diff --git a/Dockerfile b/Dockerfile index 136db772cc..150344a811 100644 --- a/Dockerfile +++ b/Dockerfile @@ -22,7 +22,7 @@ COPY ./paddle/scripts/docker/root/ /root/ RUN apt-get update && \ apt-get install -y \ - git python-pip python-dev openssh-server bison \ + git python-pip python-dev openssh-server bison libnccl-dev \ wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \ curl sed grep graphviz libjpeg-dev zlib1g-dev \ python-matplotlib gcc-4.8 g++-4.8 \ diff --git a/doc/api/v2/config/networks.rst b/doc/api/v2/config/networks.rst index 6e813ab1a8..048379cf01 100644 --- a/doc/api/v2/config/networks.rst +++ b/doc/api/v2/config/networks.rst @@ -125,3 +125,8 @@ simple_attention :members: simple_attention :noindex: +dot_product_attention +--------------------- +.. automodule:: paddle.v2.networks + :members: dot_product_attention + :noindex: diff --git a/doc/design/block.md b/doc/design/block.md index 7cbf0d55b1..4066122c0e 100644 --- a/doc/design/block.md +++ b/doc/design/block.md @@ -189,7 +189,7 @@ OpDesc { inputs = {0} // the index of x in vars of BlockDesc above outputs = {5, 3} // indices of act and hidden_out in vars of BlockDesc above attrs { - "memories" : {1} // the index of h + "states" : {1} // the index of h "step_net" : } }; diff --git a/doc/design/cluster_train/src/trainer.graffle b/doc/design/cluster_train/src/trainer.graffle index 42384a3f05..43415ed8cf 100644 Binary files a/doc/design/cluster_train/src/trainer.graffle and b/doc/design/cluster_train/src/trainer.graffle differ diff --git a/doc/design/images/feed_forward.png b/doc/design/images/feed_forward.png new file mode 100644 index 0000000000..d312371a04 Binary files /dev/null and b/doc/design/images/feed_forward.png differ diff --git a/doc/design/images/feed_forward_regularized.png b/doc/design/images/feed_forward_regularized.png new file mode 100644 index 0000000000..677e99bfd9 Binary files /dev/null and b/doc/design/images/feed_forward_regularized.png differ diff --git a/doc/design/images/l1_regularization.png b/doc/design/images/l1_regularization.png new file mode 100644 index 0000000000..e1b9c7a44f Binary files /dev/null and b/doc/design/images/l1_regularization.png differ diff --git a/doc/design/images/l2_regularization.png b/doc/design/images/l2_regularization.png new file mode 100644 index 0000000000..d5c2fcbc2c Binary files /dev/null and b/doc/design/images/l2_regularization.png differ diff --git a/doc/design/images/loss_equation.png b/doc/design/images/loss_equation.png new file mode 100644 index 0000000000..14212ec8d3 Binary files /dev/null and b/doc/design/images/loss_equation.png differ diff --git a/doc/design/prune.md b/doc/design/prune.md new file mode 100644 index 0000000000..4a5cf10c79 --- /dev/null +++ b/doc/design/prune.md @@ -0,0 +1,63 @@ +# Prune + +## Motivation + +We want to support running inference, training and checkpointing in one `ProgramDesc`. We implement +`void Prune(const ProgramDesc* input, ProgramDesc* output)` function, which takes a `ProgramDesc` +and generate a pruned `ProgramDesc`. + +## Challenge + +Pruning need to support both variables and operators being evaluation targets. Consider the following +different situations. + +```python +# Case 1: run foward pass. +cost_np = session.run(target=cost) +# Case 2: run backward passing. +opts_np, _ = session.run(target=[cost, opt]) +# Case 3: run checkpointing +_ = session.run(target=checkpoint) +``` + +## Solution + +To support evaluation of operators, we add `is_target` field in the `OpDesc`. + +```c++ +message OpDesc { + required string type = 3; + repeated Var inputs = 1; + repeated Var outputs = 2; + repeated Attr attrs = 4; + optional bool is_target = 5 [ default = false ]; +}; +``` + +To support evaluation of variables, we add [fetch_op](https://github.com/PaddlePaddle/Paddle/pull/4599). +For each variable in the `target`, we insert a `fetch_op` into the `ProgramDesc` with `variable` being +`fetch_op`'s input. Then we also set `fetch_op` is a target. + +### Algorithm + +If an operator needs to be run, it must fall into one of the following cases: + +1. It is the target. +2. It is depended by some other ops, meaning its output is some other op's input. + +The first case can be checked by `op_desc.is_traget()` . The second case can be implement as + +```c++ +bool HasDependentVar(const OpDesc& op_desc, const std::set& dependent_vars) { + for (auto& var : op_desc.outputs()) { + for (auto& argu : var.arguments()) { + if (dependent_vars.count(argu) != 0) { + return true; + } + } + } + return false; +} +``` + +Then the whole algorithm can be implemented as the following [code](https://github.com/tonyyang-svail/Paddle/blob/prune_impl/paddle/framework/prune.cc). diff --git a/doc/design/refactorization.md b/doc/design/refactorization.md index ec51aa1a0e..f93d6155e1 100644 --- a/doc/design/refactorization.md +++ b/doc/design/refactorization.md @@ -177,9 +177,6 @@ REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, grad_op_class) REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) ``` -### USE Macros -Make sure the registration process is executed and linked. - --- # Registration Process 1. Write an Op class and its gradient Op class, if required. @@ -188,8 +185,6 @@ Make sure the registration process is executed and linked. 1. Call maker class to complete `proto` and `checker` 2. Using the completed `proto` and `checker`, it will add a new key-value pair to the `OpInfoMap` -4. Invoke the `USE` macro in which the Op is used to make sure that it is linked. - --- # Backward Module (1/2) ### Create Backward Operator diff --git a/doc/design/register_grad_op.md b/doc/design/register_grad_op.md index 9f1ce4bae7..8d973eb531 100644 --- a/doc/design/register_grad_op.md +++ b/doc/design/register_grad_op.md @@ -3,17 +3,17 @@ ## The Problem Posed -Currently, for each C++ operator class definition, there registers a *gradient operator creator* function, which takes a C++ operator instance and returns the corresponding gradient operator instance. +Currently, for each C++ operator class definition, a *gradient operator creator* function is registered, which takes as input a C++ operator instance and returns the corresponding gradient operator instance. -However, we noticed two problems with the current deisgn: +However, we noticed two problems with the current design: -1. As we decided to separate the *compilation* and *execution* phases, we need to change the creator to take an `OpDesc` protobuf message in a `ProgramDesc` and inserts corresponding `OpDesc` messages into the `ProgramDesc` message. +1. As we decided to separate the *compilation* and the *execution* phases, we need to change the creator to take an `OpDesc` protobuf message in a `ProgramDesc` and inserts corresponding `OpDesc` messages into the `ProgramDesc` message. -1. Some operator's gradient computation requires more than one gradient operators. For example, the gradient of *minus* consists of two operators -- an identity operaotr and a scale operator. So we need to make the registration mechanism to support the mapping from an operator to a set of operators for gradient computation. +1. For some operators, the gradient computation can be written in terms of existing operators. For example, the gradient of *minus* operator consists of two operators -- an *identity* operator followed by a *scale* operator. Hence the registration mechanism needs to support mapping from an operator to a set of operators for the gradient computation. ## The Current Implementation -The C++ class `OpInfos` store in a association map which key is the operator type. The `grad_op_type` indicate associated gradient operator type. Operator can create gradient operator by `OpInfo::creator_` of gradient. The pseudo code is +Instances of the C++ class `OpInfo` are stored an associative map whose key is the operator type. The `grad_op_type` indicates the associated gradient operator type. An operator can create the gradient operator by invoking `OpInfo::creator_` of the gradient operator. The pseudo code is as follows ```cpp struct OpInfo { @@ -31,16 +31,16 @@ OperatorBase* CreateGradientOperator(const OperatorBase& op) { ## Proposed Solution -The mapping relationship between an operator and its gradient operators is a function. The interface of that function is: +The mapping relationship between an operator and its gradient operators is a function. The interface of this function is: ```cpp // (OpDesc) --> vector std::function(const OpDescBind&)>; ``` -The function takes an `OpDescBind` of the forward operator and returns one or many gradient operator descriptions. `OpDescBind` is a C++ wrapper for protobuf message `OpDesc` to manipulate `OpDesc` fast. +The function takes an `OpDescBind` of the forward operator and returns one or many gradient operator descriptions. `OpDescBind` is a C++ wrapper for the protobuf message `OpDesc` for rapid manipulation of `OpDesc`. -The `GradOpDescMaker` will be registered in `OpInfo`, to replace `grad_op_type_` field. The `OpInfo` should be +The `GradOpDescMaker` will be registered in `OpInfo` and will replace the `grad_op_type_` field. The `OpInfo` should look like ```cpp struct OpInfo { @@ -49,7 +49,7 @@ struct OpInfo { }; ``` -The `grad_op_maker_ ` is `nullptr` if the operator does not have associated gradient operators. +The `grad_op_maker_ ` is a `nullptr` if the operator does not have any associated gradient operators. We propose a base class called `GradOpDescMakerBase` to let operator developers generate `Gradient Operators` easily. The public interface of that class is @@ -74,7 +74,7 @@ func = [] (const OpDescBind& fwd_op) { We can write many helper functions since the `GradOpDescMakerBase` is a class now. The basic helper functions get the variables of `Input`, `Output`, `InputGradient` and `OutputGradient` in the forwarding operator. -We should chagne register macros at the same time. In the current solution, there is no difference between forwarding operators and backward operators. So `REGISTER_OP` just register one operator. If the `REGISTER_OPERATOR ` contains `OpProtoAndCheckerMaker` and `GradOpDescMaker`, we just list them in the same macro. It can be done by a macro contains `__VA_ARGS__`. +We should change register macros at the same time. In the current solution, there is no difference between forwarding operators and backward operators. So `REGISTER_OP` just register one operator. If the `REGISTER_OPERATOR ` contains `OpProtoAndCheckerMaker` and `GradOpDescMaker`, we just list them in the same macro. It can be done by a macro contains `__VA_ARGS__`. The user interface should be diff --git a/doc/design/regularization.md b/doc/design/regularization.md new file mode 100644 index 0000000000..703a9fbdd4 --- /dev/null +++ b/doc/design/regularization.md @@ -0,0 +1,103 @@ +# Regularization in PaddlePaddle + +## Introduction to Regularization +A central problem in machine learning is how to design an algorithm that will perform well not just on the training data, but also on new data. Many strategies are used by machine learning practitioners to reduce the test error, possibly at the expense of increased training error. These strategies are collectively known as **regularization**. + +### Parameter Norm Penalties +Most common regularization approaches in deep learning are based on limiting the capacity of the models by adding a parameter norm penalty to the objective function `J`. This is given as follows: + +
+ +The parameter `alpha` is a hyperparameter that weights the relative contribution of the norm penalty term, `omega`, relative to the standard objective function `J`. + +The most commonly used norm penalties are the L2 norm penalty and the L1 norm penalty. These are given as follows: + +##### L2 Regularization: +
+ +##### L1 Regularization +
+ +A much more detailed mathematical background of reguilarization can be found [here](http://www.deeplearningbook.org/contents/regularization.html). + + +## How to do Regularization in PaddlePaddle + +On surveying existing frameworks like Tensorflow, PyTorch, Caffe, etc, it can be seen that there are 2 common approaches of doing regularization: + +1. Making regularization a part of the optimizer using an attribute like `weight_decay` that is used to control the scale of the L2 Penalty. This approach is used in PyTorch as follows: + ```python + opt = torch.optim.SGD(params, lr=0.2, weight_decay=0.2) + ``` + At every optimization step, this code will add the gradient of the L2 Norm of the params to the gradient of the params with respect to the loss function. This can seen in the following code snippet: + ```python + if weight_decay != 0: + d_p.add_(weight_decay, p.data) + ``` + This is a very restyrictive way of doing regularization and does not give the users enough flexibility. + + **Advantages**: + - It is easy to implement for us. + - Faster execution of backward. However, it can be done manually by advanced users too. + + **Disadvantages**: + - Not flexible for other regularizations such as L1/L0 regularization. + - Does not allow for different regularization coefficient for different parameters. For example, in most models, ony the weight matrices are regularized and the bias vectors are unregularized. + - Tightly coupled optimizer and regularization implementation. + + +2. Adding regularization ops to the graph through Python API. This approach is used by Tensorflow and Caffe. Using this approach, we manually add regularization ops to the graph and then add the regularization loss to the final loss function before sending them to the optimizer. + + **Advantages**: + - Allows for greater flexibility to the users of Paddle. Using this approach, the users can put different regularization to different parameters and also choose parameters that are not a part of regularization. + - Makes it easy for the users to customize and extend the framework. + + **Disadvantages**: + - Implementation requires comprehensive design and time. + +## Proposal for Regularization in PaddlePaddle + +### Low-Level implementation + +In the new design, we propose to create new operations for regularization. For now, we can add 2 ops thgat correspond to the most frequently used regularizations: +- L2_regularization_op +- L1_regularization_op + +These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate Cpu and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes. other than L1 and L2 norm penalties. + +The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API. + +### Computation Graph + +Below is an example of a really simple feed forward neural network. + +
+ +The Python API will modify this computation graph to add regularization operators. The modified computation graph will look as follows: + +
+    +### Python API implementation for Regularization + +Using the low level ops, `L2_regularization_op` and `L1_regularization_op`, any user can add regularization to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support regularization. An example of such an API can be seen in [Keras](https://keras.io/regularizers/). As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since regularization is a property of parameters, it makes sense to create these in the layer functions. + +#### Creation of Regularization ops +There are two possibilities for creating the regularization ops: +1. We create these ops immediately while building the computation graph. +2. We add these ops in a lazy manner, just before the backward, similar to the way the optimization ops are added. + +The proposal is to add these ops in a lazy manner just before the backward pass. + +#### Storage of Regularization attributes + +Since we want to create the regularization ops in a lazy manner, the regularization attributes (type of regularization and weight of regularization penalty) can be stored as attributes of the [`Parameter`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/framework.py#L421) class. This is because regularization is a property of the parameters and storing regularization properties with Parameters also allows for shared parameters. + +#### High-level API + +In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we lso need to provide regularization functionality in layer functions. The design of these APIs can be postponed for later right now. A good reference for these APIs can be found in [Keras](https://keras.io/regularizers/) and also by looking at Tensorflow in [`tf.contrib.layers`](https://www.tensorflow.org/api_guides/python/contrib.layers). + + + + + + diff --git a/doc/design/selected_rows.md b/doc/design/selected_rows.md index 9e6f3b20cb..1a98839a95 100644 --- a/doc/design/selected_rows.md +++ b/doc/design/selected_rows.md @@ -1,6 +1,6 @@ # Design Doc: Selected Rows -`SelectedRows` is a kind of sparse tensor data type, which is designed to support `embedding` operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in that tensor. It is straightforward to represent the sparse tensor by the following sparse tensor data structure: +`SelectedRows` is a type of sparse tensor data type, which is designed to support `embedding` operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in this tensor. It is straight-forward to represent a sparse tensor by the following sparse tensor data structure: ```cpp class SelectedRows { @@ -11,7 +11,7 @@ class SelectedRows { }; ``` -The field `height_` shows the first dimension of `SelectedRows`. The `rows` are the indices of which rows of `SelectedRows` are non-zeros. The `value_` field is an N-dim tensor and shape is `[rows.size() /* NUM_ROWS */, ...]`, which supplies values for each row. The dimension of `SelectedRows` satisfies `[height_] + value_.shape[1:]`. +The field `height_` is the first dimension of `SelectedRows`. The `rows` are the indices of the non-zero rows of `SelectedRows`. The `value_` field is an N-dim tensor of shape `[rows.size() /* NUM_ROWS */, ...]`, which supplies values for each row. The dimension of `SelectedRows` satisfies `[height_] + value_.shape[1:]`. Suppose that a SelectedRows-typed variable `x` has many rows, but only two of them have values -- row 73 is `[1, 2]` and row 84 is `[3, 4]`, the `SelectedRows` representation would be: @@ -25,7 +25,7 @@ x = SelectedRow { ## SelectedRows in Protobuf -`SelectedRows` is a kind of `Variable`. `VarDesc` in protobuf should describe the `SelectedRows` information. Only the tensor dimension of a `SelectedRows` will be described in compile-time since the `rows_` and `value_` are related to training data. +`SelectedRows` is a type of `Variable`. `VarDesc` in protobuf should describe the `SelectedRows` information. Only the tensor dimension of a `SelectedRows` will be described in compile-time because the `rows_` and `value_` are dependent on the training data. So we use `TensorDesc` to unify `data_type` and `dims`. A LodTensorDesc contains a `TensorDesc` and `lod_level`. The description of `SelectedRows` is a Tensor description. ```proto @@ -54,7 +54,7 @@ message VarDesc { ## InferShape for Selected Rows -Just like `LoD` information, `InferShape` method will inference output tensor type as well. The operator should decide whether its output is a `SelectedRows` or `Dense` tensor. +Just like `LoD` information, `InferShape` method will infer the output tensor type as well. The operator should decide whether its output is a `SelectedRows` or `Dense` tensor. For example, the gradient operator of `TableLookup` will always generate `SelectedRows`. Its `InferShape` method should be like following @@ -68,7 +68,7 @@ void TableLookupGrad::InferShape(context) { ## Sparse Operators -There are several operators should be written to support `SelectedRows`. They are: +There are several operators that need to be written to support `SelectedRows`. These are: -1. Operators which generates `SelectedRows` gradient. e.g. Gradient of `TableLookupOp`. +1. Operators which generate `SelectedRows` gradient. e.g. Gradient of `TableLookupOp`. 2. Optimize operators which support `SelectedRows` gradient. e.g. `SGD` or `AdaGrad` for `SelectedRows`. However, there should be only one `SGD` operator. `OpWithKernel::Run` should select a suitable kernel for both `dense` tensor or `SelectedRows`. diff --git a/doc/howto/cross_compiling/cross_compiling_for_android_cn.md b/doc/howto/cross_compiling/cross_compiling_for_android_cn.md index 90dc84718c..1fc58c37cc 100644 --- a/doc/howto/cross_compiling/cross_compiling_for_android_cn.md +++ b/doc/howto/cross_compiling/cross_compiling_for_android_cn.md @@ -1,9 +1,46 @@ # 构建Android平台上的PaddlePaddle库 -用户可通过交叉编译的方式,在用户熟悉的开发平台(Linux,Mac OS X和Windows)上编译Android平台上适用的PaddlePaddle库。 +用户可通过如下两种方式,交叉编译Android平台上适用的PaddlePaddle库: +- 基于Docker容器的编译方式 +- 基于Linux交叉编译环境的编译方式 + +## 基于Docker容器的编译方式 +Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行,因此,使用基于Docker容器的编译方式,用户可在自己熟悉的开发平台上编译Android平台上适用的PaddlePaddle库。 + +### 构建PaddlePaddle的Android开发镜像 +我们把PaddlePaddle的交叉编译环境打包成一个镜像,称为开发镜像,里面涵盖了交叉编译Android版PaddlePaddle库需要的所有编译工具。 + +```bash +$ git clone https://github.com/PaddlePaddle/Paddle.git +$ cd Paddle +$ docker build -t username/paddle-android:dev . -f Dockerfile.android +``` + +### 编译PaddlePaddle C-API库 +构建好开发镜像后,即可使用开发镜像来编译Android版PaddlePaddle C-API库。 +Android的Docker开发镜像向用户提供两个可配置的参数: + +| Argument | Optional Values | Default | +|-----------------|-------------------------|---------| +|`ANDROID_ABI` |`armeabi-v7a, arm64-v8a` | `armeabi-v7a` | +|`ANDROID_API` |`>= 21` | `21` | + +- 编译`armeabi-v7a`,`Android API 21`的PaddlePaddle库 +```bash +$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev +``` + +- 编译`arm64-v8a`,`Android API 21`的PaddlePaddle库 +```bash +$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev +``` + +执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文**配置交叉编译参数**章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 + +## 基于Linux交叉编译环境的编译方式 本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。 -## 准备交叉编译环境 +### 准备交叉编译环境 从源码交叉编译PaddlePaddle,用户需要提前准备好交叉编译环境。Android平台上使用的C/C++交叉编译工具链为[Android NDK](https://developer.android.com/ndk/downloads/index.html?hl=zh-cn),用户可自行前往下载预编译好的版本,也可通过以下命令获取: @@ -13,18 +50,27 @@ unzip -q android-ndk-r14b-linux-x86_64.zip ``` Android NDK中包含了所有Android API级别、所有架构(arm/arm64/x86/mips)需要用到的编译工具和系统库。用户可根据自己的编译目标架构、所需支持的最低Android API级别,构建[独立工具链](https://developer.android.google.cn/ndk/guides/standalone_toolchain.html?hl=zh-cn)。 -比如: + +- 构建`armeabi-v7a`、 `Android API 21`的独立工具链: ```bash your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \ - --arch=arm --platform=android-21 --install-dir=your/path/to/my_standalone_toolchain + --arch=arm --platform=android-21 --install-dir=your/path/to/arm_standalone_toolchain ``` -此命令将在your/path/to/my_standalone_toolchain目录生成一套编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,使用的编译器为arm-linux-androideabi-gcc (GCC) 4.9。 +此命令将在`your/path/to/arm_standalone_toolchain`目录生成一套独立编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。 -注意:**PaddlePaddle要求使用的编译工具链所支持的Andoid API级别不小于21**。 +- 构建`arm64-v8a`、 `Android API 21`的独立工具链: +```bash +your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \ + --arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain +``` -## 配置交叉编译参数 +此命令将在`your/path/to/arm64_standalone_toolchain`目录生成一套独立编译工具链,面向架构为64位ARM64架构,支持的最小Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。 + +注意:**PaddlePaddle要求使用的编译工具链所支持的Android API级别不小于21**。 + +### 配置交叉编译参数 CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)。 @@ -36,32 +82,57 @@ CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cm Android平台可选配置参数: - `ANDROID_STANDALONE_TOOLCHAIN`,独立工具链所在的绝对路径,或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动推导和设置需要使用的交叉编译器、sysroot、以及Android API级别;否则,用户需要在cmake时手动设置这些值。无默认值。 -- `ANDROID_ABI`,目标架构ABI。目前只支持`armeabi-v7a`,默认值为`armeabi-v7a`。 +- `ANDROID_TOOLCHAIN`,目标工具链。可设置`gcc/clang`,默认值为`clang`。 + - CMake 3.7以上,将会始终使用`clang`工具链;CMake 3.7以下,可设置`ANDROID_TOOLCHAIN=gcc`以使用`gcc`工具链。 + - Android官方提供的`clang`编译器要求系统支持`GLIBC 2.15`以上。 +- `ANDROID_ABI`,目标架构ABI。目前支持`armeabi-v7a`和`arm64-v8a`,默认值为`armeabi-v7a`。 - `ANDROID_NATIVE_API_LEVEL`,工具链的Android API级别。若没有显式设置,PaddlePaddle将根据`ANDROID_STANDALONE_TOOLCHAIN`的值自动推导得到。 -- `ANROID_ARM_MODE`,是否使用ARM模式。可设置`ON/OFF`,默认值为`ON`。 -- `ANDROID_ARM_NEON`,是否使用NEON指令。目前必须设置成`ON`,默认值为`ON`。 +- `ANROID_ARM_MODE`,是否使用ARM模式。 + - `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`; + - `ANDROID_ABI=arm64-v8a`时,不需要设置。 +- `ANDROID_ARM_NEON`,是否使用NEON指令。 + - `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`; + - `ANDROID_ABI=arm64-v8a`时,不需要设置。 其他配置参数: +- `USE_EIGEN_FOR_BLAS`,是否使用Eigen库进行矩阵计算。可设置`ON/OFF`,默认值为`OFF`。 - `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。 -一种常用的cmake配置如下: +常用的cmake配置如下: ```bash cmake -DCMAKE_SYSTEM_NAME=Android \ - -DANDROID_STANDALONE_TOOLCHAIN=your/path/to/my_standalone_toolchain \ + -DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm_standalone_toolchain \ -DANDROID_ABI=armeabi-v7a \ -DANDROID_ARM_NEON=ON \ -DANDROID_ARM_MODE=ON \ + -DUSE_EIGEN_FOR_BLAS=ON \ -DCMAKE_INSTALL_PREFIX=your/path/to/install \ -DWITH_C_API=ON \ -DWITH_SWIG_PY=OFF \ .. ``` +``` +cmake -DCMAKE_SYSTEM_NAME=Android \ + -DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm64_standalone_toolchain \ + -DANDROID_ABI=arm64-v8a \ + -DUSE_EIGEN_FOR_BLAS=OFF \ + -DCMAKE_INSTALL_PREFIX=your/path/to/install \ + -DWITH_C_API=ON \ + -DWITH_SWIG_PY=OFF \ + .. +``` + 用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。 -## 编译和安装 +**性能TIPS**,为了达到最快的计算速度,在CMake参数配置上,有以下建议: +- 设置`CMAKE_BUILD_TYPE`为`Release` +- 使用`clang`编译工具链 +- `armeabi-v7a`时,设置`USE_EIGEN_BLAS=ON`,使用Eigen进行矩阵计算;`arm64-v8a`时,设置`USE_EIGEN_FOR_BLAS=OFF`,使用OpenBLAS进行矩阵计算 + +### 编译和安装 CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle预测库。 @@ -72,4 +143,4 @@ make install 注意:如果你曾经在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。 -执行完安装命令后,`your/path/to/install`目录中会包含`include`和`lib`目录,其中`include`中包含C-API的头文件,`lib`中包含一个Android版本的库。自此,PaddlePaddle的已经安装完成,用户可将`your/path/to/install`目录下的生成文件用于深度学习相关Android App中,调用方法见C-API文档。 +执行完安装命令后,`your/path/to/install`目录中会包含`include`、`lib`和`third_party`目录,其中`include`中包含C-API的头文件,`lib`中包含若干个不同Android ABI的PaddlePaddle库,`third_party`中包含所依赖的所有第三方库。自此,PaddlePaddle的已经安装完成,用户可将`your/path/to/install`目录下的生成文件用于深度学习相关Android App中,调用方法见C-API文档。 diff --git a/doc/howto/usage/cluster/cluster_train_cn.md b/doc/howto/usage/cluster/cluster_train_cn.md index 274452fbf0..93c5544bcf 100644 --- a/doc/howto/usage/cluster/cluster_train_cn.md +++ b/doc/howto/usage/cluster/cluster_train_cn.md @@ -1,135 +1,215 @@ -```eval_rst -.. _cluster_train: +# PaddlePaddle分布式训练 + +* [概述](#概述) +* [环境准备](#环境准备) +* [启动参数说明](#启动参数说明) + * [启动参数服务器](#启动参数服务器) + * [启动计算节点](#启动计算节点) + * [准备数据集](#准备数据集) + * [准备训练程序](#准备训练程序) +* [使用分布式计算平台或工具](#使用分布式计算平台或工具) + * [使用Fabric启动集群作业](#使用fabric启动集群作业) + * [准备一个Linux集群](#准备一个linux集群) + * [启动集群作业](#启动集群作业) + * [终止集群作业](#终止集群作业) + * [检查集群训练结果](#检查集群训练结果) + * [检查模型输出](#检查模型输出) + * [在OpenMPI集群中提交训练作业](#在openmpi集群中提交训练作业) + * [准备OpenMPI集群](#准备OpenMPI集群) + * [启动集群作业](#启动集群作业-1) + * [在Kubernetes集群中提交训练作业](#在kubernetes集群中提交训练作业) + +# 概述 +本文将介绍如何使用PaddlePaddle在不同的集群框架下完成分布式训练。分布式训练架构如下图所示: + + + +- 数据分片(Data shard): 用于训练神经网络的数据,被切分成多个部分,每个部分分别给每个trainer使用。 +- 计算节点(Trainer): 每个trainer启动后读取切分好的一部分数据,开始神经网络的“前馈”和“后馈”计算,并和参数服务器通信。在完成一定量数据的训练后,上传计算得出的梯度(gradients),然后下载优化更新后的神经网络参数(parameters)。 +- 参数服务器(Parameter server):每个参数服务器只保存整个神经网络所有参数的一部分。参数服务器接收从计算节点上传的梯度,并完成参数优化更新,再将更新后的参数下发到每个计算节点。 + +这样,通过计算节点和参数服务器的分布式协作,可以完成神经网络的SGD方法的训练。PaddlePaddle可以同时支持同步随机梯度下降(SGD)和异步随机梯度下降。 + +在使用同步SGD训练神经网络时,PaddlePaddle使用同步屏障(barrier),使梯度的提交和参数的更新按照顺序方式执行。在异步SGD中,则并不会等待所有trainer提交梯度才更新参数,这样极大地提高了计算的并行性:参数服务器之间不相互依赖,并行地接收梯度和更新参数,参数服务器也不会等待计算节点全部都提交梯度之后才开始下一步,计算节点之间也不会相互依赖,并行地执行模型的训练。可以看出,虽然异步SGD方式会提高参数更新并行度, 但是并不能保证参数同步更新,在任意时间某一台参数服务器上保存的参数可能比另一台要更新,与同步SGD相比,梯度会有噪声。 + +# 环境准备 + +1. 准备您的计算集群。计算集群通常由一组(几台到几千台规模)的Linux服务器组成。服务器之间可以通过局域网(LAN)联通,每台服务器具有集群中唯一的IP地址(或者可被DNS解析的主机名)。集群中的每台计算机通常被成为一个“节点”。 +1. 我们需要在集群的所有节点上安装 PaddlePaddle。 如果要启用GPU,还需要在节点上安装对应的GPU驱动以及CUDA。PaddlePaddle的安装可以参考[build_and_install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install)的多种安装方式。我们推荐使用[Docker](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)安装方式来快速安装PaddlePaddle。 + +安装完成之后,执行下面的命令可以查看已经安装的版本(docker安装方式可以进入docker容器执行:`docker run -it paddlepaddle/paddle:[tag] /bin/bash`): +```bash +$ paddle version +PaddlePaddle 0.10.0, compiled with + with_avx: ON + with_gpu: OFF + with_double: OFF + with_python: ON + with_rdma: OFF + with_timer: OFF ``` -# 运行分布式训练 +下面以`doc/howto/usage/cluster/src/word2vec`中的代码作为实例,介绍使用PaddlePaddle v2 API完成分布式训练。 -在本文中,我们将阐释如何在集群上运行分布式 Paddle 训练作业。我们将以[推荐系统](https://github.com/baidu/Paddle/tree/develop/demo/recommendation)为例创建分布式的单进程训练。 +# 启动参数说明 +## 启动参数服务器 +执行以下的命令启动一个参数服务器并等待和计算节点的数据交互 +```bash +$ paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 +``` -在本文中使用的[脚本](https://github.com/baidu/Paddle/tree/develop/paddle/scripts/cluster_train)通过 SSH 运行分布式作业。 它们还可以供那些运行更复杂的集群管理系统(如 MPI 和 [Kubernetes](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/k8s) )的用户参考。 +如果希望可以在后台运行pserver程序,并保存输出到一个日志文件,可以运行: +```bash +$ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log +``` -## 前提条件 +| 参数 | 是否必选 | 默认值 | 说明 | +| ------------- | ------------- | ------------- | ------------- | +| port | 必选 | 7164 | pserver监听的起始端口,根据ports_num决定
总端口个数,从起始端口监听多个端口用于通信 | +| ports_num | 必选 | 1 | 监听的端口个数 | +| ports_num_for_sparse | 必选 | 1 | 用于稀疏类型参数通信的端口个数 | +| num_gradient_servers | 必选 | 1 | 当前训练任务pserver总数 | + +## 启动计算节点 +执行以下命令启动使用python编写的trainer程序(文件名为任意文件名,如train.py) +```bash +$ python train.py +``` -1. 上述脚本使用 Python 库 [fabric](http://www.fabfile.org/) 来运行 SSH 命令。 我们使用 `pip` 来安装 fabric: +trainer需要和pserver保持网络联通以完成训练。trainer启动需要传入端口、pserver地址等参数使trainer可以正确连接到pserver。这些参数可以通过环境变量(https://zh.wikipedia.org/wiki/环境变量 )或编写程序时`paddle.init()`中传入参数。如果同时使用`paddle.init()`参数和环境变量,将会优先使用`paddle.init()`中传入的参数。 - ```bash - pip install fabric - ``` +使用环境变量: -2. 我们需要在集群的所有节点上安装 PaddlePaddle。 如果要启用GPU,需要在 `/usr/local/cuda` 中安装 CUDA; 否则 Paddle 将在运行时报错。 +```bash +export PADDLE_INIT_USE_GPU=False +export PADDLE_INIT_TRAINER_COUNT=1 +export PADDLE_INIT_PORT=7164 +export PADDLE_INIT_PORTS_NUM=1 +export PADDLE_INIT_PORTS_NUM_FOR_SPARSE=1 +export PADDLE_INIT_NUM_GRADIENT_SERVERS=1 +export PADDLE_INIT_TRAINER_ID=0 +export PADDLE_INIT_PSERVERS=127.0.0.1 +``` -3. 在 [`cluster_train/conf.py`] 中设置 `ROOT_DIR`, 该 ROOT_DIR 要在所有节点上存在。为了方便起见,我们通常在所有节点上创建一个 Unix 用户 `paddle`,并设置 `ROOT_DIR=/home/paddle`。这样,我们可以将 SSH 公钥写入 `/home/paddle/.ssh/authorized_keys`,以便用户 `paddle` 可以 SSH 到所有节点而不用密码。 +使用参数: -## 准备工作空间 +```python +paddle.init( + use_gpu=False, + trainer_count=1, + port=7164, + ports_num=1, + ports_num_for_sparse=1, + num_gradient_servers=1, + trainer_id=0, + pservers="127.0.0.1") +``` -我们将放置依赖库、配置等文件的目录视为 *工作空间(workspace)*。 +| 参数 | 是否必选 | 默认 | 说明 | +| ------------- | ------------- | ------------- | ------------- | +| use_gpu | 可选 | False | 是否启用GPU训练 | +| trainer_count | 必选 | 1 | 当前训练任务trainer总个数 | +| port | 必选 | 7164 | 连接到pserver的端口 | +| ports_num | 必选 | 1 | 连接到pserver的端口个数 | +| ports_num_for_sparse | 必选 | 1 | 和pserver之间用于稀疏类型参数通信的端口个数 | +| num_gradient_servers | 必选 | 1 | 当前训练任务pserver总数 | +| trainer_id | 必选 | 0 | 每个trainer的唯一ID,从0开始的整数 | +| pservers | 必选 | 127.0.0.1 | 当前训练任务启动的pserver的IP列表,多个IP使用“,”隔开 | -这些 `train/test` 数据应该在启动集群作业之前准备好。 为了满足训练/测试数据放置在工作空间中不同目录的要求,PADDLE 根据在模型配置文件中使用的名为 `train.list/test.list` 的索引文件引用训练/测试数据,所以训练/测试数据也包含 train.list/test.list 两个列表文件。所有本地训练 demo 已经提供了脚本来帮助您创建这两个文件,并且集群作业中的所有节点将在正常情况下处理具有相同逻辑代码的文件。 -通常,你可以使用本地训练中的相同模型文件进行集群训练。请记住,在模型文件的 `setting`函数中设置的 `batch_size` 表示在集群作业**每个**节点中的 batch 大小,而不是使用同步 SGD 的总 batch 大小。 +## 准备数据集 -以下步骤基于 demo 目录中的 [demo/recommendation](https://github.com/PaddlePaddle/Paddle/tree/develop/demo/recommendation)。 +参考样例数据准备脚本[prepare.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py),准备训练数据和验证数据集,我们使用paddle.dataset.imikolov数据集,并根据分布式训练并发数(trainer节点个数),在`prepare.py`开头部分指定`SPLIT_COUNT`将数据切分成多份。 -你只需完成 demo/recommendation 教程文档到 `Train` 的部分,之后你会得到训练/测试数据和模型配置文件。最后,只需使用 demo/recommendation 作为集群训练的工作空间。 +在线上系统中,通常会使用MapReduce任务的输出结果作为训练结果,这样训练文件的个数会比较多,而且个数并不确定。在trainer中可以使用下面取模的方法为每个trainer分配训练数据文件: -最后,你的工作空间应如下所示: -``` -. -|-- common_utils.py -|-- data -| |-- config.json -| |-- config_generator.py -| |-- meta.bin -| |-- meta_config.json -| |-- meta_generator.py -| |-- ml-1m -| |-- ml_data.sh -| |-- ratings.dat.test -| |-- ratings.dat.train -| |-- split.py -| |-- test.list -| `-- train.list -|-- dataprovider.py -|-- evaluate.sh -|-- prediction.py -|-- preprocess.sh -|-- requirements.txt -|-- run.sh -`-- trainer_config.py +```python +import os +train_list = [] +flist = os.listdir("/train_data/") +for f in flist: + suffix = int(f.split("-")[1]) + if suffix % TRAINER_COUNT == TRAINER_ID: + train_list.append(f) ``` -虽然这些文件并非都需要集群训练,但是也没有必要删除无用的文件。 - -`trainer_config.py` -表示模型配置文件。 -`train.list` 和 `test.list` -文件索引。它存储当前节点所有训练/测试数据的所有相对或绝对文件路径。 +示例程序`prepare.py`会把训练集和测试集分别分割成多个文件(例子中为3个,后缀为`-00000`、`-00001`和`-00002`): +``` +train.txt +train.txt-00000 +train.txt-00001 +train.txt-00002 +test.txt +test.txt-00000 +test.txt-00001 +test.txt-00002 +``` -`dataprovider.py` -用于读取训练/测试样本。这与本地训练相同。 +在进行分布式训练时,每个trainer进程需要能够读取属于自己的一份数据。在一些分布式系统中,系统会提供一个分布式存储服务,这样保存在分布式存储中的数据可以被集群中的每个节点读取到。如果不使用分布式存储,则需要手动拷贝属于每个trainer节点的训练数据到对应的节点上。 -`data` -数据目录中的所有文件被 train.list/test.list 引用。 +对于不同的训练任务,训练数据格式和训练程序的`reader()`会大不相同,所以开发者需要根据自己训练任务的实际场景完成训练数据的分割和`reader()`的编写。 +## 准备训练程序 -## 准备集群作业配置 +我们会对每个训练任务都会在每个节点上创建一个工作空间(workspace),其中包含了用户的训练程序、程序依赖、挂载或下载的训练数据分片。 -以下选项必须在 cluster_train/conf.py 中认真设置 +最后,工作空间应如下所示: +``` +. +|-- my_lib.py +|-- word_dict.pickle +|-- train.py +|-- train_data_dir/ +| |-- train.txt-00000 +| |-- train.txt-00001 +| |-- train.txt-00002 +`-- test_data_dir/ + |-- test.txt-00000 + |-- test.txt-00001 + `-- test.txt-00002 +``` -`HOSTS` 所有节点运行集群作业的主机名或 IP 。你还可以将用户和 ssh 端口附加到主机名上,例如 root@192.168.100.17:9090。 +- `my_lib.py`:会被`train.py`调用的一些用户定义的库函数,比如PIL库等。 +- `word_dict.pickle`:在`train.py`中会使用到的字典数据文件。 +- `train.py`:训练程序,代码参考[api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py)。***注意:*** 对于本样例代码,在使用不同的分布式计算平台时,您可能需要修改`train.py`开头的部分(如下),以便获得训练数据的位置和获取环境变量配置: -`ROOT_DIR` 用于放置 JOB 工作空间目录的工作空间 ROOT 目录 + ```python + cluster_train_file = "./train_data_dir/train/train.txt" + cluster_test_file = "./test_data_dir/test/test.txt" + node_id = os.getenv("OMPI_COMM_WORLD_RANK") + if not node_id: + raise EnvironmentError("must provied OMPI_COMM_WORLD_RANK") + ``` -`PADDLE_NIC` 集群通信通道的 NIC(Network Interface Card, 网络接口卡) 接口名称,例如以太网的 eth0,infiniband 的 ib0。 +- `train_data_dir`:包含训练数据的目录,可以是从分布式存储挂载过来的,也可以是在任务启动前下载到本地的。 +- `test_data_dir`:包含测试数据集的目录。 -`PADDLE_PORT` 集群通信通道的端口号 +# 使用分布式计算平台或工具 -`PADDLE_PORTS_NUM` 用于集群通信通道的端口数。 如果集群节点数量少(少于5〜6个节点),建议将其设置为较大,如2〜8,以获得更好的网络性能。 +PaddlePaddle可以使用多种分布式计算平台构建分布式计算任务,包括: +- [Kubernetes](http://kubernetes.io) Google开源的容器集群的调度框架,支持大规模集群生产环境的完整集群方案。 +- [OpenMPI](https://www.open-mpi.org) 成熟的高性能并行计算框架。 +- [Fabric](http://www.fabfile.org) 集群管理工具。可以使用`Fabric`编写集群任务提交和管理脚本。 -`PADDLE_PORTS_NUM_FOR_SPARSE` 用于 sparse remote updater 集群通信信道的端口数。如果使用 sparse remote update,则可以像 `PADDLE_PORTS_NUM` 一样设置。 +对于不同的集群平台,会分别介绍集群作业的启动和停止方法。这些例子都可以在[cluster_train_v2](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/scripts/cluster_train_v2)找到。 -`LD_LIBRARY_PATH` 为集群作业设置额外的 LD_LIBRARY_PATH。你可以使用它来设置 CUDA 库的路径。 +在使用分布式计算平台进行训练时,任务被调度在集群中时,分布式计算平台通常会通过API或者环境变量提供任务运行需要的参数,比如节点的ID、IP和任务节点个数等。 -默认配置如下: +## 使用Fabric启动集群作业 -```python -HOSTS = [ - "root@192.168.100.17", - "root@192.168.100.18", - ] - -''' -工作空间配置 -''' - -#工作空间根目录 -ROOT_DIR = "/home/paddle" - -''' -网络配置 -''' -#pserver NIC -PADDLE_NIC = "eth0" -#pserver 端口 -PADDLE_PORT = 7164 -#pserver 端口数 -PADDLE_PORTS_NUM = 2 -#pserver sparse ports num -PADDLE_PORTS_NUM_FOR_SPARSE = 2 - -#集群作业中所有进程的环境设置 -LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib64" -``` +### 准备一个Linux集群 +可以在`paddle/scripts/cluster_train_v2/fabric/docker_cluster`目录下,执行`kubectl -f ssh_servers.yaml`启动一个测试集群,并使用`kubectl get po -o wide`获得这些节点的IP地址。 ### 启动集群作业 -`paddle.py` 提供了自动化脚本来启动不同节点中的所有 PaddlePaddle 集群进程。默认情况下,所有命令行选项可以设置为```paddle.py``` 命令选项并且 `paddle.py` 将透明、自动地将这些选项应用到 PaddlePaddle 底层进程。 + +`paddle.py` 提供了自动化脚本来启动不同节点中的所有 PaddlePaddle 集群进程。默认情况下,所有命令行选项可以设置为 `paddle.py` 命令选项并且 `paddle.py` 将透明、自动地将这些选项应用到 PaddlePaddle 底层进程。 `paddle.py` 为方便作业启动提供了两个独特的命令选项。 -`job_dispatch_package` 设为本地 `workspace` 目录,它将被分发到 conf.py 中设置的所有节点。 它有助于帮助频繁修改和访问工作区文件的用户减少负担,否则频繁的多节点工作空间部署可能会很麻烦。 -`job_workspace` 设为已部署的工作空间目录,`paddle.py` 将跳过分发阶段直接启动所有节点的集群作业。它可以帮助减少分发延迟。 +- `job_dispatch_package` 设为本地 `workspace` 目录,它将被分发到 `conf.py` 中设置的所有节点。它有助于帮助频繁修改和访问工作区文件的用户减少负担,否则频繁的多节点工作空间部署可能会很麻烦。 +- `job_workspace` 设为已部署的工作空间目录,`paddle.py` 将跳过分发阶段直接启动所有节点的集群作业。它可以帮助减少分发延迟。 -`cluster_train/run.sh` 提供了命令样例来运行 `demo/recommendation` 集群工作,只需用你定义的目录修改 `job_dispatch_package` 和 `job_workspace`,然后: +`cluster_train/run.sh` 提供了命令样例来运行 `doc/howto/usage/cluster/src/word2vec` 集群任务,只需用您定义的目录修改 `job_dispatch_package` 和 `job_workspace`,然后: ``` sh run.sh ``` @@ -149,7 +229,7 @@ sh run.sh 提供 pserver 运行日志,有助于诊断分布式错误。 `server.log` -提供 pserver 进程的 stderr 和 stdout。训练失败时可以检查错误日志。 +提供 parameter server 进程的 stderr 和 stdout。训练失败时可以检查错误日志。 `train.log` 提供训练过程的 stderr 和 stdout。训练失败时可以检查错误日志。 @@ -157,3 +237,49 @@ sh run.sh ### 检查模型输出 运行完成后,模型文件将被写入节点 0 的 `output` 目录中。 工作空间中的 `nodefile` 表示当前集群作业的节点 ID。 + +## 在OpenMPI集群中提交训练作业 + +### 准备OpenMPI集群 + +执行下面的命令以启动3个节点的OpenMPI集群和一个"head"节点: + +```bash +paddle/scripts/cluster_train_v2/openmpi/docker_cluster +kubectl create -f head.yaml +kubectl create -f mpi-nodes.yaml +``` + +然后可以从head节点ssh无密码登录到OpenMPI的每个节点上。 + +### 启动集群作业 + +您可以按照下面的步骤在OpenMPI集群中提交paddle训练任务: + +```bash +# 获得head和node节点的IP地址 +kubectl get po -o wide +# 将node节点的IP地址保存到machines文件中 +kubectl get po -o wide | grep nodes | awk '{print $6}' > machines +# 拷贝必要的文件到head节点 +scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ +# ssh 登录到head节点 +ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] +# --------------- 以下操作均在head节点中执行 --------------- +# 准备训练数据 +python prepare.py +# 拷贝训练程序和字典文件到每台MPI节点 +cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial +# 创建日志目录 +mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs +# 拷贝训练数据到各自的节点 +scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial +scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial +scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial +# 启动训练任务 +mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh +``` + +## 在Kubernetes集群中提交训练作业 + +此部分的使用方法可以参考[here](../k8s/k8s_distributed_cn.md)。 diff --git a/doc/howto/usage/cluster/cluster_train_en.md b/doc/howto/usage/cluster/cluster_train_en.md index c60876721c..1e8b4d54b9 100644 --- a/doc/howto/usage/cluster/cluster_train_en.md +++ b/doc/howto/usage/cluster/cluster_train_en.md @@ -1,129 +1,220 @@ -# Run Distributed Training +# PaddlePaddle Distributed Training + +* [Introduction](#introduction) +* [Preparations](#preparations) +* [Command-line arguments](#command-line-arguments) + * [Starting parameter server](#starting-parameter-server) + * [Starting trainer](#starting-trainer) + * [Prepare Training Dataset](#prepare-training-dataset) + * [Prepare Training program](#prepare-training-program) +* [Use cluster platforms or cluster management tools](#use-cluster-platforms-or-cluster-management-tools) + * [Cluster Training Using Fabric](#cluster-training-using-fabric) + * [Prepare a Linux cluster](#prepare-a-linux-cluster) + * [Launching Cluster Job](#launching-cluster-job) + * [Kill Cluster Job](#kill-cluster-job) + * [Check Cluster Training Result](#check-cluster-training-result) + * [Check Model Output](#check-model-output) + * [Cluster Training Using OpenMPI](#cluster-training-using-openmpi) + * [Prepare an OpenMPI cluster](#prepare-an-openmpi-cluster) + * [Launching Cluster Job](#launching-cluster-job-1) + * [Cluster Training Using Kubernetes](#cluster-training-using-kubernetes) + +# Introduction + +In this article, we'll explain how to run distributed training jobs with PaddlePaddle on different types of clusters. The diagram below shows the main architecture of a distributed trainning job: + + + +- Data shard: training data will be split into multiple partitions, trainers use the partitions of the whole dataset to do the training job. +- Trainer: each trainer reads the data shard, and train the neural network. Then the trainer will upload calculated "gradients" to parameter servers, and wait for parameters to be optimized on the parameter server side. When that finishes, the trainer download optimized parameters and continues its training. +- Parameter server: every parameter server stores part of the whole neural network model data. They will do optimization calculations when gradients are uploaded from trainers, and then send updated parameters to trainers. + +PaddlePaddle can support both synchronize stochastic gradient descent (SGD) and asynchronous SGD. + +When training with synchronize SGD, PaddlePaddle uses an internal "synchronize barrier" which makes gradients update and parameter download in strict order. On the other hand, asynchronous SGD won't wait for all trainers to finish upload at a single step, this will increase the parallelism of distributed training: parameter servers do not depend on each other, they'll do parameter optimization concurrently. Parameter servers will not wait for trainers, so trainers will also do their work concurrently. But asynchronous SGD will introduce more randomness and noises in the gradient. + +# Preparations +1. Prepare your computer cluster. It's normally a bunch of Linux servers connected by LAN. Each server will be assigned a unique IP address. The computers in the cluster can be called "nodes". +2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install) document. We strongly recommend using [Docker installation](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst). + +After installation, you can check the version by typing the below command (run a docker container if using docker: `docker run -it paddlepaddle/paddle:[tag] /bin/bash`): + +```bash +$ paddle version +PaddlePaddle 0.10.0rc, compiled with + with_avx: ON + with_gpu: OFF + with_double: OFF + with_python: ON + with_rdma: OFF + with_timer: OFF +``` -In this article, we explain how to run distributed Paddle training jobs on clusters. We will create the distributed version of the single-process training example, [recommendation](https://github.com/baidu/Paddle/tree/develop/demo/recommendation). +We'll take `doc/howto/usage/cluster/src/word2vec` as an example to introduce distributed training using PaddlePaddle v2 API. -[Scripts](https://github.com/baidu/Paddle/tree/develop/paddle/scripts/cluster_train) used in this article launch distributed jobs via SSH. They also work as a reference for users running more sophisticated cluster management systems like MPI and [Kubernetes](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/k8s). +# Command-line arguments -## Prerequisite +## Starting parameter server -1. Aforementioned scripts use a Python library [fabric](http://www.fabfile.org/) to run SSH commands. We can use `pip` to install fabric: +Type the below command to start a parameter server which will wait for trainers to connect: - ```bash - pip install fabric - ``` +```bash +$ paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 +``` -1. We need to install PaddlePaddle on all nodes in the cluster. To enable GPUs, we need to install CUDA in `/usr/local/cuda`; otherwise Paddle would report errors at runtime. +If you wish to run parameter servers in background, and save a log file, you can type: +```bash +$ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log +``` -1. Set the `ROOT_DIR` variable in [`cluster_train/conf.py`] on all nodes. For convenience, we often create a Unix user `paddle` on all nodes and set `ROOT_DIR=/home/paddle`. In this way, we can write public SSH keys into `/home/paddle/.ssh/authorized_keys` so that user `paddle` can SSH to all nodes without password. +| param | required | default | description | +| ------------- | ------------- | ------------- | ------------- | +| port | required | 7164 | port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput | +| ports_num | required | 1 | total number of ports will listen on | +| ports_num_for_sparse | required | 1 | number of ports which serves sparse parameter update | +| num_gradient_servers | required | 1 | total number of gradient servers | -## Prepare Job Workspace +## Starting trainer +Type the command below to start the trainer(name the file whatever you want, like "train.py") -We refer to the directory where we put dependent libraries, config files, etc., as *workspace*. +```bash +$ python train.py +``` -These `train/test` data should be prepared before launching cluster job. To satisfy the requirement that train/test data are placed in different directory from workspace, PADDLE refers train/test data according to index file named as `train.list/test.list` which are used in model config file. So the train/test data also contains train.list/test.list two list file. All local training demo already provides scripts to help you create these two files, and all nodes in cluster job will handle files with same logical code in normal condition. +Trainers' network need to be connected with parameter servers' network to finish the job. Trainers need to know port and IPs to locate parameter servers. You can pass arguments to trainers through [environment variables](https://en.wikipedia.org/wiki/Environment_variable) or pass to `paddle.init()` function. Arguments passed to the `paddle.init()` function will overwrite environment variables. -Generally, you can use same model file from local training for cluster training. What you should have in mind that, the `batch_size` set in `setting` function in model file means batch size in `each` node of cluster job instead of total batch size if synchronization SGD was used. +Use environment viriables: -Following steps are based on [demo/recommendation](https://github.com/PaddlePaddle/Paddle/tree/develop/demo/recommendation) demo in demo directory. +```bash +export PADDLE_INIT_USE_GPU=False +export PADDLE_INIT_TRAINER_COUNT=1 +export PADDLE_INIT_PORT=7164 +export PADDLE_INIT_PORTS_NUM=1 +export PADDLE_INIT_PORTS_NUM_FOR_SPARSE=1 +export PADDLE_INIT_NUM_GRADIENT_SERVERS=1 +export PADDLE_INIT_TRAINER_ID=0 +export PADDLE_INIT_PSERVERS=127.0.0.1 +python train.py +``` -You just go through demo/recommendation tutorial doc until `Train` section, and at last you will get train/test data and model configuration file. Finaly, just use demo/recommendation as workspace for cluster training. +Pass arguments: -At last your workspace should look like as follow: +```python +paddle.init( + use_gpu=False, + trainer_count=1, + port=7164, + ports_num=1, + ports_num_for_sparse=1, + num_gradient_servers=1, + trainer_id=0, + pservers="127.0.0.1") ``` -. -|-- common_utils.py -|-- data -| |-- config.json -| |-- config_generator.py -| |-- meta.bin -| |-- meta_config.json -| |-- meta_generator.py -| |-- ml-1m -| |-- ml_data.sh -| |-- ratings.dat.test -| |-- ratings.dat.train -| |-- split.py -| |-- test.list -| `-- train.list -|-- dataprovider.py -|-- evaluate.sh -|-- prediction.py -|-- preprocess.sh -|-- requirements.txt -|-- run.sh -`-- trainer_config.py + +| param | required | default | description | +| ------------- | ------------- | ------------- | ------------- | +| use_gpu | optional | False | set to "True" to enable GPU training | +| trainer_count | required | 1 | total count of trainers in the training job | +| port | required | 7164 | port to connect to parameter server | +| ports_num | required | 1 | number of ports for communication | +| ports_num_for_sparse | required | 1 | number of ports for sparse type caculation | +| num_gradient_servers | required | 1 | total number of gradient server | +| trainer_id | required | 0 | ID for every trainer, start from 0 | +| pservers | required | 127.0.0.1 | list of IPs of parameter servers, separated by "," | + +## Prepare Training Dataset + +Here's some example code [prepare.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py), it will download public `imikolov` dataset and split it into multiple files according to job parallelism(trainers count). Modify `SPLIT_COUNT` at the begining of `prepare.py` to change the count of output files. + +In the real world, we often use `MapReduce` job's output as training data, so there will be lots of files. You can use `mod` to assign training file to trainers: + +```python +import os +train_list = [] +flist = os.listdir("/train_data/") +for f in flist: + suffix = int(f.split("-")[1]) + if suffix % TRAINER_COUNT == TRAINER_ID: + train_list.append(f) +``` + +Example code `prepare.py` will split training data and testing data into 3 files with digital suffix like `-00000`, `-00001` and`-00002`: + +``` +train.txt +train.txt-00000 +train.txt-00001 +train.txt-00002 +test.txt +test.txt-00000 +test.txt-00001 +test.txt-00002 ``` -Not all of these files are needed for cluster training, but it's not necessary to remove useless files. -`trainer_config.py` -Indicates the model config file. +When job started, every trainer needs to get it's own part of data. In some distributed systems a storage service will be provided, so the date under that path can be accessed by all the trainer nodes. Without the storage service, you must copy the training data to each trainer node. -`train.list` and `test.list` -File index. It stores all relative or absolute file paths of all train/test data at current node. +Different training jobs may have different data format and `reader()` function, developers may need to write different data prepare scripts and `reader()` functions for their job. -`dataprovider.py` -used to read train/test samples. It's same as local training. +## Prepare Training program -`data` -all files in data directory are refered by train.list/test.list which are refered by data provider. +We'll create a *workspace* directory on each node, storing your training program, dependencies, mounted or downloaded dataset directory. -## Prepare Cluster Job Configuration +Your workspace may looks like: +``` +. +|-- my_lib.py +|-- word_dict.pickle +|-- train.py +|-- train_data_dir/ +| |-- train.txt-00000 +| |-- train.txt-00001 +| |-- train.txt-00002 +`-- test_data_dir/ + |-- test.txt-00000 + |-- test.txt-00001 + `-- test.txt-00002 +``` -The options below must be carefully set in cluster_train/conf.py +- `my_lib.py`: user defined libraries, like PIL libs. This is optional. +- `word_dict.pickle`: dict file for training word embeding. +- `train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables: -`HOSTS` all nodes hostname or ip that will run cluster job. You can also append user and ssh port with hostname, such as root@192.168.100.17:9090. + ```python + cluster_train_file = "./train_data_dir/train/train.txt" + cluster_test_file = "./test_data_dir/test/test.txt" + node_id = os.getenv("OMPI_COMM_WORLD_RANK") + if not node_id: + raise EnvironmentError("must provied OMPI_COMM_WORLD_RANK") + ``` -`ROOT_DIR` workspace ROOT directory for placing JOB workspace directory +- `train_data_dir`: containing training data. Mount from storage service or copy trainning data to here. +- `test_data_dir`: containing testing data. -`PADDLE_NIC` the NIC(Network Interface Card) interface name for cluster communication channel, such as eth0 for ethternet, ib0 for infiniband. +# Use cluster platforms or cluster management tools -`PADDLE_PORT` port number for cluster commnunication channel +PaddlePaddle supports running jobs on several platforms including: +- [Kubernetes](http://kubernetes.io) open-source system for automating deployment, scaling, and management of containerized applications from Google. +- [OpenMPI](https://www.open-mpi.org) Mature high performance parallel computing framework. +- [Fabric](http://www.fabfile.org) A cluster management tool. Write scripts to submit jobs or manage the cluster. -`PADDLE_PORTS_NUM` the number of port used for cluster communication channle. if the number of cluster nodes is small(less than 5~6nodes), recommend you set it to larger, such as 2 ~ 8, for better network performance. +We'll introduce cluster job management on these platforms. The examples can be found under [cluster_train_v2](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/scripts/cluster_train_v2). -`PADDLE_PORTS_NUM_FOR_SPARSE` the number of port used for sparse updater cluster commnunication channel. if sparse remote update is used, set it like `PADDLE_PORTS_NUM` +These cluster platforms provide API or environment variables for training processes, when the job is dispatched to different nodes. Like node ID, IP or total number of nodes etc. -`LD_LIBRARY_PATH` set addtional LD_LIBRARY_PATH for cluster job. You can use it to set CUDA libraries path. +## Cluster Training Using Fabric -Default Configuration as follow: +### Prepare a Linux cluster -```python -HOSTS = [ - "root@192.168.100.17", - "root@192.168.100.18", - ] - -''' -workspace configuration -''' - -#root dir for workspace -ROOT_DIR = "/home/paddle" - -''' -network configuration -''' -#pserver nics -PADDLE_NIC = "eth0" -#pserver port -PADDLE_PORT = 7164 -#pserver ports num -PADDLE_PORTS_NUM = 2 -#pserver sparse ports num -PADDLE_PORTS_NUM_FOR_SPARSE = 2 - -#environments setting for all processes in cluster job -LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib64" -``` +Run `kubectl -f ssh_servers.yaml` under the directory: `paddle/scripts/cluster_train_v2/fabric/docker_cluster` will launch a demo cluster. Run `kubectl get po -o wide` to get IP addresses of these nodes. ### Launching Cluster Job -`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes. +`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can be set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes. `paddle.py`provides two distinguished command option for easy job launching. -`job_dispatch_package` set it with local `workspace`directory, it will be dispatched to all nodes set in conf.py. It could be helpful for frequent hacking workspace files, otherwise frequent mulit-nodes workspace deployment could make your crazy. -`job_workspace` set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy +- `job_dispatch_package` set it with local `workspace` directory, it will be dispatched to all nodes which is set in `conf.py`. It could be helpful for frequently manipulating workspace files. otherwise, frequent multi-nodes workspace deployment is very annoying. +- `job_workspace` set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy dispatch latency. `cluster_train/run.sh` provides command line sample to run `demo/recommendation` cluster job, just modify `job_dispatch_package` and `job_workspace` with your defined directory, then: @@ -134,23 +225,69 @@ sh run.sh The cluster Job will start in several seconds. ### Kill Cluster Job -`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should mannally kill job if program crashed. +`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should manually kill the job if the program crashed. ### Check Cluster Training Result Check log in $workspace/log for details, each node owns same log structure. `paddle_trainer.INFO` -It provides almost all interal output log for training, same as local training. Check runtime model convergence here. +It provides almost all internal output log for training, same as local training. Check runtime model convergence here. `paddle_pserver2.INFO` -It provides pserver running log, which could help to diagnose distributed error. +It provides parameter server running log, which could help to diagnose distributed error. `server.log` -It provides stderr and stdout of pserver process. Check error log if training crashs. +It provides stderr and stdout of parameter server process. Check error log if training crashes. `train.log` -It provides stderr and stdout of trainer process. Check error log if training crashs. +It provides stderr and stdout of trainer process. Check error log if training crashes. ### Check Model Output -After one pass finished, model files will be writed in `output` directory in node 0. +After one pass finished, model files will be written in `output` directory in node 0. `nodefile` in workspace indicates the node id of current cluster job. + +## Cluster Training Using OpenMPI + +### Prepare an OpenMPI cluster + +Run the following command to start a 3-node MPI cluster and one "head" node. + +```bash +cd paddle/scripts/cluster_train_v2/openmpi/docker_cluster +kubectl create -f head.yaml +kubectl create -f mpi-nodes.yaml +``` + +Then you can log in to every OpenMPI node using ssh without input any passwords. + +### Launching Cluster Job + +Follow the steps to launch a PaddlePaddle training job in OpenMPI cluster:\ + +```bash +# find out node IP addresses +kubectl get po -o wide +# generate a "machines" file containing node IP addresses +kubectl get po -o wide | grep nodes | awk '{print $6}' > machines +# copy necessary files onto "head" node +scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ +# login to head node using ssh +ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] +# --------------- in head node --------------- +# prepare training data +python prepare.py +# copy training data and dict file to MPI nodes +cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial +# creat a directory for storing log files +mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs +# copy training data to every node +scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial +scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial +scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial +# start the job +mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh +``` + +## Cluster Training Using Kubernetes + +The details can be found [here](../k8s/k8s_cn.md) diff --git a/doc/howto/usage/cluster/src/trainer.png b/doc/howto/usage/cluster/src/trainer.png new file mode 100644 index 0000000000..6537d3d565 Binary files /dev/null and b/doc/howto/usage/cluster/src/trainer.png differ diff --git a/doc/howto/usage/cluster/src/trainer_cn.png b/doc/howto/usage/cluster/src/trainer_cn.png new file mode 100644 index 0000000000..f9525739cc Binary files /dev/null and b/doc/howto/usage/cluster/src/trainer_cn.png differ diff --git a/doc/howto/usage/cluster/src/word2vec/api_train_v2.py b/doc/howto/usage/cluster/src/word2vec/api_train_v2.py new file mode 100644 index 0000000000..c0940f0e56 --- /dev/null +++ b/doc/howto/usage/cluster/src/word2vec/api_train_v2.py @@ -0,0 +1,100 @@ +import gzip +import math + +import paddle.v2 as paddle + +embsize = 32 +hiddensize = 256 +N = 5 + + +def wordemb(inlayer): + wordemb = paddle.layer.embedding( + input=inlayer, + size=embsize, + param_attr=paddle.attr.Param( + name="_proj", + initial_std=0.001, + learning_rate=1, + l2_rate=0, + sparse_update=True)) + return wordemb + + +def main(): + # for local training + cluster_train = False + + if not cluster_train: + paddle.init(use_gpu=False, trainer_count=1) + else: + paddle.init( + use_gpu=False, + trainer_count=2, + port=7164, + ports_num=1, + ports_num_for_sparse=1, + num_gradient_servers=1) + word_dict = paddle.dataset.imikolov.build_dict() + dict_size = len(word_dict) + firstword = paddle.layer.data( + name="firstw", type=paddle.data_type.integer_value(dict_size)) + secondword = paddle.layer.data( + name="secondw", type=paddle.data_type.integer_value(dict_size)) + thirdword = paddle.layer.data( + name="thirdw", type=paddle.data_type.integer_value(dict_size)) + fourthword = paddle.layer.data( + name="fourthw", type=paddle.data_type.integer_value(dict_size)) + nextword = paddle.layer.data( + name="fifthw", type=paddle.data_type.integer_value(dict_size)) + + Efirst = wordemb(firstword) + Esecond = wordemb(secondword) + Ethird = wordemb(thirdword) + Efourth = wordemb(fourthword) + + contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) + hidden1 = paddle.layer.fc(input=contextemb, + size=hiddensize, + act=paddle.activation.Sigmoid(), + layer_attr=paddle.attr.Extra(drop_rate=0.5), + bias_attr=paddle.attr.Param(learning_rate=2), + param_attr=paddle.attr.Param( + initial_std=1. / math.sqrt(embsize * 8), + learning_rate=1)) + predictword = paddle.layer.fc(input=hidden1, + size=dict_size, + bias_attr=paddle.attr.Param(learning_rate=2), + act=paddle.activation.Softmax()) + + def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 100 == 0: + with gzip.open("batch-" + str(event.batch_id) + ".tar.gz", + 'w') as f: + trainer.save_parameter_to_tar(f) + result = trainer.test( + paddle.batch( + paddle.dataset.imikolov.test(word_dict, N), 32)) + print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( + event.pass_id, event.batch_id, event.cost, event.metrics, + result.metrics) + + cost = paddle.layer.classification_cost(input=predictword, label=nextword) + + parameters = paddle.parameters.create(cost) + adagrad = paddle.optimizer.AdaGrad( + learning_rate=3e-3, + regularization=paddle.optimizer.L2Regularization(8e-4)) + trainer = paddle.trainer.SGD(cost, + parameters, + adagrad, + is_local=not cluster_train) + trainer.train( + paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32), + num_passes=30, + event_handler=event_handler) + + +if __name__ == '__main__': + main() diff --git a/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py b/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py new file mode 100644 index 0000000000..2e6d888712 --- /dev/null +++ b/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py @@ -0,0 +1,123 @@ +import math +import os +import paddle.v2 as paddle +import pickle + +embsize = 32 +hiddensize = 256 +N = 5 +cluster_train_file = "./train_data_dir/train/train.txt" +cluster_test_file = "./test_data_dir/test/test.txt" +node_id = os.getenv("OMPI_COMM_WORLD_RANK") +if not node_id: + raise EnvironmentError("must provied OMPI_COMM_WORLD_RANK") + + +def wordemb(inlayer): + wordemb = paddle.layer.embedding( + input=inlayer, + size=embsize, + param_attr=paddle.attr.Param( + name="_proj", + initial_std=0.001, + learning_rate=1, + l2_rate=0, + sparse_update=True)) + return wordemb + + +def cluster_reader_cluster(filename, node_id): + def cluster_reader(): + with open("-".join([filename, "%05d" % int(node_id)]), "r") as f: + for l in f: + csv_data = [int(cell) for cell in l.split(",")] + yield tuple(csv_data) + + return cluster_reader + + +def main(): + # get arguments from env + + # for local training + TRUTH = ["true", "True", "TRUE", "1", "yes", "Yes", "YES"] + cluster_train = os.getenv('PADDLE_CLUSTER_TRAIN', "False") in TRUTH + use_gpu = os.getenv('PADDLE_INIT_USE_GPU', "False") + + if not cluster_train: + paddle.init( + use_gpu=use_gpu, + trainer_count=int(os.getenv("PADDLE_INIT_TRAINER_COUNT", "1"))) + else: + paddle.init( + use_gpu=use_gpu, + trainer_count=int(os.getenv("PADDLE_INIT_TRAINER_COUNT", "1")), + port=int(os.getenv("PADDLE_INIT_PORT", "7164")), + ports_num=int(os.getenv("PADDLE_INIT_PORTS_NUM", "1")), + ports_num_for_sparse=int( + os.getenv("PADDLE_INIT_PORTS_NUM_FOR_SPARSE", "1")), + num_gradient_servers=int( + os.getenv("PADDLE_INIT_NUM_GRADIENT_SERVERS", "1")), + trainer_id=int(os.getenv("PADDLE_INIT_TRAINER_ID", "0")), + pservers=os.getenv("PADDLE_INIT_PSERVERS", "127.0.0.1")) + fn = open("thirdparty/wuyi_train_thdpty/word_dict.pickle", "r") + word_dict = pickle.load(fn) + fn.close() + dict_size = len(word_dict) + firstword = paddle.layer.data( + name="firstw", type=paddle.data_type.integer_value(dict_size)) + secondword = paddle.layer.data( + name="secondw", type=paddle.data_type.integer_value(dict_size)) + thirdword = paddle.layer.data( + name="thirdw", type=paddle.data_type.integer_value(dict_size)) + fourthword = paddle.layer.data( + name="fourthw", type=paddle.data_type.integer_value(dict_size)) + nextword = paddle.layer.data( + name="fifthw", type=paddle.data_type.integer_value(dict_size)) + + Efirst = wordemb(firstword) + Esecond = wordemb(secondword) + Ethird = wordemb(thirdword) + Efourth = wordemb(fourthword) + + contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) + hidden1 = paddle.layer.fc(input=contextemb, + size=hiddensize, + act=paddle.activation.Sigmoid(), + layer_attr=paddle.attr.Extra(drop_rate=0.5), + bias_attr=paddle.attr.Param(learning_rate=2), + param_attr=paddle.attr.Param( + initial_std=1. / math.sqrt(embsize * 8), + learning_rate=1)) + predictword = paddle.layer.fc(input=hidden1, + size=dict_size, + bias_attr=paddle.attr.Param(learning_rate=2), + act=paddle.activation.Softmax()) + + def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 100 == 0: + result = trainer.test( + paddle.batch( + cluster_reader_cluster(cluster_test_file, node_id), 32)) + print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( + event.pass_id, event.batch_id, event.cost, event.metrics, + result.metrics) + + cost = paddle.layer.classification_cost(input=predictword, label=nextword) + parameters = paddle.parameters.create(cost) + adagrad = paddle.optimizer.AdaGrad( + learning_rate=3e-3, + regularization=paddle.optimizer.L2Regularization(8e-4)) + trainer = paddle.trainer.SGD(cost, + parameters, + adagrad, + is_local=not cluster_train) + trainer.train( + paddle.batch(cluster_reader_cluster(cluster_train_file, node_id), 32), + num_passes=30, + event_handler=event_handler) + + +if __name__ == '__main__': + main() diff --git a/doc/howto/usage/cluster/src/word2vec/prepare.py b/doc/howto/usage/cluster/src/word2vec/prepare.py new file mode 100644 index 0000000000..24f5c5b26d --- /dev/null +++ b/doc/howto/usage/cluster/src/word2vec/prepare.py @@ -0,0 +1,41 @@ +import paddle.v2 as paddle +import tarfile +import os +import pickle + +SPLIT_COUNT = 3 +N = 5 + + +def file_len(fd): + for i, l in enumerate(fd): + pass + return i + 1 + + +def split_from_reader_by_line(filename, reader, split_count): + fn = open(filename, "w") + for batch_id, batch_data in enumerate(reader()): + batch_data_str = [str(d) for d in batch_data] + fn.write(",".join(batch_data_str)) + fn.write("\n") + fn.close() + + fn = open(filename, "r") + total_line_count = file_len(fn) + fn.close() + per_file_lines = total_line_count / split_count + 1 + cmd = "split -d -a 5 -l %d %s %s-" % (per_file_lines, filename, filename) + os.system(cmd) + + +word_dict = paddle.dataset.imikolov.build_dict() +with open("word_dict.pickle", "w") as dict_f: + pickle.dump(word_dict, dict_f) + +split_from_reader_by_line("train.txt", + paddle.dataset.imikolov.train(word_dict, N), + SPLIT_COUNT) +split_from_reader_by_line("test.txt", + paddle.dataset.imikolov.test(word_dict, N), + SPLIT_COUNT) diff --git a/go/pserver/client/client.go b/go/pserver/client/client.go index 20d91e7703..e5187ce3df 100644 --- a/go/pserver/client/client.go +++ b/go/pserver/client/client.go @@ -137,7 +137,7 @@ func (c *Client) FinishInitParams() error { return err } } - return nil + return c.sel.Done() } // SendGrads sends gradients to parameter servers for updating diff --git a/paddle/capi/CMakeLists.txt b/paddle/capi/CMakeLists.txt index 2c458a78c5..e767856d50 100644 --- a/paddle/capi/CMakeLists.txt +++ b/paddle/capi/CMakeLists.txt @@ -28,23 +28,37 @@ add_style_check_target(paddle_capi ${CAPI_SOURCES} ${CAPI_HEADER} add_dependencies(paddle_capi paddle_proto) -# combine all paddle static libraries together, into libpaddle_capi_whole.a -# user should use PaddleCAPI as -lpaddle_capi_whole -set(PADDLE_CAPI_INFER_LIBS - paddle_utils - paddle_parameter - paddle_math - paddle_cuda - paddle_function - paddle_gserver - paddle_proto) - +# TODO: paddle_capi_whole will be removed. +if(MOBILE_INFERENCE) + set(PADDLE_CAPI_INFER_LIBS + paddle_utils + paddle_parameter + paddle_math + paddle_cuda + paddle_function + paddle_gserver + paddle_proto) +else() + set(PADDLE_CAPI_INFER_LIBS + paddle_utils + paddle_parameter + paddle_math + paddle_cuda + paddle_function + paddle_gserver + paddle_proto + paddle_pserver + paddle_network) +endif() cc_library(paddle_capi_whole DEPS paddle_capi ${PADDLE_CAPI_INFER_LIBS}) -# No shared library for iOS +# Link the static library for inference +cc_library(paddle_capi_engine DEPS paddle_capi paddle_utils paddle_parameter paddle_math paddle_cuda paddle_proto) +cc_library(paddle_capi_layers DEPS paddle_function paddle_gserver) + +# Link the shared library for inference if(NOT IOS) - set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map") - # TODO: merge mkl into paddle_capi_shared + set(LINK_FLAGS "-Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/paddle_capi.map") add_library(paddle_capi_shared SHARED ${CAPI_SOURCES}) set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}") target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR}) @@ -53,9 +67,10 @@ endif() # install library & headers. install(FILES ${CAPI_HEADERS} DESTINATION include/paddle) +install(FILES paddle_capi.map DESTINATION include/paddle) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle) if(ANDROID) - install(TARGETS paddle_capi_whole paddle_capi_shared + install(TARGETS paddle_capi_whole paddle_capi_engine paddle_capi_layers paddle_capi_shared ARCHIVE DESTINATION lib/${ANDROID_ABI} LIBRARY DESTINATION lib/${ANDROID_ABI}) execute_process( @@ -80,7 +95,7 @@ if(ANDROID) )" ) else(ANDROID) - install(TARGETS paddle_capi_whole ARCHIVE DESTINATION lib) + install(TARGETS paddle_capi_whole paddle_capi_engine paddle_capi_layers ARCHIVE DESTINATION lib) if(NOT IOS) install(TARGETS paddle_capi_shared DESTINATION lib) endif() diff --git a/paddle/capi/export.sym b/paddle/capi/export.sym deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/paddle/capi/export.map b/paddle/capi/paddle_capi.map similarity index 100% rename from paddle/capi/export.map rename to paddle/capi/paddle_capi.map diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 4bc3fdeeea..dbe76a8eaf 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -19,14 +19,15 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope) proto_library(framework_proto SRCS framework.proto) cc_library(attribute SRCS attribute.cc DEPS framework_proto) -cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute ddim op_info) +cc_test(program_desc_test SRCS program_desc_test.cc DEPS proto_desc) cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute) cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) -cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope proto_desc) +cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) +cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute ddim op_info operator) -cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator) +cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) py_proto_compile(framework_py_proto SRCS framework.proto) @@ -42,7 +43,10 @@ add_custom_command(TARGET framework_py_proto POST_BUILD cc_library(backward SRCS backward.cc DEPS net_op) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context) -cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward) +cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog) + +cc_library(prune SRCS prune.cc DEPS framework_proto) +cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context) cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor) cc_test(tensor_array_test SRCS tensor_array_test.cc DEPS tensor_array place) diff --git a/paddle/framework/attribute.cc b/paddle/framework/attribute.cc index d6a2975aaa..29fe352ca4 100644 --- a/paddle/framework/attribute.cc +++ b/paddle/framework/attribute.cc @@ -19,19 +19,7 @@ limitations under the License. */ namespace paddle { namespace framework { -static ProgramDesc* g_program_desc = nullptr; - -ProgramDesc& GetProgramDesc() { - if (g_program_desc == nullptr) { - g_program_desc = new ProgramDesc(); - auto root_block = g_program_desc->mutable_blocks()->Add(); - root_block->set_idx(0); - root_block->set_parent_idx(-1); - } - return *g_program_desc; -} - -Attribute GetAttrValue(const OpDesc::Attr& attr_desc) { +Attribute GetAttrValue(const OpDesc::Attr& attr_desc, ProgramDesc* program) { switch (attr_desc.type()) { case framework::AttrType::BOOLEAN: { return attr_desc.b(); @@ -74,7 +62,9 @@ Attribute GetAttrValue(const OpDesc::Attr& attr_desc) { return val; } case framework::AttrType::BLOCK: { - return GetProgramDesc().mutable_blocks(attr_desc.block_idx()); + PADDLE_ENFORCE(program != nullptr, + "Need to specify ProgramDesc when get a block attr"); + return program->mutable_blocks(attr_desc.block_idx()); } } PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !"); diff --git a/paddle/framework/attribute.h b/paddle/framework/attribute.h index 8a7a949346..9744662b8f 100644 --- a/paddle/framework/attribute.h +++ b/paddle/framework/attribute.h @@ -26,16 +26,13 @@ limitations under the License. */ namespace paddle { namespace framework { - -ProgramDesc& GetProgramDesc(); - template inline AttrType AttrTypeID() { Attribute tmp = T(); return static_cast(tmp.which() - 1); } -Attribute GetAttrValue(const OpDesc::Attr& attr_desc); +Attribute GetAttrValue(const OpDesc::Attr& attr_desc, ProgramDesc* desc); class AttrReader { public: diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index c78e056071..1ae7fb60f0 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -21,6 +21,7 @@ #include "paddle/framework/block_desc.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/dynamic_recurrent_op.h" #include "paddle/operators/net_op.h" #include "paddle/operators/recurrent_op.h" @@ -220,8 +221,7 @@ static std::unique_ptr BackwardRecursive( // process recurrent gradient op as a special operator. if (forwardOp.Type() == "recurrent") { // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), - // or - // this will result in infinite loop. + // or this will result in infinite loop. const auto& rnnop = *static_cast(&forwardOp); auto rnn_grad_op = @@ -231,6 +231,18 @@ static std::unique_ptr BackwardRecursive( // create stepnet's gradient op rnn_grad_op->set_stepnet( BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id)); + } else if (forwardOp.Type() == "dynamic_recurrent") { + // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), + // or this will result in infinite loop. + const auto& rnnop = + *static_cast(&forwardOp); + auto rnn_grad_op = + static_cast(grad_op.get()); + const auto& stepnet_op = + *static_cast(&rnnop.rnn.GetStepUnit()); + // create stepnet's gradient op + rnn_grad_op->rnn.SetStepUnit( + BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id)); } if (net->ops_.empty()) { // Current no aux op is added to network @@ -281,12 +293,16 @@ static void CreateGradVarInBlock( auto ops = block_desc->AllOps(); for (size_t op_index = grad_op_start_index; op_index < ops.size(); ++op_index) { + bool need_infer_shape = false; ForEachVarName(ops[op_index]->Outputs(), [&](const std::string& grad_var_name) { if (block_desc->HasVar(grad_var_name)) { return false; } - block_desc->Var(grad_var_name); + need_infer_shape = true; + auto var = block_desc->Var(grad_var_name); + // FIXME(qiao) infer the datatype + var->SetDataType(framework::DataType::FP32); auto it = param_name_map.find(grad_var_name); if (it == param_name_map.end()) { return false; @@ -298,12 +314,14 @@ static void CreateGradVarInBlock( grad_record.op_idx_ = static_cast(op_index); return false; /* not break */ }); + if (need_infer_shape) { + ops[op_index]->InferShape(*block_desc); + } } } std::vector> MakeOpGrad( - const std::unique_ptr& op_desc, - std::unordered_set* no_grad_vars, + const OpDescBind* op_desc, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var) { std::vector> grad_op_descs; // All input gradients of forwarding operator do not need to calculate. @@ -350,7 +368,7 @@ std::vector> MakeBlockBackward( std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var) { BlockDescBind* cur_block = program_desc.Block(block_idx); - std::deque>& op_descs = cur_block->ops_; + std::vector op_descs = cur_block->AllOps(); std::unordered_map> dup_out_ops; size_t grad_desc_idx = 0; std::vector> backward_descs; @@ -368,7 +386,7 @@ std::vector> MakeBlockBackward( program_desc, step_block_idx, no_grad_vars, grad_to_var); BlockDescBind* backward_block = program_desc.AppendBlock(*cur_block); for (auto& ptr : backward_block_op_descs) { - backward_block->ops_.push_back(std::move(ptr)); + backward_block->AppendAllocatedOp(std::move(ptr)); } op_grads[0]->SetBlockAttr("step_block", *backward_block); } @@ -425,17 +443,22 @@ ParamGradInfoMap AppendBackward( const int root_block_idx = 0; auto root_block = program_desc.Block(root_block_idx); - auto& all_ops = root_block->ops_; // insert fill one op for target + // TODO(qiao) add some check to the target. std::string fill_one_op_out = GradVarName(target.Name()); + std::vector target_shape_desc = target.Shape(); + std::vector target_shape; + std::transform(target_shape_desc.begin(), target_shape_desc.end(), + std::back_inserter(target_shape), + [](int64_t dim) { return static_cast(dim); }); std::unique_ptr fill_one_op( new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}}, - {{"shape", std::vector{1}}, + {{"shape", target_shape}, {"value", static_cast(1.0)}, {"data_type", framework::DataType::FP32}})); - all_ops.push_back(std::move(fill_one_op)); - size_t forward_op_num = all_ops.size(); + root_block->AppendAllocatedOp(std::move(fill_one_op)); + size_t forward_op_num = root_block->OpSize(); size_t forward_block_num = program_desc.Size(); // Insert backward operators @@ -443,13 +466,22 @@ ParamGradInfoMap AppendBackward( auto backward_op_descs = MakeBlockBackward(program_desc, root_block_idx, &no_grad_var_names, &grad_to_var); - std::unordered_map retv; - - // Create Variable for (auto& ptr : backward_op_descs) { - all_ops.push_back(std::move(ptr)); + root_block->AppendAllocatedOp(std::move(ptr)); } - root_block->Var(fill_one_op_out); + // Create Variable + + // Create target gradient variable + std::unordered_map retv; + + auto var = root_block->Var(fill_one_op_out); + // FIXME(qiao) infer the data type + var->SetDataType(framework::DataType::FP32); + var->SetShape(target.Shape()); + auto& target_grad = retv[target.Name()]; + target_grad.name_ = fill_one_op_out; + target_grad.block_idx_ = root_block_idx; + target_grad.op_idx_ = static_cast(forward_op_num); // create grad_var for all blocks in this program CreateGradVarInBlock(forward_op_num, grad_to_var, root_block, &retv); diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index 5302afcafb..10301f7e39 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -26,6 +26,20 @@ namespace framework { using DeviceContext = platform::DeviceContext; +class NoneOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override {} +}; + +template +class NoneKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override {} +}; + class RowWiseAddOpMaker : public OpProtoAndCheckerMaker { public: RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker) @@ -215,19 +229,51 @@ class MinusOpMaker : public OpProtoAndCheckerMaker { namespace f = paddle::framework; namespace ops = paddle::operators; using EnforceNotMet = paddle::platform::EnforceNotMet; -REGISTER_OPERATOR(rowwise_add, f::NOP, f::RowWiseAddOpMaker, +// rowwise_add +REGISTER_OPERATOR(rowwise_add, f::NoneOp, f::RowWiseAddOpMaker, f::RowWiseAddGradMaker); -REGISTER_OPERATOR(rowwise_add_grad, f::NOP); -REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP); -REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP); -REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker); -REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker); -REGISTER_OP(sum, f::NOP, f::SumOpMaker, sum_grad, f::NOP); +REGISTER_OP_CPU_KERNEL(rowwise_add, + f::NoneKernel); +REGISTER_OPERATOR(rowwise_add_grad, f::NoneOp); +REGISTER_OP_CPU_KERNEL(rowwise_add_grad, + f::NoneKernel); +// mul +REGISTER_OP(mul, f::NoneOp, f::MulOpMaker, mul_grad, f::NoneOp); +REGISTER_OP_CPU_KERNEL(mul, f::NoneKernel); +REGISTER_OP_CPU_KERNEL(mul_grad, + f::NoneKernel); +// sigmoid +REGISTER_OP(sigmoid, f::NoneOp, f::SigmoidOpMaker, sigmoid_grad, f::NoneOp); +REGISTER_OP_CPU_KERNEL(sigmoid, + f::NoneKernel); +REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NoneOp, f::NoGradOpMaker); +// fill_zeros_like +REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NoneOp, f::FillZeroOpMaker); +REGISTER_OP_CPU_KERNEL(fill_zeros_like, + f::NoneKernel); +// sum +REGISTER_OP(sum, f::NoneOp, f::SumOpMaker, sum_grad, f::NoneOp); +REGISTER_OP_CPU_KERNEL(sum, f::NoneKernel); +REGISTER_OP_CPU_KERNEL(sum_grad, + f::NoneKernel); +// fc REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker); -REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad, - f::NOP); -REGISTER_OP(mult_in_out, f::NOP, f::MultInOutOpMaker, mult_in_out_grad, f::NOP); -REGISTER_OPERATOR(minus, f::NOP, f::MinusOpMaker, f::MinusGradOpDescMaker); +// many_output_op +REGISTER_OP(many_output_op, f::NoneOp, f::ManyOutputOpMaker, + many_output_op_grad, f::NoneOp); +// mult_in_out +REGISTER_OP(mult_in_out, f::NoneOp, f::MultInOutOpMaker, mult_in_out_grad, + f::NoneOp); +REGISTER_OP_CPU_KERNEL(mult_in_out, + f::NoneKernel); +REGISTER_OP_CPU_KERNEL(mult_in_out_grad, + f::NoneKernel); +// minus +REGISTER_OPERATOR(minus, f::NoneOp, f::MinusOpMaker, f::MinusGradOpDescMaker); +REGISTER_OP_CPU_KERNEL(minus, f::NoneKernel); +// scale +REGISTER_OPERATOR(scale, f::NoneOp); +REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel); TEST(Backward, simple_op_not_need_grad) { auto fwd = f::OpRegistry::CreateOp( @@ -449,20 +495,10 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL); } -// =================================== // - -f::ProgramDesc *GetNewProgramDesc() { - auto *program_desc = new f::ProgramDesc(); - auto *root_block = program_desc->add_blocks(); - root_block->set_idx(0); - root_block->set_parent_idx(-1); - return program_desc; -} - TEST(Backward, simple_single_op) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); + f::OpDescBind *op = block->AppendOp(); op->SetType("rowwise_add"); op->SetInput("X", {"x"}); @@ -487,7 +523,7 @@ TEST(Backward, simple_single_op) { EXPECT_EQ(grad_op->Output(f::GradVarName("b")), std::vector({f::GradVarName("b")})); - EXPECT_EQ(var_to_grad.size(), 2UL); + EXPECT_EQ(var_to_grad.size(), 3UL); EXPECT_EQ(var_to_grad.at("b"), f::GradVarInfo(f::GradVarName("b"), 0, 2)); EXPECT_EQ(var_to_grad.at("x"), f::GradVarInfo(f::GradVarName("x"), 0, 2)); @@ -496,8 +532,7 @@ TEST(Backward, simple_single_op) { } TEST(Backward, default_attribute) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op = block->AppendOp(); op->SetType("mul"); @@ -523,8 +558,7 @@ TEST(Backward, default_attribute) { } TEST(Backward, simple_mult_op) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op1 = block->AppendOp(); op1->SetType("rowwise_add"); @@ -588,7 +622,7 @@ TEST(Backward, simple_mult_op) { EXPECT_EQ(grad_op3->Output(f::GradVarName("b")), std::vector({f::GradVarName("b3")})); - EXPECT_EQ(var_to_grad.size(), 6UL); + EXPECT_EQ(var_to_grad.size(), 7UL); EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6)); EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6)); EXPECT_EQ(var_to_grad.at("out1"), @@ -607,8 +641,7 @@ TEST(Backward, simple_mult_op) { } TEST(Backward, intermedia_var_no_grad) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op1 = block->AppendOp(); op1->SetType("rowwise_add"); @@ -666,7 +699,7 @@ TEST(Backward, intermedia_var_no_grad) { std::vector({f::GradVarName("out1")})); EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector()); - EXPECT_EQ(var_to_grad.size(), 3UL); + EXPECT_EQ(var_to_grad.size(), 4UL); EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6)); EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6)); EXPECT_EQ(var_to_grad.at("out1"), @@ -678,8 +711,7 @@ TEST(Backward, intermedia_var_no_grad) { } TEST(Backward, var_no_grad) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op1 = block->AppendOp(); op1->SetType("mult_in_out"); @@ -744,7 +776,7 @@ TEST(Backward, var_no_grad) { EXPECT_EQ(grad_op1->Output(f::GradVarName("H")), std::vector({f::GradVarName("h1")})); - EXPECT_EQ(var_to_grad.size(), 3UL); + EXPECT_EQ(var_to_grad.size(), 4UL); EXPECT_EQ(var_to_grad.at("y1"), f::GradVarInfo(f::GradVarName("y1"), 0, 3)); EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 5)); EXPECT_EQ(var_to_grad.at("h1"), f::GradVarInfo(f::GradVarName("h1"), 0, 5)); @@ -755,8 +787,7 @@ TEST(Backward, var_no_grad) { } TEST(Backward, shared_var) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op1 = block->AppendOp(); op1->SetType("rowwise_add"); @@ -830,7 +861,7 @@ TEST(Backward, shared_var) { EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), std::vector({f::GradVarName("b1")})); - EXPECT_EQ(var_to_grad.size(), 5UL); + EXPECT_EQ(var_to_grad.size(), 6UL); EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4)); EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5)); EXPECT_EQ(var_to_grad.at("out1"), @@ -846,8 +877,7 @@ TEST(Backward, shared_var) { } TEST(Backward, half_backward) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); auto *op1 = block->AppendOp(); op1->SetType("minus"); @@ -863,7 +893,7 @@ TEST(Backward, half_backward) { auto ops = block->AllOps(); ASSERT_EQ(3UL, ops.size()); - EXPECT_EQ(var_to_grad.size(), 1UL); + EXPECT_EQ(var_to_grad.size(), 2UL); EXPECT_EQ(var_to_grad.at("a"), f::GradVarInfo(f::GradVarName("a"), 0, forward_len + 1)); } diff --git a/paddle/framework/block_desc.cc b/paddle/framework/block_desc.cc index 47b75228cd..251e340e6d 100644 --- a/paddle/framework/block_desc.cc +++ b/paddle/framework/block_desc.cc @@ -19,11 +19,11 @@ namespace paddle { namespace framework { VarDescBind *BlockDescBind::Var(const std::string &name) { - need_update_ = true; auto it = vars_.find(name); if (it != vars_.end()) { return it->second.get(); } + need_update_ = true; auto *var = new VarDescBind(name); vars_[name].reset(var); return var; @@ -41,6 +41,19 @@ bool BlockDescBind::HasVar(const std::string &name) const { return vars_.find(name) != vars_.end(); } +VarDescBind *BlockDescBind::FindVarRecursive(const std::string &name) const { + auto it = vars_.find(name); + if (it == vars_.end()) { + return Parent() == kNoneBlockIndex ? nullptr + : ParentBlock()->FindVarRecursive(name); + } + return it->second.get(); +} + +bool BlockDescBind::HasVarRecursive(const std::string &name) const { + return FindVarRecursive(name) != nullptr; +} + std::vector BlockDescBind::AllVars() const { std::vector res; for (const auto &p : vars_) { @@ -55,6 +68,11 @@ OpDescBind *BlockDescBind::AppendOp() { return ops_.back().get(); } +void BlockDescBind::AppendAllocatedOp(std::unique_ptr &&op_desc) { + need_update_ = true; + ops_.emplace_back(std::move(op_desc)); +} + OpDescBind *BlockDescBind::PrependOp() { need_update_ = true; ops_.emplace_front(new OpDescBind()); @@ -70,15 +88,19 @@ std::vector BlockDescBind::AllOps() const { } void BlockDescBind::Flush() { + for (auto &op_desc : ops_) { + op_desc->Flush(); + } + if (need_update_) { auto &op_field = *this->desc_->mutable_ops(); - op_field.Clear(); + this->ClearPBOps(); op_field.Reserve(static_cast(ops_.size())); for (auto &op_desc : ops_) { op_field.AddAllocated(op_desc->Proto()); } auto &var_field = *this->desc_->mutable_vars(); - var_field.Clear(); + this->ClearPBVars(); var_field.Reserve(static_cast(vars_.size())); for (auto &var_desc : vars_) { var_field.AddAllocated(var_desc.second->Proto()); @@ -88,7 +110,7 @@ void BlockDescBind::Flush() { } BlockDescBind *BlockDescBind::ParentBlock() const { - if (this->desc_->parent_idx() == -1) { + if (this->desc_->parent_idx() == kNoneBlockIndex) { return nullptr; } return prog_->Block(static_cast(this->desc_->parent_idx())); @@ -98,6 +120,35 @@ BlockDesc *BlockDescBind::Proto() { Flush(); return desc_; } +BlockDescBind::BlockDescBind(const BlockDescBind &other, BlockDesc *desc, + ProgramDescBind *prog) + : prog_(prog), desc_(desc) { + need_update_ = true; + for (auto &op : other.ops_) { + ops_.emplace_back(new OpDescBind(*op)); + } + + for (auto &it : other.vars_) { + auto *var = new VarDescBind(*it.second); + vars_[it.first].reset(var); + } +} + +void BlockDescBind::ClearPBOps() { + auto ops = this->desc_->mutable_ops(); + while (!ops->empty()) { + // we do not own the OpDesc, so release the ownership. + ops->ReleaseLast(); + } +} + +void BlockDescBind::ClearPBVars() { + auto vars = this->desc_->mutable_vars(); + while (!vars->empty()) { + // we do not own the VarDesc, so release the ownership. + vars->ReleaseLast(); + } +} } // namespace framework } // namespace paddle diff --git a/paddle/framework/block_desc.h b/paddle/framework/block_desc.h index 9fb88f9632..c685050850 100644 --- a/paddle/framework/block_desc.h +++ b/paddle/framework/block_desc.h @@ -16,9 +16,12 @@ limitations under the License. */ #include #include +#include #include #include + #include "paddle/framework/op_desc.h" +#include "paddle/framework/proto_desc.h" #include "paddle/framework/var_desc.h" #include "paddle/platform/macros.h" @@ -36,6 +39,14 @@ class BlockDescBind { BlockDescBind(ProgramDescBind *prog, BlockDesc *desc) : prog_(prog), desc_(desc), need_update_(false) {} + BlockDescBind(const BlockDescBind &other, BlockDesc *desc, + ProgramDescBind *prog); + + ~BlockDescBind() { + this->ClearPBVars(); + this->ClearPBOps(); + } + int32_t ID() const { return desc_->idx(); } int32_t Parent() const { return desc_->parent_idx(); } @@ -46,23 +57,43 @@ class BlockDescBind { bool HasVar(const std::string &var_name) const; + VarDescBind *FindVarRecursive(const std::string &name_bytes) const; + + bool HasVarRecursive(const std::string &var_name) const; + + std::set LocalVarNames() const { + std::set var_names; + for (auto &var : vars_) { + var_names.insert(var.first); + } + return var_names; + } + std::vector AllVars() const; BlockDescBind *ParentBlock() const; OpDescBind *AppendOp(); + void AppendAllocatedOp(std::unique_ptr &&op_desc); + OpDescBind *PrependOp(); std::vector AllOps() const; + size_t OpSize() const { return ops_.size(); } + + OpDescBind *Op(int idx) { return ops_.at(idx).get(); } + void Flush(); BlockDesc *Proto(); - // FIXME(yuyang18): backward will access private data of BlockDesc. - // Mark it public temporary. We can fix it later. - public: + private: + void ClearPBOps(); + void ClearPBVars(); + + private: ProgramDescBind *prog_; // not_own BlockDesc *desc_; // not_own bool need_update_; diff --git a/paddle/framework/data_type.h b/paddle/framework/data_type.h index 649899d425..c25a62c2b1 100644 --- a/paddle/framework/data_type.h +++ b/paddle/framework/data_type.h @@ -26,6 +26,8 @@ inline DataType ToDataType(std::type_index type) { return DataType::FP64; } else if (typeid(int).hash_code() == type.hash_code()) { return DataType::INT32; + } else if (typeid(int64_t).hash_code() == type.hash_code()) { + return DataType::INT64; } else { PADDLE_THROW("Not supported"); } diff --git a/paddle/framework/executor.cc b/paddle/framework/executor.cc index 8e82e28bac..1f1e4edda8 100644 --- a/paddle/framework/executor.cc +++ b/paddle/framework/executor.cc @@ -64,99 +64,27 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) { auto& block = pdesc.blocks(block_id); auto& device = device_contexts_[0]; - // Instantiate all the vars in the global scope - for (auto& var : block.vars()) { - scope->Var(var.name()); - } - Scope& local_scope = scope->NewScope(); - std::vector should_run = Prune(pdesc, block_id); - PADDLE_ENFORCE_EQ(should_run.size(), static_cast(block.ops_size())); - for (size_t i = 0; i < should_run.size(); ++i) { - if (should_run[i]) { - for (auto& var : block.ops(i).outputs()) { - for (auto& argu : var.arguments()) { - if (local_scope.FindVar(argu) == nullptr) { - local_scope.Var(argu); - } - } - } - auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i)); - op->Run(local_scope, *device); - } - } - - // TODO(tonyyang-svail): - // - Destroy local_scope -} - -std::vector Prune(const ProgramDesc& pdesc, int block_id) { - // TODO(tonyyang-svail): - // - will change to use multiple blocks for RNN op and Cond Op - - auto& block = pdesc.blocks(block_id); - auto& ops = block.ops(); - - bool expect_feed = true; - for (auto& op_desc : ops) { - PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed, - "All FeedOps are at the beginning of the ProgramDesc"); - expect_feed = (op_desc.type() == kFeedOpType); - } - - bool expect_fetch = true; - for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { - auto& op_desc = *op_iter; - PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch, - "All FetchOps must at the end of the ProgramDesc"); - expect_fetch = (op_desc.type() == kFetchOpType); - } - - std::set dependent_vars; - std::vector should_run; - for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { - auto& op_desc = *op_iter; - - bool found_dependent_vars = false; - for (auto& var : op_desc.outputs()) { - for (auto& argu : var.arguments()) { - if (dependent_vars.count(argu) != 0) { - found_dependent_vars = true; - } - } - } - - if (op_desc.type() == kFetchOpType || found_dependent_vars) { - // erase its output to the dependency graph - for (auto& var : op_desc.outputs()) { - for (auto& argu : var.arguments()) { - dependent_vars.erase(argu); - } - } - - // insert its input to the dependency graph - for (auto& var : op_desc.inputs()) { - for (auto& argu : var.arguments()) { - dependent_vars.insert(argu); - } - } - - should_run.push_back(true); + for (auto& var : block.vars()) { + if (var.persistable()) { + auto* ptr = scope->Var(var.name()); + VLOG(3) << "Create Variable " << var.name() + << " global, which pointer is " << ptr; } else { - should_run.push_back(false); + auto* ptr = local_scope.Var(var.name()); + VLOG(3) << "Create Variable " << var.name() + << " locally, which pointer is " << ptr; } } - // TODO(tonyyang-svail): - // - check this after integration of Init - // PADDLE_ENFORCE(dependent_vars.empty()); - - // since we are traversing the ProgramDesc in reverse order - // we reverse the should_run vector - std::reverse(should_run.begin(), should_run.end()); + for (auto& op_desc : block.ops()) { + auto op = paddle::framework::OpRegistry::CreateOp( + op_desc, const_cast(&pdesc)); + op->Run(local_scope, *device); + } - return should_run; + scope->DeleteScope(&local_scope); } } // namespace framework diff --git a/paddle/framework/executor.h b/paddle/framework/executor.h index 4e3bc2c0a5..793ee954e2 100644 --- a/paddle/framework/executor.h +++ b/paddle/framework/executor.h @@ -40,16 +40,5 @@ class Executor { std::vector device_contexts_; }; -/* @Brief - * Pruning the graph - * - * @param - * ProgramDesc - * - * @return - * vector Same size as ops. Indicates whether an op should be run. - */ -std::vector Prune(const ProgramDesc& pdesc, int block_id); - } // namespace framework } // namespace paddle diff --git a/paddle/framework/feed_fetch_method.h b/paddle/framework/feed_fetch_method.h index 826d180bfc..7feacb1e24 100644 --- a/paddle/framework/feed_fetch_method.h +++ b/paddle/framework/feed_fetch_method.h @@ -13,37 +13,45 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include "glog/logging.h" +#include "paddle/framework/feed_fetch_type.h" #include "paddle/framework/scope.h" #include "paddle/framework/variable.h" namespace paddle { namespace framework { -template -void SetFeedVariable(const LoDTensor& input, const std::string& var_name, - size_t index) { +void SetFeedVariable(Scope* scope, const LoDTensor& input, + const std::string& var_name, size_t index) { // If var_name Variable is not found in GlobalScope, a new variable will // be created. - Variable* g_feed_value = GetGlobalScope().Var(var_name); + VLOG(3) << "SetFeedVariable name=" << var_name << " index=" << index; + Variable* g_feed_value = scope->Var(var_name); auto& feed_inputs = *(g_feed_value->GetMutable>()); if (index >= feed_inputs.size()) { feed_inputs.resize(index + 1); } // shared data with input tensor - feed_inputs[index].ShareDataWith(input); + feed_inputs[index].ShareDataWith(input); // set lod feed_inputs[index].set_lod(input.lod()); } -LoDTensor& GetFetchVariable(const std::string& var_name, size_t index) { +LoDTensor& GetFetchVariable(const Scope& scope, const std::string& var_name, + size_t index) { // Since we want to fetch LodTensor from a variable, the variable must // be created alreadly. - Variable* g_fetch_value = GetGlobalScope().FindVar(var_name); - auto& fetch_outputs = - *(g_fetch_value->GetMutable>()); + Variable* g_fetch_value = scope.FindVar(var_name); + PADDLE_ENFORCE(g_fetch_value->IsType(), + "Only %s can be invoked by GetFetchVariable", + typeid(FeedFetchList).name()); + auto& fetch_outputs = *g_fetch_value->GetMutable(); + auto& tensor = fetch_outputs[index]; + VLOG(3) << "Fetch " << var_name << " with index " << index + << " shape= " << tensor.dims(); PADDLE_ENFORCE_LT(index, fetch_outputs.size()); - return fetch_outputs[index]; + return tensor; } } // namespace framework diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index 65760b07ad..3d023535ef 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -55,6 +55,7 @@ message OpDesc { repeated Var inputs = 1; repeated Var outputs = 2; repeated Attr attrs = 4; + optional bool is_target = 5 [ default = false ]; }; // OpProto describes a C++ framework::OperatorBase derived class. @@ -67,6 +68,7 @@ message OpProto { optional bool duplicable = 3 [ default = false ]; optional bool intermediate = 4 [ default = false ]; + optional bool dispensable = 5 [ default = false ]; } // AttrProto describes the C++ type Attribute. @@ -111,6 +113,8 @@ message VarDesc { enum VarType { LOD_TENSOR = 1; SELECTED_ROWS = 2; + FEED_MINIBATCH = 3; + FETCH_LIST = 4; } required string name = 1; required VarType type = 2; diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index 5b7badf89c..7c0ea0df78 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -25,31 +25,50 @@ LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end) { for (size_t i = level_begin; i < level_end; i++) { new_lod.emplace_back(in.at(i)); } + // transform the lowest level to absolute offset. + LoD abs_offset_lod = ToAbsOffset(in); + new_lod.back() = abs_offset_lod[level_end - 1]; return new_lod; } LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin, size_t elem_end) { - // slice the lod. - LoD new_lod; - new_lod.reserve(in.size() - level); - auto start = in.at(level)[elem_begin]; - auto end = in.at(level)[elem_end]; - - for (auto it = in.begin() + level; it != in.end(); it++) { - auto it_begin = std::find(it->begin(), it->end(), start); - auto it_end = std::find(it_begin, it->end(), end); - PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info"); - PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info"); - new_lod.emplace_back(it_begin, it_end + 1); - // reset offset if tensor is copyed and sliced. - std::transform(new_lod.back().begin(), new_lod.back().end(), - new_lod.back().begin(), - [start](int v) { return v - start; }); - PADDLE_ENFORCE_EQ(new_lod.back().front(), 0, "error in slice LoD"); + PADDLE_ENFORCE_LT(level, in.size()); + PADDLE_ENFORCE_LT(elem_end, in[level].size()); + + LoD res; + res.resize(in.size() - level); + // copy the first level + res[0].assign(in[level].begin() + elem_begin, + in[level].begin() + elem_end + 1); + for (size_t lvl = 1; lvl < res.size(); lvl++) { + const auto& in_level = in[level + lvl]; + const auto& above_level = res[lvl - 1]; + auto& out_level = res[lvl]; + out_level.assign(in_level.begin() + above_level.front(), + in_level.begin() + above_level.back() + 1); } - PADDLE_ENFORCE_LE(new_lod.size(), in.size()); - return new_lod; + for (size_t lvl = 0; lvl < res.size(); lvl++) { + // to make the first offset equals 0, all the elements minus the first + // element + size_t front = res[lvl].front(); + for (auto& ele : res[lvl]) { + ele -= front; + } + } + return res; +} + +LoD ToAbsOffset(const LoD& in) { + // the lowest level stores relative offsets + if (in.empty() || in.size() == 1) return in; + LoD result = in; + for (int level = result.size() - 2; level >= 0; level--) { + for (auto& ele : result[level]) { + ele = result[level + 1][ele]; + } + } + return result; } bool operator==(const LoD& a, const LoD& b) { @@ -75,17 +94,7 @@ bool operator==(const LoD& a, const LoD& b) { size_t LoDTensor::NumElements(size_t level, size_t idx) const { PADDLE_ENFORCE_LT(level, NumLevels()); PADDLE_ENFORCE_LT(idx, NumElements(level)); - // the last level of LoD, just return number of records in Tensor - if (level == NumLevels() - 1) { - return lod_[level][idx + 1] - lod_[level][idx]; - } - // high level of LoD, and there is another lower level, return number of - // lower-level elements - auto tmp = SliceInLevel(lod_, level, idx, idx + 1); - PADDLE_ENFORCE_GE(tmp.size(), 2); - // there is a 0 as a placeholder stored in LoD, so the number of elements - // equals lod.size() - 1 - return tmp[1].size() - 1; + return lod_[level][idx + 1] - lod_[level][idx]; } void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) { diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 4db36ee766..dec59a5750 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -39,23 +39,36 @@ using Vector = thrust::host_vector< #endif /* - * 3-level LoD stores + * LoD is short for Level of Details. * - * 0 10 20 - * 0 5 10 15 20 - * 0 2 5 7 10 12 15 20 - * - * - in a level, each element indicates offset in the underlying Tensor + * - in a level, each element indicates relative offset of the lower level * - the first element should be 0 and that indicates that this sequence start * from 0 * - each sequence's begin and end(no-inclusive) is level[id, id+1] + * + * For example: + * 3-level LoD stores + * + * 0 2 3 + * 0 2 4 7 + * 0 2 5 7 10 12 15 20 */ using LoD = std::vector>; +/* + * Slice levels from a LoD. + * NOTE the lowest level should always be the absolute offsets of the underlying + * tensor instances. So if higher layers are sliced without the lowest level, + * the lower level of the sliced LoD will be transformed to the absolute offset. + */ LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end); LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin, size_t elem_end); +/* + * Transform an LoD from relative offsets to absolute offsets. + */ +LoD ToAbsOffset(const LoD& in); bool operator==(const LoD& a, const LoD& b); @@ -74,12 +87,12 @@ class LoDTensor : public Tensor { LoD lod() const { return lod_; } /* - * Get a element from LoD. + * Get the start offset and end offset of an element from LoD. */ - size_t lod_element(size_t level, size_t elem) const { + std::pair lod_element(size_t level, size_t elem) const { PADDLE_ENFORCE_LT(level, NumLevels()); PADDLE_ENFORCE_LT(elem, NumElements(level)); - return (lod_)[level][elem]; + return std::make_pair((lod_)[level][elem], (lod_)[level][elem + 1]); } /* diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc index 44f09f584f..e1e15abecf 100644 --- a/paddle/framework/lod_tensor_test.cc +++ b/paddle/framework/lod_tensor_test.cc @@ -30,8 +30,8 @@ class LoDTensorTester : public ::testing::Test { // 0 5 10 15 20 // 0 2 5 7 10 12 15 20 LoD lod; - lod.push_back(std::vector{0, 10, 20}); - lod.push_back(std::vector{0, 5, 10, 15, 20}); + lod.push_back(std::vector{0, 2, 3}); + lod.push_back(std::vector{0, 2, 5, 8}); lod.push_back(std::vector{0, 2, 5, 7, 10, 12, 15, 17, 20}); ASSERT_EQ(lod.size(), 3UL); @@ -52,14 +52,14 @@ TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); } TEST_F(LoDTensorTester, NumElements) { ASSERT_EQ(lod_tensor_.NumElements(0), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(1), 4UL); + ASSERT_EQ(lod_tensor_.NumElements(1), 3UL); ASSERT_EQ(lod_tensor_.NumElements(2), 8UL); } TEST_F(LoDTensorTester, NumElements2) { ASSERT_EQ(lod_tensor_.NumElements(0, 0), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(0, 1), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(1, 1), 2UL); + ASSERT_EQ(lod_tensor_.NumElements(0, 1), 1UL); + ASSERT_EQ(lod_tensor_.NumElements(1, 1), 3UL); } TEST_F(LoDTensorTester, ShrinkLevels) { @@ -68,17 +68,16 @@ TEST_F(LoDTensorTester, ShrinkLevels) { LoDTensor new_lod_tensor = lod_tensor_; new_lod_tensor.ShrinkLevels(level, level + 1); ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level)); ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); } // shrink 2 level for (size_t level = 0; level < 2UL; ++level) { LoDTensor new_lod_tensor = lod_tensor_; new_lod_tensor.ShrinkLevels(level, level + 2); + // the lowest level's last element should be the tensor's batch_size. + ASSERT_EQ(new_lod_tensor.lod().back().back(), + lod_tensor_.lod().back().back()); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level)); - ASSERT_EQ(new_lod_tensor.NumElements(1), - lod_tensor_.NumElements(level + 1)); ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); } } @@ -86,19 +85,19 @@ TEST_F(LoDTensorTester, ShrinkLevels) { TEST_F(LoDTensorTester, ShrinkInLevel) { size_t level = 0; LoDTensor new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkInLevel(level, 0, 2); + new_lod_tensor.ShrinkInLevel(level, 0, 1); EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL); - EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL); - EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL); - EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL); + EXPECT_EQ(new_lod_tensor.NumElements(0), 1UL); + EXPECT_EQ(new_lod_tensor.NumElements(1), 2UL); + EXPECT_EQ(new_lod_tensor.NumElements(2), 5UL); ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); level = 1; new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkInLevel(level, 0, 2); + new_lod_tensor.ShrinkInLevel(level, 1, 2); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); + ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL); + ASSERT_EQ(new_lod_tensor.NumElements(1), 3UL); ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); } diff --git a/paddle/framework/lod_tensor_test.cu b/paddle/framework/lod_tensor_test.cu index 647d07536d..25041024cb 100644 --- a/paddle/framework/lod_tensor_test.cu +++ b/paddle/framework/lod_tensor_test.cu @@ -36,8 +36,8 @@ TEST(LoDTensor, LoDInGPU) { lod_tensor.mutable_data(place); lod_tensor.set_lod(src_lod); - CHECK_EQ(lod_tensor.lod_element(0, 2), 4UL); - CHECK_EQ(lod_tensor.lod_element(0, 4), 8UL); + CHECK_EQ(lod_tensor.lod_element(0, 2).first, 4UL); + CHECK_EQ(lod_tensor.lod_element(0, 4).first, 8UL); auto lod = lod_tensor.lod(); diff --git a/paddle/framework/op_proto_maker.h b/paddle/framework/op_proto_maker.h index a134befd90..44e8ab1689 100644 --- a/paddle/framework/op_proto_maker.h +++ b/paddle/framework/op_proto_maker.h @@ -44,6 +44,11 @@ class OpProtoAndCheckerMaker { var_->set_intermediate(true); return *this; } + + VariableBuilder& AsDispensable() { + var_->set_dispensable(true); + return *this; + } }; VariableBuilder AddInput(const std::string& name, const std::string& comment); diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index 504afbd5db..c2f2438edf 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -43,12 +43,13 @@ static VariableNameMap ConvertOpDescVarsToVarNameMap( return ret_val; } -std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { +std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc, + ProgramDesc* program) { VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); AttributeMap attrs; for (auto& attr : op_desc.attrs()) { - attrs[attr.name()] = GetAttrValue(attr); + attrs[attr.name()] = GetAttrValue(attr, program); } return CreateOp(op_desc.type(), inputs, outputs, attrs); diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 0bda87dfa1..ed85c386ec 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -20,6 +20,8 @@ limitations under the License. */ #include #include #include + +#include "glog/logging.h" // For VLOG() #include "paddle/framework/attribute.h" #include "paddle/framework/details/op_registry.h" #include "paddle/framework/framework.pb.h" @@ -45,18 +47,15 @@ class Registrar { template struct OperatorRegistrar : public Registrar { - explicit OperatorRegistrar(const char* op_type) : op_type(op_type) { + explicit OperatorRegistrar(const char* op_type) { PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), "'%s' is registered more than once.", op_type); static_assert(sizeof...(ARGS) != 0, "OperatorRegistrar should be invoked at least by OpClass"); + OpInfo info; details::OperatorRegistrarRecursive<0, false, ARGS...>(op_type, &info); OpInfoMap::Instance().Insert(op_type, info); } - - const char* op_type; - - OpInfo info; }; class OpRegistry { @@ -77,7 +76,8 @@ class OpRegistry { const VariableNameMap& outputs, AttributeMap attrs); - static std::unique_ptr CreateOp(const OpDesc& op_desc); + static std::unique_ptr CreateOp(const OpDesc& op_desc, + ProgramDesc* program); static std::unique_ptr CreateOp(const OpDescBind& op_desc); }; diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index b860fe6cac..6289125d7c 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -74,7 +74,7 @@ TEST(OpRegistry, CreateOp) { attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_f(scale); - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); paddle::framework::Scope scope; paddle::platform::CPUDeviceContext dev_ctx; op->Run(scope, dev_ctx); @@ -95,7 +95,7 @@ TEST(OpRegistry, IllegalAttr) { bool caught = false; try { - paddle::framework::OpRegistry::CreateOp(op_desc); + paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = "larger_than check fail"; @@ -115,7 +115,7 @@ TEST(OpRegistry, DefaultValue) { ASSERT_TRUE(op_desc.IsInitialized()); - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); paddle::framework::Scope scope; paddle::platform::CPUDeviceContext dev_ctx; op->Run(scope, dev_ctx); @@ -131,7 +131,7 @@ TEST(OpRegistry, CustomChecker) { // attr 'test_attr' is not set bool caught = false; try { - paddle::framework::OpRegistry::CreateOp(op_desc); + paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = "Attribute 'test_attr' is required!"; @@ -149,7 +149,7 @@ TEST(OpRegistry, CustomChecker) { attr->set_i(3); caught = false; try { - paddle::framework::OpRegistry::CreateOp(op_desc); + paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = "'test_attr' must be even!"; @@ -166,7 +166,7 @@ TEST(OpRegistry, CustomChecker) { attr->set_name("test_attr"); attr->set_type(paddle::framework::AttrType::INT); attr->set_i(4); - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); paddle::platform::CPUDeviceContext dev_ctx; paddle::framework::Scope scope; op->Run(scope, dev_ctx); diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 2fca816f35..a67625fa88 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -252,5 +252,20 @@ std::ostream& operator<<(std::ostream& os, return os; } +bool OpSupportGPU(const std::string& op_type) { + auto& all_kernels = OperatorWithKernel::AllOpKernels(); + auto it = all_kernels.find(op_type); + if (it == all_kernels.end()) { + // All control operator must support GPU + return true; + } + for (auto& kern_pair : it->second) { + if (platform::is_gpu_place(kern_pair.first.place_)) { + return true; + } + } + return false; +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index cf15f9933a..0d0304ac9e 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -20,12 +20,13 @@ limitations under the License. */ #include #include -#include "op_info.h" +#include "glog/logging.h" // For VLOG #include "paddle/framework/attribute.h" #include "paddle/framework/block_desc.h" #include "paddle/framework/data_type.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" +#include "paddle/framework/op_info.h" #include "paddle/framework/scope.h" #include "paddle/framework/shape_inference.h" #include "paddle/framework/tensor.h" @@ -326,37 +327,47 @@ class CompileTimeInferShapeContext : public InferShapeContext { bool HasInput(const std::string& name) const override { const std::vector& input_names = op_.Input(name); auto length = input_names.size(); + if (length == 0) { + return false; + } PADDLE_ENFORCE_EQ(length, 1UL, "Input(%s) should have only one value, " "but it have %d now", name, length); - return block_.HasVar(input_names[0]); + return block_.HasVarRecursive(input_names[0]); } bool HasOutput(const std::string& name) const override { const std::vector& output_names = op_.Output(name); auto length = output_names.size(); + if (length == 0) { + return false; + } PADDLE_ENFORCE_EQ(length, 1UL, "Output(%s) should have only one value, " "but it have %d now", name, length); - return block_.HasVar(output_names[0]); + return block_.HasVarRecursive(output_names[0]); } bool HasInputs(const std::string& name) const override { const std::vector& input_names = op_.Input(name); - PADDLE_ENFORCE(!input_names.empty(), "Inputs(%s) length is 0", name); + if (input_names.empty()) { + return false; + } for (auto& input : input_names) { - if (!block_.HasVar(input)) return false; + if (!block_.HasVarRecursive(input)) return false; } return true; } bool HasOutputs(const std::string& name) const override { const std::vector& output_names = op_.Output(name); - PADDLE_ENFORCE(!output_names.empty(), "Inputs(%s) length is 0", name); + if (output_names.empty()) { + return false; + } for (auto& output : output_names) { - if (!block_.HasVar(output)) return false; + if (!block_.HasVarRecursive(output)) return false; } return true; } @@ -403,11 +414,11 @@ class CompileTimeInferShapeContext : public InferShapeContext { private: DDim GetDim(const std::string& name) const override { - return framework::make_ddim(block_.FindVar(name)->Shape()); + return framework::make_ddim(block_.FindVarRecursive(name)->Shape()); } void SetDim(const std::string& name, const DDim& dim) override { - block_.FindVar(name)->SetShape(framework::vectorize(dim)); + block_.FindVarRecursive(name)->SetShape(framework::vectorize(dim)); } const OpDescBind& op_; @@ -420,13 +431,27 @@ class RuntimeInferShapeContext : public InferShapeContext { : op_(op), scope_(scope) {} bool HasInput(const std::string& name) const override { - auto ipt = op_.Input(name); + auto& ins = Inputs(name); + size_t length = ins.size(); + if (length == 0) { + return false; + } + PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs", + name); + auto ipt = ins[0]; auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); return var != nullptr; } bool HasOutput(const std::string& name) const override { - auto ipt = op_.Output(name); + auto& outs = Outputs(name); + size_t length = outs.size(); + if (length == 0) { + return false; + } + PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs", + name); + auto ipt = outs[0]; auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); return var != nullptr; } @@ -573,6 +598,7 @@ class OperatorWithKernel : public OperatorBase { void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const final { + VLOG(3) << "Running operator " << this->Type(); RuntimeInferShapeContext infer_shape_ctx(*this, scope); this->InferShape(&infer_shape_ctx); @@ -647,5 +673,7 @@ class OperatorWithKernel : public OperatorBase { std::ostream& operator<<(std::ostream& os, const OperatorWithKernel::OpKernelKey& kernel_key); +extern bool OpSupportGPU(const std::string& op_type); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index d7890ac8d0..c358f1a2b6 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -83,7 +83,7 @@ TEST(OperatorBase, all) { paddle::platform::CPUDeviceContext device_context; paddle::framework::Scope scope; - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); scope.Var("OUT1"); ASSERT_EQ(paddle::framework::op_run_num, 0); op->Run(scope, device_context); @@ -208,7 +208,7 @@ TEST(OpKernel, all) { paddle::platform::CPUDeviceContext cpu_device_context; paddle::framework::Scope scope; - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0); op->Run(scope, cpu_device_context); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1); @@ -244,7 +244,7 @@ TEST(OpKernel, multi_inputs) { scope.Var("y0")->GetMutable(); scope.Var("y1")->GetMutable(); - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); op->Run(scope, cpu_device_context); } diff --git a/paddle/framework/program_desc.cc b/paddle/framework/program_desc.cc index fcb7292884..8e99bba811 100644 --- a/paddle/framework/program_desc.cc +++ b/paddle/framework/program_desc.cc @@ -18,27 +18,10 @@ limitations under the License. */ namespace paddle { namespace framework { -using ProgDescMap = - std::unordered_map>; -static ProgDescMap *g_bind_map = nullptr; - -ProgramDescBind &ProgramDescBind::Instance(ProgramDesc *prog) { - if (g_bind_map == nullptr) { - g_bind_map = new ProgDescMap(); - } - auto &map = *g_bind_map; - auto &ptr = map[prog]; - - if (ptr == nullptr) { - ptr.reset(new ProgramDescBind(prog)); - } - return *ptr; -} - BlockDescBind *ProgramDescBind::AppendBlock(const BlockDescBind &parent) { - auto *b = prog_->add_blocks(); + auto *b = prog_.add_blocks(); b->set_parent_idx(parent.ID()); - b->set_idx(prog_->blocks_size() - 1); + b->set_idx(prog_.blocks_size() - 1); blocks_.emplace_back(new BlockDescBind(this, b)); return blocks_.back().get(); } @@ -47,13 +30,22 @@ ProgramDesc *ProgramDescBind::Proto() { for (auto &block : blocks_) { block->Flush(); } - return prog_; + return &prog_; +} + +ProgramDescBind::ProgramDescBind() { + auto *block = prog_.mutable_blocks()->Add(); + block->set_idx(kRootBlockIndex); + block->set_parent_idx(kNoneBlockIndex); + blocks_.emplace_back(new BlockDescBind(this, block)); } -ProgramDescBind::ProgramDescBind(ProgramDesc *prog) { - prog_ = prog; - for (auto &block : *prog->mutable_blocks()) { - blocks_.emplace_back(new BlockDescBind(this, &block)); +ProgramDescBind::ProgramDescBind(const ProgramDescBind &o) { + prog_ = o.prog_; + + for (int i = 0; i < prog_.blocks_size(); ++i) { + auto *block = prog_.mutable_blocks(i); + blocks_.emplace_back(new BlockDescBind(*o.blocks_[i], block, this)); } } } // namespace framework diff --git a/paddle/framework/program_desc.h b/paddle/framework/program_desc.h index f29b1c54e7..dc4cd7cc73 100644 --- a/paddle/framework/program_desc.h +++ b/paddle/framework/program_desc.h @@ -17,6 +17,7 @@ limitations under the License. */ #include #include #include "paddle/framework/framework.pb.h" +#include "paddle/framework/proto_desc.h" #include "paddle/platform/macros.h" namespace paddle { @@ -26,7 +27,9 @@ class BlockDescBind; class ProgramDescBind { public: - static ProgramDescBind &Instance(ProgramDesc *prog); + ProgramDescBind(); + + ProgramDescBind(const ProgramDescBind &o); BlockDescBind *AppendBlock(const BlockDescBind &parent); @@ -37,14 +40,9 @@ class ProgramDescBind { ProgramDesc *Proto(); private: - explicit ProgramDescBind(ProgramDesc *prog); - - // Not owned - ProgramDesc *prog_; + ProgramDesc prog_; std::vector> blocks_; - - DISABLE_COPY_AND_ASSIGN(ProgramDescBind); }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/program_desc_test.cc b/paddle/framework/program_desc_test.cc new file mode 100644 index 0000000000..c9709a2d3f --- /dev/null +++ b/paddle/framework/program_desc_test.cc @@ -0,0 +1,83 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/program_desc.h" +#include "gtest/gtest.h" +#include "paddle/framework/block_desc.h" + +namespace paddle { +namespace framework { +TEST(ProgramDesc, copy_ctor) { + ProgramDescBind program; + auto* global_block = program.Block(0); + auto* x = global_block->Var("X"); + x->SetType(VarDesc_VarType_LOD_TENSOR); + x->SetLoDLevel(0); + x->SetDataType(FP32); + x->SetShape({1000, 784}); + + auto* y = global_block->Var("Y"); + y->SetType(VarDesc_VarType_LOD_TENSOR); + y->SetLoDLevel(0); + y->SetDataType(FP32); + y->SetShape({784, 100}); + + auto* op = global_block->AppendOp(); + op->SetType("mul"); + op->SetInput("X", {x->Name()}); + op->SetInput("Y", {y->Name()}); + + auto* out = global_block->Var("Out"); + out->SetType(VarDesc_VarType_LOD_TENSOR); + op->SetOutput("Y", {out->Name()}); + + ProgramDescBind program_copy(program); + + auto* global_block_copy = program_copy.Block(0); + ASSERT_NE(global_block, global_block_copy); + + auto assert_same_var = [&](const std::string& name, VarDescBind* var_before) { + ASSERT_TRUE(global_block_copy->HasVar(name)); + auto* copy = global_block_copy->Var(name); + ASSERT_NE(copy, var_before); + ASSERT_EQ(copy->Name(), var_before->Name()); + ASSERT_EQ(copy->GetType(), var_before->GetType()); + ASSERT_EQ(copy->Shape(), var_before->Shape()); + ASSERT_EQ(copy->Proto()->SerializeAsString(), + var_before->Proto()->SerializeAsString()); + }; + + ASSERT_EQ(global_block->LocalVarNames(), global_block_copy->LocalVarNames()); + ASSERT_EQ(3, global_block_copy->LocalVarNames().size()); + assert_same_var("X", x); + assert_same_var("Y", y); + assert_same_var("Out", out); + + for (size_t i = 0; i < global_block->OpSize(); ++i) { + auto op_origin = global_block->Op(i); + auto op_copy = global_block->Op(i); + + ASSERT_EQ(op_origin->Type(), op_copy->Type()); + ASSERT_EQ(op_origin->Inputs(), op_copy->Inputs()); + ASSERT_EQ(op_origin->Outputs(), op_copy->Outputs()); + + ASSERT_EQ(op_copy->Proto()->SerializeAsString(), + op_origin->Proto()->SerializeAsString()); + } + + // Not check block's protostr are same it because the order of vars could be + // different and it is correct. +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/proto_desc.h b/paddle/framework/proto_desc.h new file mode 100644 index 0000000000..fa01224fef --- /dev/null +++ b/paddle/framework/proto_desc.h @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +namespace paddle { +namespace framework { + +// The Index of first Block in Program. also called root block. +constexpr int kRootBlockIndex = 0; +// The Parent Index of root Block, this block does not exist. +constexpr int kNoneBlockIndex = -1; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/prune.cc b/paddle/framework/prune.cc new file mode 100644 index 0000000000..9583369292 --- /dev/null +++ b/paddle/framework/prune.cc @@ -0,0 +1,109 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/prune.h" + +#include +#include +#include +#include + +#include + +namespace paddle { +namespace framework { + +const std::string kFeedOpType = "feed"; +const std::string kFetchOpType = "fetch"; + +bool HasDependentVar(const OpDesc& op_desc, + const std::set& dependent_vars) { + for (auto& var : op_desc.outputs()) { + for (auto& argu : var.arguments()) { + if (dependent_vars.count(argu) != 0) { + return true; + } + } + } + return false; +} + +bool IsTarget(const OpDesc& op_desc) { + if (op_desc.has_is_target()) { + return op_desc.is_target(); + } + return false; +} + +void prune_impl(const ProgramDesc& input, ProgramDesc& output, int block_id) { + // TODO(tonyyang-svail): + // - will change to use multiple blocks for RNN op and Cond Op + + auto& block = input.blocks(block_id); + auto& ops = block.ops(); + + bool expect_feed = true; + for (auto& op_desc : ops) { + PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed, + "All FeedOps are at the beginning of the ProgramDesc"); + expect_feed = (op_desc.type() == kFeedOpType); + } + + bool expect_fetch = true; + for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { + auto& op_desc = *op_iter; + PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch, + "All FetchOps must at the end of the ProgramDesc"); + expect_fetch = (op_desc.type() == kFetchOpType); + } + + std::set dependent_vars; + std::vector should_run; + for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { + auto& op_desc = *op_iter; + + if (IsTarget(op_desc) || HasDependentVar(op_desc, dependent_vars)) { + // insert its input to the dependency graph + for (auto& var : op_desc.inputs()) { + for (auto& argu : var.arguments()) { + dependent_vars.insert(argu); + } + } + + should_run.push_back(true); + } else { + should_run.push_back(false); + } + } + + // since we are traversing the ProgramDesc in reverse order + // we reverse the should_run vector + std::reverse(should_run.begin(), should_run.end()); + + output = input; + auto* op_field = output.mutable_blocks(block_id)->mutable_ops(); + op_field->Clear(); + for (size_t i = 0; i < should_run.size(); ++i) { + if (should_run[i]) { + *op_field->Add() = input.blocks(block_id).ops(i); + } + } +} + +void Prune(const ProgramDesc& input, ProgramDesc& output) { + prune_impl(input, output, 0); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/prune.h b/paddle/framework/prune.h new file mode 100644 index 0000000000..9414ac64f9 --- /dev/null +++ b/paddle/framework/prune.h @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/framework.pb.h" +#include "paddle/platform/enforce.h" + +namespace paddle { +namespace framework { + +void Prune(const ProgramDesc& input, ProgramDesc& output); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/prune_test.cc b/paddle/framework/prune_test.cc new file mode 100644 index 0000000000..3ab4b43d92 --- /dev/null +++ b/paddle/framework/prune_test.cc @@ -0,0 +1,138 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/prune.h" + +#include "paddle/framework/attribute.h" +#include "paddle/framework/operator.h" +#include "paddle/operators/net_op.h" + +#include "paddle/framework/block_desc.h" +#include "paddle/framework/op_desc.h" +#include "paddle/framework/program_desc.h" + +#include + +namespace f = paddle::framework; +namespace ops = paddle::operators; + +void AddOp(const std::string &type, const f::VariableNameMap &inputs, + const f::VariableNameMap &outputs, f::AttributeMap attrs, + paddle::framework::BlockDescBind *block) { + // insert output + for (auto kv : outputs) { + for (auto v : kv.second) { + auto var = block->Var(v); + var->SetDataType(paddle::framework::DataType::FP32); + } + } + + // insert op + auto op = block->AppendOp(); + op->SetType(type); + for (auto &kv : inputs) { + op->SetInput(kv.first, kv.second); + } + for (auto &kv : outputs) { + op->SetOutput(kv.first, kv.second); + } + op->SetAttrMap(attrs); +} + +TEST(Prune, one_operator) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block); + + f::ProgramDesc *pdesc = program.Proto(); + f::ProgramDesc pruned; + + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 0); + + pdesc->mutable_blocks(0)->mutable_ops(0)->set_is_target(true); + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 1); +} + +TEST(Prune, forward) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, {}, block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, {}, block); + AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, {}, block); + + f::ProgramDesc *pdesc = program.Proto(); + + for (int i = 0; i < pdesc->blocks(0).ops_size(); ++i) { + f::ProgramDesc pruned; + pdesc->mutable_blocks(0)->mutable_ops(i)->set_is_target(true); + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), i + 1); + } +} + +TEST(Prune, multi_input_op) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, {}, block); + AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, {}, block); + AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, {}, block); + AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}}, {}, + block); + + f::ProgramDesc *pdesc = program.Proto(); + pdesc->mutable_blocks(0)->mutable_ops(3)->set_is_target(true); + + f::ProgramDesc pruned; + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 4); +} + +TEST(Prune, multi_output_op) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block); + + f::ProgramDesc *pdesc = program.Proto(); + pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true); + + f::ProgramDesc pruned; + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 2); +} + +TEST(Prune, multi_target) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block); + + f::ProgramDesc *pdesc = program.Proto(); + pdesc->mutable_blocks(0)->mutable_ops(1)->set_is_target(true); + pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true); + + f::ProgramDesc pruned; + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 3); +} diff --git a/paddle/framework/scope.cc b/paddle/framework/scope.cc index 5bf5e91f25..ac3ac649f9 100644 --- a/paddle/framework/scope.cc +++ b/paddle/framework/scope.cc @@ -65,12 +65,11 @@ void Scope::DropKids() { kids_.clear(); } -framework::Scope& GetGlobalScope() { - static framework::Scope* g_scope = nullptr; - if (g_scope == nullptr) { - g_scope = new framework::Scope(); - } - return *g_scope; +void Scope::DeleteScope(Scope* scope) { + auto it = std::find(this->kids_.begin(), this->kids_.end(), scope); + PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope); + this->kids_.erase(it); + delete scope; } } // namespace framework diff --git a/paddle/framework/scope.h b/paddle/framework/scope.h index a7fce3514b..7206b53068 100644 --- a/paddle/framework/scope.h +++ b/paddle/framework/scope.h @@ -59,6 +59,8 @@ class Scope { /// Find the scope or an ancestor scope that contains the given variable. const Scope* FindScope(const Variable* var) const; + void DeleteScope(Scope* scope); + /// Drop all kids scopes belonged to this scope. void DropKids(); @@ -72,8 +74,5 @@ class Scope { DISABLE_COPY_AND_ASSIGN(Scope); }; - -framework::Scope& GetGlobalScope(); - } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 04a1106a4a..e0a6c8e131 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -60,6 +60,10 @@ class Tensor { template inline T* mutable_data(platform::Place place); + inline void* mutable_data(platform::Place place, std::type_index type); + + inline void* mutable_data(platform::Place place); + /** * @brief Return a pointer to mutable memory block. * @@ -81,7 +85,6 @@ class Tensor { inline Tensor& Resize(const DDim& dims); /*! The internal of two tensors share the same memory block. */ - template inline Tensor& ShareDataWith(const Tensor& src); /** @@ -96,26 +99,9 @@ class Tensor { // TODO(qijun): https://github.com/PaddlePaddle/Paddle/issues/4647 // Remove `CopyFrom` and `CopyFromVector` from Tensor interface // and make them global functions - template inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, const platform::DeviceContext& ctx); - // FIXME(yuyang18): CopyFrom should without template T, use the replace - // `CopyFrom` with `CopyFromTensor` - inline void CopyFromTensor(const Tensor& src, - const platform::Place& dst_place, - const platform::DeviceContext& ctx) { - // NOLINTNEXTLINES_8 cpplint.py will recognize below lines as functions. - // That is a bug of cpplint.py. Just ignore lint these lines. - if (src.type() == std::type_index(typeid(double))) { - CopyFrom(src, dst_place, ctx); - } else if (src.type() == std::type_index(typeid(float))) { - CopyFrom(src, dst_place, ctx); - } else if (src.type() == std::type_index(typeid(int))) { - CopyFrom(src, dst_place, ctx); - } - } - /** * @brief Copy the content of an external vector to a tensor. * @@ -137,7 +123,6 @@ class Tensor { * @param[in] end_idx The index of the end row(exclusive) to slice. * The index number begins from 0. */ - template inline Tensor Slice(const int& begin_idx, const int& end_idx) const; platform::Place place() const { @@ -149,7 +134,6 @@ class Tensor { std::type_index type() const { return holder_->type(); } private: - template inline void check_memory_size() const; private: @@ -158,20 +142,22 @@ class Tensor { * parameter of Variable. */ struct Placeholder { - virtual ~Placeholder() {} + virtual ~Placeholder() = default; virtual void* ptr() const = 0; virtual size_t size() const = 0; virtual std::type_index type() const = 0; virtual platform::Place place() const = 0; + virtual void set_type(std::type_index type) = 0; }; - template + template struct PlaceholderImpl : public Placeholder { - PlaceholderImpl(Place place, size_t size) - : ptr_(static_cast(memory::Alloc(place, size)), - memory::PODDeleter(place)), + PlaceholderImpl(Place place, size_t size, std::type_index type) + : ptr_(static_cast(memory::Alloc(place, size)), + memory::PODDeleter(place)), place_(place), - size_(size) { + size_(size), + type_(type) { PADDLE_ENFORCE_NOT_NULL(ptr_, "Insufficient %s memory to allocation.", (is_cpu_place(place_) ? "CPU" : "GPU")); } @@ -179,16 +165,20 @@ class Tensor { virtual size_t size() const { return size_; } virtual platform::Place place() const { return place_; } virtual void* ptr() const { return static_cast(ptr_.get()); } - virtual std::type_index type() const { return std::type_index(typeid(T)); } + virtual std::type_index type() const { return type_; } + virtual void set_type(std::type_index type) { type_ = type; } /*! the pointer of memory block. */ - std::unique_ptr> ptr_; + std::unique_ptr> ptr_; /*! the place of memory block. */ platform::Place place_; /*! the size of memory block. */ size_t size_; + + /* the current type of memory */ + std::type_index type_; }; /*! holds the memory block if allocated. */ diff --git a/paddle/framework/tensor_array.cc b/paddle/framework/tensor_array.cc index 06459cbfd7..4c82c36383 100644 --- a/paddle/framework/tensor_array.cc +++ b/paddle/framework/tensor_array.cc @@ -106,8 +106,8 @@ void TensorArray::Write(size_t index, const LoDTensor& value) { values_[index].Resize(value.dims()); values_[index].mutable_data(platform::CPUPlace()); - values_[index].CopyFrom(value, platform::CPUPlace(), - platform::CPUDeviceContext()); + values_[index].CopyFrom(value, platform::CPUPlace(), + platform::CPUDeviceContext()); } void TensorArray::WriteShared(size_t index, const LoDTensor& value) { @@ -116,7 +116,7 @@ void TensorArray::WriteShared(size_t index, const LoDTensor& value) { values_.resize(index + 1); } - values_[index].ShareDataWith(value); + values_[index].ShareDataWith(value); } LoDTensor TensorArray::Pack(size_t level, const std::vector& meta, @@ -163,9 +163,9 @@ LoDTensor TensorArray::Stack() const { result.mutable_data(platform::CPUPlace()); for (size_t idx = 0; idx < size(); idx++) { - result.Slice(idx, idx + 1) - .CopyFrom(Read(idx), platform::CPUPlace(), - platform::CPUDeviceContext()); + result.Slice(idx, idx + 1) + .CopyFrom(Read(idx), platform::CPUPlace(), + platform::CPUDeviceContext()); } return result; } @@ -191,13 +191,12 @@ void TensorArray::Unstack(const LoDTensor& source, bool data_shared) const { auto& value = values_[elem]; if (data_shared) { // share memory - value.ShareDataWith(source.Slice(elem, elem + 1)); + value.ShareDataWith(source.Slice(elem, elem + 1)); } else { // copy value.Resize(value_dims); - value.CopyFrom(source.Slice(elem, elem + 1), - platform::CPUPlace(), - platform::CPUDeviceContext()); + value.CopyFrom(source.Slice(elem, elem + 1), platform::CPUPlace(), + platform::CPUDeviceContext()); } } } @@ -242,11 +241,10 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) { for (size_t i = 0; i < indice.size(); i++) { auto index = indice[i]; - auto target = result.Slice(i, i + 1); - auto slice = source->Slice(index, index + 1); + auto target = result.Slice(i, i + 1); + auto slice = source->Slice(index, index + 1); - target.CopyFrom(slice, platform::CPUPlace(), - platform::CPUDeviceContext()); + target.CopyFrom(slice, platform::CPUPlace(), platform::CPUDeviceContext()); } return result; @@ -277,10 +275,10 @@ LoDTensor PackDynamicBatch(const std::vector& source, // target is result[index] auto index = seq_meta.begin + batch_id; if (index >= seq_meta.end) break; - auto source_ = source[batch_id].Slice(seq_id, seq_id + 1); - auto target = result.Slice(index, index + 1); - target.CopyFrom(source_, platform::CPUPlace(), - platform::CPUDeviceContext()); + auto source_ = source[batch_id].Slice(seq_id, seq_id + 1); + auto target = result.Slice(index, index + 1); + target.CopyFrom(source_, platform::CPUPlace(), + platform::CPUDeviceContext()); } } diff --git a/paddle/framework/tensor_array_test.cc b/paddle/framework/tensor_array_test.cc index d9f52509cd..9470ac5e6e 100644 --- a/paddle/framework/tensor_array_test.cc +++ b/paddle/framework/tensor_array_test.cc @@ -91,7 +91,7 @@ class TensorArrayPackTester : public ::testing::Test { size_t begin = level[i]; size_t end = level[i + 1]; for (size_t j = begin; j < end; j++) { - auto record = source.Slice(j, j + 1); + auto record = source.Slice(j, j + 1); for (int dim = 0; dim < 128; dim++) { record.mutable_data(platform::CPUPlace())[dim] = j - begin; } diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index 635a84f415..9090ff9532 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -19,12 +19,50 @@ limitations under the License. */ namespace paddle { namespace framework { +template +struct SizeOfTypeFunctor; + template +struct SizeOfTypeFunctor { + size_t operator()(std::type_index type) const { + if (typeid(T).hash_code() == type.hash_code()) { + return sizeof(T); + } else { + return 0UL; + } + } +}; + +template <> +struct SizeOfTypeFunctor<> { + size_t operator()(std::type_index type) const { return 0UL; } +}; + +template +struct SizeOfTypeFunctor { + size_t operator()(std::type_index type) const { + SizeOfTypeFunctor head; + size_t head_size = head(type); + if (head_size != 0) { + return head_size; + } + SizeOfTypeFunctor tail; + return tail(type); + } +}; + +static inline size_t SizeOfType(std::type_index type) { + SizeOfTypeFunctor functor; + size_t size = functor(type); + PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name()); + return size; +} + inline void Tensor::check_memory_size() const { PADDLE_ENFORCE_NOT_NULL( holder_, "Tensor holds no memory. Call Tensor::mutable_data first."); PADDLE_ENFORCE_GE( - holder_->size(), numel() * sizeof(T) + offset_, + holder_->size(), numel() * SizeOfType(type()) + offset_, "Tensor's dims_ is out of bound. Call Tensor::mutable_data " "first to re-allocate memory.\n" "or maybe the required data-type mismatches the data already stored."); @@ -32,14 +70,23 @@ inline void Tensor::check_memory_size() const { template inline const T* Tensor::data() const { - check_memory_size(); + check_memory_size(); + PADDLE_ENFORCE(std::is_same::value || + holder_->type().hash_code() == typeid(T).hash_code(), + "Tensor holds the wrong type, it holds %s", + this->holder_->type().name()); + return reinterpret_cast( reinterpret_cast(holder_->ptr()) + offset_); } template inline T* Tensor::data() { - check_memory_size(); + check_memory_size(); + PADDLE_ENFORCE(std::is_same::value || + holder_->type().hash_code() == typeid(T).hash_code(), + "Tensor holds the wrong type, it holds %s", + this->holder_->type().name()); return reinterpret_cast(reinterpret_cast(holder_->ptr()) + offset_); } @@ -54,51 +101,62 @@ inline T* Tensor::mutable_data(DDim dims, platform::Place place) { template inline T* Tensor::mutable_data(platform::Place place) { static_assert(std::is_pod::value, "T must be POD"); + return reinterpret_cast(mutable_data(place, typeid(T))); +} + +inline void* Tensor::mutable_data(platform::Place place, std::type_index type) { + if (holder_ != nullptr) { + holder_->set_type(type); + } PADDLE_ENFORCE_GT(numel(), 0, "Tensor's numel must be larger than zero to call " "Tensor::mutable_data. Call Tensor::set_dim first."); + int64_t size = numel() * SizeOfType(type); /* some versions of boost::variant don't have operator!= */ - int64_t size = numel() * sizeof(T); if (holder_ == nullptr || !(holder_->place() == place) || holder_->size() < size + offset_) { if (platform::is_cpu_place(place)) { - holder_.reset(new PlaceholderImpl( - boost::get(place), size)); + holder_.reset(new PlaceholderImpl( + boost::get(place), size, type)); } else if (platform::is_gpu_place(place)) { #ifndef PADDLE_WITH_CUDA PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); } #else - holder_.reset(new PlaceholderImpl( - boost::get(place), size)); + holder_.reset(new PlaceholderImpl( + boost::get(place), size, type)); } #endif offset_ = 0; } - return reinterpret_cast(reinterpret_cast(holder_->ptr()) + - offset_); + return reinterpret_cast(reinterpret_cast(holder_->ptr()) + + offset_); +} + +inline void* Tensor::mutable_data(platform::Place place) { + PADDLE_ENFORCE(this->holder_ != nullptr, + "Cannot invoke mutable data if current hold nothing"); + return mutable_data(place, holder_->type()); } -template inline Tensor& Tensor::ShareDataWith(const Tensor& src) { - src.check_memory_size(); + src.check_memory_size(); *this = src; return *this; } -template inline void Tensor::CopyFrom(const Tensor& src, const platform::Place& dst_place, const platform::DeviceContext& ctx) { - src.check_memory_size(); + src.check_memory_size(); Resize(src.dims()); auto src_place = src.holder_->place(); - auto src_ptr = static_cast(src.data()); + auto src_ptr = src.data(); - auto dst_ptr = static_cast(mutable_data(dst_place)); + auto dst_ptr = mutable_data(dst_place, src.type()); - auto size = src.numel() * sizeof(T); + auto size = src.numel() * SizeOfType(src.type()); if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) { memory::Copy(boost::get(dst_place), dst_ptr, @@ -165,9 +223,8 @@ inline void Tensor::CopyFromVector(const std::vector& src, #endif } -template inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { - check_memory_size(); + check_memory_size(); PADDLE_ENFORCE_GE(begin_idx, 0, "The start row index must be greater than 0."); PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of bound."); @@ -183,7 +240,7 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { DDim dst_dims = dims_; dst_dims[0] = end_idx - begin_idx; dst.Resize(dst_dims); - dst.offset_ = offset_ + begin_idx * base * sizeof(T); + dst.offset_ = offset_ + begin_idx * base * SizeOfType(type()); return dst; } } @@ -197,10 +254,9 @@ inline const DDim& Tensor::dims() const { return dims_; } inline int64_t Tensor::numel() const { return product(dims_); } -template inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) { Tensor res; - res.ShareDataWith(src); + res.ShareDataWith(src); res.Resize(flatten_to_2d(src.dims(), num_col_dims)); return res; } diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index 0b62fe08ce..1bb0fb71b0 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -108,7 +108,7 @@ TEST(Tensor, ShareDataWith) { // Try to share data form uninitialized tensor bool caught = false; try { - dst_tensor.ShareDataWith(src_tensor); + dst_tensor.ShareDataWith(src_tensor); } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = @@ -122,7 +122,7 @@ TEST(Tensor, ShareDataWith) { ASSERT_TRUE(caught); src_tensor.mutable_data(make_ddim({2, 3, 4}), CPUPlace()); - dst_tensor.ShareDataWith(src_tensor); + dst_tensor.ShareDataWith(src_tensor); ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } @@ -131,7 +131,7 @@ TEST(Tensor, ShareDataWith) { Tensor src_tensor; Tensor dst_tensor; src_tensor.mutable_data(make_ddim({2, 3, 4}), GPUPlace()); - dst_tensor.ShareDataWith(src_tensor); + dst_tensor.ShareDataWith(src_tensor); ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } #endif @@ -143,7 +143,7 @@ TEST(Tensor, Slice) { { Tensor src_tensor; src_tensor.mutable_data(make_ddim({5, 3, 4}), CPUPlace()); - Tensor slice_tensor = src_tensor.Slice(1, 3); + Tensor slice_tensor = src_tensor.Slice(1, 3); DDim slice_dims = slice_tensor.dims(); ASSERT_EQ(arity(slice_dims), 3); EXPECT_EQ(slice_dims[0], 2); @@ -167,7 +167,7 @@ TEST(Tensor, Slice) { { Tensor src_tensor; src_tensor.mutable_data(make_ddim({6, 9}), GPUPlace()); - Tensor slice_tensor = src_tensor.Slice(2, 6); + Tensor slice_tensor = src_tensor.Slice(2, 6); DDim slice_dims = slice_tensor.dims(); ASSERT_EQ(arity(slice_dims), 2); EXPECT_EQ(slice_dims[0], 4); @@ -202,7 +202,7 @@ TEST(Tensor, CopyFrom) { memcpy(src_ptr, arr, 9 * sizeof(int)); auto cpu_place = new paddle::platform::CPUPlace(); - dst_tensor.CopyFrom(src_tensor, *cpu_place, cpu_ctx); + dst_tensor.CopyFrom(src_tensor, *cpu_place, cpu_ctx); const int* dst_ptr = dst_tensor.data(); ASSERT_NE(src_ptr, dst_ptr); @@ -210,8 +210,8 @@ TEST(Tensor, CopyFrom) { EXPECT_EQ(src_ptr[i], dst_ptr[i]); } - Tensor slice_tensor = src_tensor.Slice(1, 2); - dst_tensor.CopyFrom(slice_tensor, *cpu_place, cpu_ctx); + Tensor slice_tensor = src_tensor.Slice(1, 2); + dst_tensor.CopyFrom(slice_tensor, *cpu_place, cpu_ctx); const int* slice_ptr = slice_tensor.data(); dst_ptr = dst_tensor.data(); ASSERT_NE(dst_ptr, slice_ptr); @@ -233,11 +233,11 @@ TEST(Tensor, CopyFrom) { // CPU Tensor to GPU Tensor auto gpu_place = new paddle::platform::GPUPlace(0); CUDADeviceContext gpu_ctx(*gpu_place); - gpu_tensor.CopyFrom(src_tensor, *gpu_place, gpu_ctx); + gpu_tensor.CopyFrom(src_tensor, *gpu_place, gpu_ctx); // GPU Tensor to CPU Tensor auto cpu_place = new paddle::platform::CPUPlace(); - dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); + dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -247,13 +247,13 @@ TEST(Tensor, CopyFrom) { EXPECT_EQ(src_ptr[i], dst_ptr[i]); } - Tensor slice_tensor = src_tensor.Slice(1, 2); + Tensor slice_tensor = src_tensor.Slice(1, 2); // CPU Slice Tensor to GPU Tensor - gpu_tensor.CopyFrom(slice_tensor, *gpu_place, gpu_ctx); + gpu_tensor.CopyFrom(slice_tensor, *gpu_place, gpu_ctx); // GPU Tensor to CPU Tensor - dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); + dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); // Sync before Compare Slice Tensors gpu_ctx.Wait(); @@ -320,7 +320,7 @@ TEST(Tensor, CopyFromVector) { CUDADeviceContext gpu_ctx(*gpu_place); gpu_tensor.CopyFromVector(src_vec, gpu_ctx); // Copy from GPU to CPU tensor for comparison - dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); + dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -340,7 +340,7 @@ TEST(Tensor, CopyFromVector) { cpu_tensor.CopyFromVector(src_vec, cpu_ctx); gpu_tensor.Resize(make_ddim({2, 2})); gpu_tensor.CopyFromVector(src_vec, gpu_ctx); - dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); + dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -368,7 +368,7 @@ TEST(Tensor, ReshapeToMatrix) { for (int i = 0; i < 2 * 3 * 4 * 9; ++i) { src_ptr[i] = i; } - Tensor res = ReshapeToMatrix(src, 2); + Tensor res = ReshapeToMatrix(src, 2); ASSERT_EQ(res.dims()[0], 2 * 3); ASSERT_EQ(res.dims()[1], 4 * 9); } diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h index 688a46f839..af4c26ca0a 100644 --- a/paddle/framework/var_desc.h +++ b/paddle/framework/var_desc.h @@ -79,6 +79,10 @@ class VarDescBind { void SetType(VarDesc::VarType type) { desc_.set_type(type); } + bool Persistable() const { return desc_.persistable(); } + + void SetPersistable(bool persistable) { desc_.set_persistable(persistable); } + private: const TensorDesc &tensor_desc() const; TensorDesc *mutable_tensor_desc(); diff --git a/paddle/framework/var_type_inference_test.cc b/paddle/framework/var_type_inference_test.cc index 87399208e9..918de1fd05 100644 --- a/paddle/framework/var_type_inference_test.cc +++ b/paddle/framework/var_type_inference_test.cc @@ -62,7 +62,7 @@ namespace paddle { namespace framework { TEST(InferVarType, sum_op) { - auto &prog = ProgramDescBind::Instance(&GetProgramDesc()); + ProgramDescBind prog; auto *op = prog.Block(0)->AppendOp(); op->SetType("sum"); op->SetInput("X", {"test_a", "test_b", "test_c"}); @@ -83,7 +83,7 @@ TEST(InferVarType, sum_op) { } TEST(InferVarType, sum_op_without_infer_var_type) { - auto &prog = ProgramDescBind::Instance(&GetProgramDesc()); + ProgramDescBind prog; auto *op = prog.Block(0)->AppendOp(); op->SetType("sum_without_infer_var_type"); op->SetInput("X", {"test2_a", "test2_b", "test2_c"}); diff --git a/paddle/framework/variable.h b/paddle/framework/variable.h index 38fc2720a3..a80f0e66b5 100644 --- a/paddle/framework/variable.h +++ b/paddle/framework/variable.h @@ -25,7 +25,10 @@ class Variable { public: template const T& Get() const { - PADDLE_ENFORCE(IsType(), "Variable must be type %s", typeid(T).name()); + PADDLE_ENFORCE(holder_ != nullptr, "Variable must hold some thing"); + PADDLE_ENFORCE(IsType(), + "Variable must be type %s, the holding type is %s", + typeid(T).name(), holder_->Type().name()); return *static_cast(holder_->Ptr()); } diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index dcf0acb5a2..dbadc352a4 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -21,6 +21,10 @@ limitations under the License. */ #include "paddle/utils/Logging.h" #include "paddle/utils/Stat.h" +#ifdef PADDLE_USE_MKLDNN +#include "paddle/gserver/layers/MKLDNNLayer.h" +#endif + #ifndef PADDLE_MOBILE_INFERENCE #include "MultiNetwork.h" #include "RecurrentGradientMachine.h" @@ -300,6 +304,17 @@ void NeuralNetwork::backward(const UpdateCallback& callback) { } } +void NeuralNetwork::finish() { +#ifdef PADDLE_USE_MKLDNN + FOR_EACH_R(layer, layers_) { + MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast(*layer); + if (dnnLayer) { + dnnLayer->convertWeightsToPaddle(); + } + } +#endif +} + Argument NeuralNetwork::getLayerOutput(const std::string& layerName) { return getLayer(layerName)->getOutput(); } diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.h b/paddle/gserver/gradientmachines/NeuralNetwork.h index 56a1ec7846..6888380290 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.h +++ b/paddle/gserver/gradientmachines/NeuralNetwork.h @@ -134,6 +134,9 @@ public: const std::string& getName() const { return subModelName_; } + /// some finish work, like convert the weight format of MKLDNNLayers + void finish(); + protected: /** * The constructor of NeuralNetwork. diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp index 8b67a1ef4f..26810a6483 100644 --- a/paddle/gserver/layers/MKLDNNConvLayer.cpp +++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp @@ -313,6 +313,7 @@ void MKLDNNConvLayer::resetOutValue( cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); CHECK(cvtOutVal_) << "should not be empty"; } else { + cpuOut->setData(output_.value->getData()); cpuOutVal_ = out; } // when output is cpu device, change the mkldnn output value and make them @@ -456,17 +457,18 @@ void MKLDNNConvLayer::resetOutGrad( MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc()); } else { const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; + // always share the same grad data of CPU output + // then the activation can get the right grad from output_.grad + output_.grad->setData(cpuOut->getData()); // same PrimitiveDesc with cpuInVal_ CHECK(cpuOutVal_); cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc()); // create reorder if primitive desc does not match if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) { - out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc()); + out = MKLDNNMatrix::create(nullptr, outVal_->getPrimitiveDesc()); cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); CHECK(cvtOutGrad_); } else { - // share the same data of CPU output - output_.grad->setData(cpuOut->getData()); out = cpuOutGrad_; } } diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index 5f9923da76..4e2753eba2 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -46,6 +46,9 @@ protected: // backward also need reset after reset forward handle bool needResetBwd_; + // is output only mkldnn + bool outputOnlyMKLDNN_; + // mkldnn engine, stream and primivtives mkldnn::engine engine_; std::shared_ptr stream_; @@ -141,6 +144,9 @@ public: updateInputData(); } + if (!outputOnlyMKLDNN_) { + clearGrads(); + } stream_->submit(pipelineFwd_); } @@ -389,7 +395,8 @@ protected: CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE) << "Only support other device is CPU yet"; } - return outputOtherDevice_.size() == 0; + outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0; + return outputOnlyMKLDNN_; } /** @@ -398,6 +405,16 @@ protected: void setDevice(int id) { deviceId_ = id; } private: + /** + * clear all grad + */ + void clearGrads() { + output_.grad->zeroMem(); + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + outputOtherDevice_[i].grad->zeroMem(); + } + } + /** * Set deviceId of the params used in this layer. */ diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.cpp b/paddle/gserver/layers/MKLDNNPoolLayer.cpp index 5606aae80c..0e53e2d1b7 100644 --- a/paddle/gserver/layers/MKLDNNPoolLayer.cpp +++ b/paddle/gserver/layers/MKLDNNPoolLayer.cpp @@ -146,6 +146,7 @@ void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) { cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); CHECK(cvtOutVal_) << "should not be emptry"; } else { + cpuOut->setData(output_.value->getData()); cpuOutVal_ = out; } output_.value = std::dynamic_pointer_cast(cpuOutVal_); @@ -213,15 +214,16 @@ void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) { MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc()); } else { const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; + // always share the same grad data of CPU output + // then the activation can get the right grad from output_.grad + output_.grad->setData(cpuOut->getData()); cpuOutGrad_ = MKLDNNMatrix::create( cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_); if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) { - out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc()); + out = MKLDNNMatrix::create(nullptr, outVal_->getPrimitiveDesc()); cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); CHECK(cvtOutGrad_) << "should not be emptry"; } else { - // share the same data of CPU output - output_.grad->setData(cpuOut->getData()); out = cpuOutGrad_; } } diff --git a/paddle/gserver/tests/CMakeLists.txt b/paddle/gserver/tests/CMakeLists.txt index fcee19415c..329536afaf 100644 --- a/paddle/gserver/tests/CMakeLists.txt +++ b/paddle/gserver/tests/CMakeLists.txt @@ -26,7 +26,10 @@ if(WITH_MKLDNN) test_MKLDNN.cpp MKLDNNTester.cpp LayerGradUtil.cpp) - add_test(NAME test_MKLDNN COMMAND test_MKLDNN) + add_test(NAME test_MKLDNN + COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python + ${CMAKE_CURRENT_BINARY_DIR}/test_MKLDNN + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) endif() ################ test_CRFLayerGrad #################### diff --git a/paddle/gserver/tests/MKLDNNTester.cpp b/paddle/gserver/tests/MKLDNNTester.cpp index eaebdd671c..3bf6a9e176 100644 --- a/paddle/gserver/tests/MKLDNNTester.cpp +++ b/paddle/gserver/tests/MKLDNNTester.cpp @@ -15,6 +15,7 @@ limitations under the License. */ #include "MKLDNNTester.h" #include "paddle/gserver/layers/MKLDNNBase.h" #include "paddle/gserver/layers/MKLDNNLayer.h" +#include "paddle/trainer/Trainer.h" namespace paddle { @@ -315,6 +316,7 @@ void MKLDNNTester::runOnce() { auto& value = para->getBuf(PARAMETER_VALUE); real lr = 1e-3; value->add(*grad, lr); + grad->zeroMem(); }; randomTopDiffs(); dnnLayer_->backward(updateCallback); @@ -411,4 +413,143 @@ void MKLDNNTester::run(const TestConfig& dnn, } } +void MKLDNNTester::initArgument(DataIn& data, + const std::string& configPath, + const size_t iter) { + TrainerConfigHelper config(configPath); + size_t batchSize = config.getOptConfig().batch_size(); + data.inArgs.resize(iter); + data.outGrads.resize(iter); + data.paraValues.clear(); + for (const auto& layer_name : config.getModelConfig().input_layer_names()) { + auto layer_config = std::find_if(config.getModelConfig().layers().begin(), + config.getModelConfig().layers().end(), + [=](const LayerConfig& layer_config) { + return layer_config.name() == layer_name; + }); + CHECK(layer_config != config.getModelConfig().layers().end()); + + size_t layerSize = layer_config->size(); + for (size_t i = 0; i < iter; ++i) { + Argument arg; + arg.value = Matrix::create(batchSize, layerSize, false, false); + arg.grad = Matrix::create(batchSize, layerSize, false, false); + arg.value->randomizeUniform(); + arg.value->add(-0.5); + arg.value->sigmoid(*arg.value); + arg.grad->zeroMem(); + arg.ids = VectorT::create(batchSize, false); + arg.ids->rand(layerSize); + generateSequenceStartPositions(batchSize, arg.sequenceStartPositions); + data.inArgs[i].push_back(arg); + } + } + + for (const auto& layer_name : config.getModelConfig().output_layer_names()) { + auto layer_config = std::find_if(config.getModelConfig().layers().begin(), + config.getModelConfig().layers().end(), + [=](const LayerConfig& layer_config) { + return layer_config.name() == layer_name; + }); + CHECK(layer_config != config.getModelConfig().layers().end()); + + size_t layerSize = layer_config->size(); + for (size_t i = 0; i < iter; ++i) { + MatrixPtr grad = Matrix::create(batchSize, layerSize, false, false); + grad->randomizeUniform(); + data.outGrads[i].push_back(grad); + } + } + + for (const auto& para_config : config.getModelConfig().parameters()) { + VectorPtr value = Vector::create(para_config.size(), false); + value->randnorm(0, 2); + data.paraValues.push_back(value); + } +} + +void MKLDNNTester::getOutResult(const std::string& configPath, + DataIn& in, + DataOut& out, + bool use_mkldnn, + size_t iter) { + FLAGS_use_gpu = false; + FLAGS_use_mkldnn = use_mkldnn; + *ThreadLocalRand::getSeed() = 1; + srand(1); + + Trainer trainer; + auto config = std::make_shared(configPath); + trainer.init(config, false); + auto gradientMachine = trainer.getGradientMachine(); + std::vector parameters = gradientMachine->getParameters(); + for (size_t i = 0; i < in.paraValues.size(); i++) { + parameters[i]->getBuf(PARAMETER_VALUE)->copyFrom(*in.paraValues[i]); + } + UpdateCallback simpleUpdate = [](Parameter* para) { + auto& grad = para->getBuf(PARAMETER_GRADIENT); + auto& value = para->getBuf(PARAMETER_VALUE); + real lr = 1e-2; + value->add(*grad, lr); + grad->zeroMem(); + }; + + vector outArgs; + gradientMachine->start(); + out.outValues.clear(); + out.paraValues.clear(); + for (size_t i = 0; i < iter; ++i) { + VLOG(MKLDNN_TESTS) << "runing iteration " << i; + gradientMachine->forward(in.inArgs[i], &outArgs, PASS_TRAIN); + // save forward result + for (size_t k = 0; k < outArgs.size(); k++) { + MatrixPtr value = Matrix::create(outArgs[k].value->getHeight(), + outArgs[k].value->getWidth(), + false, + false); + value->copyFrom(*outArgs[k].value); + out.outValues.push_back(value); + } + + // random backward input + for (size_t k = 0; k < outArgs.size(); k++) { + outArgs[k].grad->copyFrom(*in.outGrads[i][k]); + } + gradientMachine->backward(simpleUpdate); + } + gradientMachine->finish(); + + // save param value + for (size_t i = 0; i < in.paraValues.size(); i++) { + VectorPtr val = Vector::create( + parameters[i]->getBuf(PARAMETER_VALUE)->getSize(), false); + val->copyFrom(*parameters[i]->getBuf(PARAMETER_VALUE)); + out.paraValues.push_back(val); + } +} + +void MKLDNNTester::compareResult(DataOut& ref, DataOut& dnn, float eps) { + CHECK_EQ(ref.outValues.size(), dnn.outValues.size()); + CHECK_EQ(ref.paraValues.size(), dnn.paraValues.size()); + for (size_t i = 0; i < ref.outValues.size(); i++) { + EXPECT_LE(fabs(compareMatrix(ref.outValues[i], dnn.outValues[i])), eps); + } + for (size_t i = 0; i < ref.paraValues.size(); i++) { + EXPECT_LE(fabs(compareVector(ref.paraValues[i], dnn.paraValues[i])), eps); + } +} + +void MKLDNNTester::runBranchesTest(const std::string& configPath, + size_t iter, + float eps) { + DataIn in; + initArgument(in, configPath, iter); + + DataOut outCpu, outDnn; + getOutResult(configPath, in, outCpu, false, iter); + getOutResult(configPath, in, outDnn, true, iter); + + compareResult(outCpu, outDnn, eps); +} + } // namespace paddle diff --git a/paddle/gserver/tests/MKLDNNTester.h b/paddle/gserver/tests/MKLDNNTester.h index 171d176ee7..51abfcb67e 100644 --- a/paddle/gserver/tests/MKLDNNTester.h +++ b/paddle/gserver/tests/MKLDNNTester.h @@ -33,6 +33,17 @@ class MKLDNNTester { NUM = 2, // Number of total }; + struct DataIn { + std::vector> inArgs; + std::vector> outGrads; + std::vector paraValues; + }; + + struct DataOut { + std::vector outValues; + std::vector paraValues; + }; + protected: std::vector configs_; vector layerNames_; @@ -74,7 +85,17 @@ public: float epsilon = 1e-4, bool log = false, int level = MKLDNN_ALL); - void setLogLevel(int lvl) { lvl_ = lvl; } + static void runBranchesTest(const std::string& configPath, + size_t iter = 3, + float eps = 1e-4); + static void initArgument(DataIn& data, + const std::string& configPath, + size_t iter = 3); + static void getOutResult(const std::string& configPath, + DataIn& in, + DataOut& out, + bool use_mkldnn, + size_t iter = 3); private: void reset(const TestConfig& dnn, const TestConfig& ref, size_t batchSize); @@ -101,8 +122,9 @@ private: void saveWgt(const vector& from, vector& to); void restoreWgt(const vector& from, vector& to); - double compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2); - double compareVector(const VectorPtr& v1, const VectorPtr& v2); + static double compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2); + static double compareVector(const VectorPtr& v1, const VectorPtr& v2); + static void compareResult(DataOut& ref, DataOut& dnn, float eps = 1e-4); /** * Get delta percent @@ -111,11 +133,11 @@ private: * else return sum(abs(a-b)) / sum(abs(b)) * The return value should be smaller than eps when passing. */ - double getDelta(const real* d1, - const real* d2, - size_t len, - const float failRate = 1e-3, - const float thres = 0.1); + static double getDelta(const real* d1, + const real* d2, + size_t len, + const float failRate = 1e-3, + const float thres = 0.1); }; } // namespace paddle diff --git a/paddle/gserver/tests/mkldnn_branches_conv.conf b/paddle/gserver/tests/mkldnn_branches_conv.conf new file mode 100644 index 0000000000..2628509db4 --- /dev/null +++ b/paddle/gserver/tests/mkldnn_branches_conv.conf @@ -0,0 +1,56 @@ +# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +settings(batch_size=16) +channels = get_config_arg("channels", int, 2) + +def two_conv(input, group_name): + out1 = img_conv_layer(input=input, + name=group_name+'_conv1', + filter_size=1, + num_filters=channels, + padding=0, + shared_biases=True, + act=ReluActivation()) + + out2 = img_conv_layer(input=input, + name=group_name+'_conv2', + filter_size=3, + num_filters=channels, + padding=1, + shared_biases=True, + act=ReluActivation()) + return out1, out2 + +data = data_layer(name ="input", size=channels*16*16) + +conv = img_conv_layer(input=data, + num_channels=channels, + filter_size=3, + num_filters=channels, + padding=1, + shared_biases=True, + act=ReluActivation()) + +a1, a2 = two_conv(input=conv, group_name='a') + +concat = concat_layer(input=[a1, a2]) + +b1, b2 = two_conv(input=conv, group_name='b') + +addto = addto_layer(input=[b1, b2]) + +outputs([concat, addto]) diff --git a/paddle/gserver/tests/mkldnn_branches_fc.conf b/paddle/gserver/tests/mkldnn_branches_fc.conf new file mode 100644 index 0000000000..fb85425c2b --- /dev/null +++ b/paddle/gserver/tests/mkldnn_branches_fc.conf @@ -0,0 +1,58 @@ +# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +settings(batch_size=16) +channels = get_config_arg("channels", int, 2) + +def two_fc(input, group_name): + out1 = fc_layer(input=input, + name=group_name+'_fc1', + size=channels, + bias_attr=False, + act=LinearActivation()) + + out2 = fc_layer(input=input, + name=group_name+'_fc2', + size=channels, + bias_attr=False, + act=LinearActivation()) + return out1, out2 + +data = data_layer(name ="input", size=channels*16*16) + +conv = img_conv_layer(input=data, + num_channels=channels, + filter_size=3, + num_filters=channels, + padding=1, + shared_biases=True, + act=LinearActivation()) + +pool = img_pool_layer(input=conv, + pool_size=3, + stride=2, + padding=1, + pool_type=AvgPooling()) + +a1, a2 = two_fc(input=pool, group_name='a') + +concat = concat_layer(input=[a1, a2]) + +b1, b2 = two_fc(input=pool, group_name='b') + +addto = addto_layer(input=[b1, b2]) + +outputs([concat, addto]) diff --git a/paddle/gserver/tests/mkldnn_branches_pool.conf b/paddle/gserver/tests/mkldnn_branches_pool.conf new file mode 100644 index 0000000000..ca17c74752 --- /dev/null +++ b/paddle/gserver/tests/mkldnn_branches_pool.conf @@ -0,0 +1,60 @@ +# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +settings(batch_size=16) +channels = get_config_arg("channels", int, 2) + +def two_pool(input, group_name): + out1 = img_pool_layer(input=input, + name=group_name+'_pool1', + pool_size=3, + stride=2, + padding=0, + pool_type=MaxPooling()) + + out2 = img_pool_layer(input=input, + name=group_name+'_pool2', + pool_size=5, + stride=2, + padding=1, + pool_type=MaxPooling()) + return out1, out2 + +data = data_layer(name ="input", size=channels*16*16) + +conv = img_conv_layer(input=data, + num_channels=channels, + filter_size=3, + num_filters=channels, + padding=1, + shared_biases=True, + act=LinearActivation()) + +pool = img_pool_layer(input=conv, + pool_size=3, + stride=1, + padding=1, + pool_type=AvgPooling()) + +a1, a2 = two_pool(input=pool, group_name='a') + +concat = concat_layer(input=[a1, a2]) + +b1, b2 = two_pool(input=pool, group_name='b') + +addto = addto_layer(input=[b1, b2]) + +outputs([concat, addto]) diff --git a/paddle/gserver/tests/test_MKLDNN.cpp b/paddle/gserver/tests/test_MKLDNN.cpp index a70b2f17f4..6cb4ca5e08 100644 --- a/paddle/gserver/tests/test_MKLDNN.cpp +++ b/paddle/gserver/tests/test_MKLDNN.cpp @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include +#include #include #include #include "MKLDNNTester.h" @@ -40,12 +41,13 @@ DECLARE_bool(use_mkldnn); struct testFcDesc { int bs; int ic; - int oc; int ih, iw; // oh == ow == 1 + int oc; }; static void getMKLDNNFcConfig(TestConfig& cfg, const testFcDesc& pm) { cfg.layerConfig.set_type("mkldnn_fc"); + cfg.layerConfig.set_active_type("relu"); cfg.layerConfig.set_size(pm.oc); cfg.inputDefs.push_back( {INPUT_DATA, @@ -86,6 +88,7 @@ struct testConvDesc { static void getMKLDNNConvConfig(TestConfig& cfg, const testConvDesc& pm) { cfg.layerConfig.set_type("mkldnn_conv"); + cfg.layerConfig.set_active_type("relu"); cfg.layerConfig.set_num_filters(pm.oc); cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow); cfg.layerConfig.set_shared_biases(true); @@ -158,6 +161,7 @@ struct testPoolDesc { static void getMKLDNNPoolConfig(TestConfig& cfg, const testPoolDesc& pm) { cfg.layerConfig.set_type("mkldnn_pool"); + cfg.layerConfig.set_active_type("relu"); cfg.layerConfig.set_size(pm.ic * pm.oh * pm.ow); cfg.inputDefs.push_back( {INPUT_DATA, @@ -244,13 +248,26 @@ TEST(MKLDNNActivation, Activations) { } } -// TODO(TJ): add branch test +DECLARE_string(config_args); +TEST(MKLDNNLayer, branches) { + std::vector cases = {"conv", "pool", "fc"}; + for (auto name : cases) { + std::string config = "./gserver/tests/mkldnn_branches_" + name + ".conf"; + for (auto channels : {2, 32}) { + std::ostringstream oss; + oss << "channels=" << channels; + FLAGS_config_args = oss.str(); + MKLDNNTester::runBranchesTest(config); + } + } +} int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); FLAGS_use_gpu = false; FLAGS_use_mkldnn = true; initMain(argc, argv); + initPython(argc, argv); FLAGS_thread_local_rand_use_global_seed = true; srand(1); return RUN_ALL_TESTS(); diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc index 037bb49abc..e0a00ecaf0 100644 --- a/paddle/operators/accuracy_op.cc +++ b/paddle/operators/accuracy_op.cc @@ -69,5 +69,8 @@ information, or not. But the output only shares the LoD with input `Inference`. namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(accuracy, ops::AccuracyOp, ops::AccuracyOpMaker); -REGISTER_OP_CPU_KERNEL(accuracy, - ops::AccuracyKernel); +REGISTER_OP_CPU_KERNEL( + accuracy, ops::AccuracyKernel, + ops::AccuracyKernel, + ops::AccuracyKernel, + ops::AccuracyKernel); diff --git a/paddle/operators/accuracy_op.cu b/paddle/operators/accuracy_op.cu index 0ca9ef941d..54e6ab99dc 100644 --- a/paddle/operators/accuracy_op.cu +++ b/paddle/operators/accuracy_op.cu @@ -21,9 +21,9 @@ namespace paddle { namespace operators { using platform::PADDLE_CUDA_NUM_THREADS; -template -__global__ void AccuracyCudaKernel(const int N, const int D, const int* Xdata, - const int* labeldata, float* accuracy) { +template +__global__ void AccuracyCudaKernel(const int N, const int D, const T* Xdata, + const T* labeldata, float* accuracy) { int count = 0; __shared__ int total[BlockSize]; @@ -57,8 +57,8 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { auto* accuracy = ctx.Output("Accuracy"); // FIXME(typhoonzero): only support indices currently // if add support for output values, how to detect the data type? - const int* inference_data = inference->data(); - const int* label_data = label->data(); + const T* inference_data = inference->data(); + const T* label_data = label->data(); float* accuracy_data = accuracy->mutable_data(ctx.GetPlace()); size_t num_samples = inference->dims()[0]; @@ -69,7 +69,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { return; } - AccuracyCudaKernel<<< + AccuracyCudaKernel<<< 1, PADDLE_CUDA_NUM_THREADS, 0, reinterpret_cast( ctx.device_context()) @@ -81,5 +81,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(accuracy, - paddle::operators::AccuracyOpCUDAKernel); +REGISTER_OP_GPU_KERNEL(accuracy, paddle::operators::AccuracyOpCUDAKernel, + paddle::operators::AccuracyOpCUDAKernel, + paddle::operators::AccuracyOpCUDAKernel, + paddle::operators::AccuracyOpCUDAKernel); diff --git a/paddle/operators/adam_op.cc b/paddle/operators/adam_op.cc index e3db70ea12..3572de06bd 100644 --- a/paddle/operators/adam_op.cc +++ b/paddle/operators/adam_op.cc @@ -43,10 +43,6 @@ class AdamOp : public framework::OperatorWithKernel { "Output(Moment1Out) of AdamOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"), "Output(Moment2Out) of AdamOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Beta1PowOut"), - "Output(Beta1PowOut) of AdamOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Beta2PowOut"), - "Output(Beta2PowOut) of AdamOp should not be null."); auto lr_dims = ctx->GetInputDim("LearningRate"); PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, @@ -72,8 +68,6 @@ class AdamOp : public framework::OperatorWithKernel { ctx->SetOutputDim("ParamOut", param_dims); ctx->SetOutputDim("Moment1Out", param_dims); ctx->SetOutputDim("Moment2Out", param_dims); - ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims); - ctx->SetOutputDim("Beta2PowOut", beta2_pow_dims); } }; @@ -92,8 +86,6 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker { AddOutput("ParamOut", "(Tensor) Output parameter"); AddOutput("Moment1Out", "(Tensor) Output first moment"); AddOutput("Moment2Out", "(Tensor) Output second moment"); - AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator"); - AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator"); AddAttr("beta1", "(float, default 0.9) " @@ -121,10 +113,8 @@ Adam updates: moment1_out = beta1 * moment1 + (1 − beta1) * grad moment2_out = beta2 * moment2 + (1 − beta2) * grad * grad -beta1_pow_out = beta1_pow * beta1 -beta2_pow_out = beta2_pow * beta2 learning_rate_t = learning_rate_t * - sqrt(1 - beta2_pow_out) / (1 - beta1_pow_out) + sqrt(1 - beta2_pow) / (1 - beta1_pow) param_out = param - learning_rate_t * moment1/ (sqrt(moment2) + epsilon) References: diff --git a/paddle/operators/adam_op.h b/paddle/operators/adam_op.h index 789c2f14b3..45938006db 100644 --- a/paddle/operators/adam_op.h +++ b/paddle/operators/adam_op.h @@ -26,14 +26,10 @@ class AdamOpKernel : public framework::OpKernel { auto param_out_tensor = ctx.Output("ParamOut"); auto moment1_out_tensor = ctx.Output("Moment1Out"); auto moment2_out_tensor = ctx.Output("Moment2Out"); - auto beta1_pow_out_tensor = ctx.Output("Beta1PowOut"); - auto beta2_pow_out_tensor = ctx.Output("Beta2PowOut"); param_out_tensor->mutable_data(ctx.GetPlace()); moment1_out_tensor->mutable_data(ctx.GetPlace()); moment2_out_tensor->mutable_data(ctx.GetPlace()); - beta1_pow_out_tensor->mutable_data(ctx.GetPlace()); - beta2_pow_out_tensor->mutable_data(ctx.GetPlace()); float beta1 = ctx.Attr("beta1"); float beta2 = ctx.Attr("beta2"); @@ -56,18 +52,13 @@ class AdamOpKernel : public framework::OpKernel { auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment1_out = framework::EigenVector::Flatten(*moment1_out_tensor); auto moment2_out = framework::EigenVector::Flatten(*moment2_out_tensor); - auto beta1_pow_out = - framework::EigenVector::Flatten(*beta1_pow_out_tensor); - auto beta2_pow_out = - framework::EigenVector::Flatten(*beta2_pow_out_tensor); auto place = ctx.GetEigenDevice(); moment1_out.device(place) = beta1 * moment1 + (1 - beta1) * grad; moment2_out.device(place) = beta2 * moment2 + (1 - beta2) * grad.square(); - beta1_pow_out.device(place) = beta1_pow * beta1; - beta2_pow_out.device(place) = beta2_pow * beta2; + // All of these are tensors of 1 element - auto lr_t = lr * (1 - beta2_pow_out).sqrt() / (1 - beta1_pow_out); + auto lr_t = lr * (1 - beta2_pow).sqrt() / (1 - beta1_pow); // Eigen does not support automatic broadcast // Get dimensions of moment vector to broadcast lr_t Eigen::DSizes m_dsize(moment1_out_tensor->numel()); diff --git a/paddle/operators/adamax_op.cc b/paddle/operators/adamax_op.cc index e848333ef8..ff25657741 100644 --- a/paddle/operators/adamax_op.cc +++ b/paddle/operators/adamax_op.cc @@ -41,8 +41,6 @@ class AdamaxOp : public framework::OperatorWithKernel { "Output(MomentOut) of AdamaxOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("InfNormOut"), "Output(InfNormOut) of AdamaxOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Beta1PowOut"), - "Output(Beta1PowOut) of AdamaxOp should not be null."); auto lr_dims = ctx->GetInputDim("LearningRate"); PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, @@ -64,7 +62,6 @@ class AdamaxOp : public framework::OperatorWithKernel { ctx->SetOutputDim("ParamOut", param_dims); ctx->SetOutputDim("MomentOut", param_dims); ctx->SetOutputDim("InfNormOut", param_dims); - ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims); } }; @@ -86,7 +83,6 @@ class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker { AddOutput("InfNormOut", "(Tensor) " "Output exponentially weighted infinity norm"); - AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator"); AddAttr("beta1", "(float, default 0.9) " @@ -113,8 +109,7 @@ Adamax updates: moment_out = beta1 * moment + (1 - beta1) * grad inf_norm_out = max(beta2 * inf_norm + epsilon, abs(grad)) -beta1_pow_out = beta1_pow * beta1 -learning_rate_t = learning_rate/(1 - beta1_pow_out) +learning_rate_t = learning_rate/(1 - beta1_pow) param_out = param - learning_rate_t * moment_out/inf_norm_out The original paper does not have an epsilon attribute. diff --git a/paddle/operators/adamax_op.h b/paddle/operators/adamax_op.h index 9677b1bb78..2c99832ec0 100644 --- a/paddle/operators/adamax_op.h +++ b/paddle/operators/adamax_op.h @@ -26,12 +26,10 @@ class AdamaxOpKernel : public framework::OpKernel { auto param_out_tensor = ctx.Output("ParamOut"); auto moment_out_tensor = ctx.Output("MomentOut"); auto inf_norm_out_tensor = ctx.Output("InfNormOut"); - auto beta1_pow_out_tensor = ctx.Output("Beta1PowOut"); param_out_tensor->mutable_data(ctx.GetPlace()); moment_out_tensor->mutable_data(ctx.GetPlace()); inf_norm_out_tensor->mutable_data(ctx.GetPlace()); - beta1_pow_out_tensor->mutable_data(ctx.GetPlace()); float beta1 = ctx.Attr("beta1"); float beta2 = ctx.Attr("beta2"); @@ -53,15 +51,12 @@ class AdamaxOpKernel : public framework::OpKernel { auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); auto inf_norm_out = framework::EigenVector::Flatten(*inf_norm_out_tensor); - auto beta1_pow_out = - framework::EigenVector::Flatten(*beta1_pow_out_tensor); auto place = ctx.GetEigenDevice(); moment_out.device(place) = beta1 * moment + (1 - beta1) * grad; inf_norm_out.device(place) = grad.abs().cwiseMax((beta2 * inf_norm) + epsilon); - beta1_pow_out.device(place) = beta1_pow * beta1; - auto lr_t = lr / (1 - beta1_pow_out); + auto lr_t = lr / (1 - beta1_pow); Eigen::DSizes m_dsize(moment_out_tensor->numel()); param_out.device(place) = param - lr_t.broadcast(m_dsize) * (moment_out / inf_norm_out); diff --git a/paddle/operators/batch_norm_op.md b/paddle/operators/batch_norm_op.md new file mode 100644 index 0000000000..80948adf2b --- /dev/null +++ b/paddle/operators/batch_norm_op.md @@ -0,0 +1,134 @@ +# Batch Normalization + +## What is batch normalization + +Batch normalization is a frequently-used method in deep network training. It adjusts the mean and variance of a layer's output, and make the data distribution easier for next layer's training. + +The principle of batch normalization can be summarized into a simple function: + +``` +y = (x - E[x]) / STD[x]) * scale + bias +``` + +`x` is a batch of output data of a certain layer. `E[x]` and `STD[x]` is the mean and standard deviation of `x`, respectively。 `scale` and `bias` are two trainable parameters. The training of batch normalization layer equals to the learning of best values of `scale` and `bias`. + +In our design, we use a single operator(`batch_norm_op`) to implement the whole batch normalization in C++, and wrap it as a layer in Python. + +## Differences with normal operators + +`batch_norm_op` is a single operator. However, there are a few differences between `BatchNormOp` and normal operators, which we shall take into consideration in our design. + +1. `batch_norm_op` shall behave differently in training and inferencing. For example, during inferencing, there is no batch data and it's impossible to compute `E[x]` and `STD[x]`, so we have to use an `estimated_mean` and an `estimated_variance` instead of them. These require our framework to be able to inform operators current running type (training/inferencing), then operators can switch their behaviors. + +2. `batch_norm_op` shall have the ability to maintain `estimated_mean` and `estimated_variance` across mini-batch. In each mini-batch, `estimated_mean` is iterated by the following equations: + +``` +if batch_id == 0 + estimated_mean = E[x] +else + estimated_mean = estimated_mean * momentum + (1.0 - momentum_) * E[x] +``` + +The iterating of `estimated_variance` is similar. `momentum` is an attribute, which controls estimated_mean updating speed. + +## Implementation + +Batch normalization is designed as a single operator is C++, and then wrapped as a layer in Python. + +### C++ + +As most C++ operators do, `batch_norm_op` is defined by inputs, outputs, attributes and compute kernels. + +#### Inputs + +- `x`: The inputs data, which is generated by the previous layer. +- `estimated_mean`: The estimated mean of all previous data batches. It is updated in each forward propagation and will be used in inferencing to take the role of `E[x]`. +- `estimated_var`: The estimated standard deviation of all previous data batches. It is updated in each forward propagation and will be used in inferencing to take the role of `STD[x]`. +- `scale`: trainable parameter 'scale' +- `bias`: trainable parameter 'bias' + +#### Outputs + +- `y`: The output data. +- `batch_mean`: The mean value of batch data. +- `batch_var`: The standard deviation value of batch data. +- `saved_mean`: Updated `estimated_mean` with current batch data. It's supposed to share the memory with input `estimated_mean`. +- `saved_var`: Updated `estimated_var` with current batch data. It's supposed to share the memory with input `estimated_var`. + +#### Attributes + +- `is_infer`: *bool*. If true, run `batch_norm_op` in inferencing mode. +- `use_global_est`: *bool*. If true, use `saved_mean` and `saved_var` instead of `E[x]` and `STD[x]` in trainning. +- `epsilon`: *float*. The epsilon value to avoid division by zero. +- `momentum`: *float*. Factor used in `estimated_mean` and `estimated_var` updating. The usage is shown above. + +#### Kernels + +The following graph showes the training computational process of `batch_norm_op`: + + + +cudnn provides APIs to finish the whole series of computation, we can use them in our GPU kernel. + +### Python + +`batch_norm_op` is warpped as a layer in Python: + +```python +def batch_norm_layer(net, + input, + output, + scale, + bias, + use_global_est = False, + epsilon = 1e-6, + momentum = 0.99): + mean_cache = scope.new_var(name = 'estimated_mean', trainable = False) + var_cache = scop.new_var(name = 'estimated_var', trainable = False) + batch_mean = scope.new_var(name = 'batch_mean') + batch_var = scope.new_var(name = 'batch_var') + batch_norm_op = Operator('batch_norm_op', + x = input, + estimated_mean = mean_cache, + estimated_mean = var_cache, + scale = scale, + bias = bias, + y = output, + batch_mean = batch_mean, + batch_var = batch_var, + saved_mean = mean_cache, + saved_var = var_cache, + is_infer = False, + use_global_est = use_global_est, + epsilon = epsilon, + momentum = momentum) + net.append_op(batch_norm_op) + return output +``` + +Because Python API has not been finally decided, the code above can be regarded as pseudo code. There are a few key points we shall note: + +1. `estimated_mean` and `estimated_var` are assigned the same variables with `saved_mean` and `saved_var` respectively. So they share same the memories. The output mean and variance values(`saved_mean` and `saved_var`) of a certain batch will be the inputs(`estimated_mean` and `estimated_var`) of the next batch. + +2. `is_infer` decided whether `batch_norm_op` will run in training mode or inferencing mode. However, a network may contains both training and inferencing parts. And user may switch `batch_norm_op`'s running mode in Python `for` loop like this: + +```python +for pass_id in range(PASS_NUM): + # ... + net.train() # run training model + if pass_id % 100 == 0: + net.infer(test_image) # run inferencing model + # ... +``` + +`is_infer` is an attribute. Once an operator is created, its attributes can not be changed. It suggests us that we shall maintain two `batch_norm_op` in the model, one's `is_infer` is `True`(we call it `infer_batch_norm_op`) and the other one's is `False`(we call it `train_batch_norm_op`). They share all parameters and variables, but be placed in two different branches. That is to say, if a network contains a `batch_norm_op`, it will fork into two branches, one go through `train_batch_norm_op` and the other one go through `infer_batch_norm_op`: + +
+ +
+ +Just like what is shown in the above graph, the net forks before `batch_norm_op` and will never merge again. All the operators after `batch_norm_op` will duplicate. + +When the net runs in training mode, the end of the left branch will be set as the running target, so the dependency tracking process will ignore right branch automatically. When the net runs in inferencing mode, the process is reversed. + +How to set a target is related to Python API design, so I will leave it here waiting for more discussions. diff --git a/paddle/operators/clip_op.cc b/paddle/operators/clip_op.cc index 2d029394dd..f80204c683 100644 --- a/paddle/operators/clip_op.cc +++ b/paddle/operators/clip_op.cc @@ -27,8 +27,8 @@ class ClipOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of ClipOp should not be null."); auto x_dims = ctx->GetInputDim("X"); - auto max = Attr("max"); - auto min = Attr("min"); + auto max = ctx->Attrs().Get("max"); + auto min = ctx->Attrs().Get("min"); PADDLE_ENFORCE_LT(min, max, "max should be greater than min."); ctx->SetOutputDim("Out", x_dims); ctx->ShareLoD("X", /*->*/ "Out"); diff --git a/paddle/operators/conv2d_op.h b/paddle/operators/conv2d_op.h index bd1734879e..f629728f68 100644 --- a/paddle/operators/conv2d_op.h +++ b/paddle/operators/conv2d_op.h @@ -108,17 +108,17 @@ class GemmConv2DKernel : public framework::OpKernel { int in_step = input_channels / groups; int out_step = output_channels / groups; for (int i = 0; i < batch_size; i++) { - Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); - Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); + Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; g++) { // im2col - Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); + Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); im2col(context.device_context(), in_slice, col, strides[0], strides[1], paddings[0], paddings[1]); // gemm - Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); - Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); + Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), filter_slice, false, col_matrix, false, T(1.0), &out_slice, T(0.0)); } @@ -198,22 +198,20 @@ class GemmConvGrad2DKernel : public framework::OpKernel { for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = - output_grad->Slice(i, i + 1).Resize(output_matrix_shape); - Tensor in_grad_batch = - input_grad->Slice(i, i + 1).Resize(input_shape); + output_grad->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // gemm Tensor out_grad_slice = - out_grad_batch.Slice(g * out_step, (g + 1) * out_step); - Tensor filter_slice = - filter.Slice(g * out_step, (g + 1) * out_step); + out_grad_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), filter_slice, true, out_grad_slice, false, T(1.0), &col_matrix, T(0.0)); // col2im Tensor in_grad_slice = - in_grad_batch.Slice(g * in_step, (g + 1) * in_step); + in_grad_batch.Slice(g * in_step, (g + 1) * in_step); col2im(context.device_context(), in_grad_slice, col, strides[0], strides[1], paddings[0], paddings[1]); } @@ -229,19 +227,19 @@ class GemmConvGrad2DKernel : public framework::OpKernel { for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = - output_grad->Slice(i, i + 1).Resize(output_matrix_shape); - Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); + output_grad->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // im2col Tensor out_grad_slice = - out_grad_batch.Slice(g * out_step, (g + 1) * out_step); - Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); + out_grad_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); im2col(context.device_context(), in_slice, col, strides[0], strides[1], paddings[0], paddings[1]); // gemm Tensor filter_grad_slice = - filter_grad_.Slice(g * out_step, (g + 1) * out_step); + filter_grad_.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), out_grad_slice, false, col_matrix, true, T(1.0), &filter_grad_slice, T(1.0)); diff --git a/paddle/operators/dynamic_recurrent_op.cc b/paddle/operators/dynamic_recurrent_op.cc index 03f33e28d4..a0b06ac1dc 100644 --- a/paddle/operators/dynamic_recurrent_op.cc +++ b/paddle/operators/dynamic_recurrent_op.cc @@ -23,6 +23,7 @@ using framework::Scope; using framework::TensorArray; using framework::LoDTensor; using framework::Variable; +using framework::OperatorBase; using framework::DySeqMetaBatch; namespace detail { @@ -43,72 +44,72 @@ inline void CreateVariables(Scope& scope, * be reordered, but the RNN op should not change the `boot_state` as an input * variable's content. */ -template -inline void ReorderBootState(const DySeqMetaBatch& metas, - const LoDTensor& boot_state, LoDTensor* tensor, - const platform::Place& dst_place) { +inline void ReorderInitialState(const DySeqMetaBatch& metas, + const LoDTensor& boot_state, LoDTensor* tensor, + const platform::Place& dst_place) { for (size_t seq_id = 0; seq_id < metas.size(); seq_id++) { - auto slice = tensor->Slice(seq_id, seq_id + 1); + auto slice = tensor->Slice(seq_id, seq_id + 1); auto boot_slice = - boot_state.Slice(metas[seq_id].ori_idx, metas[seq_id].ori_idx + 1); + boot_state.Slice(metas[seq_id].ori_idx, metas[seq_id].ori_idx + 1); // TODO(superjom) pass in device context as an argument - slice.template CopyFrom(boot_slice, dst_place, - platform::CPUDeviceContext()); + slice.CopyFrom(boot_slice, dst_place, platform::CPUDeviceContext()); } } -} // namespace detail - -class DynamicRecurrentOpProtoAndCheckerMaker - : public framework::OpProtoAndCheckerMaker { - public: - DynamicRecurrentOpProtoAndCheckerMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - const auto& name = DynamicRecurrentOp::kArgName; - // inputs and outputs stored in proto - AddInput(name.inlinks, - "the inputs that need to be segmented for each step.") - .AsDuplicable(); - AddInput(name.boot_memories, "variables to initialize memories.") - .AsDuplicable(); - - AddOutput(name.outlinks, "the outputs that need to concated for all steps.") - .AsDuplicable(); - AddOutput(name.step_scopes, "step scopes"); - - // Attributes stored in AttributeMap - AddAttr>(name.pre_memories, - "names of pre-memories"); - AddAttr>(name.memories, "names of memories"); - - AddComment("This is a RNN operator for varience-length sequences."); +inline void RestoreInitialState(const DySeqMetaBatch& metas, + const LoDTensor& tensor, LoDTensor* boot_state, + const platform::Place& dst_place) { + for (size_t seq_id = 0; seq_id < metas.size(); seq_id++) { + auto slice = tensor.Slice(seq_id, seq_id + 1); + auto boot_slice = + boot_state->Slice(metas[seq_id].ori_idx, metas[seq_id].ori_idx + 1); + boot_slice.CopyFrom(slice, dst_place, platform::CPUDeviceContext()); } -}; +} -void DynamicRecurrentOp::Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const { - cache_.Init(kArgName, *this, scope, &arg_); +} // namespace detail + +// Implementation for forward propagation. +template <> +void RNNAlgorithm::Run( + const framework::Scope& scope, const framework::OperatorBase& op, + const platform::DeviceContext& dev_ctx) { + SetComputeMode(ComputeMode::kForward); + cache_.Init(kArgNames[mode_], op, scope, &dev_ctx, &arg_); SplitInputs(); CreateScopes(); WriteStepInputs(); InitStates(); WriteStepOutputs(); + RunSteps(); + ConcatOutputs(); +} - // call stepnet in all the time steps - for (size_t step = 0; step < cache_.num_steps; step++) { - auto& step_scope = cache_.GetScope(step); - stepnet_->Run(step_scope, dev_ctx); +// Implementation for backward propagation. +template <> +void RNNAlgorithm::Run( + const framework::Scope& scope, const framework::OperatorBase& op, + const platform::DeviceContext& dev_ctx) { + SetComputeMode(ComputeMode::kBackward); + cache_.Init(kArgNames[mode_], op, scope, &dev_ctx, &arg_); + SplitInputs(); + WriteStepInputs(); + InitStates(); + WriteStepOutputs(); + RunSteps(); + // copy boot-states' gradients back. + for (const auto& state : arg_.states) { + ExportInitialStateGradient(state); } ConcatOutputs(); } -void DynamicRecurrentOp::SplitInputs() const { +void RNNAlgorithm::SplitInputs() { // TODO(superjom) make level a config // TODO(superjom) check all the inputs has the same LoD int level = 0; - for (const auto& item : cache_.inlinks) { + for (const auto& item : cache_.inputs) { const auto& var = item.second; const auto& tensor = var->Get(); TensorArray& ta = step_inputs_[item.first]; @@ -125,8 +126,8 @@ void DynamicRecurrentOp::SplitInputs() const { } } -void DynamicRecurrentOp::WriteStepInputs() const { - for (const auto& item : cache_.inlinks) { +void RNNAlgorithm::WriteStepInputs() { + for (const auto& item : cache_.inputs) { auto ta_it = step_inputs_.find(item.first); PADDLE_ENFORCE(ta_it != step_inputs_.end(), "step_inputs_ not compatible with memory set"); @@ -138,20 +139,20 @@ void DynamicRecurrentOp::WriteStepInputs() const { if (var == nullptr) { var = step_scope.Var(item.first); } - var->GetMutable()->ShareDataWith(tensor); + var->GetMutable()->ShareDataWith(tensor); } } } -void DynamicRecurrentOp::WriteStepOutputs() const { +void RNNAlgorithm::WriteStepOutputs() { // initialize step outputs - for (const auto& item : cache_.outlinks) { + for (const auto& item : cache_.outputs) { step_outputs_.emplace(item.first, TensorArray()); } PADDLE_ENFORCE_GT(step_outputs_.size(), 0UL); } -void DynamicRecurrentOp::CreateScopes() const { +void RNNAlgorithm::CreateScopes() { PADDLE_ENFORCE_GT(cache_.num_steps, 0); // resize scopes size_t num_scopes_need_create = cache_.num_steps - cache_.scopes->size(); @@ -160,19 +161,19 @@ void DynamicRecurrentOp::CreateScopes() const { } // init temporary inputs - PADDLE_ENFORCE_NOT_NULL(stepnet_, "stepnet should be set first"); - std::vector memories; - std::vector pre_memories; - std::vector stepnet_outputs; - std::transform(arg_.memories.begin(), arg_.memories.end(), - std::back_inserter(memories), - [](const rnn::MemoryAttr& m) { return m.var; }); - std::transform(arg_.memories.begin(), arg_.memories.end(), - std::back_inserter(pre_memories), - [](const rnn::MemoryAttr& m) { return m.pre_var; }); - for (const auto& item : stepnet_->Outputs()) { + PADDLE_ENFORCE_NOT_NULL(step_unit_, "stepnet should be set first"); + std::vector states; + std::vector ex_states; + std::vector step_unit_outputs; + std::transform(arg_.states.begin(), arg_.states.end(), + std::back_inserter(states), + [](const rnn::StateAttr& m) { return m.var; }); + std::transform(arg_.states.begin(), arg_.states.end(), + std::back_inserter(ex_states), + [](const rnn::StateAttr& m) { return m.pre_var; }); + for (const auto& item : step_unit_->Outputs()) { for (const auto& var : item.second) { - stepnet_outputs.push_back(var); + step_unit_outputs.push_back(var); } } @@ -180,13 +181,13 @@ void DynamicRecurrentOp::CreateScopes() const { auto& scope = cache_.GetScope(step); detail::CreateVariables(scope, arg_.inlinks); detail::CreateVariables(scope, arg_.outlinks); - detail::CreateVariables(scope, memories); - detail::CreateVariables(scope, pre_memories); - detail::CreateVariables(scope, stepnet_outputs); + detail::CreateVariables(scope, states); + detail::CreateVariables(scope, ex_states); + detail::CreateVariables(scope, step_unit_outputs); } } -void DynamicRecurrentOp::ConcatOutputs() const { +void RNNAlgorithm::ConcatOutputs() { // TODO(superjom) transform this to a config int level = 0; for (size_t step = 0; step < cache_.num_steps; step++) { @@ -199,31 +200,45 @@ void DynamicRecurrentOp::ConcatOutputs() const { item.second.WriteShared(step, *tensor); } } - // the inlinks' lods should be the same, so randomly get one lod. + // the inputs' lods should be the same, so randomly get one lod. const auto& some_lod = cache_.scope->FindVar(arg_.inlinks.front())->Get().lod(); const auto& some_meta = dy_seq_metas_[arg_.inlinks.front()]; for (auto& item : step_outputs_) { auto tensor = item.second.Pack(level, some_meta, some_lod); - auto* output = cache_.outlinks[item.first]->GetMutable(); - const_cast(output)->ShareDataWith(tensor); + auto* output = cache_.outputs[item.first]->GetMutable(); + const_cast(output)->ShareDataWith(tensor); + } +} + +void RNNAlgorithm::RunSteps() { + if (IsBackward()) { + // call stepnet in all the time steps reversely + for (int step = cache_.num_steps - 1; step >= 0; step--) { + auto& step_scope = cache_.GetScope(step); + step_unit_->Run(step_scope, *cache_.dev_ctx); + } + } else { + for (size_t step = 0; step < cache_.num_steps; step++) { + auto& step_scope = cache_.GetScope(step); + step_unit_->Run(step_scope, *cache_.dev_ctx); + } } } -void DynamicRecurrentOp::InitStates() const { +void RNNAlgorithm::InitStates() { for (size_t step = 0; step < cache_.num_steps; step++) { - for (const auto& memory : arg_.memories) { - CreateState(memory, step); - LinkState(memory, step); + for (const auto& state : arg_.states) { + CreateState(state, step); + LinkState(state, step); } } } -void DynamicRecurrentOp::CreateState(const rnn::MemoryAttr& memory, - size_t step) const { +void RNNAlgorithm::CreateState(const rnn::StateAttr& state_attr, size_t step) { auto& scope = cache_.GetScope(step); - auto& state = *cache_.GetTensor(scope, memory.var); - auto& boot_state = *cache_.GetTensor(*cache_.scope, memory.boot_var); + auto& state = *cache_.GetTensor(scope, state_attr.var); + auto& boot_state = *cache_.GetTensor(*cache_.scope, state_attr.boot_var); size_t num_instances = step_inputs_[arg_.inlinks.front()].Read(step).dims()[0]; @@ -232,56 +247,79 @@ void DynamicRecurrentOp::CreateState(const rnn::MemoryAttr& memory, state.Resize(dims); state.mutable_data(platform::CPUPlace()); - states_[memory.var].WriteShared(step, state); + states_[state_attr.var].WriteShared(step, state); } -void DynamicRecurrentOp::LinkState(const rnn::MemoryAttr& memory, - size_t step) const { +void RNNAlgorithm::LinkState(const rnn::StateAttr& state, size_t step) { auto& scope = cache_.GetScope(step); - auto& state_pre = *cache_.GetTensor(scope, memory.pre_var); + auto& state_pre = *cache_.GetTensor(scope, state.pre_var); + + // process the first state's boot-state(the 0-step in forward mode or the + // last step in backward mode) + // Only forward mode need to link the boot-state to the `pre-state` in first + // time step. In backward mode, need to copy the gradient of `pre-state` in + // first time step to the gradient of `boot-state`. + if (step == 0 && IsForward()) { + LinkInitialState(state); + } else { + size_t num_instances = + step_inputs_[arg_.inlinks.front()].Read(step).dims()[0]; + auto* pre_state = cache_.GetTensor(cache_.GetScope(step - 1), state.var); + // shink and share from previous state + auto shrinked_pre_state = pre_state->Slice(0, num_instances); + state_pre.ShareDataWith(shrinked_pre_state); + } +} +void RNNAlgorithm::LinkInitialState(const rnn::StateAttr& state) { // all the step_inputs' metas should be the same, just randomly select one // and get the dyseq meta. const auto& some_meta = dy_seq_metas_[arg_.inlinks.front()]; - size_t num_instances = - step_inputs_[arg_.inlinks.front()].Read(step).dims()[0]; + auto& scope = cache_.GetScope(0); + auto& state_pre = *cache_.GetTensor(scope, state.pre_var); + auto* pre_state = cache_.GetTensor(*cache_.scope, state.boot_var); + pre_state->mutable_data(platform::CPUPlace()); + // allocate state + state_pre.Resize(pre_state->dims()); + state_pre.mutable_data(platform::CPUPlace()); + detail::ReorderInitialState(some_meta, *pre_state, &state_pre, + pre_state->place()); +} - LoDTensor* pre_state{nullptr}; - if (step == 0) { - pre_state = cache_.GetTensor(*cache_.scope, memory.boot_var); - pre_state->mutable_data(platform::CPUPlace()); - // allocate memory - state_pre.Resize(pre_state->dims()); - state_pre.mutable_data(platform::CPUPlace()); - detail::ReorderBootState(some_meta, *pre_state, &state_pre, - pre_state->place()); - } else { - pre_state = cache_.GetTensor(cache_.GetScope(step - 1), memory.var); - } +void RNNAlgorithm::ExportInitialStateGradient(const rnn::StateAttr& state) { + // all the step_inputs' metas should be the same, just randomly select one + // and get the dyseq meta. + const auto& some_meta = dy_seq_metas_[arg_.inlinks.front()]; + auto& scope = cache_.GetScope(0); - // shink and share from previous state - auto shrinked_pre_state = pre_state->Slice(0, num_instances); - state_pre.ShareDataWith(shrinked_pre_state); + auto& state_pre = *cache_.GetTensor(scope, state.pre_var); + auto& pre_state = *cache_.GetTensor(*cache_.scope, state.boot_var); + pre_state.Resize(state_pre.dims()); + detail::RestoreInitialState(some_meta, state_pre, &pre_state, + pre_state.place()); } -void DynamicRecurrentOp::ArgCache::Init( - const rnn::ArgumentName& name, const paddle::framework::OperatorBase& op, - const paddle::framework::Scope& scope, rnn::Argument* arg) { +void RNNAlgorithm::ArgCache::Init(const rnn::ArgumentName& name, + const paddle::framework::OperatorBase& op, + const paddle::framework::Scope& scope, + platform::DeviceContext const* dev_ctx, + rnn::Argument* arg) { this->scope = &scope; InitArgument(name, op, arg); CacheScopes(scope, *arg); CacheInlinks(scope, arg->inlinks); CacheOutlinks(scope, arg->outlinks); + this->dev_ctx = dev_ctx; } -void DynamicRecurrentOp::ArgCache::InitArgument(const rnn::ArgumentName& name, - const OperatorBase& op, - rnn::Argument* arg) { +void RNNAlgorithm::ArgCache::InitArgument(const rnn::ArgumentName& name, + const OperatorBase& op, + rnn::Argument* arg) { rnn::InitArgument(name, arg, op, false /*is_grad*/); } -void DynamicRecurrentOp::ArgCache::CacheScopes(const Scope& scope, - const rnn::Argument& arg) { +void RNNAlgorithm::ArgCache::CacheScopes(const Scope& scope, + const rnn::Argument& arg) { auto scopes_var = scope.FindVar(arg.step_scopes); PADDLE_ENFORCE(scopes_var != nullptr, "the step_scopes output argument [%s] should be created first " @@ -290,45 +328,85 @@ void DynamicRecurrentOp::ArgCache::CacheScopes(const Scope& scope, this->scopes = scopes_var->GetMutable>(); } -void DynamicRecurrentOp::ArgCache::CacheInlinks( +void RNNAlgorithm::ArgCache::CacheInlinks( const Scope& scope, const std::vector& names) { for (auto name : names) { auto* var = GetVariable(scope, name); - inlinks[name] = var; + inputs[name] = var; } } -void DynamicRecurrentOp::ArgCache::CacheOutlinks( +void RNNAlgorithm::ArgCache::CacheOutlinks( const Scope& scope, const std::vector& names) { for (auto name : names) { auto* var = GetVariable(scope, name); - outlinks[name] = var; + outputs[name] = var; } } -Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope, - const std::string& name) { +Variable* RNNAlgorithm::ArgCache::GetVariable(const Scope& scope, + const std::string& name) { auto* var = scope.FindVar(name); PADDLE_ENFORCE_NOT_NULL(var, "variable [%s] not exist in scope", name); return var; } -LoDTensor* DynamicRecurrentOp::ArgCache::GetTensor( - const framework::Scope& scope, const std::string& name) { +LoDTensor* RNNAlgorithm::ArgCache::GetTensor(const framework::Scope& scope, + const std::string& name) { auto* var = GetVariable(scope, name); return var->GetMutable(); } -const rnn::ArgumentName DynamicRecurrentOp::kArgName{ - "step_net", "step_scopes", "inlinks", "outlinks", - "memories", "pre_memories", "boot_memories"}; +const std::array RNNAlgorithm::kArgNames{ + {rnn::ArgumentName{"step_unit", "step_scopes", "inputs", "outputs", + "states", "ex_states", "initial_states"}, + rnn::ArgumentName{"step_unit", "step_scopes@GRAD", "outputs@GRAD", + "inputs@GRAD", "states", "ex_states", + "initial_states@GRAD"}}}; + +void DynamicRecurrentOp::Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const { + rnn.Run( + scope, *dynamic_cast(this), dev_ctx); +} void DynamicRecurrentGradientOp::Run( - const Scope& scope, const platform::DeviceContext& dev_ctx) const {} + const Scope& scope, const platform::DeviceContext& dev_ctx) const { + rnn.Run( + scope, *dynamic_cast(this), dev_ctx); +} + +class DynamicRecurrentOpProtoAndCheckerMaker + : public framework::OpProtoAndCheckerMaker { + public: + DynamicRecurrentOpProtoAndCheckerMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + const auto& name = + RNNAlgorithm::kArgNames[RNNAlgorithm::ComputeMode::kForward]; + // inputs and outputs stored in proto + AddInput(name.inlinks, + "the inputs that need to be segmented for each step.") + .AsDuplicable(); + AddInput(name.initial_states, "variables to initialize states.") + .AsDuplicable(); + + AddOutput(name.outlinks, "the outputs that need to concated for all steps.") + .AsDuplicable(); + AddOutput(name.step_scopes, "step scopes"); + + // Attributes stored in AttributeMap + AddAttr>(name.ex_states, "names of ex_states"); + AddAttr>(name.states, "names of states"); + + AddComment("This is a RNN operator for varience-length sequences."); + } +}; } // namespace operators } // namespace paddle -REGISTER_OP_WITHOUT_GRADIENT( - dynamic_recurrent, paddle::operators::DynamicRecurrentOp, - paddle::operators::DynamicRecurrentOpProtoAndCheckerMaker); +REGISTER_OP(dynamic_recurrent, paddle::operators::DynamicRecurrentOp, + paddle::operators::DynamicRecurrentOpProtoAndCheckerMaker, + dynamic_recurrent_grad, + paddle::operators::DynamicRecurrentGradientOp); diff --git a/paddle/operators/dynamic_recurrent_op.h b/paddle/operators/dynamic_recurrent_op.h index ec80a1c90e..5b0548c3a4 100644 --- a/paddle/operators/dynamic_recurrent_op.h +++ b/paddle/operators/dynamic_recurrent_op.h @@ -27,47 +27,39 @@ namespace paddle { namespace operators { -class DynamicRecurrentOp : public framework::OperatorBase { +class RNNAlgorithm { public: - static const rnn::ArgumentName kArgName; + enum ComputeMode { kForward = 0, kBackward = 1 }; + static const std::array kArgNames; using value_type = float; - DynamicRecurrentOp(const std::string& type, - const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs) - : OperatorBase(type, inputs, outputs, attrs) {} - - DynamicRecurrentOp(const DynamicRecurrentOp& o) - : framework::OperatorBase( - static_cast(o)) { - // TODO(yuyang18): Implement copy ctor well. - PADDLE_THROW("Not implemented"); - } - - void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override; - + /* + * Different `Run` method for forward and backward, `_` is just for template + * specifialization. + */ + template + void Run(const framework::Scope& scope, const framework::OperatorBase& op, + const platform::DeviceContext& dev_ctx); /* * Split the inputs(LoDTensors) to segments for each time step. */ - void SplitInputs() const; + void SplitInputs(); /* * Create step-scopes to store temporary outputs in each time steps. */ - void CreateScopes() const; + void CreateScopes(); /* * Link TensorArray steps to the corresponding variables located in * step-scopes. */ - void WriteStepInputs() const; + void WriteStepInputs(); /* * Write output of each step to the corresponding TensorArray. */ - void WriteStepOutputs() const; + void WriteStepOutputs(); /* * Initialize the states, each state will have a corresponding pre-state, @@ -75,54 +67,83 @@ class DynamicRecurrentOp : public framework::OperatorBase { * pre-state in the first time step will be initialized with an zero tensor or * a tensor in parent scope if is provided. */ - void InitStates() const; + void InitStates(); /* * Create state variables for each time step. */ - void CreateState(const rnn::MemoryAttr& memory, size_t step) const; + void CreateState(const rnn::StateAttr& state, size_t step); /* * Link pre-state variable in current scope to the state variable in the - * previous time step (scope). + * previous time step (scope) by reference. + */ + void LinkState(const rnn::StateAttr& state, size_t step); + + /* + * Link the pre-state of the first time step to the `boot-state` in parent's + * scope. + */ + void LinkInitialState(const rnn::StateAttr& state); + + /* + * Copy the gradient from `pre-state` in the first step-scope to the + * `boot-state` in parent's scope. + */ + void ExportInitialStateGradient(const rnn::StateAttr& state); + + /* + * Calculate time steps. */ - void LinkState(const rnn::MemoryAttr& memory, size_t step) const; + void RunSteps(); /* * Concatenate outputs in each time step and generate a LoDTensor. */ - void ConcatOutputs() const; + void ConcatOutputs(); + + void SetComputeMode(ComputeMode mode) { mode_ = mode; } + bool IsForward() const { return mode_ == ComputeMode::kForward; } + bool IsBackward() const { return mode_ == ComputeMode::kBackward; } /* - * set a stepnet that is created according to a RecurrentOp's stepnet. + * set a step unit that is created according to a RecurrentOp's step unit. */ - void SetStepNet(std::unique_ptr net) { - PADDLE_ENFORCE_NOT_NULL(net); - stepnet_ = std::move(net); + void SetStepUnit(std::unique_ptr step_unit) { + PADDLE_ENFORCE_NOT_NULL(step_unit); + step_unit_ = std::move(step_unit); } - const OperatorBase& GetStepNet() const { return *stepnet_; } + const framework::OperatorBase& GetStepUnit() const { return *step_unit_; } const framework::TensorArray& state(const std::string& name) const { - return states_[name]; + auto it = states_.find(name); + PADDLE_ENFORCE(it != states_.end()); + return it->second; } const framework::TensorArray& step_input(const std::string& name) const { - return step_inputs_[name]; + auto it = step_inputs_.find(name); + PADDLE_ENFORCE(it != step_inputs_.end()); + return it->second; } const framework::TensorArray& step_output(const std::string& name) const { - return step_outputs_[name]; + auto it = step_outputs_.find(name); + PADDLE_ENFORCE(it != step_outputs_.end()); + return it->second; } protected: struct ArgCache { framework::Scope const* scope; std::vector* scopes; - std::map inlinks; - std::map outlinks; + std::map inputs; + std::map outputs; + platform::DeviceContext const* dev_ctx; size_t num_steps{0}; - void Init(const rnn::ArgumentName& name, const OperatorBase& op, - const framework::Scope& scope, rnn::Argument* arg); + void Init(const rnn::ArgumentName& name, const framework::OperatorBase& op, + const framework::Scope& scope, + platform::DeviceContext const* dev_ctx, rnn::Argument* arg); framework::Scope& GetScope(size_t index) { PADDLE_ENFORCE_LT(index, num_steps); @@ -133,8 +154,8 @@ class DynamicRecurrentOp : public framework::OperatorBase { const std::string& name); private: - void InitArgument(const rnn::ArgumentName& name, const OperatorBase& op, - rnn::Argument* arg); + void InitArgument(const rnn::ArgumentName& name, + const framework::OperatorBase& op, rnn::Argument* arg); void CacheScopes(const framework::Scope& scope, const rnn::Argument& arg); void CacheInlinks(const framework::Scope& scope, const std::vector& names); @@ -145,27 +166,49 @@ class DynamicRecurrentOp : public framework::OperatorBase { }; private: - std::unique_ptr stepnet_; - mutable std::map states_; - mutable std::map step_inputs_; - mutable std::map step_outputs_; - mutable std::map> - dy_seq_metas_; - mutable rnn::Argument arg_; - mutable ArgCache cache_; + std::unique_ptr step_unit_; + std::map states_; + std::map step_inputs_; + std::map step_outputs_; + std::map> dy_seq_metas_; + rnn::Argument arg_; + ArgCache cache_; + ComputeMode mode_{ComputeMode::kForward}; #ifdef PADDLE_WITH_TESTING - friend class DynamicRecurrentOpTestHelper; - FRIEND_TEST(DynamicRecurrentOpTestHelper, SplitInputs); - FRIEND_TEST(DynamicRecurrentOpTestHelper, CreateCache); - FRIEND_TEST(DynamicRecurrentOpTestHelper, CreateScopes); - FRIEND_TEST(DynamicRecurrentOpTestHelper, WriteStepInputs); - FRIEND_TEST(DynamicRecurrentOpTestHelper, WriteStepOutputs); - FRIEND_TEST(DynamicRecurrentOpTestHelper, InitStates); - FRIEND_TEST(DynamicRecurrentOpTestHelper, ConcatOutputs); + // test forward + friend class RNNAlgorithmTestHelper; + FRIEND_TEST(RNNAlgorithmTestHelper, SplitInputs); + FRIEND_TEST(RNNAlgorithmTestHelper, CreateCache); + FRIEND_TEST(RNNAlgorithmTestHelper, CreateScopes); + FRIEND_TEST(RNNAlgorithmTestHelper, WriteStepInputs); + FRIEND_TEST(RNNAlgorithmTestHelper, WriteStepOutputs); + FRIEND_TEST(RNNAlgorithmTestHelper, InitStates); + FRIEND_TEST(RNNAlgorithmTestHelper, ConcatOutputs); +// TODO(superjom) test backward #endif }; +class DynamicRecurrentOp : public framework::OperatorBase { + public: + DynamicRecurrentOp(const std::string& type, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + DynamicRecurrentOp(const DynamicRecurrentOp& o) + : framework::OperatorBase( + static_cast(o)) { + PADDLE_THROW("Not implemented"); + } + + void Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const override; + + mutable RNNAlgorithm rnn; +}; + class DynamicRecurrentGradientOp : public framework::OperatorBase { public: DynamicRecurrentGradientOp(const std::string& type, @@ -174,8 +217,16 @@ class DynamicRecurrentGradientOp : public framework::OperatorBase { const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} + DynamicRecurrentGradientOp(const DynamicRecurrentGradientOp& o) + : framework::OperatorBase( + static_cast(o)) { + PADDLE_THROW("Not implemented"); + } + void Run(const framework::Scope& scope, const platform::DeviceContext& dev_ctx) const override; + + mutable RNNAlgorithm rnn; }; } // namespace operators diff --git a/paddle/operators/dynamic_recurrent_op_test.cc b/paddle/operators/dynamic_recurrent_op_test.cc index 83a5ba36d9..fff63efb24 100644 --- a/paddle/operators/dynamic_recurrent_op_test.cc +++ b/paddle/operators/dynamic_recurrent_op_test.cc @@ -43,16 +43,16 @@ LoDTensor* CreateVar(Scope& scope, std::string name, framework::DDim dims, return tensor; } -class DynamicRecurrentOpTestHelper : public ::testing::Test { +class RNNAlgorithmTestHelper : public ::testing::Test { protected: - const rnn::ArgumentName argname = DynamicRecurrentOp::kArgName; + const rnn::ArgumentName argname = RNNAlgorithm::kArgNames[0]; virtual void SetUp() override { CreateGlobalVariables(); auto op_desc = CreateOpDesc(); - op = paddle::framework::OpRegistry::CreateOp(op_desc); - dop = dynamic_cast(op.get()); + op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); + dop = &(dynamic_cast(op.get())->rnn); InitCacheManually(); InitStepNet(); } @@ -63,20 +63,20 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test { op_desc.set_type("dynamic_recurrent"); OpDescNewVar(argname.inlinks, {"in0"}, op_desc.add_inputs()); - OpDescNewVar(argname.boot_memories, {"boot_mem"}, op_desc.add_inputs()); + OpDescNewVar(argname.initial_states, {"boot_mem"}, op_desc.add_inputs()); OpDescNewVar(argname.step_scopes, {"step_scopes"}, op_desc.add_outputs()); OpDescNewVar(argname.outlinks, {"out0"}, op_desc.add_outputs()); - // set pre-memories + // set pre-states auto pre_memories = op_desc.mutable_attrs()->Add(); - pre_memories->set_name(argname.pre_memories); + pre_memories->set_name(argname.ex_states); pre_memories->set_type(paddle::framework::AttrType::STRINGS); auto pre_memories_item = pre_memories->add_strings(); *pre_memories_item = "mem@pre"; - // set memories + // set states auto memories = op_desc.mutable_attrs()->Add(); - memories->set_name(argname.memories); + memories->set_name(argname.states); memories->set_type(paddle::framework::AttrType::STRINGS); auto memories_item = memories->add_strings(); *memories_item = "mem"; @@ -113,32 +113,33 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test { } void InitCacheManually() { - dop->cache_.Init(DynamicRecurrentOp::kArgName, *dop, scope, &dop->arg_); + dop->cache_.Init(RNNAlgorithm::kArgNames[0], *op, scope, &device_context, + &dop->arg_); } void InitStepNet() { std::unique_ptr stepnet{new NetOp}; dynamic_cast(stepnet.get()) ->AppendOp(std::unique_ptr(new TestOp( - "test", {{"inlinks", {"in0"}}, {"boot_memories", {"boot_mem"}}}, - {{"outlinks", {"out0"}}, {"step_scopes", {"step_scopes"}}}, {}))); - dop->SetStepNet(std::move(stepnet)); + "test", {{"inputs", {"in0"}}, {"initial_states", {"boot_mem"}}}, + {{"outputs", {"out0"}}, {"step_scopes", {"step_scopes"}}}, {}))); + dop->SetStepUnit(std::move(stepnet)); } protected: - DynamicRecurrentOp* dop; + RNNAlgorithm* dop; std::unique_ptr op; paddle::platform::CPUDeviceContext device_context; paddle::framework::Scope scope; }; -TEST_F(DynamicRecurrentOpTestHelper, CreateCache) { +TEST_F(RNNAlgorithmTestHelper, CreateCache) { const rnn::Argument& arg = dop->arg_; ASSERT_EQ(arg.inlinks.size(), 1UL); ASSERT_EQ(arg.outlinks.size(), 1UL); } -TEST_F(DynamicRecurrentOpTestHelper, SplitInputs) { +TEST_F(RNNAlgorithmTestHelper, SplitInputs) { dop->SplitInputs(); auto& in0_ta = dop->step_inputs_["in0"]; ASSERT_EQ(in0_ta.size(), 4UL); @@ -153,14 +154,14 @@ TEST_F(DynamicRecurrentOpTestHelper, SplitInputs) { EXPECT_EQ(batch3.dims()[0], 1); } -TEST_F(DynamicRecurrentOpTestHelper, CreateScopes) { +TEST_F(RNNAlgorithmTestHelper, CreateScopes) { dop->SplitInputs(); dop->CreateScopes(); ASSERT_EQ(dop->cache_.num_steps, 4UL); ASSERT_EQ(dop->cache_.scopes->size(), 4UL); } -TEST_F(DynamicRecurrentOpTestHelper, WriteStepInputs) { +TEST_F(RNNAlgorithmTestHelper, WriteStepInputs) { dop->SplitInputs(); dop->CreateScopes(); dop->WriteStepInputs(); @@ -173,7 +174,7 @@ TEST_F(DynamicRecurrentOpTestHelper, WriteStepInputs) { } } -TEST_F(DynamicRecurrentOpTestHelper, WriteStepOutputs) { +TEST_F(RNNAlgorithmTestHelper, WriteStepOutputs) { dop->SplitInputs(); dop->CreateScopes(); dop->WriteStepInputs(); @@ -187,11 +188,12 @@ TEST_F(DynamicRecurrentOpTestHelper, WriteStepOutputs) { } } -TEST_F(DynamicRecurrentOpTestHelper, ConcatOutputs) { +TEST_F(RNNAlgorithmTestHelper, ConcatOutputs) { // Let's leave this test to python unittest. } -TEST_F(DynamicRecurrentOpTestHelper, InitStates) { +TEST_F(RNNAlgorithmTestHelper, InitStates) { + dop->SetComputeMode(RNNAlgorithm::ComputeMode::kForward); dop->SplitInputs(); dop->CreateScopes(); dop->WriteStepInputs(); @@ -208,12 +210,6 @@ TEST_F(DynamicRecurrentOpTestHelper, InitStates) { auto* boot_state = scope.FindVar("boot_mem"); ASSERT_TRUE(boot_state != nullptr); - - if (step == 0) { - // check pre_state is a reference of boot_state - ASSERT_EQ(boot_state->Get().data(), - pre_state->Get().data()); - } } } diff --git a/paddle/operators/elementwise_op_function.h b/paddle/operators/elementwise_op_function.h index 3eb97f60b5..488a35aafc 100644 --- a/paddle/operators/elementwise_op_function.h +++ b/paddle/operators/elementwise_op_function.h @@ -108,7 +108,7 @@ void ElementwiseCompute(const framework::ExecutionContext& ctx) { PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), "Rank of first input must >= rank of second input.") - if (x_dims == y_dims || product(y_dims) == 1) { + if (x_dims == y_dims) { functor f; f.template Run(x, y, z, ctx); return; @@ -174,12 +174,6 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { return; } - if (product(y_dims) == 1) { - functor1 f; - f(place, x, y, out, dx, dy, dout); - return; - } - int axis = ctx.Attr("axis"); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); diff --git a/paddle/operators/feed_op.cc b/paddle/operators/feed_op.cc index d742bbe51b..0f1722a538 100644 --- a/paddle/operators/feed_op.cc +++ b/paddle/operators/feed_op.cc @@ -26,8 +26,9 @@ class FeedOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - auto feed_var_name = Input("Input"); + auto feed_var_name = Input("X"); auto *feed_var = scope.FindVar(feed_var_name); + PADDLE_ENFORCE(feed_var != nullptr, "Cannot find feed_var in scope, feed_var_name is %s", feed_var_name); @@ -40,18 +41,32 @@ class FeedOp : public framework::OperatorBase { auto col = Attr("col"); + VLOG(3) << "Feed Var " << feed_var_name << "'s " << col << " column to var" + << out_name; + auto &feed_list = feed_var->Get(); auto &feed_item = feed_list.at(static_cast(col)); auto *out_item = out_var->GetMutable(); - out_item->CopyFromTensor(feed_item, dev_ctx.GetPlace(), dev_ctx); + out_item->CopyFrom(feed_item, dev_ctx.GetPlace(), dev_ctx); out_item->set_lod(feed_item.lod()); } }; +class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker { + public: + FeedOpInfoMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input of feed op"); + AddOutput("Out", "The output of feed op"); + AddComment("feed op, it should not be configured by users directly"); + AddAttr("col", "column of feed"); + } +}; + } // namespace operators } // namespace paddle -// We do not need to register OpInfoMaker, -// since feed operator will not be used by end users directly REGISTER_OPERATOR(feed, paddle::operators::FeedOp, - paddle::framework::EmptyGradOpMaker); + paddle::framework::EmptyGradOpMaker, + paddle::operators::FeedOpInfoMaker); diff --git a/paddle/operators/fetch_op.cc b/paddle/operators/fetch_op.cc index 55d6ac0939..c1b3d66bac 100644 --- a/paddle/operators/fetch_op.cc +++ b/paddle/operators/fetch_op.cc @@ -27,7 +27,7 @@ class FetchOp : public framework::OperatorBase { void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - auto fetch_var_name = Input("Input"); + auto fetch_var_name = Input("X"); auto *fetch_var = scope.FindVar(fetch_var_name); PADDLE_ENFORCE(fetch_var != nullptr, "Cannot find fetch variable in scope, fetch_var_name is %s", @@ -51,14 +51,26 @@ class FetchOp : public framework::OperatorBase { // FIXME(yuyang18): Should we assume the fetch operator always generate // CPU outputs? - dst_item.CopyFromTensor(src_item, platform::CPUPlace(), dev_ctx); + dst_item.CopyFrom(src_item, platform::CPUPlace(), dev_ctx); + + VLOG(3) << "Fetch variable " << fetch_var_name << " to " << out_name; } }; +class FetchOpInfoMaker : public framework::OpProtoAndCheckerMaker { + public: + FetchOpInfoMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input of fetch op"); + AddOutput("Out", "The output of fetch op"); + AddComment("fetch op, it should not be configured by users directly"); + AddAttr("col", "column of fetch"); + } +}; } // namespace operators } // namespace paddle -// We do not need to register OpInfoMaker, -// since fetch operator will not be used by end users directly REGISTER_OPERATOR(fetch, paddle::operators::FetchOp, - paddle::framework::EmptyGradOpMaker); + paddle::framework::EmptyGradOpMaker, + paddle::operators::FetchOpInfoMaker); diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index f59f497d9f..04dfdf7c48 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -59,7 +59,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel { protected: framework::DataType IndicateDataType( const framework::ExecutionContext& ctx) const override { - return static_cast(Attr("data_type")); + return static_cast(ctx.Attr("data_type")); } }; diff --git a/paddle/operators/images/batch_norm_fork.dot b/paddle/operators/images/batch_norm_fork.dot new file mode 100644 index 0000000000..4bc47713cb --- /dev/null +++ b/paddle/operators/images/batch_norm_fork.dot @@ -0,0 +1,25 @@ +digraph ImageBatchNormForkGragh { + subgraph cluster_before { + Prev [label="...", shape=plaintext]; + Rnn [label="rnn_op", shape=box]; + BatchNorm [label="batch_norm_op", shape=box]; + Fc [label="fc_op", shape=box]; + After [label="...", shape=plaintext]; + Prev -> Rnn -> BatchNorm -> Fc -> After; + label="original"; + } + + subgraph cluster_after { + Prev2 [label="...", shape=plaintext]; + Rnn2 [label="rnn_op", shape=box]; + BatchNorm2_1 [label="train_batch_norm_op", shape=box]; + BatchNorm2_2 [label="infer_batch_norm_op", shape=box]; + Fc2_1 [label="fc_op", shape=box]; + Fc2_2 [label="fc_op", shape=box]; + After2_1 [label="...", shape=plaintext]; + After2_2 [label="...", shape=plaintext]; + Prev2 -> Rnn2 -> BatchNorm2_1 -> Fc2_1 -> After2_1; + Rnn2 -> BatchNorm2_2 ->Fc2_2 ->After2_2 + label="forked"; + } +} diff --git a/paddle/operators/images/batch_norm_fork.png b/paddle/operators/images/batch_norm_fork.png new file mode 100644 index 0000000000..aded62bce5 Binary files /dev/null and b/paddle/operators/images/batch_norm_fork.png differ diff --git a/paddle/operators/images/batch_norm_op_kernel.png b/paddle/operators/images/batch_norm_op_kernel.png new file mode 100644 index 0000000000..a99ce81ff3 Binary files /dev/null and b/paddle/operators/images/batch_norm_op_kernel.png differ diff --git a/paddle/operators/increment_op.cc b/paddle/operators/increment_op.cc new file mode 100644 index 0000000000..139392c691 --- /dev/null +++ b/paddle/operators/increment_op.cc @@ -0,0 +1,75 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/increment_op.h" + +namespace paddle { +namespace operators { + +class IncrementOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of IncrementOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of IncrementOp should not be null."); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +template +class IncrementOpMaker : public framework::OpProtoAndCheckerMaker { + public: + IncrementOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "(Tensor) The input tensor of increment operator"); + AddOutput("Out", "(Tensor) The output tensor of increment operator."); + AddComment(R"DOC(Increment operator + +The equation is: Out = X + step +)DOC"); + AddAttr("step", + "The step size by which the " + "input tensor will be incremented.") + .SetDefault(1.0); + } +}; + +class IncrementGradOpMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDescBind(); + grad_op->SetType("scale"); + grad_op->SetInput("X", OutputGrad("Out")); + grad_op->SetOutput("Out", InputGrad("X")); + grad_op->SetAttr("scale", 1.0f); + return std::unique_ptr(grad_op); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(increment, ops::IncrementOp, ops::IncrementOpMaker, + ops::IncrementGradOpMaker); +REGISTER_OP_CPU_KERNEL(increment, + ops::IncrementKernel); diff --git a/paddle/operators/increment_op.cu b/paddle/operators/increment_op.cu new file mode 100644 index 0000000000..659c380d14 --- /dev/null +++ b/paddle/operators/increment_op.cu @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/increment_op.h" + +REGISTER_OP_GPU_KERNEL( + increment, + paddle::operators::IncrementKernel); diff --git a/paddle/operators/increment_op.h b/paddle/operators/increment_op.h new file mode 100644 index 0000000000..342e254fc4 --- /dev/null +++ b/paddle/operators/increment_op.h @@ -0,0 +1,40 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { +template +class IncrementKernel : public framework::OpKernel { + public: + virtual void Compute(const framework::ExecutionContext& context) const { + auto* tensor = context.Output("Out"); + auto* in = context.Input("X"); + tensor->mutable_data(in->place()); + + auto step = static_cast(context.Attr("step")); + + auto eigen_out = framework::EigenVector::Flatten(*tensor); + auto eigen_in = framework::EigenVector::Flatten(*in); + auto& place = context.GetEigenDevice(); + eigen_out.device(place) = eigen_in + step; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/linear_chain_crf_op.cc b/paddle/operators/linear_chain_crf_op.cc index 14ae74ab66..268b1c41db 100644 --- a/paddle/operators/linear_chain_crf_op.cc +++ b/paddle/operators/linear_chain_crf_op.cc @@ -460,14 +460,13 @@ class LinearChainCrfGradOpKernel for (int i = 0; i < tag_num; ++i) beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i]; NormalizeL1(beta_value + (seq_length - 1) * tag_num, tag_num); - for (int k = seq_length - 2; k >= 0; --k) { for (int i = 0; i < tag_num; ++i) { T sum = 0.; for (int j = 0; j < tag_num; ++j) { - sum += x_exps[(i + state_trans_base_idx) * tag_num + j] * - beta_value[(k + 1) * tag_num + j] * - x_exps[(k + 1) * tag_num + j]; + sum += w_exps[(i + state_trans_base_idx) * tag_num + j] * + x_exps[(k + 1) * tag_num + j] * + beta_value[(k + 1) * tag_num + j]; } beta_value[k * tag_num + i] = sum; } diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index 9c506ae89b..443c94b83f 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -64,7 +64,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - input.CopyFrom(input_tmp, *place, *context); + input.CopyFrom(input_tmp, *place, *context); } output_cfo.mutable_data( {1, filter_size, filter_size, output_height, output_width}, *place); @@ -85,8 +85,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output_cfo.data(); } else { - output_tmp.CopyFrom(output_cfo, paddle::platform::CPUPlace(), - *context); + output_tmp.CopyFrom(output_cfo, paddle::platform::CPUPlace(), *context); out_cfo_ptr = output_tmp.data(); } EXPECT_EQ(out_cfo_ptr[0], 0); @@ -102,8 +101,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { out_ocf_ptr = output_ocf.data(); } else { - output_tmp.CopyFrom(output_ocf, paddle::platform::CPUPlace(), - *context); + output_tmp.CopyFrom(output_ocf, paddle::platform::CPUPlace(), *context); out_ocf_ptr = output_tmp.data(); } EXPECT_EQ(out_ocf_ptr[0], 0); diff --git a/paddle/operators/math/math_function.cc b/paddle/operators/math/math_function.cc index 77a1e22b41..aad1357598 100644 --- a/paddle/operators/math/math_function.cc +++ b/paddle/operators/math/math_function.cc @@ -130,6 +130,87 @@ void matmul( matrix_b.data(), beta, matrix_out->data()); } +#ifdef PADDLE_USE_MKLML +// Use cblas_{s,d}gemm_batched if available: Run with 1 group of size batchSize. +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C, const int batchCount, const int strideA, const int strideB) { + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + int ldc = N; + auto a_array = std::vector(batchCount); + auto b_array = std::vector(batchCount); + auto c_array = std::vector(batchCount); + for (int k = 0; k < batchCount; ++k) { + a_array[k] = &A[k * strideA]; + b_array[k] = &B[k * strideB]; + c_array[k] = &C[k * M * N]; + } + cblas_sgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, + a_array.data(), &lda, b_array.data(), &ldb, &beta, + c_array.data(), &ldc, 1 /* group_count */, &batchCount); +} + +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C, const int batchCount, const int strideA, const int strideB) { + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + int ldc = N; + auto a_array = std::vector(batchCount); + auto b_array = std::vector(batchCount); + auto c_array = std::vector(batchCount); + for (int k = 0; k < batchCount; ++k) { + a_array[k] = &A[k * strideA]; + b_array[k] = &B[k * strideB]; + c_array[k] = &C[k * M * N]; + } + cblas_dgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, + a_array.data(), &lda, b_array.data(), &ldb, &beta, + c_array.data(), &ldc, 1 /* group_count */, &batchCount); +} +#else +// The below is a naive but correct serial implementation that just loops +// over the batch dimension. This is a fallback for when the batched gemm +// functions of Intel MKL are not available. In the future, this computation +// should be parallelized. +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C, const int batchCount, const int strideA, const int strideB) { + for (int k = 0; k < batchCount; ++k) { + const float* Ak = &A[k * strideA]; + const float* Bk = &B[k * strideB]; + float* Ck = &C[k * M * N]; + gemm(context, transA, transB, M, N, K, alpha, Ak, + Bk, beta, Ck); + } +} + +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C, const int batchCount, const int strideA, const int strideB) { + for (int k = 0; k < batchCount; ++k) { + const double* Ak = &A[k * strideA]; + const double* Bk = &B[k * strideB]; + double* Ck = &C[k * M * N]; + gemm(context, transA, transB, M, N, K, alpha, + Ak, Bk, beta, Ck); + } +} +#endif + template struct SetConstant; } // namespace math diff --git a/paddle/operators/math/math_function.cu b/paddle/operators/math/math_function.cu index 7fbc03acf2..5583683c6e 100644 --- a/paddle/operators/math/math_function.cu +++ b/paddle/operators/math/math_function.cu @@ -155,6 +155,54 @@ void matmul( matrix_b.data(), beta, matrix_out->data()); } +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C, const int batchCount, const int strideA, const int strideB) { + // Note that cublas follows fortran order, so the order is different from + // the cblas convention. + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + int ldc = N; + cublasOperation_t cuTransA = + (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + cublasOperation_t cuTransB = + (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + const int strideC = M * N; + + PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched( + reinterpret_cast(context) + .cublas_handle(), + cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA, + &beta, C, ldc, strideC, batchCount)); +} + +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C, const int batchCount, const int strideA, const int strideB) { + // Note that cublas follows fortran order, so the order is different from + // the cblas convention. + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + int ldc = N; + cublasOperation_t cuTransA = + (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + cublasOperation_t cuTransB = + (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + const int strideC = M * N; + + PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched( + reinterpret_cast(context) + .cublas_handle(), + cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA, + &beta, C, ldc, strideC, batchCount)); +} + template struct SetConstant; } // namespace math diff --git a/paddle/operators/math/math_function.h b/paddle/operators/math/math_function.h index 6f92d83aab..9777ebfd15 100644 --- a/paddle/operators/math/math_function.h +++ b/paddle/operators/math/math_function.h @@ -63,7 +63,7 @@ namespace math { // Support continuous memory now // If transA = N, and transB = N -// Then matrixA: M * K, matrixB: K * N matrixC : M * N +// Then matrixA: M * K, matrixB: K * N, matrixC : M * N // For more detailed info, please refer to // http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html template @@ -85,6 +85,14 @@ void matmul(const platform::DeviceContext& context, const framework::Tensor& matrix_b, bool trans_b, T alpha, framework::Tensor* matrix_out, T beta); +// Batched gemm +template +void batched_gemm(const platform::DeviceContext& context, + const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, + const int M, const int N, const int K, const T alpha, + const T* A, const T* B, const T beta, T* C, + const int batchCount, const int strideA, const int strideB); + template struct SetConstant { void operator()(const platform::DeviceContext& context, diff --git a/paddle/operators/math/math_function_test.cu b/paddle/operators/math/math_function_test.cu index 14359d835b..8b22c71552 100644 --- a/paddle/operators/math/math_function_test.cu +++ b/paddle/operators/math/math_function_test.cu @@ -16,15 +16,15 @@ TEST(math_function, notrans_mul_trans) { auto* gpu_place = new paddle::platform::GPUPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - input1_gpu.CopyFrom(input1, *gpu_place, context); - input2_gpu.CopyFrom(input1, *gpu_place, context); + input1_gpu.CopyFrom(input1, *gpu_place, context); + input2_gpu.CopyFrom(input1, *gpu_place, context); out_gpu.mutable_data({2, 2}, *gpu_place); paddle::operators::math::matmul( context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0); - out.CopyFrom(out_gpu, *cpu_place, context); + out.CopyFrom(out_gpu, *cpu_place, context); float* out_ptr = out.data(); context.Wait(); @@ -50,15 +50,15 @@ TEST(math_function, trans_mul_notrans) { auto* gpu_place = new paddle::platform::GPUPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - input1_gpu.CopyFrom(input1, *gpu_place, context); - input2_gpu.CopyFrom(input1, *gpu_place, context); + input1_gpu.CopyFrom(input1, *gpu_place, context); + input2_gpu.CopyFrom(input1, *gpu_place, context); out_gpu.mutable_data({3, 3}, *gpu_place); paddle::operators::math::matmul( context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0); - out.CopyFrom(out_gpu, *cpu_place, context); + out.CopyFrom(out_gpu, *cpu_place, context); float* out_ptr = out.data(); context.Wait(); @@ -99,9 +99,9 @@ TEST(math_function, gemm_notrans_cublas) { auto* gpu_place = new paddle::platform::GPUPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - input1_gpu.CopyFrom(input1, *gpu_place, context); - input2_gpu.CopyFrom(input2, *gpu_place, context); - input3_gpu.CopyFrom(input3, *gpu_place, context); + input1_gpu.CopyFrom(input1, *gpu_place, context); + input2_gpu.CopyFrom(input2, *gpu_place, context); + input3_gpu.CopyFrom(input3, *gpu_place, context); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); @@ -109,7 +109,7 @@ TEST(math_function, gemm_notrans_cublas) { paddle::operators::math::gemm( context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4); - input3.CopyFrom(input3_gpu, *cpu_place, context); + input3.CopyFrom(input3_gpu, *cpu_place, context); // numpy code: // a = np.arange(6).reshape(2, 3) @@ -154,9 +154,9 @@ TEST(math_function, gemm_trans_cublas) { auto* gpu_place = new paddle::platform::GPUPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - input1_gpu.CopyFrom(input1, *gpu_place, context); - input2_gpu.CopyFrom(input2, *gpu_place, context); - input3_gpu.CopyFrom(input3, *gpu_place, context); + input1_gpu.CopyFrom(input1, *gpu_place, context); + input2_gpu.CopyFrom(input2, *gpu_place, context); + input3_gpu.CopyFrom(input3, *gpu_place, context); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); @@ -164,7 +164,7 @@ TEST(math_function, gemm_trans_cublas) { paddle::operators::math::gemm( context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4); - input3.CopyFrom(input3_gpu, *cpu_place, context); + input3.CopyFrom(input3_gpu, *cpu_place, context); context.Wait(); EXPECT_EQ(input3_ptr[0], 0); diff --git a/paddle/operators/math/matmul.h b/paddle/operators/math/matmul.h new file mode 100644 index 0000000000..6ba9a0ba9a --- /dev/null +++ b/paddle/operators/math/matmul.h @@ -0,0 +1,124 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { +namespace math { + +// Implements the logic of numpy matmul: +// https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html +// +// but allowing also for a, b to be transposed +// +// Both a & b can be 1- to 3-dimensional. Higher rank tensors are not supported +// yet. +template +class MatMulFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& a, bool trans_a, + const framework::Tensor& b, bool trans_b, T alpha, + framework::Tensor* out, T beta) { + auto dim_a = a.dims(); + auto dim_b = b.dims(); + + PADDLE_ENFORCE(a.place() == b.place() && b.place() == out->place(), + "Tensors must all be in the same place."); + PADDLE_ENFORCE_GE(dim_a.size(), 1, + "Input tensor a must be at least 1-dimensional."); + PADDLE_ENFORCE_GE(dim_b.size(), 1, + "Input tensor b must be at least 1-dimensional."); + PADDLE_ENFORCE_LE(dim_a.size(), 3, + "Input tensor a must be at most 3-dimensional."); + PADDLE_ENFORCE_LE(dim_b.size(), 3, + "Input tensor b must be at most 3-dimensional."); + + int M = 0, N = 0, kA = 0, kB = 0, batchCountA = 0, batchCountB = 0, + strideA = 0, strideB = 0; + + switch (dim_a.size()) { + case 1: + // similar to np.matmul: + // prepend dimension 1 (no transpose) or append dimension 1 (transpose) + M = trans_a ? dim_a[0] : 1; + kA = trans_a ? 1 : dim_a[0]; + break; + case 2: + M = trans_a ? dim_a[1] : dim_a[0]; + kA = trans_a ? dim_a[0] : dim_a[1]; + break; + case 3: + batchCountA = dim_a[0]; + M = trans_a ? dim_a[2] : dim_a[1]; + kA = trans_a ? dim_a[1] : dim_a[2]; + strideA = M * kA; + break; + default: + assert(false); + } + + switch (dim_b.size()) { + case 1: + // similar to np.matmul: + // append dimension 1 (no transpose) or prepend dimension 1 (transpose) + kB = trans_b ? 1 : dim_b[0]; + N = trans_b ? dim_b[0] : 1; + break; + case 2: + kB = trans_b ? dim_b[1] : dim_b[0]; + N = trans_b ? dim_b[0] : dim_b[1]; + break; + case 3: + batchCountB = dim_b[0]; + kB = trans_b ? dim_b[2] : dim_b[1]; + N = trans_b ? dim_b[1] : dim_b[2]; + strideB = kB * N; + break; + default: + assert(false); + } + + PADDLE_ENFORCE_EQ( + kA, kB, + "First matrix's width must be equal with second matrix's height."); + if (batchCountA && batchCountB) { + PADDLE_ENFORCE_EQ( + batchCountA, batchCountB, + "When input tensors a and b are both batched, they must have the " + "same batch dimension."); + } + int batchCount = std::max(batchCountA, batchCountB); + + CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; + CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; + + if (!batchCount) { + // regular matrix multiplication + gemm(context, transA, transB, M, N, kA, alpha, a.data(), + b.data(), beta, out->data()); + } else { + // batched matrix multiplication + batched_gemm(context, transA, transB, M, N, kA, alpha, + a.data(), b.data(), beta, out->data(), + batchCount, strideA, strideB); + } + } +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor_test.cu b/paddle/operators/math/selected_rows_functor_test.cu index 8a9f25b982..69607c5afc 100644 --- a/paddle/operators/math/selected_rows_functor_test.cu +++ b/paddle/operators/math/selected_rows_functor_test.cu @@ -67,7 +67,7 @@ TEST(selected_rows_functor, gpu_add) { EXPECT_EQ(out_rows[6], 9); Tensor out_cpu; - out_cpu.CopyFrom(*out_value, cpu_place, ctx); + out_cpu.CopyFrom(*out_value, cpu_place, ctx); ctx.Wait(); auto* out_cpu_data = out_cpu.data(); @@ -94,7 +94,7 @@ TEST(selected_rows_functor, gpu_add) { add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); Tensor tensor2_cpu; - tensor2_cpu.CopyFrom(*tensor2, cpu_place, ctx); + tensor2_cpu.CopyFrom(*tensor2, cpu_place, ctx); ctx.Wait(); auto* tensor2_cpu_data = tensor2_cpu.data(); diff --git a/paddle/operators/math/vol2col_test.cc b/paddle/operators/math/vol2col_test.cc index 2d69218843..74590d17cd 100644 --- a/paddle/operators/math/vol2col_test.cc +++ b/paddle/operators/math/vol2col_test.cc @@ -78,7 +78,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - input.CopyFrom(input_tmp, *place, *context); + input.CopyFrom(input_tmp, *place, *context); } output.mutable_data({1, filter_size, filter_size, filter_size, output_depth, output_height, output_width}, @@ -93,7 +93,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output.data(); } else { - output_tmp.CopyFrom(output, paddle::platform::CPUPlace(), *context); + output_tmp.CopyFrom(output, paddle::platform::CPUPlace(), *context); out_cfo_ptr = output_tmp.data(); } @@ -107,7 +107,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - input.CopyFrom(input_tmp, *place, *context); + input.CopyFrom(input_tmp, *place, *context); } paddle::operators::math::Col2VolFunctor col2vol; @@ -118,7 +118,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { - input_tmp.CopyFrom(input, paddle::platform::CPUPlace(), *context); + input_tmp.CopyFrom(input, paddle::platform::CPUPlace(), *context); in_ptr = input_tmp.data(); } diff --git a/paddle/operators/matmul_op.cc b/paddle/operators/matmul_op.cc new file mode 100644 index 0000000000..5ecbee3b41 --- /dev/null +++ b/paddle/operators/matmul_op.cc @@ -0,0 +1,208 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/matmul_op.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; + +class MatMulOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* context) const override { + PADDLE_ENFORCE(context->HasInput("X"), + "Input(X) of MatMulOp should not be null."); + PADDLE_ENFORCE(context->HasInput("Y"), + "Input(Y) of MatMulOp should not be null."); + PADDLE_ENFORCE(context->HasOutput("Out"), + "Output(Out) of MatMulOp should not be null."); + + auto dim_x = context->GetInputDim("X"); + auto dim_y = context->GetInputDim("Y"); + bool transpose_x = context->Attrs().Get("transpose_X"); + bool transpose_y = context->Attrs().Get("transpose_Y"); + + PADDLE_ENFORCE_GE(dim_x.size(), 1, + "Input tensor X must be at least 1-dimensional."); + PADDLE_ENFORCE_GE(dim_y.size(), 1, + "Input tensor Y must be at least 1-dimensional."); + PADDLE_ENFORCE_LE(dim_x.size(), 3, + "Input tensor X must be at most 3-dimensional."); + PADDLE_ENFORCE_LE(dim_y.size(), 3, + "Input tensor Y must be at most 3-dimensional."); + + int M = 0, N = 0, KX = 0, KY = 0, batchCountX = 0, batchCountY = 0; + bool remove_initial_dim = false, remove_final_dim = false; + + switch (dim_x.size()) { + case 1: + if (transpose_x) { + M = dim_x[0]; + KX = 1; + } else { + M = 1; + KX = dim_x[0]; + remove_initial_dim = true; + } + break; + case 2: + M = transpose_x ? dim_x[1] : dim_x[0]; + KX = transpose_x ? dim_x[0] : dim_x[1]; + break; + case 3: + batchCountX = dim_x[0]; + M = transpose_x ? dim_x[2] : dim_x[1]; + KX = transpose_x ? dim_x[1] : dim_x[2]; + break; + default: + assert(false); + } + + switch (dim_y.size()) { + case 1: + if (transpose_y) { + N = dim_y[0]; + KY = 1; + } else { + N = 1; + KY = dim_y[0]; + remove_final_dim = true; + } + break; + case 2: + KY = transpose_y ? dim_y[1] : dim_y[0]; + N = transpose_y ? dim_y[0] : dim_y[1]; + break; + case 3: + batchCountY = dim_y[0]; + KY = transpose_y ? dim_y[2] : dim_y[1]; + N = transpose_y ? dim_y[1] : dim_y[2]; + break; + default: + assert(false); + } + + PADDLE_ENFORCE_EQ( + KX, KY, + "First matrix's width must be equal with second matrix's height."); + if (batchCountX && batchCountY) { + PADDLE_ENFORCE_EQ( + batchCountX, batchCountY, + "When Input(X) and Input(Y) are both three dimensional, they " + "must have the same batch dimension."); + } + int batchCount = std::max(batchCountX, batchCountY); + + std::vector dim_out; + if (batchCount) { + dim_out.push_back(batchCount); + } + if (!remove_initial_dim) { + dim_out.push_back(M); + } + if (!remove_final_dim) { + dim_out.push_back(N); + } + if (dim_out.size() == 0) { + // We don't support 0-dimensional Tensors (scalars), so instead + // treat the output as a Tensor of shape (1, ) in this case. + dim_out.push_back(1); + } + context->SetOutputDim("Out", framework::make_ddim(dim_out)); + context->ShareLoD("X", /*->*/ "Out"); + } +}; + +class MatMulOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MatMulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The first input of MatMul op"); + AddInput("Y", "The second input of MatMul op"); + AddOutput("Out", "The output of MatMul op"); + AddAttr("transpose_X", + R"DOC(If true, use the transpose of `X`. + )DOC") + .SetDefault(false); + AddAttr("transpose_Y", + R"DOC(If true, use the transpose of `Y`. + )DOC") + .SetDefault(false); + AddComment(R"DOC( +The MatMul operator is used to perform (batched) matrix multiplication +over the last two dimensions of the input tensors `X` and `Y`. + +If a transpose flag is specified, the last two dimensions of the +tensor are transposed. If the tensor is rank-1 of shape [D], then +for `X` it is treated as [1, D] in nontransposed form and as [D, 1] +in transposed form, whereas for `Y` it is the opposite: It is treated +as [D, 1] in nontransposed form and as [1, D] in transposed form. + +Examples without transpose: +- X: [K], Y: [K] => Out: [1] +- X: [K], Y: [K, N] => Out: [N] +- X: [B, M, K], Y: [K] => Out: [B, M] +- X: [M, K], Y: [B, K, N] => Out: [B, M, N] +- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N] + +The behavior is designed to be similar to the `numpy.matmul` function. +The differences are: +- Currently only rank 1 to rank 3 input tensors are supported. +- We add `transpose_X` and `transpose_Y` flags. + +Both the input `X` and `Y` can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with input `X`. +)DOC"); + } +}; + +class MatMulOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* context) const override { + PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null"); + PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + auto x_dims = context->GetInputDim("X"); + auto y_dims = context->GetInputDim("Y"); + + auto x_grad_name = framework::GradVarName("X"); + auto y_grad_name = framework::GradVarName("Y"); + + if (context->HasOutput(x_grad_name)) { + context->SetOutputDim(x_grad_name, x_dims); + } + if (context->HasOutput(y_grad_name)) { + context->SetOutputDim(y_grad_name, y_dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(matmul, ops::MatMulOp, ops::MatMulOpMaker, matmul_grad, + ops::MatMulOpGrad); +REGISTER_OP_CPU_KERNEL(matmul, + ops::MatMulKernel); +REGISTER_OP_CPU_KERNEL( + matmul_grad, ops::MatMulGradKernel); diff --git a/paddle/operators/matmul_op.cu b/paddle/operators/matmul_op.cu new file mode 100644 index 0000000000..b7e66382f0 --- /dev/null +++ b/paddle/operators/matmul_op.cu @@ -0,0 +1,21 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/matmul_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(matmul, + ops::MatMulKernel); +REGISTER_OP_GPU_KERNEL( + matmul_grad, ops::MatMulGradKernel); diff --git a/paddle/operators/matmul_op.h b/paddle/operators/matmul_op.h new file mode 100644 index 0000000000..5ce30740c9 --- /dev/null +++ b/paddle/operators/matmul_op.h @@ -0,0 +1,228 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + You may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/matmul.h" +#include "paddle/operators/transpose_op.h" + +namespace paddle { +namespace operators { +namespace matmul_detail { + +using Tensor = framework::Tensor; +using DDim = framework::DDim; +using framework::make_ddim; +using framework::vectorize; + +template +class MatMulKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor& x = *context.Input("X"); + const Tensor& y = *context.Input("Y"); + Tensor* out = context.Output("Out"); + out->mutable_data(context.GetPlace()); + bool transpose_x = context.Attr("transpose_X"); + bool transpose_y = context.Attr("transpose_Y"); + + math::MatMulFunctor()(context.device_context(), x, transpose_x, y, + transpose_y, T(1), out, T(0)); + } +}; + +template +inline Tensor Reshape(const Tensor& input, const DDim& dims) { + Tensor output; + output.ShareDataWith(input); + output.Resize(dims); + return output; +} + +// Reshape a rank-3 tensor from P x M x N to (P * M) x N. +// Identity op if the tensor is not of rank 3. +template +Tensor CombineBatchAndM(const Tensor& input) { + Tensor output; + output.ShareDataWith(input); + auto in_dims = input.dims(); + if (in_dims.size() == 3) { + std::vector out_dims = {in_dims[0] * in_dims[1], in_dims[2]}; + output.Resize(make_ddim(out_dims)); + } + return output; +} + +// Reshape a rank-3 tensor from P x M x N to M x (P * N). +// (Warning: This requires transposing data and writes into new memory.) +// Identity op if the tensor is not of rank 3. +template +Tensor CombineBatchAndN(const framework::ExecutionContext& context, + const Tensor& input) { + Tensor output; + auto in_dims = input.dims(); + if (in_dims.size() == 3) { + output.Resize(in_dims); + output.mutable_data(context.GetPlace()); + EigenTranspose(context, input, output, {1, 0, 2}); + std::vector out_dims = {in_dims[1], in_dims[0] * in_dims[2]}; + output.Resize(make_ddim(out_dims)); + } else { + output.ShareDataWith(input); + } + return output; +} + +// Using dimensional constraints on matrix multiplication, it is +// straight-forward to check the following table for when X and Y +// are both matrices. +// +// transpose_X | False | True | False | True +// transpose_Y | False | False | True | True +// -----------+----------+----------+----------+----------- +// dX = | dOut Y^T | Y dOut^T | dOut Y | Y^T dOut^T +// dY = | X^T dOut | X dOut | dOut^T X | dOut^T X^T +// +// When X is a vector of size K, we treat it instead as a matrix of shape +// (1, K). Similarly, when Y is a vector of size K, we treat it instead as +// a matrix of shape (K, 1). +// +// When X and Y are both 3-dimensional tensors, then the first dimension +// the batch dimension can be ignored and the exact same formulas apply +// as for two matrices. +// +// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end +// up with formulas like +// +// dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj} +// +// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N +// to X: (P * M) x K, dOut: (P * M) x N. +template +class MatMulGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor& x = *context.Input("X"); + const Tensor& y = *context.Input("Y"); + const Tensor& dout = *context.Input(framework::GradVarName("Out")); + Tensor* dx = context.Output(framework::GradVarName("X")); + Tensor* dy = context.Output(framework::GradVarName("Y")); + bool transpose_x = context.Attr("transpose_X"); + bool transpose_y = context.Attr("transpose_Y"); + + std::vector x_dims = vectorize(x.dims()); + std::vector y_dims = vectorize(y.dims()); + + // If X is a vector, reshape it to a matrix. + if (x_dims.size() == 1) { + x_dims.insert(x_dims.begin(), 1); + } + + // If Y is a vector, reshape it to a matrix. + if (y_dims.size() == 1) { + y_dims.push_back(1); + } + + // Fix the dOut dimensions. + int M = 0, N = 0, batchCountX = 0, batchCountY = 0; + + switch (x_dims.size()) { + case 2: + M = transpose_x ? x_dims[1] : x_dims[0]; + break; + case 3: + batchCountX = x_dims[0]; + M = transpose_x ? x_dims[2] : x_dims[1]; + break; + default: + assert(false); + } + + switch (y_dims.size()) { + case 2: + N = transpose_y ? y_dims[0] : y_dims[1]; + break; + case 3: + batchCountY = y_dims[0]; + N = transpose_y ? y_dims[1] : y_dims[2]; + break; + default: + assert(false); + } + if (batchCountX && batchCountY) { + PADDLE_ENFORCE_EQ( + batchCountX, batchCountY, + "When Input(X) and Input(Y) are both three dimensional, they " + "must have the same batch dimension."); + } + int batchCount = std::max(batchCountX, batchCountY); + std::vector dout_dims = {M, N}; + if (batchCount) { + dout_dims.insert(dout_dims.begin(), batchCount); + } + Tensor X = Reshape(x, make_ddim(x_dims)); + Tensor Y = Reshape(y, make_ddim(y_dims)); + Tensor dOut = Reshape(dout, make_ddim(dout_dims)); + + if (dx) { + dx->mutable_data(context.GetPlace()); + const Tensor& dOut_for_dX = + (x_dims.size() == 2 && y_dims.size() == 3) + ? CombineBatchAndN(context, dOut) + : dOut; + if (x_dims.size() == 2 && y_dims.size() == 3) { + Y = transpose_y ? CombineBatchAndM(Y) + : CombineBatchAndN(context, Y); + } + if (transpose_x) { + math::MatMulFunctor()(context.device_context(), Y, + transpose_y, dOut_for_dX, transpose_x, + T(1), dx, T(0)); + } else { + math::MatMulFunctor()(context.device_context(), dOut_for_dX, + transpose_x, Y, !transpose_y, T(1), dx, + T(0)); + } + } + + if (dy) { + dy->mutable_data(context.GetPlace()); + const Tensor& dOut_for_dY = (y_dims.size() == 2 && x_dims.size() == 3) + ? CombineBatchAndM(dOut) + : dOut; + if (y_dims.size() == 2 && x_dims.size() == 3) { + X = transpose_x ? CombineBatchAndN(context, X) + : CombineBatchAndM(X); + dOut = CombineBatchAndM(dOut); + } + if (transpose_y) { + math::MatMulFunctor()(context.device_context(), dOut_for_dY, + transpose_y, X, transpose_x, T(1), dy, + T(0)); + } else { + math::MatMulFunctor()(context.device_context(), X, + !transpose_x, dOut_for_dY, transpose_y, + T(1), dy, T(0)); + } + } + } +}; +} // namespace matmul_detail + +using matmul_detail::MatMulKernel; +using matmul_detail::MatMulGradKernel; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/momentum_op.cc b/paddle/operators/momentum_op.cc new file mode 100644 index 0000000000..2d4d6f1372 --- /dev/null +++ b/paddle/operators/momentum_op.cc @@ -0,0 +1,99 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/momentum_op.h" + +namespace paddle { +namespace operators { + +class MomentumOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(param) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(grad) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Velocity"), + "Input(velocity) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of Momentum should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"), + "Output(VelocityOut) of Momentum should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Grad"), + "Param and Grad input of MomentumOp should have the same dimension."); + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Velocity"), + "Param and Velocity of MomentumOp should have the same dimension."); + PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1, + "Learning_rate should be a scalar"); + + ctx->SetOutputDim("ParamOut", param_dim); + ctx->SetOutputDim("VelocityOut", param_dim); + } +}; + +class MomentumOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MomentumOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", + "(Tensor, default Tensor) " + "Input parameter that has to be updated"); + AddInput("Grad", + "(Tensor, default Tensor) " + "Input gradient of the parameter"); + AddInput("Velocity", + "(Tensor, default Tensor) " + "Input velocity (corresponding to the parameter) " + "that has to be updated"); + AddInput("LearningRate", + "(Tensor, default Tensor) " + "Input learning rate"); + + AddOutput("ParamOut", "(Tensor) Output updated parameter"); + AddOutput("VelocityOut", "(Tensor) Output updated velocity"); + + AddAttr("mu", "(float) Momentum coefficient"); + AddAttr("useNesterov", "(bool) Use Nesterov Momentum") + .SetDefault(false); + AddComment(R"DOC( + +Momentum Algorithm with a flag for Nestrov Moemntum (momentum). + +velocity = mu * velocity + gradient +if (use_nesterov): + param = param - gradient * learning_rate + mu * velocity * learning_rate +else: + param = param - learning_rate * velocity + +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(momentum, ops::MomentumOp, ops::MomentumOpMaker); +REGISTER_OP_CPU_KERNEL( + momentum, ops::MomentumOpKernel); diff --git a/paddle/operators/momentum_op.cu b/paddle/operators/momentum_op.cu new file mode 100644 index 0000000000..efc24e795e --- /dev/null +++ b/paddle/operators/momentum_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/momentum_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + momentum, ops::MomentumOpKernel); diff --git a/paddle/operators/momentum_op.h b/paddle/operators/momentum_op.h new file mode 100644 index 0000000000..e6d6d1da3d --- /dev/null +++ b/paddle/operators/momentum_op.h @@ -0,0 +1,62 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class MomentumOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out = ctx.Output("ParamOut"); + auto velocity_out = ctx.Output("VelocityOut"); + auto param = ctx.Input("Param"); + auto velocity = ctx.Input("Velocity"); + auto grad = ctx.Input("Grad"); + auto learning_rate = ctx.Input("LearningRate"); + + param_out->mutable_data(ctx.GetPlace()); + velocity_out->mutable_data(ctx.GetPlace()); + + float mu = ctx.Attr("mu"); + bool use_nesterov = ctx.Attr("useNesterov"); + + auto p_out = framework::EigenVector::Flatten(*param_out); + auto v_out = framework::EigenVector::Flatten(*velocity_out); + + auto p = framework::EigenVector::Flatten(*param); + auto v = framework::EigenVector::Flatten(*velocity); + auto g = framework::EigenVector::Flatten(*grad); + auto lr = framework::EigenVector::Flatten(*learning_rate); + + auto place = ctx.GetEigenDevice(); + + Eigen::DSizes grad_dsize(grad->numel()); + + v_out.device(place) = v * mu + g; + if (use_nesterov) { + p_out.device(place) = p - g * lr.broadcast(grad_dsize) + + v_out * mu * lr.broadcast(grad_dsize); + } else { + p_out.device(place) = p - lr.broadcast(grad_dsize) * v_out; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 943f81e949..065800f250 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -104,10 +104,10 @@ class MulOpGrad : public framework::OperatorWithKernel { auto y_dims = ctx->GetInputDim("Y"); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); - auto x_mat_dims = - framework::flatten_to_2d(x_dims, Attr("x_num_col_dims")); - auto y_mat_dims = - framework::flatten_to_2d(y_dims, Attr("y_num_col_dims")); + auto x_mat_dims = framework::flatten_to_2d( + x_dims, ctx->Attrs().Get("x_num_col_dims")); + auto y_mat_dims = framework::flatten_to_2d( + y_dims, ctx->Attrs().Get("y_num_col_dims")); PADDLE_ENFORCE_EQ( x_mat_dims[0], out_dims[0], diff --git a/paddle/operators/mul_op.h b/paddle/operators/mul_op.h index 684b1ea0c0..3f3e77595b 100644 --- a/paddle/operators/mul_op.h +++ b/paddle/operators/mul_op.h @@ -36,12 +36,12 @@ class MulKernel : public framework::OpKernel { Tensor* z = context.Output("Out"); const Tensor x_matrix = x->dims().size() > 2 - ? framework::ReshapeToMatrix( + ? framework::ReshapeToMatrix( *x, context.template Attr("x_num_col_dims")) : *x; const Tensor y_matrix = y->dims().size() > 2 - ? framework::ReshapeToMatrix( + ? framework::ReshapeToMatrix( *y, context.template Attr("y_num_col_dims")) : *y; @@ -59,30 +59,30 @@ class MulGradKernel : public framework::OpKernel { int y_num_col_dims = ctx.template Attr("y_num_col_dims"); const Tensor* x = ctx.Input("X"); const Tensor* y = ctx.Input("Y"); - const Tensor x_matrix = - x->dims().size() > 2 ? framework::ReshapeToMatrix(*x, x_num_col_dims) - : *x; - const Tensor y_matrix = - y->dims().size() > 2 ? framework::ReshapeToMatrix(*y, y_num_col_dims) - : *y; + const Tensor x_matrix = x->dims().size() > 2 + ? framework::ReshapeToMatrix(*x, x_num_col_dims) + : *x; + const Tensor y_matrix = y->dims().size() > 2 + ? framework::ReshapeToMatrix(*y, y_num_col_dims) + : *y; const Tensor* dout = ctx.Input(framework::GradVarName("Out")); Tensor* dx = ctx.Output(framework::GradVarName("X")); Tensor* dy = ctx.Output(framework::GradVarName("Y")); if (dx) { dx->mutable_data(ctx.GetPlace()); - Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix( - *dx, x_num_col_dims) - : *dx; + Tensor dx_matrix = dx->dims().size() > 2 + ? framework::ReshapeToMatrix(*dx, x_num_col_dims) + : *dx; // dx = dout * y'. dx: M x K, dout : M x N, y : K x N math::matmul(ctx.device_context(), *dout, false, y_matrix, true, 1, &dx_matrix, 0); } if (dy) { dy->mutable_data(ctx.GetPlace()); - Tensor dy_matrix = dy->dims().size() > 2 ? framework::ReshapeToMatrix( - *dy, y_num_col_dims) - : *dy; + Tensor dy_matrix = dy->dims().size() > 2 + ? framework::ReshapeToMatrix(*dy, y_num_col_dims) + : *dy; // dy = x' * dout. dy K x N, dout : M x N, x : M x K math::matmul(ctx.device_context(), x_matrix, true, *dout, false, 1, &dy_matrix, 0); diff --git a/paddle/operators/multiplex_op.cu b/paddle/operators/multiplex_op.cu index 10cb0e005f..143a14fef5 100644 --- a/paddle/operators/multiplex_op.cu +++ b/paddle/operators/multiplex_op.cu @@ -33,8 +33,7 @@ class MultiplexGPUKernel : public framework::OpKernel { auto cols = ins[0]->numel() / rows; // copy index to cpu Tensor index_t_cpu; - index_t_cpu.CopyFrom(*ids, platform::CPUPlace(), - ctx.device_context()); + index_t_cpu.CopyFrom(*ids, platform::CPUPlace(), ctx.device_context()); auto* index = index_t_cpu.data(); auto stream = reinterpret_cast( ctx.device_context()) @@ -71,8 +70,7 @@ class MultiplexGradGPUKernel : public framework::OpKernel { auto cols = ins[0]->numel() / rows; // copy index to cpu Tensor index_t_cpu; - index_t_cpu.CopyFrom(*ids, platform::CPUPlace(), - ctx.device_context()); + index_t_cpu.CopyFrom(*ids, platform::CPUPlace(), ctx.device_context()); auto* index = index_t_cpu.data(); auto stream = reinterpret_cast( diff --git a/paddle/operators/proximal_gd_op.cc b/paddle/operators/proximal_gd_op.cc new file mode 100644 index 0000000000..e4b014b9f5 --- /dev/null +++ b/paddle/operators/proximal_gd_op.cc @@ -0,0 +1,93 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/proximal_gd_op.h" + +namespace paddle { +namespace operators { + +class ProximalGDOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of ProximalGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of ProximalGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of ProximalGDOp should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of ProximalGDOp should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"), + "Two input of ProximalGD Op's dimension must be same."); + + auto lr_dim = ctx->GetInputDim("LearningRate"); + PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1, + "Learning Rate should be a scalar."); + + ctx->SetOutputDim("ParamOut", param_dim); + } +}; + +class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ProximalGDOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", + "(Tensor, default Tensor) " + "Input parameter value that has to be updated."); + AddInput("Grad", + "(Tensor, default Tensor) " + "Input gradient of the parameter."); + AddInput("LearningRate", + "(Tensor, default Tensor) " + "The learning rate should be a tensor of size 1."); + + AddOutput("ParamOut", "(Tensor) Output updated parameter value."); + + AddAttr("l1", + "(float, default 0.0) " + "L1 regularization strength.") + .SetDefault(0.0f); + AddAttr("l2", + "(float, default 0.0)" + "L2 regularization strength.") + .SetDefault(0.0f); + AddComment(R"DOC( + +Optimizer that implements the proximal gradient descent algorithm. + +prox_param = param - learning_rate * grad +param = sign(prox_param) / (1 + learning_rate * l2) * + max { |prox_param| - learning_rate * l1 , 0 } + +The paper that proposed Proximal Gradient Descent: +(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf) +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(proximal_gd, ops::ProximalGDOp, + ops::ProximalGDOpMaker); +REGISTER_OP_CPU_KERNEL( + proximal_gd, ops::ProximalGDOpKernel); diff --git a/paddle/operators/proximal_gd_op.cu b/paddle/operators/proximal_gd_op.cu new file mode 100644 index 0000000000..26f4ebaa0f --- /dev/null +++ b/paddle/operators/proximal_gd_op.cu @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +You may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the +specific language governing permissions and limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/proximal_gd_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + proximal_gd, ops::ProximalGDOpKernel); diff --git a/paddle/operators/proximal_gd_op.h b/paddle/operators/proximal_gd_op.h new file mode 100644 index 0000000000..bebda02041 --- /dev/null +++ b/paddle/operators/proximal_gd_op.h @@ -0,0 +1,64 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenVector = framework::EigenVector; + +template +class ProximalGDOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* param_out = ctx.Output("ParamOut"); + + param_out->mutable_data(ctx.GetPlace()); + + auto grad = ctx.Input("Grad"); + + auto l1 = static_cast(ctx.Attr("l1")); + auto l2 = static_cast(ctx.Attr("l2")); + + auto p = EigenVector::Flatten(*ctx.Input("Param")); + auto g = EigenVector::Flatten(*grad); + auto lr = EigenVector::Flatten(*ctx.Input("LearningRate")); + + auto p_out = EigenVector::Flatten(*param_out); + auto place = ctx.GetEigenDevice(); + + Eigen::DSizes grad_dsize(grad->numel()); + + auto prox_param = p - lr.broadcast(grad_dsize) * g; + if (l1 > 0) { + p_out.device(place) = + prox_param.sign() * + (((prox_param.abs() - (lr * l1).broadcast(grad_dsize)) + .cwiseMax(T(0.0))) / + (1.0 + (lr * l2).broadcast(grad_dsize))); + } else { + p_out.device(place) = + prox_param / (1.0 + (lr * l2).broadcast(grad_dsize)); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index e3d08378c2..40303e3adf 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -42,7 +42,7 @@ void RecurrentAlgorithm::Run(const Scope& scope, for (size_t step_id = 0; step_id < seq_len; step_id++) { if (step_id > 0) { - rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1); + rnn::LinkMemories(step_scopes, arg_->states, step_id, -1); } (*stepnet_)->Run(*step_scopes[step_id], dev_ctx); } @@ -59,7 +59,8 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope, // Now all variables in scope must be created outside of op. PADDLE_ENFORCE_NOT_NULL(stepnet_); - PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs"); + PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), + "step_unit_ op has no outputs"); if (seq_len > step_scopes->size()) { for (size_t i = step_scopes->size(); i < seq_len; ++i) { @@ -86,7 +87,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope, } void RecurrentAlgorithm::InitMemories(Scope* step_scope) const { - for (auto& attr : arg_->memories) { + for (auto& attr : arg_->states) { auto* pre_mem = step_scope->Var(attr.pre_var)->GetMutable(); PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, "memory [%s]'s boot variable [%s] not exists", attr.var, @@ -95,17 +96,17 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope) const { step_scope->FindVar(attr.boot_var)->GetMutable(); pre_mem->Resize(boot_mem->dims()); PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2); - pre_mem->ShareDataWith(*boot_mem); + pre_mem->ShareDataWith(*boot_mem); } } const rnn::ArgumentName RecurrentOp::kArgName{ - "step_net", "step_scopes", "inlinks", "outlinks", - "memories", "pre_memories", "boot_memories"}; + "step_net", "step_scopes", "inputs", "outputs", + "states", "ex_states", "initial_states"}; const rnn::ArgumentName RecurrentGradientOp::kArgName{ - "step_net", "step_scopes@GRAD", "outlinks@GRAD", "inlinks@GRAD", - "memories", "pre_memories", "boot_memories@GRAD"}; + "step_net", "step_scopes@GRAD", "outputs@GRAD", "inputs@GRAD", + "states", "ex_states", "initial_states@GRAD"}; RecurrentOp::RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs, @@ -127,7 +128,7 @@ class RecurrentAlgorithmProtoAndCheckerMaker AddInput(name.inlinks, "the inputs that need to be segmented for each step.") .AsDuplicable(); - AddInput(name.boot_memories, "variables to initialize memories.") + AddInput(name.initial_states, "variables to initialize states.") .AsDuplicable(); AddOutput(name.outlinks, "the outputs that need to concated for all steps.") @@ -135,9 +136,8 @@ class RecurrentAlgorithmProtoAndCheckerMaker AddOutput(name.step_scopes, "step scopes"); // Attributes stored in AttributeMap - AddAttr>(name.pre_memories, - "names of pre-memories"); - AddAttr>(name.memories, "names of memories"); + AddAttr>(name.ex_states, "names of pre-states"); + AddAttr>(name.states, "names of states"); AddComment("This is a recurrent group operator."); } @@ -152,7 +152,7 @@ void RecurrentGradientAlgorithm::Run( rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len); for (int step_id = seq_len - 1; step_id >= 0; --step_id) { if (static_cast(step_id) != seq_len - 1) { - rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1); + rnn::LinkMemories(step_scopes, arg_->states, step_id, 1); } (*stepnet_)->Run(*step_scopes[step_id], dev_ctx); } @@ -162,7 +162,7 @@ void RecurrentGradientAlgorithm::Run( void RecurrentGradientAlgorithm::LinkBootMemoryGradients( Scope* step_scope) const { - for (auto& attr : arg_->memories) { + for (auto& attr : arg_->states) { PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr, "memory variable [%s] does not exists", attr.var); PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, @@ -171,7 +171,7 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients( auto* boot_mem_grad = step_scope->Var(attr.boot_var)->GetMutable(); boot_mem_grad->Resize(mem_grad->dims()); - boot_mem_grad->ShareDataWith(*mem_grad); + boot_mem_grad->ShareDataWith(*mem_grad); } } diff --git a/paddle/operators/reduce_op.cc b/paddle/operators/reduce_op.cc index 5e878353ce..46f66a1370 100644 --- a/paddle/operators/reduce_op.cc +++ b/paddle/operators/reduce_op.cc @@ -13,6 +13,7 @@ limitations under the License. */ #include "paddle/operators/reduce_op.h" +#include "paddle/operators/net_op.h" namespace paddle { namespace operators { @@ -159,6 +160,66 @@ class ReduceMinOpMaker : public ReduceOpMaker { } }; +class NormOp : public NetOp { + public: + NormOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + PADDLE_ENFORCE_NE(Input("X"), framework::kEmptyVarName, + "Input(X) of NormOp should not be null."); + PADDLE_ENFORCE_NE(Output("AbsOut"), framework::kEmptyVarName, + "Output(AbsOut) of NormOp should not be null."); + PADDLE_ENFORCE_NE(Output("PowOut"), framework::kEmptyVarName, + "Output(PowOut) of NormOp should not be null."); + PADDLE_ENFORCE_NE(Output("SumOut"), framework::kEmptyVarName, + "Output(SumOut) of NormOp should not be null."); + PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName, + "Output(Out) of NormOp should not be null."); + auto dim = Attr("dim"); + auto keep_dim = Attr("keep_dim"); + auto p = Attr("p"); + PADDLE_ENFORCE_GT(p, 0, "Order of the norm should be positive."); + AppendOp(framework::OpRegistry::CreateOp("abs", {{"X", {Input("X")}}}, + {{"Y", {Output("AbsOut")}}}, {})); + AppendOp(framework::OpRegistry::CreateOp("pow", {{"X", {Output("AbsOut")}}}, + {{"Y", {Output("PowOut")}}}, + {{"factor", p}})); + framework::AttributeMap sum_attr; + sum_attr["dim"] = dim; + sum_attr["keep_dim"] = keep_dim; + AppendOp(framework::OpRegistry::CreateOp( + "reduce_sum", {{"X", {Output("PowOut")}}}, + {{"Out", {Output("SumOut")}}}, sum_attr)); + AppendOp(framework::OpRegistry::CreateOp( + "pow", {{"X", {Output("SumOut")}}}, {{"Y", {Output("Out")}}}, + {{"factor", static_cast(1. / p)}})); + CompleteAddOp(false); + } +}; + +class NormOpMaker : public ReduceOpMaker { + public: + NormOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : ReduceOpMaker(proto, op_checker) { + AddOutput("AbsOut", + "(Tensor) The intermediate output of Norm operator, " + "saving the absolute value of the input tensor X.") + .AsIntermediate(); + AddOutput("PowOut", + "(Tensor) The intermediate output of Norm operator, " + "saving the p-th power of the output tensor AbsOut.") + .AsIntermediate(); + AddOutput("SumOut", + "(Tensor) the intermediate output of Norm operator, " + "saving the sum of PowOut reduced on the given dimension.") + .AsIntermediate(); + AddAttr("p", "(float, default 2) The order of Norm.").SetDefault(2); + SetComment("Norm", "vector p-norm"); + AddComment(comment_); + } +}; + } // namespace operators } // namespace paddle @@ -176,6 +237,8 @@ REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad, REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad, ops::ReduceGradOp); +REGISTER_OP_WITHOUT_GRADIENT(norm, ops::NormOp, ops::NormOpMaker); + #define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \ REGISTER_OP_CPU_KERNEL( \ reduce_type, \ diff --git a/paddle/operators/reshape_op.h b/paddle/operators/reshape_op.h index 3ba4611458..c89cdf8cab 100644 --- a/paddle/operators/reshape_op.h +++ b/paddle/operators/reshape_op.h @@ -33,7 +33,7 @@ class ReshapeKernel : public framework::OpKernel { std::transform(shape.begin(), shape.end(), shape_int64.begin(), [](int a) { return static_cast(a); }); auto out_dims = framework::make_ddim(shape_int64); - out->CopyFrom(*in, ctx.GetPlace(), ctx.device_context()); + out->CopyFrom(*in, ctx.GetPlace(), ctx.device_context()); out->Resize(out_dims); } }; @@ -47,7 +47,7 @@ class ReshapeGradKernel : public framework::OpKernel { d_x->mutable_data(ctx.GetPlace()); auto in_dims = d_x->dims(); - d_x->CopyFrom(*d_out, ctx.GetPlace(), ctx.device_context()); + d_x->CopyFrom(*d_out, ctx.GetPlace(), ctx.device_context()); d_x->Resize(in_dims); } }; diff --git a/paddle/operators/rnn/recurrent_op_utils.cc b/paddle/operators/rnn/recurrent_op_utils.cc index 30b8ddeb5b..ee61ea300c 100644 --- a/paddle/operators/rnn/recurrent_op_utils.cc +++ b/paddle/operators/rnn/recurrent_op_utils.cc @@ -36,14 +36,14 @@ void SegmentInputs(const std::vector& step_scopes, LoDTensor* input = input_var->GetMutable(); f::DDim dims = input->dims(); PADDLE_ENFORCE_EQ(static_cast(dims[0]), seq_len, - "all the inlinks be the same length"); + "all the inputs be the same length"); f::DDim step_dims = slice_ddim(dims, 1, dims.size()); for (size_t j = 0; j < seq_len; j++) { Tensor* step_input = step_scopes[j]->Var(inlinks[i])->GetMutable(); // The input of operators of each step is Tensor here. // Maybe need to modify Slice function. - *step_input = input->Slice(j, j + 1); + *step_input = input->Slice(j, j + 1); step_input->Resize(step_dims); } } @@ -71,14 +71,14 @@ void ConcatOutputs(const std::vector& step_scopes, step_scopes[j]->FindVar(outlinks[i])->GetMutable(); // TODO(luotao02) data type and platform::DeviceContext() should set // correctly - (output->Slice(j, j + 1)) - .CopyFrom(*step_output, platform::CPUPlace(), ctx); + (output->Slice(j, j + 1)) + .CopyFrom(*step_output, platform::CPUPlace(), ctx); } } } void LinkMemories(const std::vector& scopes, - const std::vector& memories, + const std::vector& memories, const size_t step_id, const int offset) { PADDLE_ENFORCE_LT(step_id, scopes.size(), "step [%d] is out of range of step scopes' size [%d]", @@ -95,7 +95,7 @@ void LinkMemories(const std::vector& scopes, auto* mem = scope->FindVar(attr.pre_var)->GetMutable(); auto* linked_mem = linked_scope->FindVar(attr.var)->GetMutable(); mem->Resize(linked_mem->dims()); - mem->ShareDataWith(*linked_mem); + mem->ShareDataWith(*linked_mem); } } @@ -106,26 +106,26 @@ void InitArgument(const ArgumentName& name, Argument* arg, arg->inlinks = op.Inputs(name.inlinks); arg->outlinks = op.Outputs(name.outlinks); - auto& boot_memories = - is_grad ? op.Outputs(name.boot_memories) : op.Inputs(name.boot_memories); + auto& boot_memories = is_grad ? op.Outputs(name.initial_states) + : op.Inputs(name.initial_states); // attributes - auto& memories = op.Attr>(name.memories); - auto& pre_memories = op.Attr>(name.pre_memories); + auto& memories = op.Attr>(name.states); + auto& pre_memories = op.Attr>(name.ex_states); PADDLE_ENFORCE(memories.size() == boot_memories.size(), - "the size of memories, boot_memories don't match:%d,%d", + "the size of states, initial_states don't match:%d,%d", memories.size(), boot_memories.size()); PADDLE_ENFORCE(pre_memories.size() == boot_memories.size(), - "the size of pre_memories, boot_memories don't match:%d,%d", + "the size of ex_states, initial_states don't match:%d,%d", pre_memories.size(), boot_memories.size()); - PADDLE_ENFORCE(memories.size() > 0, "more than 1 memories should be set"); + PADDLE_ENFORCE(memories.size() > 0, "more than 1 states should be set"); for (size_t i = 0; i < memories.size(); ++i) { - rnn::MemoryAttr mem_attr; + rnn::StateAttr mem_attr; mem_attr.var = memories[i]; mem_attr.pre_var = pre_memories[i]; mem_attr.boot_var = boot_memories[i]; - (arg->memories).push_back(mem_attr); + (arg->states).push_back(mem_attr); } } diff --git a/paddle/operators/rnn/recurrent_op_utils.h b/paddle/operators/rnn/recurrent_op_utils.h index fe173edb24..fb0e158e07 100644 --- a/paddle/operators/rnn/recurrent_op_utils.h +++ b/paddle/operators/rnn/recurrent_op_utils.h @@ -31,7 +31,7 @@ using Scope = framework::Scope; * boot memories in father scope. Other attributes are copied from Op's proto * attributes. */ -struct MemoryAttr { +struct StateAttr { // name of current state variable std::string var; // name of previous step's state variable @@ -46,7 +46,7 @@ struct Argument { std::string step_scopes; std::vector inlinks; std::vector outlinks; - std::vector memories; + std::vector states; }; struct ArgumentName { @@ -54,9 +54,9 @@ struct ArgumentName { std::string step_scopes; std::string inlinks; std::string outlinks; - std::string memories; // the memory name - std::string pre_memories; // the previous memory name - std::string boot_memories; // the boot memory name + std::string states; // the memory name + std::string ex_states; // the previous memory name + std::string initial_states; // the boot memory name }; /** @@ -74,7 +74,7 @@ void ConcatOutputs(const std::vector& step_scopes, const size_t seq_len, const platform::DeviceContext& ctx); void LinkMemories(const std::vector& step_scopes, - const std::vector& memories, const size_t step_id, + const std::vector& memories, const size_t step_id, const int offset); void InitArgument(const ArgumentName& name, Argument* arg, diff --git a/paddle/operators/scatter_op.cu b/paddle/operators/scatter_op.cu index 06f4d75944..3b32ae2fb7 100644 --- a/paddle/operators/scatter_op.cu +++ b/paddle/operators/scatter_op.cu @@ -30,7 +30,7 @@ class ScatterOpCUDAKernel : public framework::OpKernel { auto *Updates = ctx.Input("Updates"); auto *Out = ctx.Output("Out"); - Out->ShareDataWith(*Ref); + Out->ShareDataWith(*Ref); GPUScatterAssign(ctx.device_context(), *Updates, *Index, Out); } @@ -48,7 +48,7 @@ class ScatterGradOpCUDAKernel : public framework::OpKernel { auto *dOut = ctx.Input(framework::GradVarName("Out")); // In place gradient: dRef = dO - dRef->ShareDataWith(*dOut); + dRef->ShareDataWith(*dOut); dUpdates->mutable_data(ctx.GetPlace()); // Gradient by Gather: dUpdates = dO[Index] GPUGather(ctx.device_context(), *dOut, *Index, dUpdates); diff --git a/paddle/operators/scatter_op.h b/paddle/operators/scatter_op.h index 6101219006..1a4f6f99bf 100644 --- a/paddle/operators/scatter_op.h +++ b/paddle/operators/scatter_op.h @@ -35,7 +35,7 @@ class ScatterOpKernel : public framework::OpKernel { auto *Out = ctx.Output("Out"); // In place output: Out = Ref, Out[Index] += Updates - Out->ShareDataWith(*Ref); + Out->ShareDataWith(*Ref); // Apply ScatterUpdate: Out[index] += Updates[:] ScatterAssign(ctx.device_context(), *Updates, *Index, Out); } @@ -53,7 +53,7 @@ class ScatterGradientOpKernel : public framework::OpKernel { auto *dOut = ctx.Input(framework::GradVarName("Out")); // In place gradient: dRef = dO - dRef->ShareDataWith(*dOut); + dRef->ShareDataWith(*dOut); dUpdates->mutable_data(ctx.GetPlace()); // Gradient by Gather: dUpdates += dO[Index] CPUGather(ctx.device_context(), *dOut, *Index, dUpdates); diff --git a/paddle/operators/sequence_concat_op.h b/paddle/operators/sequence_concat_op.h index a197a05bbb..6adf96120c 100644 --- a/paddle/operators/sequence_concat_op.h +++ b/paddle/operators/sequence_concat_op.h @@ -87,16 +87,16 @@ class SequenceConcatOpKernel : public framework::OpKernel { auto out_lod_level = out_lod[level]; for (size_t i = 0; i < out_lod_level.size() - 1; ++i) { - Tensor out_t = out->Slice(static_cast(out_lod_level[i]), - static_cast(out_lod_level[i + 1])); + Tensor out_t = out->Slice(static_cast(out_lod_level[i]), + static_cast(out_lod_level[i + 1])); auto out_stride = framework::stride(out_t.dims()); size_t offset = 0; for (size_t j = 0; j < n; ++j) { auto in_lod_level = ins[j]->lod()[level]; auto in_stride = framework::stride(ins[j]->dims()); - Tensor in_t = ins[j]->Slice(static_cast(in_lod_level[i]), - static_cast(in_lod_level[i + 1])); + Tensor in_t = ins[j]->Slice(static_cast(in_lod_level[i]), + static_cast(in_lod_level[i + 1])); size_t axis_dim = in_t.dims()[axis]; StridedMemcpy(ctx.device_context(), in_t.data(), in_stride, in_t.dims(), out_stride, out_t.data() + offset); @@ -130,8 +130,8 @@ class SequenceConcatGradOpKernel : public framework::OpKernel { for (size_t i = 0; i < out_lod_level.size() - 1; ++i) { Tensor out_grad_t = - out_grad->Slice(static_cast(out_lod_level[i]), - static_cast(out_lod_level[i + 1])); + out_grad->Slice(static_cast(out_lod_level[i]), + static_cast(out_lod_level[i + 1])); auto out_grad_stride = framework::stride(out_grad_t.dims()); size_t offset = 0; @@ -139,8 +139,8 @@ class SequenceConcatGradOpKernel : public framework::OpKernel { auto x_grad_lod_level = x_grads[j]->lod()[level]; auto x_grad_stride = framework::stride(x_grads[j]->dims()); Tensor x_grad_t = - x_grads[j]->Slice(static_cast(x_grad_lod_level[i]), - static_cast(x_grad_lod_level[i + 1])); + x_grads[j]->Slice(static_cast(x_grad_lod_level[i]), + static_cast(x_grad_lod_level[i + 1])); size_t axis_dim = x_grad_t.dims()[axis]; StridedMemcpy(ctx.device_context(), out_grad_t.data() + offset, out_grad_stride, out_grad_t.dims(), x_grad_stride, diff --git a/paddle/operators/sequence_pool_op.h b/paddle/operators/sequence_pool_op.h index a5569d1aac..0de6cafe9c 100644 --- a/paddle/operators/sequence_pool_op.h +++ b/paddle/operators/sequence_pool_op.h @@ -64,9 +64,9 @@ class SequencePoolKernel : public framework::OpKernel { out->mutable_data(context.GetPlace()); auto place = context.GetEigenDevice(); for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { - Tensor in_t = in->Slice(static_cast(lod_level_0[i]), - static_cast(lod_level_0[i + 1])); - Tensor out_t = out->Slice(i, i + 1); + Tensor in_t = in->Slice(static_cast(lod_level_0[i]), + static_cast(lod_level_0[i + 1])); + Tensor out_t = out->Slice(i, i + 1); int64_t h = static_cast(lod_level_0[i + 1] - lod_level_0[i]); auto in_e = EigenMatrix::From(in_t, framework::make_ddim({h, w})); auto out_e = EigenVector::Flatten(out_t); @@ -116,9 +116,9 @@ class SequencePoolGradKernel : public framework::OpKernel { } auto place = context.GetEigenDevice(); for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { - auto in_g_t = in_g->Slice(static_cast(lod[i]), - static_cast(lod[i + 1])); - auto out_g_t = out_g->Slice(i, i + 1); + auto in_g_t = + in_g->Slice(static_cast(lod[i]), static_cast(lod[i + 1])); + auto out_g_t = out_g->Slice(i, i + 1); int64_t h = static_cast(lod[i + 1] - lod[i]); auto in_g_e = EigenMatrix::From(in_g_t, {h, w}); auto out_g_e = EigenMatrix::From(out_g_t, {1, w}); diff --git a/paddle/operators/sequence_softmax_op.h b/paddle/operators/sequence_softmax_op.h index 96d87c404d..3eb1e2844d 100644 --- a/paddle/operators/sequence_softmax_op.h +++ b/paddle/operators/sequence_softmax_op.h @@ -46,8 +46,8 @@ class SequenceSoftmaxKernel : public framework::OpKernel { for (int i = 0; i < static_cast(lod[level].size()) - 1; ++i) { int start_pos = static_cast(lod[level][i]); int end_pos = static_cast(lod[level][i + 1]); - Tensor x_i = x->Slice(start_pos, end_pos); - Tensor out_i = out->Slice(start_pos, end_pos); + Tensor x_i = x->Slice(start_pos, end_pos); + Tensor out_i = out->Slice(start_pos, end_pos); // Reshape from (end_pos - start_pos) x 1UL to 1UL x (end_pos - start_pos) framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos}); @@ -75,9 +75,9 @@ class SequenceSoftmaxGradKernel : public framework::OpKernel { int start_pos = static_cast(lod[level][i]); int end_pos = static_cast(lod[level][i + 1]); - Tensor out_i = out->Slice(start_pos, end_pos); - Tensor out_grad_i = out_grad->Slice(start_pos, end_pos); - Tensor x_grad_i = x_grad->Slice(start_pos, end_pos); + Tensor out_i = out->Slice(start_pos, end_pos); + Tensor out_grad_i = out_grad->Slice(start_pos, end_pos); + Tensor x_grad_i = x_grad->Slice(start_pos, end_pos); // Reshape from (end_pos - start_pos) x 1UL to 1UL x (end_pos - start_pos) framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos}); diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index 0f78eeab9b..2acb96d1b4 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -21,7 +21,7 @@ class SGDOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; - void InferShape(framework::InferShapeContext *ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Param"), "Input(Param) of SGDOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Grad"), @@ -35,15 +35,15 @@ class SGDOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, "Learning rate should have 1 element"); auto param_dim = ctx->GetInputDim("Param"); - PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"), - "Two input of SGD Op's dimension must be same."); + // TODO(qijun): check dimensions of Param and Grad at complie + // and run time. ctx->SetOutputDim("ParamOut", param_dim); } }; class SGDOpMaker : public framework::OpProtoAndCheckerMaker { public: - SGDOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SGDOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "Input parameter"); AddInput("LearningRate", "Learning rate of SGD"); @@ -58,6 +58,38 @@ param_out = param - learning_rate * grad; )DOC"); } }; + +template +struct SparseSGDFunctor { + void operator()(const platform::DeviceContext& context, + const framework::SelectedRows& input, + const framework::Tensor& learning_rate, + framework::Tensor* output) { + auto in_height = input.height(); + auto out_dims = output->dims(); + PADDLE_ENFORCE_EQ(in_height, out_dims[0]); + + auto& in_value = input.value(); + auto& in_rows = input.rows(); + + int64_t in_row_numel = in_value.numel() / in_rows.size(); + PADDLE_ENFORCE_EQ(in_row_numel, output->numel() / in_height); + + auto* in_data = in_value.data(); + auto* out_data = output->data(); + auto* lr = learning_rate.data(); + + for (size_t i = 0; i < in_rows.size(); i++) { + for (int64_t j = 0; j < in_row_numel; j++) { + out_data[in_rows[i] * in_row_numel + j] -= + lr[0] * in_data[i * in_row_numel + j]; + } + } + } +}; + +template struct SparseSGDFunctor; + } // namespace operators } // namespace paddle diff --git a/paddle/operators/sgd_op.cu b/paddle/operators/sgd_op.cu index f5ba6d3c29..106f9b746b 100644 --- a/paddle/operators/sgd_op.cu +++ b/paddle/operators/sgd_op.cu @@ -14,6 +14,66 @@ #define EIGEN_USE_GPU #include "paddle/operators/sgd_op.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { + +namespace { +template +__global__ void SparseSGDFunctorKernel(const T* selected_rows, + const int64_t* rows, + const T* learning_rate, T* tensor_out, + int64_t row_numel, int block_size) { + const int ty = blockIdx.y; + int tid = threadIdx.x; + + selected_rows += ty * row_numel; + tensor_out += rows[ty] * row_numel; + + for (int index = tid; index < row_numel; index += block_size) { + // Since index in rows of SelectedRows can be duplicate, we have to use + // Atomic Operation to avoid concurrent write error. + paddle::platform::CudaAtomicAdd( + tensor_out + index, -1.0 * learning_rate[0] * selected_rows[index]); + } +} +} // namespace + +template +struct SparseSGDFunctor { + void operator()(const platform::DeviceContext& context, + const framework::SelectedRows& input, + const framework::Tensor& learning_rate, + framework::Tensor* output) { + auto in_height = input.height(); + auto out_dims = output->dims(); + PADDLE_ENFORCE_EQ(in_height, out_dims[0]); + + auto& in_value = input.value(); + auto& in_rows = input.rows(); + + int64_t in_row_numel = in_value.numel() / in_rows.size(); + PADDLE_ENFORCE_EQ(in_row_numel, output->numel() / in_height); + + auto* in_data = in_value.data(); + auto* out_data = output->data(); + + int block_size = 256; + dim3 threads(block_size, 1); + dim3 grid(1, in_rows.size()); + SparseSGDFunctorKernel< + T><<(context) + .stream()>>>(in_data, in_rows.data(), learning_rate.data(), + out_data, in_row_numel, block_size); + } +}; + +template struct SparseSGDFunctor; + +} // namespace operators +} // namespace paddle namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(sgd, diff --git a/paddle/operators/sgd_op.h b/paddle/operators/sgd_op.h index 26f4012f25..78b595fc6c 100644 --- a/paddle/operators/sgd_op.h +++ b/paddle/operators/sgd_op.h @@ -15,31 +15,53 @@ limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/framework/selected_rows.h" namespace paddle { namespace operators { +template +struct SparseSGDFunctor { + void operator()(const platform::DeviceContext& context, + const framework::SelectedRows& input, + const framework::Tensor& learning_rate, + framework::Tensor* output); +}; + template class SGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto param = ctx.Input("Param"); - auto grad = ctx.Input("Grad"); - auto param_out = ctx.Output("ParamOut"); - auto learning_rate = ctx.Input("LearningRate"); + auto* param = ctx.Input("Param"); + auto* param_out = ctx.Output("ParamOut"); + auto* learning_rate = ctx.Input("LearningRate"); - param_out->mutable_data(ctx.GetPlace()); + auto* grad_var = ctx.InputVar("Grad"); + // Actually, all tensors are LoDTensor except SelectedRows. + if (grad_var->IsType()) { + param_out->mutable_data(ctx.GetPlace()); + auto* grad = ctx.Input("Grad"); - auto p = framework::EigenVector::Flatten(*param); - auto g = framework::EigenVector::Flatten(*grad); - auto o = framework::EigenVector::Flatten(*param_out); - auto lr = framework::EigenVector::Flatten(*learning_rate); - auto place = ctx.GetEigenDevice(); + auto p = framework::EigenVector::Flatten(*param); + auto g = framework::EigenVector::Flatten(*grad); + auto o = framework::EigenVector::Flatten(*param_out); + auto lr = framework::EigenVector::Flatten(*learning_rate); + auto place = ctx.GetEigenDevice(); - Eigen::DSizes grad_dsize(grad->numel()); - o.device(place) = p - lr.broadcast(grad_dsize) * g; + Eigen::DSizes grad_dsize(grad->numel()); + o.device(place) = p - lr.broadcast(grad_dsize) * g; + } else if (grad_var->IsType()) { + // TODO(qijun): In Sparse SGD operator, in-place update is enforced. + // This manual optimization brings difficulty to track data dependency. + // It's better to find a more elegant solution. + PADDLE_ENFORCE_EQ(param, param_out); + auto* grad = ctx.Input("Grad"); + SparseSGDFunctor functor; + functor(ctx.device_context(), *grad, *learning_rate, param_out); + } else { + PADDLE_THROW("Unsupported Variable Type of Grad"); + } } }; - } // namespace operators } // namespace paddle diff --git a/paddle/operators/softmax_with_cross_entropy_op.cu b/paddle/operators/softmax_with_cross_entropy_op.cu index d03a1a7658..68ac2b0ea3 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cu +++ b/paddle/operators/softmax_with_cross_entropy_op.cu @@ -85,7 +85,7 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { context.Input(framework::GradVarName("Loss"))->data(); Tensor* logit_grad = context.Output(framework::GradVarName("Logits")); - logit_grad->ShareDataWith(*context.Input("Softmax")); + logit_grad->ShareDataWith(*context.Input("Softmax")); T* logit_grad_data = logit_grad->data(); const int batch_size = logit_grad->dims()[0]; diff --git a/paddle/operators/softmax_with_cross_entropy_op.h b/paddle/operators/softmax_with_cross_entropy_op.h index 66d7bc1569..01027cf63f 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.h +++ b/paddle/operators/softmax_with_cross_entropy_op.h @@ -57,7 +57,7 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel { const Tensor* labels = context.Input("Label"); Tensor* logit_grad = context.Output(framework::GradVarName("Logits")); - logit_grad->ShareDataWith(*context.Input("Softmax")); + logit_grad->ShareDataWith(*context.Input("Softmax")); const int class_num = logit_grad->dims()[1]; if (context.Attr("soft_label")) { diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index 612bdd70db..39b53948e3 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -53,10 +53,10 @@ class UniformRandomOp : public framework::OperatorWithKernel { PADDLE_ENFORCE( ctx->Attrs().Get("min") < ctx->Attrs().Get("max"), "uniform_random's min must less then max"); - auto& dims = ctx->Attrs().Get>("dims"); + auto& shape = ctx->Attrs().Get>("shape"); std::vector temp; - temp.reserve(dims.size()); - for (auto dim : dims) { + temp.reserve(shape.size()); + for (auto dim : shape) { temp.push_back(static_cast(dim)); } ctx->SetOutputDim("Out", framework::make_ddim(temp)); @@ -65,7 +65,7 @@ class UniformRandomOp : public framework::OperatorWithKernel { protected: framework::DataType IndicateDataType( const framework::ExecutionContext& ctx) const override { - return static_cast(Attr("data_type")); + return static_cast(ctx.Attr("data_type")); } }; @@ -78,7 +78,7 @@ class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC(Uniform random operator. Used to initialize tensor with uniform random generator. )DOC"); - AddAttr>("dims", "the dimension of random tensor"); + AddAttr>("shape", "the dimension of random tensor"); AddAttr("min", "Minimum value of uniform random").SetDefault(-1.0f); AddAttr("max", "Maximun value of uniform random").SetDefault(1.0f); AddAttr("seed", diff --git a/paddle/parameter/FirstOrderOptimizer.h b/paddle/parameter/FirstOrderOptimizer.h index 895e8d6a63..f157188a4f 100644 --- a/paddle/parameter/FirstOrderOptimizer.h +++ b/paddle/parameter/FirstOrderOptimizer.h @@ -265,6 +265,10 @@ public: addParameterType(PARAMETER_SECOND_MOMENTUM); } + virtual void startBatch(int64_t numSamplesProcessed) { + learningRate_ = calcLearningRate(numSamplesProcessed, pass_); + } + virtual void finishBatch() { ++step_; } virtual void update(const VectorPtr vecs[], diff --git a/paddle/platform/dynload/cublas.h b/paddle/platform/dynload/cublas.h index 9d8343c0b5..6b64539b0a 100644 --- a/paddle/platform/dynload/cublas.h +++ b/paddle/platform/dynload/cublas.h @@ -77,6 +77,10 @@ extern void *cublas_dso_handle; __macro(cublasDgemmBatched); \ __macro(cublasCgemmBatched); \ __macro(cublasZgemmBatched); \ + __macro(cublasSgemmStridedBatched); \ + __macro(cublasDgemmStridedBatched); \ + __macro(cublasCgemmStridedBatched); \ + __macro(cublasZgemmStridedBatched); \ __macro(cublasSgetrfBatched); \ __macro(cublasSgetriBatched); \ __macro(cublasDgetrfBatched); \ diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc index b360b05d16..405ac544e1 100644 --- a/paddle/pybind/protobuf.cc +++ b/paddle/pybind/protobuf.cc @@ -100,21 +100,11 @@ using namespace paddle::framework; // NOLINT // Bind Methods void BindProgramDesc(py::module &m) { py::class_(m, "ProgramDesc", "") - .def_static("instance", - []() -> ProgramDescBind * { - return &ProgramDescBind::Instance(&GetProgramDesc()); - }, - py::return_value_policy::reference) - .def_static("__create_program_desc__", - []() -> ProgramDescBind * { - // Only used for unit-test - auto *prog_desc = new ProgramDesc; - auto *block = prog_desc->mutable_blocks()->Add(); - block->set_idx(0); - block->set_parent_idx(-1); - return &ProgramDescBind::Instance(prog_desc); - }, - py::return_value_policy::reference) + .def(py::init<>()) + .def("__init__", + [](ProgramDescBind &self, const ProgramDescBind &other) { + new (&self) ProgramDescBind(other); + }) .def("append_block", &ProgramDescBind::AppendBlock, py::return_value_policy::reference) .def("append_backward", @@ -163,6 +153,11 @@ void BindBlockDesc(py::module &m) { return self.Var(name); }, py::return_value_policy::reference) + .def("has_var", + [](BlockDescBind &self, py::bytes byte_name) { + std::string name = byte_name; + return self.HasVar(name); + }) .def("find_var", [](BlockDescBind &self, py::bytes byte_name) { std::string name = byte_name; @@ -171,8 +166,8 @@ void BindBlockDesc(py::module &m) { py::return_value_policy::reference) .def("all_vars", &BlockDescBind::AllVars, py::return_value_policy::reference) - .def("all_ops", &BlockDescBind::AllOps, - py::return_value_policy::reference) + .def("op_size", &BlockDescBind::OpSize) + .def("op", &BlockDescBind::Op, py::return_value_policy::reference) .def("serialize_to_string", [](BlockDescBind &block_desc) -> py::bytes { const BlockDesc *desc = block_desc.Proto(); PADDLE_ENFORCE(desc->IsInitialized(), @@ -211,20 +206,25 @@ void BindVarDsec(py::module &m) { .def("set_lod_level", &VarDescBind::SetLoDLevel) .def("type", &VarDescBind::GetType) .def("set_type", &VarDescBind::SetType) - .def("serialize_to_string", [](VarDescBind &var_desc) -> py::bytes { - const VarDesc *desc = var_desc.Proto(); - PADDLE_ENFORCE(desc->IsInitialized(), - "VarDesc has not been initialized."); - std::string res; - PADDLE_ENFORCE( - desc->SerializeToString(&res), - "Serialize VarDesc Error. This could be a bug of Paddle."); - return res; - }); + .def("serialize_to_string", + [](VarDescBind &var_desc) -> py::bytes { + const VarDesc *desc = var_desc.Proto(); + PADDLE_ENFORCE(desc->IsInitialized(), + "VarDesc has not been initialized."); + std::string res; + PADDLE_ENFORCE( + desc->SerializeToString(&res), + "Serialize VarDesc Error. This could be a bug of Paddle."); + return res; + }) + .def("persistable", &VarDescBind::Persistable) + .def("set_persistable", &VarDescBind::SetPersistable); py::enum_(var_desc, "VarType", "") .value("LOD_TENSOR", VarDesc::LOD_TENSOR) - .value("SELECTED_ROWS", VarDesc::SELECTED_ROWS); + .value("SELECTED_ROWS", VarDesc::SELECTED_ROWS) + .value("FEED_MINIBATCH", VarDesc::FEED_MINIBATCH) + .value("FETCH_LIST", VarDesc::FETCH_LIST); } void BindOpDesc(py::module &m) { diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index fcae92ad99..26b793a4bb 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -17,6 +17,7 @@ limitations under the License. */ #include "paddle/framework/backward.h" #include "paddle/framework/executor.h" #include "paddle/framework/feed_fetch_method.h" +#include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/selected_rows.h" #include "paddle/framework/tensor_array.h" @@ -83,10 +84,12 @@ PYBIND11_PLUGIN(core) { .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) + .def("set", PyCPUTensorSetFromArray) #ifdef PADDLE_WITH_CUDA .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) + .def("set", PyCUDATensorSetFromArray) #endif .def("shape", [](Tensor &self) { return vectorize(self.dims()); }) .def("set_float_element", TensorSetElement) @@ -110,6 +113,7 @@ PYBIND11_PLUGIN(core) { new (&instance) LoDTensor(new_lod); #endif }) + .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); }) .def("set_lod", [](LoDTensor &self, const std::vector> &lod) { #ifndef PADDLE_WITH_CUDA @@ -153,7 +157,15 @@ PYBIND11_PLUGIN(core) { py::return_value_policy::reference) .def("set_height", &SelectedRows::set_height) .def("height", &SelectedRows::height) - .def("set_rows", &SelectedRows::set_rows) + .def("set_rows", + [](SelectedRows &self, std::vector rows) { +#ifndef PADDLE_WITH_CUDA + self.set_rows(rows); +#else + Vector new_rows(rows); + self.set_rows(new_rows); +#endif + }) .def("rows", [](SelectedRows &self) { #ifndef PADDLE_WITH_CUDA return self.rows(); @@ -186,6 +198,11 @@ All parameter, weight, gradient are variables in Paddle. return self.GetMutable(); }, py::return_value_policy::reference) + .def("get_selected_rows", + [](Variable &self) -> SelectedRows * { + return self.GetMutable(); + }, + py::return_value_policy::reference) .def("get_net", [](Variable &self) -> operators::NetOp * { return self.GetMutable(); @@ -250,6 +267,17 @@ All parameter, weight, gradient are variables in Paddle. .def(py::init<>()) .def("__str__", string::to_string); + py::class_(m, "Place") + .def(py::init<>()) + .def("set_place", + [](platform::Place &self, const platform::CPUPlace &cpu_place) { + self = cpu_place; + }) + .def("set_place", + [](platform::Place &self, const platform::GPUPlace &gpu_place) { + self = gpu_place; + }); + py::class_(m, "Operator") .def_static("create", [](py::bytes protobin) { @@ -259,7 +287,7 @@ All parameter, weight, gradient are variables in Paddle. PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - return OpRegistry::CreateOp(desc); + return OpRegistry::CreateOp(desc, nullptr); }) .def("backward", [](const OperatorBase &forwardOp, @@ -363,7 +391,7 @@ All parameter, weight, gradient are variables in Paddle. PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - auto rnn_op = OpRegistry::CreateOp(desc); + auto rnn_op = OpRegistry::CreateOp(desc, nullptr); return static_cast(rnn_op.release()); }) .def("set_stepnet", [](operators::RecurrentOp &self, @@ -381,22 +409,22 @@ All parameter, weight, gradient are variables in Paddle. PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - auto rnn_op = OpRegistry::CreateOp(desc); + auto rnn_op = OpRegistry::CreateOp(desc, nullptr); return static_cast( rnn_op.release()); }) - .def("set_stepnet", + .def("set_step_unit", [](operators::DynamicRecurrentOp &self, const operators::NetOp &net) - -> void { self.SetStepNet(net.Clone()); }) + -> void { self.rnn.SetStepUnit(net.Clone()); }) .def("get_state", [](operators::DynamicRecurrentOp &self, const std::string &name) - -> const TensorArray & { return self.state(name); }) + -> const TensorArray & { return self.rnn.state(name); }) .def("get_step_input", [](operators::DynamicRecurrentOp &self, const std::string &name) - -> const TensorArray & { return self.step_input(name); }) + -> const TensorArray & { return self.rnn.step_input(name); }) .def("get_step_output", [](operators::DynamicRecurrentOp &self, const std::string &name) - -> const TensorArray & { return self.step_output(name); }); + -> const TensorArray & { return self.rnn.step_output(name); }); // cond_op py::class_(m, "CondOp") @@ -408,7 +436,7 @@ All parameter, weight, gradient are variables in Paddle. PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - auto cond_op = OpRegistry::CreateOp(desc); + auto cond_op = OpRegistry::CreateOp(desc, nullptr); return static_cast(cond_op.release()); }) .def("set_truenet", @@ -422,18 +450,15 @@ All parameter, weight, gradient are variables in Paddle. py::class_(m, "Executor") .def(py::init &>()) - .def("run", - [](Executor &self, const ProgramDesc &program_desc, int block_id) { - framework::Scope &global_scope = GetGlobalScope(); - self.Run(program_desc, &global_scope, block_id); - }); + .def("run", [](Executor &self, ProgramDescBind *program_bind, + Scope *scope, int block_id) { + self.Run(*program_bind->Proto(), scope, block_id); + }); m.def("unique_integer", UniqueIntegerGenerator); m.def("is_compile_gpu", IsCompileGPU); - m.def("set_feed_variable_float", framework::SetFeedVariable); - m.def("set_feed_variable_double", framework::SetFeedVariable); - m.def("set_feed_variable_int", framework::SetFeedVariable); + m.def("set_feed_variable", framework::SetFeedVariable); m.def("get_fetch_variable", framework::GetFetchVariable); BindProgramDesc(m); @@ -441,6 +466,8 @@ All parameter, weight, gradient are variables in Paddle. BindVarDsec(m); BindOpDesc(m); + m.def("op_support_gpu", OpSupportGPU); + return m.ptr(); } } // namespace pybind diff --git a/paddle/scripts/cluster_train_v2/fabric/conf.py b/paddle/scripts/cluster_train_v2/fabric/conf.py new file mode 100644 index 0000000000..e96503d093 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/fabric/conf.py @@ -0,0 +1,39 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +HOSTS = [ + "root@10.1.9.7", + "root@10.1.18.7", + "root@10.1.32.9", +] +''' +workspace configuration +''' +#root dir for workspace, can be set as any director with real user account +ROOT_DIR = "/root" +''' +network configuration +''' +#pserver nics +PADDLE_NIC = "eth0" +#pserver port +PADDLE_PORT = 7164 +#pserver ports num +PADDLE_PORTS_NUM = 1 +#pserver sparse ports num +PADDLE_PORTS_NUM_FOR_SPARSE = 1 +#trainer whether use gpu +PADDLE_USE_GPU = "False" +#environments setting for all processes in cluster job +LD_LIBRARY_PATH = "/usr/local/cuda/lib64:/usr/lib64" diff --git a/paddle/scripts/cluster_train_v2/fabric/docker_cluster/Dockerfile b/paddle/scripts/cluster_train_v2/fabric/docker_cluster/Dockerfile new file mode 100644 index 0000000000..6606c01265 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/fabric/docker_cluster/Dockerfile @@ -0,0 +1,11 @@ +FROM docker.paddlepaddlehub.com/paddle:0.10.0rc2 +RUN apt-get update && apt-get install -y openssh-server +RUN mkdir /var/run/sshd + +RUN echo 'root:root' |chpasswd + +RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config +RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config + +EXPOSE 22 +CMD ["/usr/sbin/sshd", "-D"] diff --git a/paddle/scripts/cluster_train_v2/fabric/docker_cluster/ssh_servers.yaml b/paddle/scripts/cluster_train_v2/fabric/docker_cluster/ssh_servers.yaml new file mode 100644 index 0000000000..0784b2d1b8 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/fabric/docker_cluster/ssh_servers.yaml @@ -0,0 +1,23 @@ +apiVersion: extensions/v1beta1 +kind: Deployment +metadata: + name: ssh-servers +spec: + replicas: 3 + template: + metadata: + labels: + app: ssh-servers + spec: + containers: + - name: ssh-servers + image: docker.paddlepaddlehub.com/paddlessh + resources: + limits: + cpu: 500m + memory: 1Gi + requests: + cpu: 500m + memory: 1Gi + ports: + - containerPort: 22 diff --git a/paddle/scripts/cluster_train_v2/fabric/run.sh b/paddle/scripts/cluster_train_v2/fabric/run.sh new file mode 100644 index 0000000000..f6324bcb13 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/fabric/run.sh @@ -0,0 +1,14 @@ +#!/bin/bash + +python paddle.py \ + --job_dispatch_package="/root/wuyi/fabric_submit/workspace" \ + --dot_period=10 \ + --ports_num_for_sparse=1 \ + --log_period=50 \ + --num_passes=5 \ + --trainer_count=2 \ + --saving_period=1 \ + --local=0 \ + --config=./trainer_config.py \ + --save_dir=./output \ + --use_gpu=0 diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile new file mode 100644 index 0000000000..1a2d19e823 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile @@ -0,0 +1,43 @@ +# Build this image: docker build -t mpi . +# + +FROM paddledev/paddle:0.10.0rc3 + +ENV DEBIAN_FRONTEND noninteractive + +RUN apt-get update -y && \ + apt-get upgrade -y && \ + apt-get install -y openssh-server zip unzip vim sudo \ +gcc gfortran openmpi-checkpoint binutils wget curl git openmpi-bin openmpi-common libopenmpi-dev && \ +pip install mpi4py numpy virtualenv scipy matplotlib lxml sqlalchemy suds ipython obspy && \ +mkdir /var/run/sshd && \ +echo 'root:tutorial' | chpasswd && \ +sed -i 's/PermitRootLogin without-password/PermitRootLogin yes/' /etc/ssh/sshd_config && \ +# SSH login fix. Otherwise user is kicked off after login +sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd && \ +echo "export VISIBLE=now" >> /etc/profile && \ +adduser --disabled-password --gecos "" tutorial && \ +echo "tutorial ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers && \ +mkdir /home/tutorial/.ssh/ + +ENV HOME /home/tutorial +ENV NOTVISIBLE "in users profile" + +# ------------------------------------------------------------ +# Set-Up SSH with our Github deploy key +# ------------------------------------------------------------ + +ADD ssh/config /home/tutorial/.ssh/config +ADD ssh/id_rsa.mpi /home/tutorial/.ssh/id_rsa +ADD ssh/id_rsa.mpi.pub /home/tutorial/.ssh/id_rsa.pub +ADD ssh/id_rsa.mpi.pub /home/tutorial/.ssh/authorized_keys + +#--------------------------------------------------------------- +#LD_LIBRARY_PATH +#--------------------------------------------------------------- + +RUN export LD_LIBRARY_PATH=/usr/lib/openmpi/lib/ + +WORKDIR /home/tutorial +EXPOSE 22 +CMD ["/usr/sbin/sshd", "-D"] diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/head.yaml b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/head.yaml new file mode 100644 index 0000000000..34835e5eb8 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/head.yaml @@ -0,0 +1,25 @@ +apiVersion: extensions/v1beta1 +kind: Deployment +metadata: + name: mpi-header + labels: + app: mpi-header +spec: + replicas: 1 + template: + metadata: + labels: + app: mpi-header + spec: + containers: + - image: typhoon1986/paddle-openmpi + name : mpi-header + resources: + limits: + cpu: 500m + memory: 2Gi + requests: + cpu: 500m + memory: 2Gi + ports: + - containerPort: 22 diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/mpi-nodes.yaml b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/mpi-nodes.yaml new file mode 100644 index 0000000000..2fd5cb4d44 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/mpi-nodes.yaml @@ -0,0 +1,26 @@ +apiVersion: extensions/v1beta1 +kind: Deployment +metadata: + name: mpi-nodes + labels: + app: mpi-nodes +spec: + replicas: 3 + template: + metadata: + labels: + app: mpi-nodes + spec: + containers: + - image: typhoon1986/paddle-openmpi + name : mpi-nodes + resources: + limits: + cpu: 500m + memory: 2Gi + requests: + cpu: 500m + memory: 2Gi + ports: + - containerPort: 22 + imagePullPolicy: Always diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/config b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/config new file mode 100644 index 0000000000..a9ecad07c3 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/config @@ -0,0 +1 @@ +StrictHostKeyChecking no diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi new file mode 100644 index 0000000000..23768343ed --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi @@ -0,0 +1,27 @@ +-----BEGIN RSA PRIVATE KEY----- +MIIEogIBAAKCAQEA7PWLZmgdJ508dD15T6+xqGDvL9Ehzo9SgsnN6xJ+qpUvvOi4 +1axW0AqR4MnPTg/uuvk+x4tUpuufOW4w22UTGjsdvmIVWa9ujLtcRiN3YPY+SU+Y +O5FfqKg7r/hBn+/GMcSoffwSs7vVgmhBBnp/mJh2O1cOAFZEe98/47mbg3/kHBAk +36NOQktaU3l48B38EhBTnjWfcEGm1HcTRPFxXV5Wiko6ZhKFEuHcTVKng4ROtUqE +mgHyI0aB7TAxg4na0ejItsYWEPWGeDOw6ms/4MwylxNosWzHFPW9p4zgLCLNr+b6 +bDDfYKjXZflAuTQtQhLmJUwD9uuYLAijpSE2fQIDAQABAoIBADgcgRET8Gt0CV/B +OtvKz/f+VEVvcWD3gWNlJDTZIVOFllNWjIZUlA4ZoqenQkbK8Q4nfV1FOht4yjCQ +TlN1oMtiWk297i5Zo4UBzPzy4w774I39oh/g8dT/WXr2/5s+7SDV38xNh6Q2A34o +79T35wUcfUrZ93/O7dKjb/6d8hx2FMha0wVKqY4lmG1lQE3bbx3kakec0PdvU5kO +YHKlpqj3pMR7CpMa+4yL/iXFwWYmnK+uu+zw7JR7PwvH1CzrnvW438wjQ1QmYbSx +mHHOE89X67Lsl5hn81qYWBhpwAlBwi1qscsE0cV9GcFyKqWFqZsj5coM9u3CRfvy +lrWe1OUCgYEA+LBUFEd3Hxs4sFiYElJ8R9SAs1udaqPvAl01hTEijJLfYlMMVs/y +rgNN7j22zjDak2f8QdyMJZX7EZdRmdYcHO0csYOwbYvalzcnwk+U3mxmdD3r4xSo +DSvkJ70fogAqUlcVIg2re6fCmZVJQTvMQYTVEM8zQomJRt/Lb2esSfsCgYEA8+zv +44aToe8uqiDs4w8guRW7LCDkTw4z4IVo9JUibIaPjaAs5bZEBXSB43EEywXCR75H +fML0rU1PVvKh1rqcvZdVzm+XMWVr3asPk0sapaiHaTcmyZvJRDxxqbLFp0zRP1T6 +cCtXNFdHWU4KiuKrUi6cDyOKchpfkSZa4seiT+cCgYB+n4FgBfdQPlMB70oW4irn +g/q32CjxuGCk6oKqu5bkzo+xB6obtavSEFqouIGQwO056tNVUY+GP7Rjg5GH663K +yKw4cl3tmS0Gm43B8TVSfw03mKO3rrfWZQe5eCFYIg9qd26KNT2gK435FzsCXQkm +PxUhhu6JrW/ZR2/U3Iur6wKBgADrWLAb1ryagSuE+j+U1AO+kDkHWrTtkcZ72jxp +v3p3O11GSEUJXdJDcSXhTCpTuDq6/dv7hB6PFwh126RKicKxKlKf2wsFndV1Cpb8 +hnovW2tLGOtTmfuW2rrQAKyzvmolsNfxYd/BoHQ2thV16z1hDZeFA8WQUeHjKh6G +sBbrAoGATdtQlaUxx4izua6k02ihkxx/cRYwDl2N8UDvDBHokS7vJFMX8b8NpsGg +zMElnqSpu/pe/0UG7N2MtPF6uyMcX8AZzzcsRkiMkDvWJzYt8Jpf+Eyd/uryF+Yv +yrXaOEY83tm6x/fny5ZaZmk8lNth7bfWywuTMkZLX3fYpWtIeE4= +-----END RSA PRIVATE KEY----- diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi.pub b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi.pub new file mode 100644 index 0000000000..015f2b42e7 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi.pub @@ -0,0 +1 @@ +ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDs9YtmaB0nnTx0PXlPr7GoYO8v0SHOj1KCyc3rEn6qlS+86LjVrFbQCpHgyc9OD+66+T7Hi1Sm6585bjDbZRMaOx2+YhVZr26Mu1xGI3dg9j5JT5g7kV+oqDuv+EGf78YxxKh9/BKzu9WCaEEGen+YmHY7Vw4AVkR73z/juZuDf+QcECTfo05CS1pTeXjwHfwSEFOeNZ9wQabUdxNE8XFdXlaKSjpmEoUS4dxNUqeDhE61SoSaAfIjRoHtMDGDidrR6Mi2xhYQ9YZ4M7Dqaz/gzDKXE2ixbMcU9b2njOAsIs2v5vpsMN9gqNdl+UC5NC1CEuYlTAP265gsCKOlITZ9 oweidner@peahi diff --git a/paddle/scripts/cluster_train_v2/openmpi/start_mpi_train.sh b/paddle/scripts/cluster_train_v2/openmpi/start_mpi_train.sh new file mode 100644 index 0000000000..c645495448 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/start_mpi_train.sh @@ -0,0 +1,28 @@ +#!/bin/bash +# General trainning configurations + +NICS=eth0 +PADDLE_INIT_PORT=7164 +PADDLE_INIT_PORTS_NUM=1 +PADDLE_INIT_PORTS_NUM_FOR_SPARSE=1 +PADDLE_INIT_PSERVERS=$(cat machines | sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/,/g') +PADDLE_INIT_USE_GPU=False + +PADDLE_INIT_NUM_GRADIENT_SERVERS=${OMPI_COMM_WORLD_SIZE} +PADDLE_INIT_TRAINER_ID=${OMPI_COMM_WORLD_RANK} +PADDLE_CLUSTER_TRAIN=True + +env + +# start pserver +stdbuf -oL nohup paddle pserver --port=$PADDLE_INIT_PORT --ports_num=$PADDLE_INIT_PORTS_NUM \ + --ports_num_for_sparse=$PADDLE_INIT_PORTS_NUM_FOR_SPARSE --nics=$NICS \ + --comment=paddle_cluster_pserver \ + --num_gradient_servers=$PADDLE_INIT_NUM_GRADIENT_SERVERS &> logs/pserver.log & + +# start trainer +# NOTE: train.py will use the above environment variables as configuration +python train.py &> logs/train.log + +# kill background pservers when train finishes +ps -ef | grep pserver | awk '{print $2}' | xargs kill diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 2ac455d771..a08716c5a5 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -141,10 +141,17 @@ RUN sed -i '${APT_MIRROR}' /etc/apt/sources.list EOF fi +if [[ ${WITH_GPU} == "ON" ]]; then + NCCL_DEPS="apt-get install -y libnccl-dev &&" +else + NCCL_DEPS="" +fi + cat >> /paddle/build/Dockerfile <