_mid_dims(x_dims, y_dims, axis, pre, n, post); + get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post); if (post == 1) { broadcastfunctor f; @@ -582,11 +632,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx, axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), "Axis should be in range [0, x_dims)"); - trim_trailing_singular_dims(y_dims); + trim_trailing_singular_dims(&y_dims); axis = (y_dims.size() == 0) ? x_dims.size() : axis; int pre, n, post; - get_mid_dims(x_dims, y_dims, axis, pre, n, post); + get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post); if (post == 1) { functor.RunRowWise(n, pre); return; diff --git a/paddle/fluid/operators/math/math_function.cu b/paddle/fluid/operators/math/math_function.cu index 82e1294314..e53183603f 100644 --- a/paddle/fluid/operators/math/math_function.cu +++ b/paddle/fluid/operators/math/math_function.cu @@ -39,13 +39,14 @@ void gemm( cublasOperation_t cuTransB = (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; - float h_alpha = static_cast(alpha); - float h_beta = static_cast(beta); - // TODO(kexinzhao): add processing code for compute capability < 53 case PADDLE_ENFORCE_GE(context.GetComputeCapability(), 53, "cublas fp16 gemm requires GPU compute capability >= 53"); +#if CUDA_VERSION >= 8000 + float h_alpha = static_cast(alpha); + float h_beta = static_cast(beta); + cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT; #if CUDA_VERSION >= 9000 if (context.GetComputeCapability() >= 70) { @@ -56,7 +57,7 @@ void gemm( PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(context.cublas_handle(), CUBLAS_DEFAULT_MATH)); } -#endif +#endif // CUDA_VERSION >= 9000 // cublasHgemm does true FP16 computation which is slow for non-Volta // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation: @@ -66,6 +67,18 @@ void gemm( context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B, CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N, CUDA_R_32F, algo)); +#else + // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm + const half h_alpha = static_cast(alpha); + const half h_beta = static_cast(beta); + const half* h_A = reinterpret_cast(A); + const half* h_B = reinterpret_cast(B); + half* h_C = reinterpret_cast(C); + + PADDLE_ENFORCE(platform::dynload::cublasHgemm( + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, h_B, ldb, + h_A, lda, &h_beta, h_C, N)); +#endif // CUDA_VERSION >= 8000 } template <> diff --git a/paddle/fluid/operators/read_op.cc b/paddle/fluid/operators/read_op.cc index 2925b8a85d..bf02b99589 100644 --- a/paddle/fluid/operators/read_op.cc +++ b/paddle/fluid/operators/read_op.cc @@ -66,13 +66,7 @@ class ReadOp : public framework::OperatorBase { std::vector out_arg_names = Outputs("Out"); std::vector ins; reader->ReadNext(&ins); - if (ins.empty()) { - reader->ReInit(); - reader->ReadNext(&ins); - PADDLE_ENFORCE( - !ins.empty(), - "Reader can not read the next data even it has been re-initialized."); - } + PADDLE_ENFORCE(!ins.empty(), "There is no next data."); PADDLE_ENFORCE_EQ(ins.size(), out_arg_names.size()); for (size_t i = 0; i < ins.size(); ++i) { auto* out = diff --git a/paddle/fluid/operators/reader/CMakeLists.txt b/paddle/fluid/operators/reader/CMakeLists.txt index 6fa0195b9a..845528860f 100644 --- a/paddle/fluid/operators/reader/CMakeLists.txt +++ b/paddle/fluid/operators/reader/CMakeLists.txt @@ -22,5 +22,6 @@ reader_library(create_batch_reader_op SRCS create_batch_reader_op.cc) reader_library(create_recordio_file_reader_op SRCS create_recordio_file_reader_op.cc) reader_library(create_double_buffer_reader_op SRCS create_double_buffer_reader_op.cc) reader_library(create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc) +reader_library(create_threaded_reader_op SRCS create_threaded_reader_op.cc) # Export local libraries to parent set(READER_LIBRARY ${LOCAL_READER_LIBS} PARENT_SCOPE) diff --git a/paddle/fluid/operators/reader/create_double_buffer_reader_op.cc b/paddle/fluid/operators/reader/create_double_buffer_reader_op.cc index ed868786ab..33a50b5ceb 100644 --- a/paddle/fluid/operators/reader/create_double_buffer_reader_op.cc +++ b/paddle/fluid/operators/reader/create_double_buffer_reader_op.cc @@ -63,13 +63,14 @@ class DoubleBufferReader : public framework::DecoratedReader { StartPrefetcher(); } - bool HasNext() const override; void ReadNext(std::vector* out) override; void ReInit() override; ~DoubleBufferReader() { EndPrefetcher(); } private: + bool HasNext() const; + void StartPrefetcher() { channel_ = framework::MakeChannel(kChannelSize); prefetcher_ = std::thread([this] { PrefetchThreadFunc(); }); @@ -109,7 +110,9 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase { auto place_str = Attr("place"); platform::Place place; - if (place_str == "CPU") { + if (place_str == "AUTO") { + place = dev_place; + } else if (place_str == "CPU") { place = platform::CPUPlace(); } else { std::istringstream sin(place_str); @@ -140,28 +143,22 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase { enum_range.insert(string::Sprintf("CUDA:%d", i)); } enum_range.insert("CPU"); - AddAttr("place", "The double buffer place, default is CPU") - .SetDefault("CPU") + enum_range.insert("AUTO"); + AddAttr("place", "The double buffer place") + .SetDefault("AUTO") .InEnum({enum_range}); } }; -bool DoubleBufferReader::HasNext() const { - while (!channel_->IsClosed() && !channel_->CanReceive()) { - } - return channel_->CanReceive(); -} - void DoubleBufferReader::ReadNext(std::vector* out) { - if (!HasNext()) { - PADDLE_THROW("There is no next data!"); - } - - Item batch; - channel_->Receive(&batch); - *out = batch.payloads_; - if (batch.ctx_) { - batch.ctx_->Wait(); + out->clear(); + if (HasNext()) { + Item batch; + channel_->Receive(&batch); + *out = batch.payloads_; + if (batch.ctx_) { + batch.ctx_->Wait(); + } } } @@ -171,16 +168,26 @@ void DoubleBufferReader::ReInit() { StartPrefetcher(); } +bool DoubleBufferReader::HasNext() const { + while (!channel_->IsClosed() && !channel_->CanReceive()) { + } + return channel_->CanReceive(); +} + void DoubleBufferReader::PrefetchThreadFunc() { VLOG(5) << "A new prefetch thread starts."; std::vector> cpu_tensor_cache(kCacheSize); std::vector> gpu_tensor_cache(kCacheSize); size_t cached_tensor_id = 0; - while (reader_->HasNext()) { + while (true) { Item batch; auto& cpu_batch = cpu_tensor_cache[cached_tensor_id]; reader_->ReadNext(&cpu_batch); + if (cpu_batch.empty()) { + // The underlying reader have no next data. + break; + } if (platform::is_gpu_place(place_)) { auto& gpu_batch = gpu_tensor_cache[cached_tensor_id]; auto* gpu_ctx = ctxs_[cached_tensor_id].get(); diff --git a/paddle/fluid/operators/reader/create_multi_pass_reader_op.cc b/paddle/fluid/operators/reader/create_multi_pass_reader_op.cc index b72ccc77a3..0573345ba5 100644 --- a/paddle/fluid/operators/reader/create_multi_pass_reader_op.cc +++ b/paddle/fluid/operators/reader/create_multi_pass_reader_op.cc @@ -25,22 +25,12 @@ class MultiPassReader : public framework::DecoratedReader { : DecoratedReader(reader), pass_num_(pass_num), pass_count_(0) {} void ReadNext(std::vector* out) override { - if (!HasNext()) { - PADDLE_THROW("There is no next data!"); - } reader_->ReadNext(out); - } - - bool HasNext() const override { - if (reader_->HasNext()) { - return true; - } else { + if (out->empty()) { ++pass_count_; - if (pass_count_ >= pass_num_) { - return false; - } else { + if (pass_count_ < pass_num_) { reader_->ReInit(); - return true; + reader_->ReadNext(out); } } } diff --git a/paddle/fluid/operators/reader/create_random_data_generator_op.cc b/paddle/fluid/operators/reader/create_random_data_generator_op.cc index 95d8674c08..d1cb8e47da 100644 --- a/paddle/fluid/operators/reader/create_random_data_generator_op.cc +++ b/paddle/fluid/operators/reader/create_random_data_generator_op.cc @@ -52,8 +52,6 @@ class RandomDataGenerator : public framework::ReaderBase { void ReInit() override { return; } - bool HasNext() const override { return true; } - private: float min_; float max_; @@ -74,7 +72,7 @@ class CreateRandomDataGeneratorOp : public framework::OperatorBase { const auto& ranks = Attr>("ranks"); PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty()); PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0), - int(shape_concat.size()), + static_cast(shape_concat.size()), "The accumulate of all ranks should be equal to the " "shape concat's length."); std::vector shapes = RestoreShapes(shape_concat, ranks); diff --git a/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc b/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc index adaa0b9e5f..2ae2972556 100644 --- a/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc +++ b/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc @@ -12,8 +12,6 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include -#include #include "paddle/fluid/operators/reader/reader_op_registry.h" #include "paddle/fluid/recordio/scanner.h" @@ -35,17 +33,15 @@ class RecordIOFileReader : public framework::FileReader { LOG(INFO) << "Creating file reader" << filename; } - bool HasNext() const override { return scanner_.HasNext(); } - void ReInit() override { scanner_.Reset(); } protected: void ReadNextImpl(std::vector* out) override { if (ThreadSafe) { std::lock_guard guard(*mutex_); - *out = framework::ReadFromRecordIO(scanner_, dev_ctx_); + *out = framework::ReadFromRecordIO(&scanner_, dev_ctx_); } else { - *out = framework::ReadFromRecordIO(scanner_, dev_ctx_); + *out = framework::ReadFromRecordIO(&scanner_, dev_ctx_); } } @@ -66,7 +62,7 @@ class CreateRecordIOReaderOp : public framework::OperatorBase { const auto& ranks = Attr>("ranks"); PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty()); PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0), - int(shape_concat.size()), + static_cast(shape_concat.size()), "The accumulate of all ranks should be equal to the " "shape concat's length."); std::string filename = Attr("filename"); diff --git a/paddle/fluid/operators/reader/create_shuffle_reader_op.cc b/paddle/fluid/operators/reader/create_shuffle_reader_op.cc index b164ce232d..13825d6591 100644 --- a/paddle/fluid/operators/reader/create_shuffle_reader_op.cc +++ b/paddle/fluid/operators/reader/create_shuffle_reader_op.cc @@ -30,35 +30,33 @@ class ShuffleReader : public framework::DecoratedReader { std::random_device device; seed_ = device(); } - ReadIntoBuffers(); + ReloadBuffer(); } void ReadNext(std::vector* out) override { - if (!HasNext()) { - PADDLE_THROW("There is no next data!"); - } + out->clear(); if (iteration_pos_ >= buffer_.size()) { VLOG(10) << "Resetting shuffle buffer"; - ReadIntoBuffers(); + ReloadBuffer(); + if (buffer_.empty()) { + return; + } } *out = buffer_[iteration_pos_++]; } - bool HasNext() const override { - return iteration_pos_ < buffer_.size() || reader_->HasNext(); - } - private: - void ReadIntoBuffers() { + void ReloadBuffer() { buffer_.clear(); buffer_.reserve(buffer_size_); iteration_pos_ = 0; for (size_t i = 0; i < buffer_size_; ++i) { - if (!reader_->HasNext()) { + std::vector ins; + reader_->ReadNext(&ins); + if (ins.empty()) { break; } - buffer_.emplace_back(); - reader_->ReadNext(&buffer_.back()); + buffer_.emplace_back(ins); } std::mt19937 g(seed_); std::shuffle(buffer_.begin(), buffer_.end(), g); diff --git a/paddle/fluid/operators/reader/create_threaded_reader_op.cc b/paddle/fluid/operators/reader/create_threaded_reader_op.cc new file mode 100644 index 0000000000..cbf709d5e7 --- /dev/null +++ b/paddle/fluid/operators/reader/create_threaded_reader_op.cc @@ -0,0 +1,94 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/detail/safe_ref.h" +#include "paddle/fluid/operators/reader/reader_op_registry.h" + +namespace paddle { +namespace operators { +namespace reader { + +class ThreadedReader : public framework::DecoratedReader { + public: + ThreadedReader(ReaderBase* reader, bool safe_mode) + : DecoratedReader(reader), safe_mode_(safe_mode) {} + + void ReadNext(std::vector* out) override { + std::lock_guard lock(mutex_); + reader_->ReadNext(out); + } + + void ReInit() override { + if (safe_mode_) { + PADDLE_THROW( + "ThreadedReader::ReInit() is disabled when 'safe_mode' is true."); + } + VLOG(5) << "ThreadedReader::ReInit() is invoked! It might be buggy in " + "multi-thread environment."; + reader_->ReInit(); + } + + private: + bool safe_mode_; + std::mutex mutex_; +}; + +class CreateThreadedReaderOp : public framework::OperatorBase { + public: + using framework::OperatorBase::OperatorBase; + + private: + void RunImpl(const framework::Scope& scope, + const platform::Place& dev_place) const override { + auto* out = detail::Ref(scope.FindVar(Output("Out"))) + .GetMutable(); + if (out->Get() != nullptr) { + return; + } + const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader")) + ->Get(); + bool safe_mode = Attr("safe_mode"); + out->Reset(new ThreadedReader(underlying_reader.Get(), safe_mode)); + } +}; + +class CreateThreadedReaderOpMaker : public DecoratedReaderMakerBase { + public: + CreateThreadedReaderOpMaker(OpProto* op_proto, OpAttrChecker* op_checker) + : DecoratedReaderMakerBase(op_proto, op_checker) { + AddAttr("safe_mode", + "When 'safe_mode' is true, 'ReInit()' is disabled to avoid " + "unexpected bugs in multi-thread environment.") + .SetDefault(true); + AddComment(R"DOC( + CreateThreadedReader Operator + + This operator creates a threaded reader. A threaded reader's + 'ReadNext()' can be invoked by several threads at the same + time. + When the attribute 'safe_mode' is true, the threaded reader's + 'ReInit()' is disabled to avoid unexpected bugs in multi-thread + environment. + )DOC"); + } +}; + +} // namespace reader +} // namespace operators +} // namespace paddle + +namespace reader = paddle::operators::reader; +REGISTER_DECORATED_READER_OPERATOR(create_threaded_reader, + reader::CreateThreadedReaderOp, + reader::CreateThreadedReaderOpMaker); diff --git a/paddle/fluid/operators/reader/open_files_op.cc b/paddle/fluid/operators/reader/open_files_op.cc index eacedeea88..779dc8a6a0 100644 --- a/paddle/fluid/operators/reader/open_files_op.cc +++ b/paddle/fluid/operators/reader/open_files_op.cc @@ -12,6 +12,8 @@ // See the License for the specific language governing permissions and // limitations under the License. +#include // NOLINT + #include "paddle/fluid/framework/channel.h" #include "paddle/fluid/operators/reader/reader_op_registry.h" @@ -19,38 +21,23 @@ namespace paddle { namespace operators { namespace reader { -class MultipleReader : public framework::ReaderBase { +class MultiFileReader : public framework::ReaderBase { public: - class ThreadBufferMap { - public: - std::vector& operator[]( - const std::thread::id& thread_id) { - std::lock_guard lock(mutex_); - return buffer_[thread_id]; - } - - void Clear() { buffer_.clear(); } - - private: - std::mutex mutex_; - std::unordered_map> - buffer_; - }; - - MultipleReader(const std::vector& file_names, - const std::vector& dims, size_t thread_num) - : file_names_(file_names), dims_(dims) { + MultiFileReader(const std::vector& file_names, + const std::vector& dims, size_t thread_num, + size_t buffer_size) + : file_names_(file_names), dims_(dims), buffer_size_(buffer_size) { prefetchers_.resize(thread_num); StartNewScheduler(); } void ReadNext(std::vector* out) override; - bool HasNext() const override; void ReInit() override; - ~MultipleReader() { EndScheduler(); } + ~MultiFileReader() { EndScheduler(); } private: + bool HasNext(); void StartNewScheduler(); void EndScheduler(); void ScheduleThreadFunc(); @@ -60,39 +47,36 @@ class MultipleReader : public framework::ReaderBase { std::vector dims_; std::thread scheduler_; std::vector prefetchers_; + size_t buffer_size_; framework::Channel* waiting_file_idx_; framework::Channel* available_thread_idx_; framework::Channel>* buffer_; - mutable ThreadBufferMap thread_buffer_map_; }; -void MultipleReader::ReadNext(std::vector* out) { - if (!HasNext()) { - PADDLE_THROW("There is no next data!"); +void MultiFileReader::ReadNext(std::vector* out) { + out->clear(); + if (HasNext()) { + buffer_->Receive(out); } - auto& thread_local_buffer = thread_buffer_map_[std::this_thread::get_id()]; - *out = thread_local_buffer; - thread_local_buffer.clear(); -} - -bool MultipleReader::HasNext() const { - auto& thread_local_buffer = thread_buffer_map_[std::this_thread::get_id()]; - return thread_local_buffer.empty() ? buffer_->Receive(&thread_local_buffer) - : true; } -void MultipleReader::ReInit() { +void MultiFileReader::ReInit() { EndScheduler(); - thread_buffer_map_.Clear(); StartNewScheduler(); } -void MultipleReader::StartNewScheduler() { +bool MultiFileReader::HasNext() { + while (!buffer_->IsClosed() && !buffer_->CanReceive()) { + } + return buffer_->CanReceive(); +} + +void MultiFileReader::StartNewScheduler() { size_t thread_num = prefetchers_.size(); waiting_file_idx_ = framework::MakeChannel(file_names_.size()); available_thread_idx_ = framework::MakeChannel(thread_num); buffer_ = - framework::MakeChannel>(thread_num); + framework::MakeChannel>(buffer_size_); for (size_t i = 0; i < file_names_.size(); ++i) { waiting_file_idx_->Send(&i); @@ -105,7 +89,7 @@ void MultipleReader::StartNewScheduler() { scheduler_ = std::thread([this] { ScheduleThreadFunc(); }); } -void MultipleReader::EndScheduler() { +void MultiFileReader::EndScheduler() { available_thread_idx_->Close(); buffer_->Close(); waiting_file_idx_->Close(); @@ -117,8 +101,8 @@ void MultipleReader::EndScheduler() { delete waiting_file_idx_; } -void MultipleReader::ScheduleThreadFunc() { - VLOG(5) << "MultipleReader schedule thread starts."; +void MultiFileReader::ScheduleThreadFunc() { + VLOG(5) << "MultiFileReader schedule thread starts."; size_t completed_thread_num = 0; size_t thread_idx; while (available_thread_idx_->Receive(&thread_idx)) { @@ -150,17 +134,20 @@ void MultipleReader::ScheduleThreadFunc() { p.join(); } } - VLOG(5) << "MultipleReader schedule thread terminates."; + VLOG(5) << "MultiFileReader schedule thread terminates."; } -void MultipleReader::PrefetchThreadFunc(std::string file_name, - size_t thread_idx) { +void MultiFileReader::PrefetchThreadFunc(std::string file_name, + size_t thread_idx) { VLOG(5) << "The prefetch thread of file '" << file_name << "' starts."; std::unique_ptr reader = CreateReaderByFileName(file_name, dims_); - while (reader->HasNext()) { + while (true) { std::vector ins; reader->ReadNext(&ins); + if (ins.empty()) { + break; + } try { buffer_->Send(&ins); } catch (paddle::platform::EnforceNotMet e) { @@ -197,11 +184,13 @@ class OpenFilesOp : public framework::OperatorBase { const auto& file_names = Attr>("file_names"); PADDLE_ENFORCE(!file_names.empty(), "No file to be read!"); const size_t thread_num = Attr("thread_num"); + const size_t buffer_size = Attr("buffer_size"); auto* out = scope.FindVar(Output("Out")) ->template GetMutable(); - out->Reset(new MultipleReader( - file_names, RestoreShapes(shape_concat, ranks), thread_num)); + out->Reset(new MultiFileReader(file_names, + RestoreShapes(shape_concat, ranks), + thread_num, buffer_size)); } }; @@ -212,11 +201,12 @@ class OpenFilesOpMaker : public FileReaderMakerBase { AddAttr>("file_names", "Files to be read."); AddAttr("thread_num", "The maximal concurrent prefetch thread number.") .GreaterThan(0); + AddAttr("buffer_size", "The size of prefetch buffer.").GreaterThan(0); AddComment(R"DOC( OpenFiles Operator - An OpenFilesOp creates a MultipleReader, which is able to + An OpenFilesOp creates a MultiFileReader, which is able to read data multi-threaded from multiple files. )DOC"); } diff --git a/paddle/fluid/operators/spp_op.cc b/paddle/fluid/operators/spp_op.cc index f1c4415f27..8c55b4ebbc 100644 --- a/paddle/fluid/operators/spp_op.cc +++ b/paddle/fluid/operators/spp_op.cc @@ -13,6 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/spp_op.h" +#include +#include namespace paddle { namespace operators { diff --git a/paddle/fluid/operators/spp_op.h b/paddle/fluid/operators/spp_op.h index 3d2f226325..08cb7849d2 100644 --- a/paddle/fluid/operators/spp_op.h +++ b/paddle/fluid/operators/spp_op.h @@ -13,6 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include +#include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/pooling.h" diff --git a/paddle/fluid/operators/sum_op.cc b/paddle/fluid/operators/sum_op.cc index d3d5c8a342..9061e137bd 100644 --- a/paddle/fluid/operators/sum_op.cc +++ b/paddle/fluid/operators/sum_op.cc @@ -10,6 +10,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/sum_op.h" +#include +#include #include #include "paddle/fluid/framework/var_type_inference.h" #include "paddle/fluid/operators/detail/safe_ref.h" diff --git a/paddle/fluid/operators/sum_op.h b/paddle/fluid/operators/sum_op.h index e7e5346cdc..49a4afb3a8 100644 --- a/paddle/fluid/operators/sum_op.h +++ b/paddle/fluid/operators/sum_op.h @@ -10,6 +10,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/op_registry.h" diff --git a/paddle/fluid/operators/top_k_op.h b/paddle/fluid/operators/top_k_op.h index 42828b7e65..9f8482aded 100644 --- a/paddle/fluid/operators/top_k_op.h +++ b/paddle/fluid/operators/top_k_op.h @@ -15,6 +15,8 @@ limitations under the License. */ #pragma once #include #include +#include +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" diff --git a/paddle/fluid/operators/transpose_op.cc b/paddle/fluid/operators/transpose_op.cc index 87b1f530e0..4aea9cd65b 100644 --- a/paddle/fluid/operators/transpose_op.cc +++ b/paddle/fluid/operators/transpose_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/transpose_op.h" +#include namespace paddle { namespace operators { diff --git a/paddle/fluid/operators/transpose_op.h b/paddle/fluid/operators/transpose_op.h index 90f16499a6..895d1ce2cc 100644 --- a/paddle/fluid/operators/transpose_op.h +++ b/paddle/fluid/operators/transpose_op.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" diff --git a/paddle/fluid/operators/unpool_op.cc b/paddle/fluid/operators/unpool_op.cc index 0ca7ea00fa..31859fd1d7 100644 --- a/paddle/fluid/operators/unpool_op.cc +++ b/paddle/fluid/operators/unpool_op.cc @@ -13,6 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/unpool_op.h" +#include +#include namespace paddle { namespace operators { diff --git a/paddle/fluid/operators/unpool_op.h b/paddle/fluid/operators/unpool_op.h index a442104575..96abad3de9 100644 --- a/paddle/fluid/operators/unpool_op.h +++ b/paddle/fluid/operators/unpool_op.h @@ -14,6 +14,8 @@ limitations under the License. */ #pragma once +#include +#include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/unpooling.h" diff --git a/paddle/fluid/operators/warpctc_op.h b/paddle/fluid/operators/warpctc_op.h index 3e3e308931..afbfe69973 100644 --- a/paddle/fluid/operators/warpctc_op.h +++ b/paddle/fluid/operators/warpctc_op.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/sequence_padding.h" diff --git a/paddle/fluid/platform/cuda_helper.h b/paddle/fluid/platform/cuda_helper.h index a4ea4f21e3..8758af0804 100644 --- a/paddle/fluid/platform/cuda_helper.h +++ b/paddle/fluid/platform/cuda_helper.h @@ -33,22 +33,26 @@ constexpr int PADDLE_CUDA_NUM_THREADS = 512; USE_CUDA_ATOMIC(Add, float); USE_CUDA_ATOMIC(Add, int); USE_CUDA_ATOMIC(Add, unsigned int); -USE_CUDA_ATOMIC(Add, unsigned long long int); +// CUDA API uses unsigned long long int, we cannot use uint64_t here. +// It because unsigned long long int is not necessarily uint64_t +USE_CUDA_ATOMIC(Add, unsigned long long int); // NOLINT CUDA_ATOMIC_WRAPPER(Add, int64_t) { - static_assert(sizeof(int64_t) == sizeof(long long int), + // Here, we check long long int must be int64_t. + static_assert(sizeof(int64_t) == sizeof(long long int), // NOLINT "long long should be int64"); - return CudaAtomicAdd(reinterpret_cast(address), - static_cast(val)); + return CudaAtomicAdd( + reinterpret_cast(address), // NOLINT + static_cast(val)); // NOLINT } #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600 USE_CUDA_ATOMIC(Add, double); #else CUDA_ATOMIC_WRAPPER(Add, double) { - unsigned long long int* address_as_ull = - reinterpret_cast(address); - unsigned long long int old = *address_as_ull, assumed; + unsigned long long int* address_as_ull = // NOLINT + reinterpret_cast(address); // NOLINT + unsigned long long int old = *address_as_ull, assumed; // NOLINT do { assumed = old; @@ -62,53 +66,5 @@ CUDA_ATOMIC_WRAPPER(Add, double) { } #endif -// __shfl_down has been deprecated as of CUDA 9.0. -#if CUDA_VERSION < 9000 -template -__forceinline__ __device__ T __shfl_down_sync(unsigned, T val, int delta) { - return __shfl_down(val, delta); -} -#define CREATE_SHFL_MASK(mask, predicate) mask = 0u; -#else -#define FULL_WARP_MASK 0xFFFFFFFF -#define CREATE_SHFL_MASK(mask, predicate) \ - mask = __ballot_sync(FULL_WARP_MASK, (predicate)) -#endif - -template -__device__ T reduceSum(T val, int tid, int len) { - // TODO(zcd): The warp size should be taken from the - // parameters of the GPU but not specified as 32 simply. - // To make the reduceSum more efficiently, - // I use Warp-Level Parallelism and assume the Warp size - // is 32 which may be different for different GPU, - // but most card's warp size is 32. - __shared__ T shm[32]; - const int warpSize = 32; - unsigned mask = 0u; - CREATE_SHFL_MASK(mask, tid < len); - - for (int offset = warpSize / 2; offset > 0; offset /= 2) - val += __shfl_down_sync(mask, val, offset); - - if (tid < warpSize) shm[tid] = 0; - - __syncthreads(); - - if (tid % warpSize == 0) { - shm[tid / warpSize] = val; - } - - CREATE_SHFL_MASK(mask, tid < warpSize); - - if (tid < warpSize) { - val = shm[tid]; - for (int offset = warpSize / 2; offset > 0; offset /= 2) - val += __shfl_down_sync(mask, val, offset); - } - - return val; -} - } // namespace platform } // namespace paddle diff --git a/paddle/fluid/platform/device_context.cc b/paddle/fluid/platform/device_context.cc index feb4f36700..f03165fae5 100644 --- a/paddle/fluid/platform/device_context.cc +++ b/paddle/fluid/platform/device_context.cc @@ -8,10 +8,14 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - #include "paddle/fluid/platform/device_context.h" + +#include #include +#include + #include "paddle/fluid/memory/memory.h" + namespace paddle { namespace platform { diff --git a/paddle/fluid/platform/device_context.h b/paddle/fluid/platform/device_context.h index 39ef082266..b175583379 100644 --- a/paddle/fluid/platform/device_context.h +++ b/paddle/fluid/platform/device_context.h @@ -8,13 +8,13 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - #pragma once #include #include #include #include + #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/dynload/cublas.h" #include "paddle/fluid/platform/dynload/cudnn.h" diff --git a/paddle/fluid/platform/device_context_test.cu b/paddle/fluid/platform/device_context_test.cu index 9d8d07362c..fa806aba6d 100644 --- a/paddle/fluid/platform/device_context_test.cu +++ b/paddle/fluid/platform/device_context_test.cu @@ -11,11 +11,12 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - -#include "gtest/gtest.h" #include "paddle/fluid/platform/device_context.h" +#include + #include "glog/logging.h" +#include "gtest/gtest.h" TEST(Device, Init) { using paddle::platform::DeviceContext; diff --git a/paddle/fluid/platform/device_tracer.cc b/paddle/fluid/platform/device_tracer.cc index 3b4437f576..c9e1063168 100644 --- a/paddle/fluid/platform/device_tracer.cc +++ b/paddle/fluid/platform/device_tracer.cc @@ -11,15 +11,19 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - #include "paddle/fluid/platform/device_tracer.h" -#include + +#include #include #include -#include +#include // NOLINT #include -#include +#include +#include // NOLINT +#include + #include "glog/logging.h" +#include "google/protobuf/text_format.h" #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/string/printf.h" @@ -123,7 +127,7 @@ void DisableActivity() { void CUPTIAPI bufferRequested(uint8_t **buffer, size_t *size, size_t *maxNumRecords) { - uint8_t *buf = (uint8_t *)malloc(kBufSize + kAlignSize); + uint8_t *buf = reinterpret_cast(malloc(kBufSize + kAlignSize)); *size = kBufSize; *buffer = ALIGN_BUFFER(buf, kAlignSize); *maxNumRecords = 0; diff --git a/paddle/fluid/platform/device_tracer.h b/paddle/fluid/platform/device_tracer.h index deb3d23f78..0375c7439c 100644 --- a/paddle/fluid/platform/device_tracer.h +++ b/paddle/fluid/platform/device_tracer.h @@ -11,8 +11,10 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - #pragma once + +#include + #include "paddle/fluid/platform/dynload/cupti.h" #include "paddle/fluid/platform/profiler.pb.h" diff --git a/paddle/fluid/platform/dynload/cublas.cc b/paddle/fluid/platform/dynload/cublas.cc index eb541579a1..361d3439b8 100644 --- a/paddle/fluid/platform/dynload/cublas.cc +++ b/paddle/fluid/platform/dynload/cublas.cc @@ -28,6 +28,10 @@ CUBLAS_BLAS_ROUTINE_EACH(DEFINE_WRAP); CUBLAS_BLAS_ROUTINE_EACH_R2(DEFINE_WRAP); #endif +#ifdef CUBLAS_BLAS_ROUTINE_EACH_R3 +CUBLAS_BLAS_ROUTINE_EACH_R3(DEFINE_WRAP); +#endif + } // namespace dynload } // namespace platform } // namespace paddle diff --git a/paddle/fluid/platform/dynload/cublas.h b/paddle/fluid/platform/dynload/cublas.h index a41018d350..1ab55d6b9b 100644 --- a/paddle/fluid/platform/dynload/cublas.h +++ b/paddle/fluid/platform/dynload/cublas.h @@ -71,7 +71,6 @@ extern void *cublas_dso_handle; __macro(cublasDgemm_v2); \ __macro(cublasHgemm); \ __macro(cublasSgemmEx); \ - __macro(cublasGemmEx); \ __macro(cublasSgeam_v2); \ __macro(cublasDgeam_v2); \ __macro(cublasCreate_v2); \ @@ -83,11 +82,6 @@ extern void *cublas_dso_handle; __macro(cublasDgemmBatched); \ __macro(cublasCgemmBatched); \ __macro(cublasZgemmBatched); \ - __macro(cublasSgemmStridedBatched); \ - __macro(cublasDgemmStridedBatched); \ - __macro(cublasCgemmStridedBatched); \ - __macro(cublasZgemmStridedBatched); \ - __macro(cublasHgemmStridedBatched); \ __macro(cublasSgetrfBatched); \ __macro(cublasSgetriBatched); \ __macro(cublasDgetrfBatched); \ @@ -95,10 +89,24 @@ extern void *cublas_dso_handle; CUBLAS_BLAS_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP) +// APIs available after CUDA 8.0 +#if CUDA_VERSION >= 8000 +#define CUBLAS_BLAS_ROUTINE_EACH_R2(__macro) \ + __macro(cublasGemmEx); \ + __macro(cublasSgemmStridedBatched); \ + __macro(cublasDgemmStridedBatched); \ + __macro(cublasCgemmStridedBatched); \ + __macro(cublasZgemmStridedBatched); \ + __macro(cublasHgemmStridedBatched); + +CUBLAS_BLAS_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP) +#endif + // APIs available after CUDA 9.0 #if CUDA_VERSION >= 9000 -#define CUBLAS_BLAS_ROUTINE_EACH_R2(__macro) __macro(cublasSetMathMode); -CUBLAS_BLAS_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP) +#define CUBLAS_BLAS_ROUTINE_EACH_R3(__macro) __macro(cublasSetMathMode); + +CUBLAS_BLAS_ROUTINE_EACH_R3(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP) #endif #undef DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP diff --git a/paddle/fluid/platform/float16.h b/paddle/fluid/platform/float16.h index e77f768bf9..673e1bcae4 100644 --- a/paddle/fluid/platform/float16.h +++ b/paddle/fluid/platform/float16.h @@ -1003,6 +1003,46 @@ HOSTDEVICE inline float16 exp(const float16& a) { return float16(::expf(static_cast(a))); } +template <> +HOSTDEVICE inline float16 log(const float16& a) { + return float16(::logf(static_cast(a))); +} + +template <> +HOSTDEVICE inline float16 tanh(const float16& a) { + return float16(::tanhf(static_cast(a))); +} + +template <> +HOSTDEVICE inline float16 sqrt(const float16& a) { + return float16(::sqrtf(static_cast(a))); +} + +template <> +HOSTDEVICE inline float16 ceil(const float16& a) { + return float16(::ceilf(static_cast(a))); +} + +template <> +HOSTDEVICE inline float16 floor(const float16& a) { + return float16(::floorf(static_cast(a))); +} + +template <> +HOSTDEVICE inline float16 round(const float16& a) { + return float16(::roundf(static_cast(a))); +} + +template <> +HOSTDEVICE inline float16 pow(const float16& a, const float16& b) { + return float16(::powf(static_cast(a), static_cast(b))); +} + +template <> +HOSTDEVICE inline float16 abs(const float16& a) { + return float16(::fabs(static_cast(a))); +} + } // namespace numext } // namespace Eigen diff --git a/paddle/fluid/platform/mkldnn_helper.h b/paddle/fluid/platform/mkldnn_helper.h index 90b78142b8..de8056237f 100644 --- a/paddle/fluid/platform/mkldnn_helper.h +++ b/paddle/fluid/platform/mkldnn_helper.h @@ -11,11 +11,11 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ - #pragma once -#include +#include +#include "mkldnn/include/mkldnn.hpp" #include "paddle/fluid/framework/operator.h" namespace paddle { diff --git a/paddle/fluid/platform/nccl_helper.h b/paddle/fluid/platform/nccl_helper.h index 2999004320..ca9ab2c7ae 100644 --- a/paddle/fluid/platform/nccl_helper.h +++ b/paddle/fluid/platform/nccl_helper.h @@ -14,8 +14,9 @@ #pragma once -#include +#include // NOLINT #include +#include #include "paddle/fluid/platform/dynload/nccl.h" #include "paddle/fluid/platform/enforce.h" @@ -29,6 +30,8 @@ inline ncclDataType_t ToNCCLDataType(std::type_index type) { return ncclDouble; } else if (type == typeid(int)) { // NOLINT return ncclInt; + } else if (type == typeid(int64_t)) { // NOLINT + return ncclInt64; } else { PADDLE_THROW("Not supported"); } @@ -58,7 +61,7 @@ struct NCCLContext { ncclComm_t comm_; explicit NCCLContext(int dev_id) - : ctx_(new CUDADeviceContext(CUDAPlace(dev_id))) {} + : ctx_(new CUDADeviceContext(CUDAPlace(dev_id))), comm_{nullptr} {} cudaStream_t stream() const { return ctx_->stream(); } @@ -66,23 +69,23 @@ struct NCCLContext { return boost::get(ctx_->GetPlace()).device; } - static void InitNCCLContext(std::unordered_map &contexts, + static void InitNCCLContext(std::unordered_map *contexts, const std::vector &places) { std::vector comms; std::vector devs; - comms.resize(contexts.size()); - devs.reserve(contexts.size()); + comms.resize(contexts->size()); + devs.reserve(contexts->size()); for (auto &p : places) { devs.push_back(boost::get(p).device); } PADDLE_ENFORCE(platform::dynload::ncclCommInitAll( - &comms[0], static_cast(contexts.size()), &devs[0])); + &comms[0], static_cast(contexts->size()), &devs[0])); int i = 0; for (auto &dev_id : devs) { - contexts.at(dev_id).comm_ = comms[i++]; + contexts->at(dev_id).comm_ = comms[i++]; } } }; @@ -91,7 +94,8 @@ struct NCCLContextMap { std::unordered_map contexts_; std::vector order_; - NCCLContextMap(const std::vector &places) { + explicit NCCLContextMap(const std::vector &places) { + PADDLE_ENFORCE(!places.empty()); order_.reserve(places.size()); for (auto &p : places) { int dev_id = boost::get(p).device; @@ -102,15 +106,17 @@ struct NCCLContextMap { order_.size(), contexts_.size(), "NCCL Context Map does not support contain two or more same device"); - std::vector comms; - comms.resize(order_.size()); + if (places.size() > 1) { + std::vector comms; + comms.resize(order_.size()); - PADDLE_ENFORCE(platform::dynload::ncclCommInitAll( - &comms[0], static_cast(order_.size()), &order_[0])); + PADDLE_ENFORCE(platform::dynload::ncclCommInitAll( + &comms[0], static_cast(order_.size()), &order_[0])); - int i = 0; - for (auto &dev_id : order_) { - contexts_.at(dev_id).comm_ = comms[i++]; + int i = 0; + for (auto &dev_id : order_) { + contexts_.at(dev_id).comm_ = comms[i++]; + } } } diff --git a/paddle/fluid/platform/profiler.cc b/paddle/fluid/platform/profiler.cc index b25206ff35..412cdda286 100644 --- a/paddle/fluid/platform/profiler.cc +++ b/paddle/fluid/platform/profiler.cc @@ -15,8 +15,11 @@ limitations under the License. */ #include "paddle/fluid/platform/profiler.h" #include #include +#include #include #include +#include // NOLINT +#include #ifdef PADDLE_WITH_CUDA #include #endif // PADDLE_WITH_CUDA @@ -28,10 +31,10 @@ limitations under the License. */ namespace paddle { namespace platform { +struct EventList; + // The profiler state, the initial value is ProfilerState::kDisabled static ProfilerState g_state = ProfilerState::kDisabled; -// To record which timer the profiler used, CUDA or CPU. -static std::string g_profiler_place = ""; // The thread local event list only can be accessed by the specific thread // The thread index of each thread static thread_local int32_t g_thread_id; @@ -45,6 +48,39 @@ static std::list> g_all_event_lists; // The thread local event list only can be accessed by the specific thread static thread_local std::shared_ptr g_event_list; +struct EventList { + constexpr static size_t kMB = 1024 * 1024; + constexpr static size_t kEventBlockSize = 16 * kMB; + constexpr static size_t kEventSize = sizeof(Event); + constexpr static size_t kEventAlign = alignof(Event); + constexpr static size_t kNumBlock = + kEventBlockSize / + ((kEventSize + kEventAlign - 1) / kEventAlign * kEventAlign); + + template + void Record(Args&&... args) { + if (event_blocks.empty() || event_blocks.front().size() == kNumBlock) { + event_blocks.emplace_front(); + event_blocks.front().reserve(kNumBlock); + } + event_blocks.front().emplace_back(std::forward(args)...); + } + + std::vector Reduce() { + std::vector result; + for (auto& block : event_blocks) { + result.insert(result.begin(), std::make_move_iterator(block.begin()), + std::make_move_iterator(block.end())); + } + event_blocks.clear(); + return result; + } + + void Clear() { event_blocks.clear(); } + + std::forward_list> event_blocks; +}; + inline uint64_t GetTimeInNsec() { using clock = std::conditional(tv.tv_sec) * 1000000 + tv.tv_usec); } -Event::Event(EventKind kind, std::string name, uint32_t thread_id, +Event::Event(EventType type, std::string name, uint32_t thread_id, const DeviceContext* dev_ctx) - : kind_(kind), name_(name), thread_id_(thread_id), has_cuda_(false) { + : type_(type), name_(name), thread_id_(thread_id), has_cuda_(false) { #ifdef PADDLE_WITH_CUDA has_cuda_ = dev_ctx ? platform::is_gpu_place(dev_ctx->GetPlace()) : false; if (has_cuda_) { @@ -76,17 +112,7 @@ Event::Event(EventKind kind, std::string name, uint32_t thread_id, cpu_ns_ = GetTimeInNsec(); } -std::string Event::kind() const { - switch (kind_) { - case EventKind::kMark: - return "mark"; - case EventKind::kPushRange: - return "push"; - case EventKind::kPopRange: - return "pop"; - } - PADDLE_THROW("Unknown EventKind."); -} +const EventType& Event::type() const { return type_; } double Event::CpuElapsedMs(const Event& e) const { return (e.cpu_ns_ - cpu_ns_) / (1000000.0); @@ -129,15 +155,15 @@ inline EventList& GetEventList() { } void Mark(const std::string& name, const DeviceContext* dev_ctx) { - GetEventList().Record(EventKind::kMark, name, g_thread_id, dev_ctx); + GetEventList().Record(EventType::kMark, name, g_thread_id, dev_ctx); } void PushEvent(const std::string& name, const DeviceContext* dev_ctx) { - GetEventList().Record(EventKind::kPushRange, name, g_thread_id, dev_ctx); + GetEventList().Record(EventType::kPushRange, name, g_thread_id, dev_ctx); } void PopEvent(const std::string& name, const DeviceContext* dev_ctx) { - GetEventList().Record(EventKind::kPopRange, name, g_thread_id, dev_ctx); + GetEventList().Record(EventType::kPopRange, name, g_thread_id, dev_ctx); } RecordEvent::RecordEvent(const std::string& name, const DeviceContext* dev_ctx) @@ -197,12 +223,7 @@ void EnableProfiler(ProfilerState state) { "The profiling state should be disabled when calling ", "EnableProfiler."); g_state = state; - if (g_state == ProfilerState::kCUDA) { - g_profiler_place = "CUDA"; - } else if (g_state == ProfilerState::kCPU) { - g_profiler_place = "CPU"; - } else { - g_profiler_place = "All"; + if (g_state == ProfilerState::kAll) { GetDeviceTracer()->Enable(); } #ifdef PADDLE_WITH_CUDA @@ -240,27 +261,63 @@ std::vector> GetAllEvents() { return result; } -void DisableProfiler(EventSortingKey sorted_key, - const std::string& profile_path) { - PADDLE_ENFORCE(g_state != ProfilerState::kDisabled, - "Can't disable profiling, since it's not starting."); - // Mark the profiling stop. - Mark("_stop_profiler_", nullptr); - g_state = ProfilerState::kDisabled; +// The information of each event given in the profiling report +struct EventItem { + std::string name; + int calls; + double total_time; + double min_time; + double max_time; + double ave_time; +}; + +// Print results +void PrintProfiler(const std::vector>& events_table, + const std::string& sorted_domain, const size_t name_width, + const size_t data_width) { + // Output header information + std::cout << "\n------------------------->" + << " Profiling Report " + << "<-------------------------\n\n"; + std::string place; + if (g_state == ProfilerState::kCPU) { + place = "CPU"; + } else if (g_state == ProfilerState::kCUDA) { + place = "CUDA"; + } else if (g_state == ProfilerState::kAll) { + place = "All"; + } else { + PADDLE_THROW("Invalid profiler state"); + } - std::vector> all_events = GetAllEvents(); - ParseEvents(all_events, sorted_key); - ResetProfiler(); - DeviceTracer* tracer = GetDeviceTracer(); - if (g_profiler_place == "All" && tracer && tracer->IsEnabled()) { - tracer->Disable(); - tracer->GenProfile(profile_path); + std::cout << "Place: " << place << std::endl; + std::cout << "Time unit: ms" << std::endl; + std::cout << "Sorted by " << sorted_domain + << " in descending order in the same thread\n\n"; + // Output events table + std::cout.setf(std::ios::left); + std::cout << std::setw(name_width) << "Event" << std::setw(data_width) + << "Calls" << std::setw(data_width) << "Total" + << std::setw(data_width) << "Min." << std::setw(data_width) + << "Max." << std::setw(data_width) << "Ave." << std::endl; + for (size_t i = 0; i < events_table.size(); ++i) { + for (size_t j = 0; j < events_table[i].size(); ++j) { + const EventItem& event_item = events_table[i][j]; + std::cout << std::setw(name_width) << event_item.name + << std::setw(data_width) << event_item.calls + << std::setw(data_width) << event_item.total_time + << std::setw(data_width) << event_item.min_time + << std::setw(data_width) << event_item.max_time + << std::setw(data_width) << event_item.ave_time << std::endl; + } } + std::cout << std::endl; } -void ParseEvents(std::vector>& events, - EventSortingKey sorted_by) { - if (g_profiler_place == "") return; +// Parse the event list and output the profiling report +void ParseEvents(const std::vector>& events, + EventSortingKey sorted_by = EventSortingKey::kDefault) { + if (g_state == ProfilerState::kDisabled) return; std::string sorted_domain; std::function sorted_func; @@ -307,9 +364,9 @@ void ParseEvents(std::vector>& events, std::unordered_map event_idx; for (size_t j = 0; j < events[i].size(); j++) { - if (events[i][j].kind() == "push") { + if (events[i][j].type() == EventType::kPushRange) { pushed_events.push_back(events[i][j]); - } else if (events[i][j].kind() == "pop") { + } else if (events[i][j].type() == EventType::kPopRange) { std::list::reverse_iterator rit = pushed_events.rbegin(); while (rit != pushed_events.rend() && rit->name() != events[i][j].name()) { @@ -317,10 +374,10 @@ void ParseEvents(std::vector>& events, } if (rit != pushed_events.rend()) { - double event_time = - (g_profiler_place == "CUDA" || g_profiler_place == "All") - ? rit->CudaElapsedMs(events[i][j]) - : rit->CpuElapsedMs(events[i][j]); + double event_time = (g_state == ProfilerState::kCUDA || + g_state == ProfilerState::kAll) + ? rit->CudaElapsedMs(events[i][j]) + : rit->CpuElapsedMs(events[i][j]); std::string event_name = "thread" + std::to_string(rit->thread_id()) + "::" + rit->name(); @@ -376,35 +433,22 @@ void ParseEvents(std::vector>& events, PrintProfiler(events_table, sorted_domain, max_name_width + 4, 12); } -void PrintProfiler(std::vector>& events_table, - std::string& sorted_domain, const size_t name_width, - const size_t data_width) { - // Output header information - std::cout << "\n------------------------->" - << " Profiling Report " - << "<-------------------------\n\n"; - std::cout << "Place: " << g_profiler_place << std::endl; - std::cout << "Time unit: ms" << std::endl; - std::cout << "Sorted by " << sorted_domain - << " in descending order in the same thread\n\n"; - // Output events table - std::cout.setf(std::ios::left); - std::cout << std::setw(name_width) << "Event" << std::setw(data_width) - << "Calls" << std::setw(data_width) << "Total" - << std::setw(data_width) << "Min." << std::setw(data_width) - << "Max." << std::setw(data_width) << "Ave." << std::endl; - for (size_t i = 0; i < events_table.size(); ++i) { - for (size_t j = 0; j < events_table[i].size(); ++j) { - EventItem& event_item = events_table[i][j]; - std::cout << std::setw(name_width) << event_item.name - << std::setw(data_width) << event_item.calls - << std::setw(data_width) << event_item.total_time - << std::setw(data_width) << event_item.min_time - << std::setw(data_width) << event_item.max_time - << std::setw(data_width) << event_item.ave_time << std::endl; - } +void DisableProfiler(EventSortingKey sorted_key, + const std::string& profile_path) { + PADDLE_ENFORCE(g_state != ProfilerState::kDisabled, + "Can't disable profiling, since it's not starting."); + // Mark the profiling stop. + Mark("_stop_profiler_", nullptr); + + std::vector> all_events = GetAllEvents(); + ParseEvents(all_events, sorted_key); + ResetProfiler(); + DeviceTracer* tracer = GetDeviceTracer(); + if (g_state == ProfilerState::kAll && tracer && tracer->IsEnabled()) { + tracer->Disable(); + tracer->GenProfile(profile_path); } - std::cout << std::endl; + g_state = ProfilerState::kDisabled; } } // namespace platform diff --git a/paddle/fluid/platform/profiler.h b/paddle/fluid/platform/profiler.h index de9a5cc20d..b07427c8f6 100644 --- a/paddle/fluid/platform/profiler.h +++ b/paddle/fluid/platform/profiler.h @@ -15,7 +15,7 @@ limitations under the License. */ #pragma once #include #include -#include +#include #include #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/profiler.pb.h" @@ -23,16 +23,16 @@ limitations under the License. */ namespace paddle { namespace platform { -enum EventKind { kMark, kPushRange, kPopRange }; +enum EventType { kMark, kPushRange, kPopRange }; class Event { public: // The DeviceContext is used to get the cuda stream. // If CPU profiling mode, can pass nullptr. - Event(EventKind kind, std::string name, uint32_t thread_id, + Event(EventType type, std::string name, uint32_t thread_id, const DeviceContext* dev_ctx); - std::string kind() const; + const EventType& type() const; std::string name() const { return name_; } uint32_t thread_id() const { return thread_id_; } bool has_cuda() const { return has_cuda_; } @@ -46,7 +46,7 @@ class Event { double CudaElapsedMs(const Event& e) const; private: - EventKind kind_; + EventType type_; std::string name_; uint32_t thread_id_; int64_t cpu_ns_; @@ -57,39 +57,6 @@ class Event { #endif }; -struct EventList { - constexpr static size_t kMB = 1024 * 1024; - constexpr static size_t kEventBlockSize = 16 * kMB; - constexpr static size_t kEventSize = sizeof(Event); - constexpr static size_t kEventAlign = alignof(Event); - constexpr static size_t kNumBlock = - kEventBlockSize / - ((kEventSize + kEventAlign - 1) / kEventAlign * kEventAlign); - - template - void Record(Args&&... args) { - if (event_blocks.empty() || event_blocks.front().size() == kNumBlock) { - event_blocks.emplace_front(); - event_blocks.front().reserve(kNumBlock); - } - event_blocks.front().emplace_back(std::forward(args)...); - } - - std::vector Reduce() { - std::vector result; - for (auto& block : event_blocks) { - result.insert(result.begin(), std::make_move_iterator(block.begin()), - std::make_move_iterator(block.end())); - } - event_blocks.clear(); - return result; - } - - void Clear() { event_blocks.clear(); } - - std::forward_list> event_blocks; -}; - enum ProfilerState { kDisabled, // disabled state kCPU, // CPU profiling state @@ -136,16 +103,6 @@ struct RecordThread { // event_lists, event_lists[i][j] represents the j-th Event of i-th thread. std::vector> GetAllEvents(); -// The information of each event given in the profiling report -struct EventItem { - std::string name; - int calls; - double total_time; - double min_time; - double max_time; - double ave_time; -}; - // Candidate keys to sort the profiling report enum EventSortingKey { kDefault, kCalls, kTotal, kMin, kMax, kAve }; @@ -158,14 +115,5 @@ void ResetProfiler(); void DisableProfiler(EventSortingKey sorted_key, const std::string& profile_path); -// Parse the event list and output the profiling report -void ParseEvents(std::vector>&, - EventSortingKey sorted_by = EventSortingKey::kDefault); - -// Print results -void PrintProfiler(std::vector>& events_table, - std::string& sorted_domain, const size_t name_width, - const size_t data_width); - } // namespace platform } // namespace paddle diff --git a/paddle/fluid/platform/profiler_test.cc b/paddle/fluid/platform/profiler_test.cc index 45cc271bb8..61f467814b 100644 --- a/paddle/fluid/platform/profiler_test.cc +++ b/paddle/fluid/platform/profiler_test.cc @@ -13,22 +13,23 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/profiler.h" +#include #ifdef PADDLE_WITH_CUDA -#include "cuda_runtime.h" +#include #endif #include "gtest/gtest.h" TEST(Event, CpuElapsedTime) { using paddle::platform::Event; - using paddle::platform::EventKind; + using paddle::platform::EventType; - Event start_event(EventKind::kPushRange, "test", 0, nullptr); + Event start_event(EventType::kPushRange, "test", 0, nullptr); EXPECT_TRUE(start_event.has_cuda() == false); int counter = 0; while (counter != 1000) { counter++; } - Event stop_event(EventKind::kPopRange, "test", 0, nullptr); + Event stop_event(EventType::kPopRange, "test", 0, nullptr); EXPECT_GT(start_event.CpuElapsedMs(stop_event), 0); } @@ -38,16 +39,16 @@ TEST(Event, CudaElapsedTime) { using paddle::platform::CUDADeviceContext; using paddle::platform::CUDAPlace; using paddle::platform::Event; - using paddle::platform::EventKind; + using paddle::platform::EventType; DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(0)); - Event start_event(EventKind::kPushRange, "test", 0, dev_ctx); + Event start_event(EventType::kPushRange, "test", 0, dev_ctx); EXPECT_TRUE(start_event.has_cuda() == true); int counter = 0; while (counter != 1000) { counter++; } - Event stop_event(EventKind::kPopRange, "test", 0, dev_ctx); + Event stop_event(EventType::kPopRange, "test", 0, dev_ctx); EXPECT_GT(start_event.CudaElapsedMs(stop_event), 0); } #endif @@ -55,7 +56,7 @@ TEST(Event, CudaElapsedTime) { TEST(RecordEvent, RecordEvent) { using paddle::platform::DeviceContext; using paddle::platform::Event; - using paddle::platform::EventKind; + using paddle::platform::EventType; using paddle::platform::RecordEvent; using paddle::platform::ProfilerState; using paddle::platform::EventSortingKey; diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index bd8446df66..d559743a69 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -252,7 +252,6 @@ All parameter, weight, gradient are variables in Paddle. py::return_value_policy::reference); py::class_(m, "Reader", "") - .def("has_next", &framework::ReaderHolder::HasNext) .def("reset", &framework::ReaderHolder::ReInit); py::class_(m, "Scope", "") @@ -465,7 +464,8 @@ All parameter, weight, gradient are variables in Paddle. m.def("init_gflags", framework::InitGflags); m.def("init_glog", framework::InitGLOG); - m.def("init_devices", &framework::InitDevices); + m.def("init_devices", + [](bool init_p2p) { framework::InitDevices(init_p2p); }); m.def("is_compiled_with_cuda", IsCompiledWithCUDA); #ifdef PADDLE_WITH_CUDA @@ -553,6 +553,7 @@ All parameter, weight, gradient are variables in Paddle. bcast_vars, main_program, loss_var_name, scope, local_scopes, allow_op_delay); }) + .def("bcast_params", &ParallelExecutor::BCastParamsToGPUs) .def("local_scopes", [](ParallelExecutor &self) -> std::vector * { return &self.GetLocalScopes(); diff --git a/paddle/fluid/pybind/recordio.cc b/paddle/fluid/pybind/recordio.cc index 0644d91425..330d104e0a 100644 --- a/paddle/fluid/pybind/recordio.cc +++ b/paddle/fluid/pybind/recordio.cc @@ -39,7 +39,7 @@ class RecordIOWriter { void CompleteAppendTensor() { auto& ctx = *platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); - framework::WriteToRecordIO(writer_, tensors_, ctx); + framework::WriteToRecordIO(&writer_, tensors_, ctx); tensors_.clear(); } diff --git a/paddle/testing/paddle_gtest_main.cc b/paddle/testing/paddle_gtest_main.cc index 0fea6a8079..586ec48477 100644 --- a/paddle/testing/paddle_gtest_main.cc +++ b/paddle/testing/paddle_gtest_main.cc @@ -41,6 +41,6 @@ int main(int argc, char** argv) { paddle::memory::Used(paddle::platform::CUDAPlace(0)); #endif - paddle::framework::InitDevices(); + paddle::framework::InitDevices(true); return RUN_ALL_TESTS(); } diff --git a/python/paddle/fluid/__init__.py b/python/paddle/fluid/__init__.py index f01d638efd..f757411b85 100644 --- a/python/paddle/fluid/__init__.py +++ b/python/paddle/fluid/__init__.py @@ -29,6 +29,7 @@ import optimizer import backward import regularizer import average +import metrics from param_attr import ParamAttr, WeightNormParamAttr from data_feeder import DataFeeder from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace @@ -85,6 +86,8 @@ def __bootstrap__(): import core import os + in_test = 'unittest' in sys.modules + try: num_threads = int(os.getenv('OMP_NUM_THREADS', '1')) except ValueError: @@ -109,8 +112,11 @@ def __bootstrap__(): core.init_gflags([sys.argv[0]] + ["--tryfromenv=" + ",".join(read_env_flags)]) core.init_glog(sys.argv[0]) - core.init_devices() + # don't init_p2p when in unittest to save time. + core.init_devices(not in_test) +# TODO(panyx0718): Avoid doing complex initialization logic in __init__.py. +# Consider paddle.init(args) or paddle.main(args) layers.monkey_patch_variable() __bootstrap__() diff --git a/python/paddle/fluid/average.py b/python/paddle/fluid/average.py index ded6eb0859..6abe8233b0 100644 --- a/python/paddle/fluid/average.py +++ b/python/paddle/fluid/average.py @@ -13,6 +13,7 @@ # limitations under the License. import numpy as np +import warnings """ Class of all kinds of Average. @@ -22,6 +23,8 @@ import numpy as np wrappers of Python functions. """ +__all__ = ["WeightedAverage"] + def _is_number_(var): return isinstance(var, int) or isinstance(var, float) or (isinstance( @@ -34,6 +37,9 @@ def _is_number_or_matrix_(var): class WeightedAverage(object): def __init__(self): + warnings.warn( + "The %s is deprecated, please use fluid.metrics.Accuracy instead." % + (self.__class__.__name__), Warning) self.reset() def reset(self): diff --git a/python/paddle/fluid/distribute_transpiler.py b/python/paddle/fluid/distribute_transpiler.py index 7a2a81be9f..e18ace844e 100644 --- a/python/paddle/fluid/distribute_transpiler.py +++ b/python/paddle/fluid/distribute_transpiler.py @@ -102,6 +102,8 @@ def split_dense_variable(var_list, the parameter server side can gain better performance. By default minimum block size is 1024. The max block size is used to prevent very large blocks that may cause send error. + :return: A list of VarBlocks. Each VarBlock specifies a shard of + the var. """ blocks = [] for var in var_list: @@ -192,22 +194,24 @@ class DistributeTranspiler: self.trainer_id = trainer_id pserver_endpoints = pservers.split(",") - # step1 + # step1: For large parameters and gradients, split them into smaller + # blocks. param_list = [pg[0] for pg in params_grads] grad_list = [pg[1] for pg in params_grads] grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints)) param_blocks = split_dense_variable(param_list, len(pserver_endpoints)) - # step2 + # step2: Create new vars for the parameters and gradients blocks and + # add ops to do the split. grad_var_mapping = self._append_split_op(program, grad_blocks) - # step3 + param_var_mapping = self._create_vars_from_blocklist(program, + param_blocks) + # step3: Add gradients as send op inputs and parameters as send + # op outputs. send_inputs = [] send_outputs = [] for b in grad_blocks: # append by order varname, block_id, _ = b.split(":") send_inputs.append(grad_var_mapping[varname][int(block_id)]) - - param_var_mapping = self._create_vars_from_blocklist(program, - param_blocks) for b in param_blocks: varname, block_id, _ = b.split(":") send_outputs.append(param_var_mapping[varname][int(block_id)]) @@ -237,7 +241,7 @@ class DistributeTranspiler: "RPCClient": rpc_client_var}, attrs={"endpoints": pserver_endpoints, "epmap": eplist}) - # step4 + # step4: Concat the parameters splits together after recv. for varname, splited_var in param_var_mapping.iteritems(): if len(splited_var) <= 1: continue @@ -251,6 +255,7 @@ class DistributeTranspiler: def get_trainer_program(self): # remove optimize ops and add a send op to main_program self.program.global_block().delete_ops(self.optimize_ops) + self.program.sync_with_cpp() # FIXME(typhoonzero): serialize once will fix error occurs when clone. self.program.__str__() return self.program @@ -258,13 +263,14 @@ class DistributeTranspiler: def get_pserver_program(self, endpoint): """ Get pserver side program using the endpoint. + TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers. NOTE: assume blocks of the same variable is not distributed on the same pserver, only change param/grad varnames for trainers to fetch. """ # step1 pserver_program = Program() - # step2 + # step2: Create vars to receive vars at parameter servers. recv_inputs = [] for v in self.param_grad_ep_mapping[endpoint]["params"]: self._clone_var(pserver_program.global_block(), v) @@ -273,17 +279,21 @@ class DistributeTranspiler: # we don't need to create them when grad arrives. # change client side var name to origin name by # removing ".trainer_%d" suffix + suff_idx = v.name.find(".trainer_") if suff_idx >= 0: orig_var_name = v.name[:suff_idx] else: orig_var_name = v.name - single_trainer_var = pserver_program.global_block().create_var( - name=orig_var_name, - persistable=True, - type=v.type, - dtype=v.dtype, - shape=v.shape) + # NOTE: single_trainer_var must be created for multi-trainer + # case to merge grads from multiple trainers + single_trainer_var = \ + pserver_program.global_block().create_var( + name=orig_var_name, + persistable=True, + type=v.type, + dtype=v.dtype, + shape=v.shape) if self.trainers > 1: for trainer_id in xrange(self.trainers): var = pserver_program.global_block().create_var( @@ -344,7 +354,7 @@ class DistributeTranspiler: self._append_pserver_non_opt_ops(block, op) append_block = optimize_block - # append lr decay ops to the child block if exits + # append lr decay ops to the child block if exists lr_ops = self._get_lr_ops() if len(lr_ops) > 0: for _, op in enumerate(lr_ops): @@ -447,8 +457,10 @@ class DistributeTranspiler: block_list, add_trainer_suffix=False): """ + Create vars for each split. NOTE: only grads need to be named for different trainers, use add_trainer_suffix to rename the grad vars. + :return: A dict mapping from original var name to each var split. """ block_map = dict() var_mapping = dict() @@ -615,6 +627,7 @@ class DistributeTranspiler: type="sum", inputs={"X": vars2merge}, outputs={"Out": merged_var}) + # TODO(panyx0718): What if it's SELECTED_ROWS. if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS: optimize_block.append_op( type="scale", @@ -638,7 +651,7 @@ class DistributeTranspiler: shape=param_block.shape) new_inputs[key] = tmpvar elif key == "LearningRate": - # leraning rate variable has already be created by non-optimize op, + # learning rate variable has already be created by non-optimize op, # don't create it once again. lr_varname = opt_op.input(key)[0] if pserver_block.vars.has_key(lr_varname): @@ -773,6 +786,7 @@ class DistributeTranspiler: return False def _get_input_map_from_op(self, varmap, op): + """Returns a dict from op input name to the vars in varmap.""" iomap = dict() for key in op.input_names: vars = [] @@ -785,6 +799,7 @@ class DistributeTranspiler: return iomap def _get_output_map_from_op(self, varmap, op): + """Returns a dict from op output name to the vars in varmap.""" iomap = dict() for key in op.output_names: vars = [] @@ -812,6 +827,7 @@ class DistributeTranspiler: find_ops.append(op) # make a union find struct by the ops in default_main_program ufind = UnionFind(block.ops) + for op1 in block.ops: for op2 in block.ops: # NOTE: we need to skip all optimize ops, since it is connected diff --git a/python/paddle/fluid/evaluator.py b/python/paddle/fluid/evaluator.py index 19e5b61b0b..13475025b5 100644 --- a/python/paddle/fluid/evaluator.py +++ b/python/paddle/fluid/evaluator.py @@ -12,6 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. +import warnings import numpy as np import layers @@ -59,6 +60,9 @@ class Evaluator(object): """ def __init__(self, name, **kwargs): + warnings.warn( + "The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead." + % (self.__class__.__name__, self.__class__.__name__), Warning) self.states = [] self.metrics = [] self.helper = LayerHelper(name, **kwargs) diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 33cf691817..793421a22f 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -818,6 +818,11 @@ class Block(object): del self.vars[name] self.sync_with_cpp() + def remove_var(self, name): + self.sync_with_cpp() + self.desc.remove_var(name) + del self.vars[name] + def create_parameter(self, *args, **kwargs): global_block = self.program.global_block() param = Parameter(global_block, *args, **kwargs) @@ -838,6 +843,11 @@ class Block(object): self.ops.insert(index, op) return op + def remove_op(self, index): + self.sync_with_cpp() + self.desc.remove_op(index, index + 1) + del self.ops[index] + def delete_ops(self, ops): # remove from cpp # FIXME(typhoonzero): remove only the first occurrence. @@ -846,6 +856,7 @@ class Block(object): end = list(self.ops).index(ops[-1]) except Exception, e: raise e + self.desc.remove_op(start, end + 1) def slice_ops(self, start, end): diff --git a/python/paddle/fluid/initializer.py b/python/paddle/fluid/initializer.py index 927f1e625a..4e132ed261 100644 --- a/python/paddle/fluid/initializer.py +++ b/python/paddle/fluid/initializer.py @@ -18,7 +18,8 @@ import contextlib __all__ = [ 'Constant', 'Uniform', 'Normal', 'Xavier', 'force_init_on_cpu', - 'init_on_cpu' + 'init_on_cpu', 'ConstantInitializer', 'UniformInitializer', + 'NormalInitializer', 'XavierInitializer' ] _force_init_on_cpu_ = False diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index 969398bda4..e7d6c4e252 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -21,8 +21,7 @@ from ..executor import global_scope __all__ = [ 'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file', - 'open_files', 'read_file', 'create_shuffle_reader', - 'create_double_buffer_reader', 'create_multi_pass_reader' + 'open_files', 'read_file', 'shuffle', 'double_buffer' ] @@ -237,13 +236,9 @@ def monkey_patch_reader_methods(reader): var = scope.find_var(reader.name) return var.get_reader() - def eof(): - return not __get_reader__().has_next() - def reset(): return __get_reader__().reset() - reader.eof = eof reader.reset = reset reader.stop_gradient = True reader.persistable = True @@ -283,7 +278,42 @@ def _copy_reader_create_op_(block, op): return new_op -def open_recordio_file(filename, shapes, lod_levels, dtypes): +def open_recordio_file(filename, + shapes, + lod_levels, + dtypes, + pass_num=1, + for_parallel=False): + """ + Open a RecordIO file + + This layer takes a RecordIO file to read from and returns a Reader Variable. + Via the Reader Variable, we can get data from the given RecordIO file. + + Args: + filename(str): The RecordIO file's name. + shapes(list): List of tuples which declaring data shapes. + lod_levels(list): List of ints which declaring data lod_level. + dtypes(list): List of strs which declaring data type. + pass_num(int): Number of passes to run. + for_parallel(Bool): Set it as True if you are going to run + subsequent operators in parallel. + + Returns: + Variable: A Reader Variable via which we can get RecordIO file data. + + Examples: + .. code-block:: python + + reader = fluid.layers.io.open_recordio_file( + filename='./data.recordio', + shapes=[(3,224,224), (1)], + lod_levels=[0, 0], + dtypes=['float32', 'int64']) + + # Via the reader, we can use 'read_file' layer to get data: + image, label = fluid.layers.read_file(reader) + """ dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes] shape_concat = [] ranks = [] @@ -310,10 +340,63 @@ def open_recordio_file(filename, shapes, lod_levels, dtypes): startup_var.persistable = True main_prog_var = _copy_reader_var_(default_main_program().current_block(), startup_var) + + if pass_num > 1: + main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num) + + if for_parallel: + main_prog_var = parallel(reader=main_prog_var) + return monkey_patch_reader_methods(main_prog_var) -def open_files(filenames, thread_num, shapes, lod_levels, dtypes): +def open_files(filenames, + shapes, + lod_levels, + dtypes, + thread_num, + buffer_size=None, + pass_num=1, + for_parallel=False): + """ + Open files + + This layer takes a list of files to read from and returns a Reader Variable. + Via the Reader Variable, we can get data from given files. All files must + have name suffixs to indicate their formats, e.g., '*.recordio'. + + Args: + filenames(list): The list of file names. + shapes(list): List of tuples which declaring data shapes. + lod_levels(list): List of ints which declaring data lod_level. + dtypes(list): List of strs which declaring data type. + thread_num(int): The maximal concurrent prefetch thread number. + buffer_size(int): The size of prefetch buffer. + pass_num(int): Number of passes to run. + for_parallel(Bool): Set it as True if you are going to run + subsequent operators in parallel. + + Returns: + Variable: A Reader Variable via which we can get file data. + + Examples: + .. code-block:: python + + reader = fluid.layers.io.open_files(filenames=['./data1.recordio', + './data2.recordio'], + shapes=[(3,224,224), (1)], + lod_levels=[0, 0], + dtypes=['float32', 'int64'], + thread_num=2, + buffer_size=2) + + # Via the reader, we can use 'read_file' layer to get data: + image, label = fluid.layers.io.read_file(reader) + """ + if buffer_size is None: + buffer_size = thread_num + if isinstance(filenames, basestring): + filenames = [filenames] dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes] shape_concat = [] ranks = [] @@ -322,29 +405,36 @@ def open_files(filenames, thread_num, shapes, lod_levels, dtypes): shape_concat.extend(shape) ranks.append(len(shape)) - var_name = unique_name('multiple_reader') - + multi_file_reader_name = unique_name('multi_file_reader') startup_blk = default_startup_program().current_block() - startup_var = startup_blk.create_var(name=var_name) + startup_reader = startup_blk.create_var(name=multi_file_reader_name) startup_blk.append_op( type='open_files', - outputs={'Out': [startup_var]}, + outputs={'Out': [startup_reader]}, attrs={ 'shape_concat': shape_concat, 'lod_levels': lod_levels, 'ranks': ranks, 'file_names': filenames, - 'thread_num': thread_num + 'thread_num': thread_num, + 'buffer_size': buffer_size }) - startup_var.desc.set_dtypes(dtypes) - startup_var.persistable = True - main_prog_var = _copy_reader_var_(default_main_program().current_block(), - startup_var) - return monkey_patch_reader_methods(main_prog_var) + startup_reader.desc.set_dtypes(dtypes) + startup_reader.persistable = True + main_prog_reader = _copy_reader_var_(default_main_program().current_block(), + startup_reader) + if pass_num > 1: + main_prog_reader = multi_pass( + reader=main_prog_reader, pass_num=pass_num) + + if for_parallel: + main_prog_reader = parallel(reader=main_prog_reader) + + return monkey_patch_reader_methods(main_prog_reader) -def __create_decorated_reader__(op_type, reader, attrs): +def __create_shared_decorated_reader__(op_type, reader, attrs): var_name = unique_name(op_type) startup_blk = default_startup_program().current_block() startup_var = startup_blk.create_var(name=var_name) @@ -360,22 +450,41 @@ def __create_decorated_reader__(op_type, reader, attrs): return monkey_patch_reader_methods(main_prog_var) -def create_shuffle_reader(reader, buffer_size): - return __create_decorated_reader__('create_shuffle_reader', reader, - {'buffer_size': int(buffer_size)}) +def __create_unshared_decorated_reader__(op_type, reader, attrs): + new_reader_name = unique_name(op_type) + main_blk = default_main_program().current_block() + new_reader = main_blk.create_var(name=new_reader_name) + main_blk.append_op( + type=op_type, + inputs={'UnderlyingReader': reader}, + outputs={'Out': [new_reader]}, + attrs=attrs) + new_reader.persistable = True + new_reader.stop_gradient = True + return monkey_patch_reader_methods(new_reader) + + +def shuffle(reader, buffer_size): + return __create_unshared_decorated_reader__( + 'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)}) -def create_double_buffer_reader(reader, place=None): +def double_buffer(reader, place=None): attrs = dict() if place is not None: attrs['place'] = str(place).upper() - return __create_decorated_reader__('create_double_buffer_reader', reader, - attrs) + return __create_unshared_decorated_reader__('create_double_buffer_reader', + reader, attrs) + + +def multi_pass(reader, pass_num): + return __create_shared_decorated_reader__( + 'create_multi_pass_reader', reader, {'pass_num': int(pass_num)}) -def create_multi_pass_reader(reader, pass_num): - return __create_decorated_reader__('create_multi_pass_reader', reader, - {'pass_num': int(pass_num)}) +def parallel(reader): + return __create_shared_decorated_reader__('create_threaded_reader', reader, + {}) def read_file(file_obj): diff --git a/python/paddle/fluid/layers/metric.py b/python/paddle/fluid/layers/metric.py index 3d9157ad4e..f66dccfa2d 100644 --- a/python/paddle/fluid/layers/metric.py +++ b/python/paddle/fluid/layers/metric.py @@ -15,12 +15,13 @@ All layers just related to metric. """ +import warnings from ..layer_helper import LayerHelper from ..initializer import Normal, Constant from ..framework import Variable from ..param_attr import ParamAttr -__all__ = ['accuracy'] +__all__ = ['accuracy', 'auc'] def accuracy(input, label, k=1, correct=None, total=None): @@ -55,3 +56,37 @@ def accuracy(input, label, k=1, correct=None, total=None): "Total": [total], }) return acc_out + + +def auc(input, label, curve='ROC', num_thresholds=200): + warnings.warn( + "This interface not recommended, fluid.layers.auc compute the auc at every minibatch, \ + but can not aggregate them and get the pass AUC, because pass \ + auc can not be averaged with weighted from the minibatch auc value. \ + Please use fluid.metrics.Auc, it can compute the auc value via Python natively, \ + which can get every minibatch and every pass auc value.", Warning) + helper = LayerHelper("auc", **locals()) + topk_out = helper.create_tmp_variable(dtype=input.dtype) + topk_indices = helper.create_tmp_variable(dtype="int64") + helper.append_op( + type="top_k", + inputs={"X": [input]}, + outputs={"Out": [topk_out], + "Indices": [topk_indices]}, + attrs={"k": k}) + auc_out = helper.create_tmp_variable(dtype="float32") + if correct is None: + correct = helper.create_tmp_variable(dtype="int64") + if total is None: + total = helper.create_tmp_variable(dtype="int64") + helper.append_op( + type="accuracy", + inputs={ + "Out": [topk_out], + "Indices": [topk_indices], + "Label": [label] + }, + attrs={"curve": curve, + "num_thresholds": num_thresholds}, + outputs={"AUC": [auc_out], }) + return auc_out diff --git a/python/paddle/fluid/metrics.py b/python/paddle/fluid/metrics.py new file mode 100644 index 0000000000..99a81c1d42 --- /dev/null +++ b/python/paddle/fluid/metrics.py @@ -0,0 +1,378 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Fluid Metrics + +The metrics are accomplished via Python natively. +""" +import numpy as np +import copy +import warnings + +__all__ = [ + 'MetricBase', + 'CompositeMetric', + 'Accuracy', + 'ChunkEvaluator', + 'EditDistance', + 'DetectionMAP', + 'Auc', +] + + +def _is_numpy_(var): + return isinstance(var, (np.ndarray, np.generic)) + + +def _is_number_(var): + return isinstance(var, int) or isinstance(var, float) or (isinstance( + var, np.ndarray) and var.shape == (1, )) + + +def _is_number_or_matrix_(var): + return _is_number_(var) or isinstance(var, np.ndarray) + + +class MetricBase(object): + """ + Base Class for all evaluators + + Args: + name(str): The name of evaluator. such as, "accuracy". Used for generate + temporary variable name. + Interface: + Note(*) : the states is the attributes who not has _ prefix. + + get_config(): print current states and configuration + reset(): clear the states. If the Metrics states type is not (int, float, np.ndarray), + Please override this method. + update(): update states at every minibatch + eval(): get metric evaluation in numpy type. + """ + + def __init__(self, name, **kwargs): + self._name = str(name) if name != None else self.__class__.__name__ + self._kwargs = kwargs if kwargs != None else dict() + self.reset() + + def __str__(self): + return self._name + + def reset(self): + """ + states is the attributes who not has _ prefix. + reset the states of metrics. + """ + states = { + attr: value + for attr, value in self.__dict__.iteritems() + if not attr.startswith("_") + } + for attr, value in states.iteritems(): + if isinstance(value, int): + setattr(self, attr, 0) + elif isinstance(value, float): + setattr(self, attr, .0) + elif isinstance(value, (np.ndarray, np.generic)): + setattr(self, attr, np.zeros_like(value)) + else: + setattr(self, attr, None) + + def get_config(self): + states = { + attr: value + for attr, value in self.__dict__.iteritems() + if not attr.startswith("_") + } + config = copy.deepcopy(self._kwargs) + config.update({"name": self._name, "states": copy.deepcopy(states)}) + return config + + def update(self): + raise NotImplementedError() + + def eval(self): + raise NotImplementedError() + + +class CompositeMetric(MetricBase): + """ + Compute multiple metrics in each minibatch. + for example, merge F1, accuracy, recall into one Metric. + """ + + def __init__(self, name=None, **kwargs): + super(CompositeMetric, self).__init__(name, kwargs) + self._metrics = [] + + def add_metric(self, metric): + if not isinstance(metric, MetricBase): + raise ValueError("SubMetric should be inherit from MetricBase.") + self._metrics.append(metric) + + def eval(self): + ans = [] + for m in self._metrics: + ans.append(m.eval()) + return ans + + +class Accuracy(MetricBase): + """ + Accumulate the accuracy from minibatches and compute the average accuracy + for every pass. + + Args: + name: the metrics name + + Example: + minibatch_accuracy = fluid.layers.accuracy(pred, label) + accuracy_evaluator = fluid.metrics.Accuracy() + for epoch in PASS_NUM: + accuracy_evaluator.reset() + for data in batches: + loss = exe.run(fetch_list=[cost, minibatch_accuracy]) + accuracy_evaluator.update(value=minibatch_accuracy, weight=batches) + accuracy = accuracy_evaluator.eval() + """ + + def __init__(self, name=None): + super(Accuracy, self).__init__(name) + self.value = .0 + self.weight = .0 + + def update(self, value, weight): + if not _is_number_or_matrix_(value): + raise ValueError( + "The 'value' must be a number(int, float) or a numpy ndarray.") + if not _is_number_(weight): + raise ValueError("The 'weight' must be a number(int, float).") + self.value += value * weight + self.weight += weight + + def eval(self): + if self.weight == 0: + raise ValueError( + "There is no data in Accuracy Metrics. Please check layers.accuracy output has added to Accuracy." + ) + return self.value / self.weight + + +class ChunkEvalutor(MetricBase): + """ + Accumulate counter numbers output by chunk_eval from mini-batches and + compute the precision recall and F1-score using the accumulated counter + numbers. + """ + + def __init__(self, name=None): + super(ChunkEvalutor, self).__init__(name) + self.num_infer_chunks = 0 + self.num_label_chunks = 0 + self.num_correct_chunks = 0 + + def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks): + if not _is_number_or_matrix_(num_infer_chunks): + raise ValueError( + "The 'num_infer_chunks' must be a number(int, float) or a numpy ndarray." + ) + if not _is_number_or_matrix_(num_label_chunks): + raise ValueError( + "The 'num_label_chunks' must be a number(int, float) or a numpy ndarray." + ) + if not _is_number_or_matrix_(num_correct_chunks): + raise ValueError( + "The 'num_correct_chunks' must be a number(int, float) or a numpy ndarray." + ) + self.num_infer_chunks += num_infer_chunks + self.num_label_chunks += num_label_chunks + self.num_correct_chunks += num_correct_chunks + + def eval(self): + precision = float( + self.num_correct_chunks + ) / self.num_infer_chunks if self.num_infer_chunks else 0 + recall = float(self.num_correct_chunks + ) / self.num_label_chunks if self.num_label_chunks else 0 + f1_score = float(2 * precision * recall) / ( + precision + recall) if self.num_correct_chunks else 0 + return precision, recall, f1_score + + +class EditDistance(MetricBase): + """ + Accumulate edit distance sum and sequence number from mini-batches and + compute the average edit_distance and instance error of all batches. + + Args: + name: the metrics name + + Example: + edit_distance_metrics = fluid.layers.edit_distance(input, label) + distance_evaluator = fluid.metrics.EditDistance() + for epoch in PASS_NUM: + distance_evaluator.reset() + for data in batches: + loss = exe.run(fetch_list=[cost] + list(edit_distance_metrics)) + distance_evaluator.update(*edit_distance_metrics) + distance, instance_error = distance_evaluator.eval() + + In the above example: + 'distance' is the average of the edit distance in a pass. + 'instance_error' is the instance error rate in a pass. + + """ + + def __init__(self, name): + super(EditDistance, self).__init__(name) + self.total_distance = .0 + self.seq_num = 0 + self.instance_error = 0 + + def update(self, distances, seq_num): + if not _is_numpy_(distances): + raise ValueError("The 'distances' must be a numpy ndarray.") + if not _is_number_(seq_num): + raise ValueError("The 'seq_num' must be a number(int, float).") + seq_right_count = np.sum(distances == 0) + total_distance = np.sum(distances) + self.seq_num += seq_num + self.instance_error += seq_num - seq_right_count + self.total_distance += total_distance + + def eval(): + if self.seq_num == 0: + raise ValueError( + "There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance." + ) + avg_distance = self.total_distance / self.seq_num + avg_instance_error = self.instance_error / self.seq_num + return avg_distance, avg_instance_error + + +class DetectionMAP(MetricBase): + """ + Calculate the detection mean average precision (mAP). + + TODO (Dang Qingqing): update the following doc. + The general steps are as follows: + 1. calculate the true positive and false positive according to the input + of detection and labels. + 2. calculate mAP value, support two versions: '11 point' and 'integral'. + + Please get more information from the following articles: + https://sanchom.wordpress.com/tag/average-precision/ + https://arxiv.org/abs/1512.02325 + """ + + def __init__(self, name=None): + super(DetectionMAP, self).__init__(name) + # the current map value + self.value = .0 + + def update(self, value, weight): + if not _is_number_or_matrix_(value): + raise ValueError( + "The 'value' must be a number(int, float) or a numpy ndarray.") + if not _is_number_(weight): + raise ValueError("The 'weight' must be a number(int, float).") + self.value += value + self.weight += weight + + def eval(self): + if self.weight == 0: + raise ValueError( + "There is no data in DetectionMAP Metrics. " + "Please check layers.detection_map output has added to DetectionMAP." + ) + return self.value / self.weight + + +class Auc(MetricBase): + """ + Auc Metrics which adapts to binary classification. + Need to note that auc metrics compute the value via Python natively. + If you concern the speed, please use the fluid.layers.auc instead. + + The `auc` function creates four local variables, `true_positives`, + `true_negatives`, `false_positives` and `false_negatives` that are used to + compute the AUC. To discretize the AUC curve, a linearly spaced set of + thresholds is used to compute pairs of recall and precision values. The area + under the ROC-curve is therefore computed using the height of the recall + values by the false positive rate, while the area under the PR-curve is the + computed using the height of the precision values by the recall. + + Args: + name: metric name + curve: Specifies the name of the curve to be computed, 'ROC' [default] or + 'PR' for the Precision-Recall-curve. + num_thresholds: The number of thresholds to use when discretizing the roc + curve. + + "NOTE: only implement the ROC curve type via Python now." + """ + + def __init__(self, name, curve='ROC', num_thresholds=200): + super(MetricBase, self).__init__(name, curve, num_thresholds) + self._curve = curve + self._num_thresholds = num_thresholds + self._epsilon = 1e-6 + self.tp_list = np.ndarray((num_thresholds, )) + self.fn_list = np.ndarray((num_thresholds, )) + self.tn_list = np.ndarray((num_thresholds, )) + self.fp_list = np.ndarray((num_thresholds, )) + + def update(self, labels, predictions, axis=1): + if not _is_numpy_(labels): + raise ValueError("The 'labels' must be a numpy ndarray.") + if not _is_numpy_(predictions): + raise ValueError("The 'predictions' must be a numpy ndarray.") + + kepsilon = 1e-7 # to account for floating point imprecisions + thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) + for i in range(num_thresholds - 2)] + thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] + + # caculate TP, FN, TN, FP count + for idx_thresh, thresh in enumerate(thresholds): + tp, fn, tn, fp = 0, 0, 0, 0 + for i, lbl in enumerate(labels): + if lbl: + if predictions[i, 0] >= thresh: + tp += 1 + else: + fn += 1 + else: + if predictions[i, 0] >= thresh: + fp += 1 + else: + tn += 1 + tp_list[idx_thresh] += tp + fn_list[idx_thresh] += fn + tn_list[idx_thresh] += tn + fp_list[idx_thresh] += fp + + def eval(self): + epsilon = self._epsilon + num_thresholds = self._num_thresholds + tpr = (tp_list.astype("float32") + epsilon) / ( + tp_list + fn_list + epsilon) + fpr = fp_list.astype("float32") / (fp_list + tn_list + epsilon) + rec = (tp_list.astype("float32") + epsilon) / ( + tp_list + fp_list + epsilon) + + x = fpr[:num_thresholds - 1] - fpr[1:] + y = (tpr[:num_thresholds - 1] + tpr[1:]) / 2.0 + auc_value = np.sum(x * y) + return auc_value diff --git a/python/paddle/fluid/parallel_executor.py b/python/paddle/fluid/parallel_executor.py index b93f2f974c..5ce2aa1fc4 100644 --- a/python/paddle/fluid/parallel_executor.py +++ b/python/paddle/fluid/parallel_executor.py @@ -87,7 +87,8 @@ class ParallelExecutor(object): # performance. Worth tunning for other models in the future. num_threads = len(self._places) else: - min(len(self._places) * 2, multiprocessing.cpu_count()) + num_threads = min( + len(self._places) * 2, multiprocessing.cpu_count()) main = main_program main = main if main else framework.default_main_program() @@ -99,9 +100,11 @@ class ParallelExecutor(object): local_scopes = share_vars_from.executor.local_scopes( ) if share_vars_from else [] - persistable_vars = [ + self.persistable_vars = [ v.name - for v in filter(lambda var: var.persistable, main.list_vars()) + for v in filter(lambda var: \ + var.persistable and var.type != core.VarDesc.VarType.RAW, + main.list_vars()) ] self.executor = core.ParallelExecutor( @@ -112,7 +115,7 @@ class ParallelExecutor(object): p.name for p in main.global_block().iter_parameters() if not p.stop_gradient ]), - set(persistable_vars), + set(self.persistable_vars), main.desc, loss_name if loss_name else '', scope, @@ -142,3 +145,6 @@ class ParallelExecutor(object): self.executor.run(fetch_list, fetch_var_name, feed_tensor_dict) arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array() return [arr[i] for i in range(len(arr))] + + def bcast_params(self): + self.executor.bcast_params(set(self.persistable_vars)) diff --git a/python/paddle/fluid/tests/unittests/test_activation_op.py b/python/paddle/fluid/tests/unittests/test_activation_op.py index c5b53902bc..57d4a50e91 100644 --- a/python/paddle/fluid/tests/unittests/test_activation_op.py +++ b/python/paddle/fluid/tests/unittests/test_activation_op.py @@ -22,221 +22,504 @@ from scipy.special import expit class TestExp(OpTest): def setUp(self): self.op_type = "exp" - self.inputs = { - 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") - } - self.outputs = {'Out': np.exp(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) + out = np.exp(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Exp(TestExp): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSigmoid(OpTest): def setUp(self): self.op_type = "sigmoid" - self.inputs = { - 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") - } - self.outputs = {'Out': 1 / (1 + np.exp(-self.inputs['X']))} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) + out = 1 / (1 + np.exp(-x)) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): - self.check_grad(['X'], 'Out', max_relative_error=0.008) + if self.dtype == np.float16: + return + self.check_grad(['X'], 'Out', max_relative_error=0.01) + + def init_dtype(self): + pass + + +class TestFP16Sigmoid(TestSigmoid): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) class TestLogSigmoid(OpTest): def setUp(self): self.op_type = "logsigmoid" - self.inputs = { - 'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") - } - self.outputs = {'Out': np.log(1 / (1 + np.exp(-self.inputs['X'])))} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) + out = np.log(1 / (1 + np.exp(-x))) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.008) + def init_dtype(self): + pass + + +class TestFP16LogSigmoid(TestLogSigmoid): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestTanh(OpTest): def setUp(self): self.op_type = "tanh" - self.inputs = { - 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") - } - self.outputs = {'Out': np.tanh(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) + out = np.tanh(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Tanh(TestTanh): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestTanhShrink(OpTest): def setUp(self): self.op_type = "tanh_shrink" - self.inputs = { - 'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32") - } - self.outputs = {'Out': self.inputs['X'] - np.tanh(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype) + out = x - np.tanh(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.008) + def init_dtype(self): + pass + + +class TestFP16TanhShrink(TestTanhShrink): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestHardShrink(OpTest): def setUp(self): self.op_type = "hard_shrink" - x = np.random.uniform(-1, 1, [4, 4]).astype("float32") + self.dtype = np.float32 + self.init_dtype() + threshold = 0.5 + x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) + out = np.copy(x) + out[(out >= -threshold) & (out <= threshold)] = 0 - self.inputs = {'X': x} self.attrs = {'lambda': threshold} - - t = np.copy(x) - t[(t >= -threshold) & (t <= threshold)] = 0 - self.outputs = {'Out': t} + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.005) + def init_dtype(self): + pass + + +class TestFP16HardShrink(TestHardShrink): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSoftShrink(OpTest): def setUp(self): self.op_type = "softshrink" + self.dtype = np.float32 + self.init_dtype() + lambda_val = 0.1 + x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype) + out = np.copy(x) + out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * ( + out - lambda_val) + self.attrs = {'lambda': lambda_val} - self.inputs = { - 'X': np.random.uniform(0.25, 10, [4, 4]).astype("float32") - } - y = np.copy(self.inputs['X']) - y = (y < -lambda_val) * (y + lambda_val) + (y > lambda_val) * ( - y - lambda_val) - self.outputs = {'Out': y} + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16SoftShrink(TestSoftShrink): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSqrt(OpTest): def setUp(self): self.op_type = "sqrt" - self.inputs = { - 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") - } - self.outputs = {'Out': np.sqrt(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) + out = np.sqrt(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Sqrt(TestSqrt): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestAbs(OpTest): def setUp(self): self.op_type = "abs" - x = np.random.uniform(-1, 1, [4, 4]).astype("float32") + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) # Because we set delta = 0.005 in caculating numeric gradient, # if x is too small, such as 0.002, x_neg will be -0.003 # x_pos will be 0.007, so the numeric gradient is unaccurate. # we should avoid this x[np.abs(x) < 0.005] = 0.02 - self.inputs = {'X': x} - self.outputs = {'Out': np.abs(self.inputs['X'])} + out = np.abs(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Abs(TestAbs): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestCeil(OpTest): def setUp(self): self.op_type = "ceil" - x = np.random.uniform(-1, 1, [4, 4]).astype("float32") - self.inputs = {'X': x} - self.outputs = {'Out': np.ceil(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) + out = np.ceil(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Ceil(TestCeil): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestFloor(OpTest): def setUp(self): self.op_type = "floor" - x = np.random.uniform(-1, 1, [4, 4]).astype("float32") - self.inputs = {'X': x} - self.outputs = {'Out': np.floor(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) + out = np.floor(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Floor(TestFloor): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestCos(OpTest): def setUp(self): self.op_type = "cos" - x = np.random.uniform(-1, 1, [4, 4]).astype("float32") - self.inputs = {'X': x} - self.outputs = {'Out': np.cos(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) + out = np.cos(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Cos(TestCos): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSin(OpTest): def setUp(self): self.op_type = "sin" - x = np.random.uniform(-1, 1, [4, 4]).astype("float32") - self.inputs = {'X': x} - self.outputs = {'Out': np.sin(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) + out = np.sin(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Sin(TestSin): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestRound(OpTest): def setUp(self): self.op_type = "round" - x = np.random.uniform(-1, 1, [4, 4]).astype("float32") - self.inputs = {'X': x} - self.outputs = {'Out': np.round(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) + out = np.round(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Round(TestRound): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestRelu(OpTest): def setUp(self): @@ -278,222 +561,463 @@ class TestFP16Relu(TestRelu): class TestBRelu(OpTest): def setUp(self): self.op_type = "brelu" - x = np.random.uniform(-1, 1, [4, 4]).astype("float32") + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype) t_min = 1.0 t_max = 4.0 # The same with TestAbs x[np.abs(x - t_min) < 0.005] = t_min + 0.02 x[np.abs(x - t_max) < 0.005] = t_max + 0.02 - - self.inputs = {'X': x} - self.attrs = {'t_min': t_min, 't_max': t_max} t = np.copy(x) t[t < t_min] = t_min t[t > t_max] = t_max + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.attrs = {'t_min': t_min, 't_max': t_max} self.outputs = {'Out': t} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.02) + def init_dtype(self): + pass + + +class TestFP16BRelu(TestBRelu): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestRelu6(OpTest): def setUp(self): self.op_type = "relu6" - x = np.random.uniform(-1, 1, [4, 10]).astype("float32") + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype) threshold = 6.0 # The same with TestAbs x[np.abs(x) < 0.005] = 0.02 x[np.abs(x - threshold) < 0.005] = threshold + 0.02 + out = np.minimum(np.maximum(x, 0), threshold) - self.inputs = {'X': x} + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.attrs = {'threshold': threshold} - self.outputs = { - 'Out': np.minimum(np.maximum(self.inputs['X'], 0), threshold) - } + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.02) + def init_dtype(self): + pass + + +class TestFP16Relu6(TestRelu6): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSoftRelu(OpTest): def setUp(self): self.op_type = "soft_relu" - x = np.random.uniform(-3, 3, [4, 4]).astype("float32") + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype) threshold = 2.0 # The same reason with TestAbs x[np.abs(x - threshold) < 0.005] = threshold + 0.02 x[np.abs(x + threshold) < 0.005] = -threshold + 0.02 - self.inputs = {'X': x} - self.attrs = {'threshold': threshold} t = np.copy(x) t[t < -threshold] = -threshold t[t > threshold] = threshold - self.outputs = {'Out': np.log((np.exp(t) + 1))} + out = np.log((np.exp(t) + 1)) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.attrs = {'threshold': threshold} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.02) + def init_dtype(self): + pass + + +class TestFP16SoftRelu(TestSoftRelu): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestELU(OpTest): def setUp(self): self.op_type = "elu" - x = np.random.uniform(-3, 3, [4, 4]).astype("float32") + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype) alpha = 1. + out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1)) # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1) # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here self.inputs = {'X': x} self.attrs = {'alpha': alpha} - self.outputs = { - 'Out': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1)) - } + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.02) + def init_dtype(self): + pass + + +class TestFP16ELU(TestELU): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestReciprocal(OpTest): def setUp(self): self.op_type = "reciprocal" - self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} - self.outputs = {'Out': np.reciprocal(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype) + out = np.reciprocal(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.01) + def init_dtype(self): + pass + + +class TestFP16Reciprocal(TestReciprocal): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestLog(OpTest): def setUp(self): self.op_type = "log" - self.inputs = { - 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") - } - self.outputs = {'Out': np.log(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) + out = np.log(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Log(TestLog): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSquare(OpTest): def setUp(self): self.op_type = "square" - self.inputs = { - 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") - } - self.outputs = {'Out': np.square(self.inputs['X'])} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) + out = np.square(x) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Square(TestSquare): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestPow(OpTest): def setUp(self): self.op_type = "pow" - self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype) + out = np.power(x, 3) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.attrs = {'factor': 3.0} - self.outputs = {'Out': np.power(self.inputs['X'], 3)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.02) + def init_dtype(self): + pass + + +class TestFP16Pow(TestPow): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=5e-2) + class TestSTanh(OpTest): def setUp(self): self.op_type = "stanh" - self.inputs = { - 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") - } + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) scale_a = 2.0 / 3.0 scale_b = 1.7159 + out = scale_b * np.tanh(x * scale_a) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.attrs = {'scale_a': scale_a, 'scale_b': scale_b} - self.outputs = {'Out': scale_b * np.tanh(self.inputs['X'] * scale_a)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16STanh(TestSTanh): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSoftplus(OpTest): def setUp(self): self.op_type = "softplus" - self.inputs = { - 'X': np.random.uniform(-1, 1, [11, 17]).astype("float64") - } - self.outputs = {'Out': np.log(1 + np.exp(self.inputs['X']))} + self.dtype = np.float64 + self.init_dtype() + + x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) + out = np.log(1 + np.exp(x)) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Softplus(TestSoftplus): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSoftsign(OpTest): def setUp(self): self.op_type = "softsign" - self.inputs = { - 'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") - } - self.outputs = { - 'Out': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X'])) - } + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) + out = np.divide(x, 1 + np.abs(x)) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Softsign(TestSoftsign): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestThresholdedRelu(OpTest): def setUp(self): self.op_type = "thresholded_relu" + self.dtype = np.float32 + self.init_dtype() + threshold = 0.25 self.relative_error = 0.005 - X = np.random.uniform(-1, 1, [11, 17]).astype("float32") + X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) # Same reason as TestAbs X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2 + out = (X > threshold) * X - self.inputs = {'X': X} + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)} self.attrs = {'threshold': threshold} - self.outputs = {'Out': (X > threshold) * X} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=self.relative_error) + def init_dtype(self): + pass + + +class TestFP16ThresholdedRelu(TestThresholdedRelu): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestHardSigmoid(OpTest): def setUp(self): self.op_type = "hard_sigmoid" + self.dtype = np.float32 + self.init_dtype() + self.relative_error = 0.002 X = np.random.uniform(-5, 5, [2, 2]).astype("float32") @@ -502,7 +1026,6 @@ class TestHardSigmoid(OpTest): lower_threshold = -offset / slope upper_threshold = (1 - offset) / slope - self.inputs = {'X': X} # Same reason as TestAbs X[np.abs(X - lower_threshold) < self.relative_error] = \ lower_threshold + 0.2 @@ -510,29 +1033,70 @@ class TestHardSigmoid(OpTest): upper_threshold - 0.2 temp = X * slope + offset - self.outputs = {'Out': np.maximum(0.0, np.minimum(1.0, temp))} + out = np.maximum(0.0, np.minimum(1.0, temp)) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.002) + def init_dtype(self): + pass + + +class TestFP16HardSigmoid(TestHardSigmoid): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestSwish(OpTest): def setUp(self): self.op_type = "swish" - X = np.random.uniform(0.1, 1, [11, 17]).astype("float32") - self.inputs = {'X': X} - self.attrs = {'beta': 2.3} - self.outputs = {'Out': X * expit(self.attrs['beta'] * X)} + self.dtype = np.float32 + self.init_dtype() + + X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) + beta = 2.3 + out = X * expit(beta * X) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)} + self.attrs = {'beta': beta} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.008) + def init_dtype(self): + pass + + +class TestFP16Swish(TestSwish): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + #--------------------test MKLDNN-------------------- class TestMKLDNNReluDim2(TestRelu): diff --git a/python/paddle/fluid/tests/unittests/test_multiple_reader.py b/python/paddle/fluid/tests/unittests/test_multi_file_reader.py similarity index 91% rename from python/paddle/fluid/tests/unittests/test_multiple_reader.py rename to python/paddle/fluid/tests/unittests/test_multi_file_reader.py index a60a5d6c4a..5dc41e54d6 100644 --- a/python/paddle/fluid/tests/unittests/test_multiple_reader.py +++ b/python/paddle/fluid/tests/unittests/test_multi_file_reader.py @@ -61,8 +61,12 @@ class TestMultipleReader(unittest.TestCase): exe.run(fluid.default_startup_program()) batch_count = 0 - while not data_files.eof(): - img_val, = exe.run(fetch_list=[img]) + while True: + try: + img_val, = exe.run(fetch_list=[img]) + except fluid.core.EnforceNotMet as ex: + self.assertIn("There is no next data.", ex.message) + break batch_count += 1 self.assertLessEqual(img_val.shape[0], self.batch_size) data_files.reset() diff --git a/python/paddle/fluid/tests/unittests/test_multi_pass_reader.py b/python/paddle/fluid/tests/unittests/test_multi_pass_reader.py index 0b7a290759..1471843ded 100644 --- a/python/paddle/fluid/tests/unittests/test_multi_pass_reader.py +++ b/python/paddle/fluid/tests/unittests/test_multi_pass_reader.py @@ -44,7 +44,7 @@ class TestMultipleReader(unittest.TestCase): shapes=[(-1, 784), (-1, 1)], lod_levels=[0, 0], dtypes=['float32', 'int64']) - data_file = fluid.layers.create_multi_pass_reader( + data_file = fluid.layers.io.multi_pass( reader=data_file, pass_num=self.pass_num) img, label = fluid.layers.read_file(data_file) @@ -57,8 +57,12 @@ class TestMultipleReader(unittest.TestCase): exe.run(fluid.default_startup_program()) batch_count = 0 - while not data_file.eof(): - img_val, = exe.run(fetch_list=[img]) + while True: + try: + img_val, = exe.run(fetch_list=[img]) + except fluid.core.EnforceNotMet as ex: + self.assertIn("There is no next data.", ex.message) + break batch_count += 1 self.assertLessEqual(img_val.shape[0], self.batch_size) data_file.reset() diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor.py b/python/paddle/fluid/tests/unittests/test_parallel_executor.py index 8401716db8..3c00f708f0 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor.py @@ -26,11 +26,14 @@ def simple_fc_net(use_feed): img = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') else: - reader = fluid.layers.open_recordio_file( - filename='./mnist.recordio', + reader = fluid.layers.open_files( + filenames=['./mnist.recordio'], shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], - dtypes=['float32', 'int64']) + dtypes=['float32', 'int64'], + thread_num=1, + for_parallel=True) + reader = fluid.layers.io.double_buffer(reader) img, label = fluid.layers.read_file(reader) hidden = img for _ in xrange(4): @@ -51,11 +54,14 @@ def fc_with_batchnorm(use_feed): img = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') else: - reader = fluid.layers.open_recordio_file( - filename='./mnist.recordio', + reader = fluid.layers.open_files( + filenames=['mnist.recordio'], shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], - dtypes=['float32', 'int64']) + dtypes=['float32', 'int64'], + thread_num=1, + for_parallel=True) + reader = fluid.layers.io.double_buffer(reader) img, label = fluid.layers.read_file(reader) hidden = img diff --git a/python/paddle/fluid/tests/unittests/test_protobuf_descs.py b/python/paddle/fluid/tests/unittests/test_protobuf_descs.py index f98a8bbc68..3f9059fb5b 100644 --- a/python/paddle/fluid/tests/unittests/test_protobuf_descs.py +++ b/python/paddle/fluid/tests/unittests/test_protobuf_descs.py @@ -201,24 +201,6 @@ class TestBlockDesc(unittest.TestCase): op1.set_type("test") op2.set_type("test") - var0 = block.var("var0") - var1 = block.var("var1") - var2 = block.var("var2") - var3 = block.var("var3") - var4 = block.var("var4") - var5 = block.var("var5") - - op0.set_input("X", ["var0"]) - op0.set_output("Y", ["var0"]) - op1.set_input("X", ["var1", "var2"]) - op1.set_output("Y", ["var3", "var4"]) - op2.set_input("X", ["var1"]) - op2.set_output("Y", ["var4", "var5"]) - - program.sync_with_cpp() - - # remove op1, its input var2 and output var3 will be removed at the same time, - # but its input var1 and output var4 will not be removed since they are used for op2. block.remove_op(1, 2) program.sync_with_cpp() @@ -226,8 +208,6 @@ class TestBlockDesc(unittest.TestCase): for idx in xrange(0, block.op_size()): all_ops.append(block.op(idx)) self.assertEqual(all_ops, [op0, op2]) - all_vars = block.all_vars() - self.assertEqual(set(all_vars), {var0, var1, var4, var5}) if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_recordio_reader.py b/python/paddle/fluid/tests/unittests/test_recordio_reader.py index 24a0074d9b..7c8e7f634f 100644 --- a/python/paddle/fluid/tests/unittests/test_recordio_reader.py +++ b/python/paddle/fluid/tests/unittests/test_recordio_reader.py @@ -65,8 +65,13 @@ class TestRecordIO(unittest.TestCase): # train a pass batch_id = 0 - while not data_file.eof(): - tmp, = exe.run(fetch_list=[avg_loss]) + while True: + try: + tmp, = exe.run(fetch_list=[avg_loss]) + except fluid.core.EnforceNotMet as ex: + self.assertIn("There is no next data.", ex.message) + break + avg_loss_np.append(tmp) batch_id += 1 data_file.reset() @@ -74,8 +79,8 @@ class TestRecordIO(unittest.TestCase): self.assertLess(avg_loss_np[-1], avg_loss_np[0]) def test_shuffle_reader(self): - self.test_main(decorator_callback=lambda reader: fluid.layers.create_shuffle_reader(reader, buffer_size=200)) + self.test_main(decorator_callback=lambda reader: fluid.layers.io.shuffle(reader, buffer_size=200)) def test_double_buffer_reader(self): - self.test_main(decorator_callback=lambda reader: fluid.layers.create_double_buffer_reader(reader, + self.test_main(decorator_callback=lambda reader: fluid.layers.io.double_buffer(reader, place='cuda:0' if fluid.core.is_compiled_with_cuda() else 'cpu')) diff --git a/python/setup.py.in b/python/setup.py.in index 5e7096e225..a811b509a9 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -102,7 +102,7 @@ if '${WITH_FLUID_ONLY}'== 'OFF': package_data['py_paddle']=['*.py','_swig_paddle.so'] package_dir={ - '': '${CMAKE_CURRENT_SOURCE_DIR}', + '': '${PADDLE_BINARY_DIR}/python', # The paddle.fluid.proto will be generated while compiling. # So that package points to other directory. 'paddle.fluid.proto.profiler': '${PADDLE_BINARY_DIR}/paddle/fluid/platform',