diff --git a/paddle/gserver/layers/SequenceSliceLayer.cpp b/paddle/gserver/layers/SequenceSliceLayer.cpp index 424f898553..165ee6311a 100644 --- a/paddle/gserver/layers/SequenceSliceLayer.cpp +++ b/paddle/gserver/layers/SequenceSliceLayer.cpp @@ -70,9 +70,8 @@ void SequenceSliceLayer::checkInputs() { const Argument& inputSeq = getInput(0); CHECK(inputSeq.hasSeq()) << "The first input of sequence slic layer " << "must be a sequence."; - // Check inputs const MatrixPtr indices1 = getInputValue(1); - CHECK_EQ(indices1->getHeight(), + CHECK_EQ(static_cast(indices1->getHeight()), inputSeq.hasSubseq() ? inputSeq.getNumSubSequences() : inputSeq.getNumSequences()) << "Height of the second input should be equal to number of sequence " diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index e51332da0d..79d24cfe5b 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -6242,6 +6242,7 @@ def seq_slice_layer(input, starts, ends, name=None): name, LayerType.SEQ_SLICE, parents=[input], size=input.size) +@wrap_name_default() @layer_support() def kmax_sequence_score_layer(input, name=None, beam_size=1): """ diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr index 81bd71f68e..3d32220bfb 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr @@ -1,12 +1,6 @@ type: "nn" layers { - name: "input" - type: "data" - size: 300 - active_type: "" -} -layers { - name: "data" + name: "input_seq" type: "data" size: 128 active_type: "" @@ -17,7 +11,7 @@ layers { size: 1 active_type: "exponential" inputs { - input_layer_name: "data" + input_layer_name: "input_seq" input_parameter_name: "___fc_layer_0__.w0" } bias_parameter_name: "___fc_layer_0__.wbias" @@ -51,15 +45,14 @@ parameters { initial_strategy: 0 initial_smart: false } -input_layer_names: "data" +input_layer_names: "input_seq" output_layer_names: "__kmax_sequence_score_layer_0__" sub_models { name: "root" - layer_names: "input" - layer_names: "data" + layer_names: "input_seq" layer_names: "__fc_layer_0__" layer_names: "__kmax_sequence_score_layer_0__" - input_layer_names: "data" + input_layer_names: "input_seq" output_layer_names: "__kmax_sequence_score_layer_0__" is_recurrent_layer_group: false } diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py index d245c5a41c..48d0cd55da 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py @@ -2,9 +2,7 @@ #coding=utf-8 from paddle.trainer_config_helpers import * -data = data_layer(name='input', size=300) - -data = data_layer(name="data", size=128) +data = data_layer(name="input_seq", size=128) scores = fc_layer(input=data, size=1, act=ExpActivation()) kmax_seq_id = kmax_sequence_score_layer(input=scores, beam_size=5)