diff --git a/cmake/configure.cmake b/cmake/configure.cmake index 51c3b918cc..926a7b1d69 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -49,11 +49,11 @@ if(NOT WITH_GOLANG) endif(NOT WITH_GOLANG) if(NOT WITH_GPU) - add_definitions(-DPADDLE_ONLY_CPU) add_definitions(-DHPPL_STUB_FUNC) list(APPEND CMAKE_CXX_SOURCE_FILE_EXTENSIONS cu) else() + add_definitions(-DPADDLE_WITH_GPU) FIND_PACKAGE(CUDA REQUIRED) if(${CUDA_VERSION_MAJOR} VERSION_LESS 7) diff --git a/doc/design/register_grad_op.md b/doc/design/register_grad_op.md index 12b04fb271..3cf8a59446 100644 --- a/doc/design/register_grad_op.md +++ b/doc/design/register_grad_op.md @@ -33,22 +33,45 @@ The mapping relationship between an operator and its gradient operators is a fun ```cpp // (OpDesc) --> vector -using GradOpDescMaker = std::function(const OpDesc&)>; +std::function(const OpDescBind&)>; ``` -The function take a `OpDesc` of the forward operator and return one or many gradient operator descriptions. +The function takes an `OpDescBind` of the forward operator and returns one or many gradient operator descriptions. `OpDescBind` is a C++ wrapper for protobuf message `OpDesc` to manipulate `OpDesc` fast. The `GradOpDescMaker` will be registered in `OpInfo`, to replace `grad_op_type_` field. The `OpInfo` should be ```cpp struct OpInfo { - GradOpDescMaker grad_op_maker_; + std::function>(const OpDescBind&)> grad_op_maker_; ... }; ``` The `grad_op_maker_ ` is `nullptr` if the operator does not have associated gradient operators. +We propose a base class called `GradOpDescMakerBase` to let operator developers generate `Gradient Operators` easily. The public interface of that class is + +```cpp +class GradOpDescMakerBase { +public: + GradOpDescMakerBase(const OpDescBind& ); + virtual std::vector> operator()()const = 0; +}; +``` + +We can convert `GradOpDescMakerBase` to `std::function>(const OpDescBind&)>` by + +```cpp +using GradOpMaker = ...; +std::function(const OpDescBind&)> func; +func = [] (const OpDescBind& fwd_op) { + GradOpMaker maker(fwd_op); + return maker(); +}; +``` + +We can write many helper functions since the `GradOpDescMakerBase` is a class now. The basic helper functions get the variables of `Input`, `Output`, `InputGradient` and `OutputGradient` in the forwarding operator. + We should chagne register macros at the same time. In the current solution, there is no difference between forwarding operators and backward operators. So `REGISTER_OP` just register one operator. If the `REGISTER_OPERATOR ` contains `OpProtoAndCheckerMaker` and `GradOpDescMaker`, we just list them in the same macro. It can be done by a macro contains `__VA_ARGS__`. The user interface should be diff --git a/paddle/api/Util.cpp b/paddle/api/Util.cpp index d369df5d4e..7446d892fd 100644 --- a/paddle/api/Util.cpp +++ b/paddle/api/Util.cpp @@ -47,7 +47,7 @@ bool isUsingGpu() { return FLAGS_use_gpu; } void setUseGpu(bool useGpu) { FLAGS_use_gpu = useGpu; } bool isGpuVersion() { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU return false; #else return true; diff --git a/paddle/capi/Matrix.cpp b/paddle/capi/Matrix.cpp index d898ebe261..5b3737a759 100644 --- a/paddle/capi/Matrix.cpp +++ b/paddle/capi/Matrix.cpp @@ -46,7 +46,7 @@ paddle_error paddle_matrix_set_row(paddle_matrix mat, if (rowID >= ptr->mat->getHeight()) return kPD_OUT_OF_RANGE; paddle::real* buf = ptr->mat->getRowBuf(rowID); size_t width = ptr->mat->getWidth(); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU hl_memcpy(buf, rowArray, sizeof(paddle::real) * width); #else std::copy(rowArray, rowArray + width, buf); diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index 0ec18de5b8..c0188c0e55 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -141,9 +141,26 @@ static std::unique_ptr BackwardRecursive( net->ops_[op_offset]->Rename(name, dup_outputs.back()); } // collect all the offset to append `add` op for each alias - insert_position.push_back( - {dup_op.back(), OpRegistry::CreateOp("add", {{"X", {dup_outputs}}}, - {{"Out", {name}}}, {})}); + // + // one variable is shared between multiple operators. + // insert add operator one by one, then add it to output + for (size_t output_idx = 0; output_idx < dup_outputs.size() - 1; + ++output_idx) { + auto insert_add_x = dup_outputs[output_idx]; + auto insert_add_y = dup_outputs[output_idx + 1]; + auto insert_add_out = name + "@SHARED@" + std::to_string(output_idx); + // first add op inserted + if (output_idx == dup_outputs.size() - 2) { + insert_add_out = name; + } + if (output_idx != 0) { + insert_add_y = name + "@SHARED@" + std::to_string(output_idx - 1); + } + insert_position.push_back( + {dup_op.back(), + OpRegistry::CreateOp("sum", {{"X", {insert_add_x, insert_add_y}}}, + {{"Out", {insert_add_out}}}, {})}); + } } // make sure the inserted `add` ops follow the BFS order. @@ -182,7 +199,8 @@ static std::unique_ptr BackwardRecursive( // process recurrent gradient op as a special operator. if (forwardOp.Type() == "recurrent") { - // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), or + // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), + // or // this will result in infinite loop. const auto& rnnop = *static_cast(&forwardOp); diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index 6932f5b989..a36e7bde8c 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -133,15 +133,18 @@ class FillZeroOpMaker : public OpProtoAndCheckerMaker { } }; -class AddOpMaker : public OpProtoAndCheckerMaker { +class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: - AddOpMaker(OpProto *proto, OpAttrChecker *op_checker) + SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "x").AsDuplicable(); - AddOutput("Out", "out"); + AddInput("X", "the input tensors of sum operator.") + .AsDuplicable() + .NotInGradient(); + AddOutput("Out", "the output tensor of sum operator.").NotInGradient(); AddComment(""); } }; + } // namespace framework } // namespace paddle @@ -154,7 +157,7 @@ REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP); REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP); REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker); REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker); -REGISTER_OP(add, f::NOP, f::AddOpMaker, add_grad, f::NOP); +REGISTER_OP(sum, f::NOP, f::SumOpMaker, sum_grad, f::NOP); REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker); REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad, f::NOP); @@ -283,7 +286,7 @@ TEST(Backward, net_shared_weight) { ASSERT_TRUE(bwd->IsNetOp()); auto bwd_net = static_cast(bwd.get()); ASSERT_EQ(3UL, bwd_net->ops_.size()); - ASSERT_EQ("add", bwd_net->ops_[2]->Type()); + ASSERT_EQ("sum", bwd_net->ops_[2]->Type()); } TEST(Backward, op_register_grad_not_for_network) { diff --git a/paddle/framework/details/op_registry.h b/paddle/framework/details/op_registry.h index d2516ccc1e..daa474e8c5 100644 --- a/paddle/framework/details/op_registry.h +++ b/paddle/framework/details/op_registry.h @@ -14,6 +14,7 @@ #pragma once +#include "paddle/framework/grad_op_desc_maker.h" #include "paddle/framework/op_info.h" #include "paddle/framework/op_proto_maker.h" #include "paddle/framework/operator.h" @@ -96,7 +97,10 @@ struct OpInfoFiller { template struct OpInfoFiller { void operator()(const char* op_type, OpInfo* info) const { - info->grad_op_maker_ = new T(); + info->grad_op_maker_ = [](const OpDescBind& fwd_op) { + T maker(fwd_op); + return maker(); + }; } }; } // namespace details diff --git a/paddle/framework/grad_op_desc_maker.h b/paddle/framework/grad_op_desc_maker.h new file mode 100644 index 0000000000..e9ae6e2206 --- /dev/null +++ b/paddle/framework/grad_op_desc_maker.h @@ -0,0 +1,124 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/op_desc.h" +#include "paddle/framework/operator.h" + +namespace paddle { +namespace framework { + +class GradOpDescMakerBase { + public: + explicit GradOpDescMakerBase(const OpDescBind& fwd_op) : fwd_op_(fwd_op) {} + + virtual ~GradOpDescMakerBase() = default; + virtual std::vector> operator()() const = 0; + + protected: + static std::vector ToGradNames( + const std::vector& var_names) { + std::vector ret_val; + ret_val.reserve(var_names.size()); + std::transform(var_names.begin(), var_names.end(), + std::back_inserter(ret_val), GradVarName); + return ret_val; + } + + std::vector InputGrad(const std::string& name) const { + return ToGradNames(fwd_op_.Input(name)); + } + + std::vector OutputGrad(const std::string& name) const { + return ToGradNames(fwd_op_.Output(name)); + } + + std::vector InputNames() const { + return this->fwd_op_.InputNames(); + } + + std::vector OutputNames() const { + return this->fwd_op_.OutputNames(); + } + + std::vector Input(const std::string& name) const { + return fwd_op_.Input(name); + } + + std::vector Output(const std::string& name) const { + return fwd_op_.Output(name); + } + + const std::unordered_map& Attrs() const { + return fwd_op_.GetAttrMap(); + } + + const Attribute& GetAttr(const std::string& name) const { + auto& map = fwd_op_.GetAttrMap(); + auto it = map.find(name); + PADDLE_ENFORCE(it != map.end(), "Cannot find attribute %s", name); + return it->second; + } + + std::string ForwardOpType() const { return this->fwd_op_.Type(); } + + private: + const OpDescBind& fwd_op_; +}; + +class SingleGradOpDescMaker : public GradOpDescMakerBase { + public: + using GradOpDescMakerBase::GradOpDescMakerBase; + + std::vector> operator()() const { + std::vector> retv; + retv.emplace_back(this->Apply()); + return retv; + } + + protected: + virtual std::unique_ptr Apply() const = 0; +}; + +class DefaultGradOpDescMaker : public SingleGradOpDescMaker { + public: + using SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + virtual std::unique_ptr Apply() const { + auto* grad = new OpDescBind(); + grad->SetType(this->GradOpType()); + + for (auto& input_param : this->InputNames()) { + grad->SetInput(input_param, this->Input(input_param)); + grad->SetOutput(GradVarName(input_param), this->InputGrad(input_param)); + } + + for (auto& output_param : this->OutputNames()) { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(GradVarName(output_param), this->OutputGrad(output_param)); + } + + grad->SetAttrMap(this->Attrs()); + + return std::unique_ptr(grad); + } + + virtual std::string GradOpType() const { + return this->ForwardOpType() + "_grad"; + } +}; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 49786a4a66..b12c95b6b7 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -15,7 +15,7 @@ #pragma once #include -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include #include #include @@ -29,7 +29,7 @@ namespace paddle { namespace framework { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU template using Vector = std::vector; #else diff --git a/paddle/framework/lod_tensor.md b/paddle/framework/lod_tensor.md index 07bbdf9416..d147f1c425 100644 --- a/paddle/framework/lod_tensor.md +++ b/paddle/framework/lod_tensor.md @@ -1,147 +1,175 @@ # Design Doc: LoD (Level-of-Detail) Tensor -PaddlePaddle's RNN doesn't require that all instances have the same length. To do so, we introduce an extension to Tensor, namely, LoD Tensor. +Like other deep learning systems, PaddlePaddle supports training models from sequence data. Also, like other systems, PaddlePaddle represent a mini-batch of sequences as a Tensor. What is different is that PaddlePaddle doesn't require all sequences in a mini-batch to be of the same length. Thus no need for padding zeros. -## Challenge of Variable-length Inputs +| | TensorFlow | PaddlePaddle | +|-----------------------|------------|--------------| +| RNN | Support | Support | +| recursive RNN | Support | Support | +| padding zeros | Must | No need | +| blob data type | Tensor | LoDTensor | -People usually represent a mini-batch by a Tensor. For example, a mini-batch of 10 images, each of size 32x32, is a 10x32x32 Tensor. So a transformation, T, of all images can be a matrix multiplication of the 10xOx32-dimensional tensor T and the 10x32x32 Tensor. +PaddlePaddle achieves this flexibility by passing through a new data type, *LoD Tensor*, which is a Tensor attached with segmentation index known as *LoD*, between operators. The LoD index doesn't only segment a tensor, but also recursively segments sub-sequences. This document presents the design of LoD and LoDTensor. -Another example is that each mini-batch contains 32 sentences, where each word is a D-dimensional one-hot vector. If all sentences have the same length L, we can represent this mini-batch by a 32xLxD tensor. However, in most cases, sentences have variable lengths, and we will need an index data structure to record these variable lengths. -## LoD as a Solution +## The Challenge: Variable-length Sequences -### Mini-Batch of variable-length sentences +Most deep learning systems represent a mini-batch as a Tensor. For example, a mini-batch of 10 images, each of size 32x32, is a 10x32x32 Tensor. Another example is that each mini-batch contains N sentences, where each word is a D-dimensional one-hot vector. Suppose that all sentences have the same length L, we can represent this mini-batch by a NxLxD tensor. -Let's imagine a mini-batch of 3 variable lengths sentences, containing 3, 1, and 2 words respectively. We can represent it by a (3+1+2)xD tensor plus some index information: +Both examples show that the elements of sequences are usually of the same size. In the first example, all images are 32x32, and in the second one, all words are D-dimensional vectors. It doesn't make sense to allow variable-sized images, as that would require transformations like convolution to handle variable-sized Tensors. + +The real challenge is that in most cases, sentences have variable lengths, and we will need an index data structure to segment the tensor into sequences. Also, sequences might consist of sub-sequences. + + +## A Solution: The LoD Index + +To understand our solution, it is best to look at some examples. + +### A Mini-Batch of Sentences + +Let's imagine a mini-batch of 3 variable lengths sentences composed of 3, 1, and 2 words, respectively. We can represent the mini-batch by a (3+1+2)xD tensor plus some index information: ``` - 3 3 1 2 ||| | || ``` -Each `|` represents a D-dimensional word vectors. The number 3 on top indicate 3 sentences, and numbers 3, 1, and 2 on the second level represent the number of words in each sentence. +where each `|` represents a D-dimensional word vector. The numbers, 3, 1, and 2, form a 1-level LoD. + +### Recursive Sequences + +Let check another example of a 2-level LoD Tensor. Consider a mini-batch of three articles with 3, 1, and 2 sentences, and each sentence consists of a variable number of words: + +``` +3 1 2 +3 2 4 1 2 3 +||| || |||| | || ||| +``` -### Mini-Batch of variable-length videos +### A Mini-Batch of Videos -This approach generalizes to the case where elements are not words, but higher dimensional objects, like images. Suppose that a mini-batch contains videos of the same frame size 640x480. If a mini-batch contains 3 videos of 3, 1, and 2 frames respectively. The underlying tensor is of size (3+1+2)x640x480. The index information illustrates as: +LoD tensors generalize to the case where elements are higher dimensional objects, like images. Suppose that a mini-batch contains videos of the same frame size 640x480. Here is a mini-batch of 3 videos with 3, 1, and 2 frames, respectively. ``` - 3 3 1 2 口口口 口 口口 ``` -where each `口` represents an image. +The underlying tensor is of size (3+1+2)x640x480, and each `口` represents a 640x480 image. -### Mini-Batch of fixed-size images +### A Mini-Batch of Images -Let's get back to a typical example, image classification, where each mini-batch has M fixed-sized images. The LoD Tensor representation is +In traditional cases like a mini-batch with N fixed-sized images, the LoD Tensor representation is as ``` - M 1 1 1 1 1 口口口口 ... 口 ``` -The many 1's on the second level seem duplicated. For this particular case of 2 levels and the second level always have length 1, we can ignore the LoD index. - -### Design and summarization +In this case, we don't lose any information by ignoring the many 1's in the index and simply considering this LoD Tensor as a usual Tensor: -In summary, as long as that the essential elements (words or images) have the same size, we can represent mini-batches by a LoD Tensor: +``` +口口口口 ... 口 +``` -- The underlying tensor has size LxD1xD2x..., where D1xD2... is the size of the essential elements, and -- The first dimension size L has an additonal property -- a LoD index as a nested vector: +### Model Parameters - ```c++ - typedef std::vector> LoD; - ``` +A model parameter is just a usual Tensor, which, just like the above example, is a **0-level LoD Tensor**. -- The LoD index is not necessary when there are only two levels and all elements of the second level have length 1. -## Slicing of LoD Tensor +## The LoD Tensor -Consider that we have a network with three levels of RNN: the top level one handles articles, the second level one handles sentences, and the basic level one handles words. This network requires that mini-batches represented by 3 level LoD Tensor, for example, +Let us revisit above example of the 2-level LoD Tensor ``` - 3 3 1 2 3 2 4 1 2 3 ||| || |||| | || ||| ``` -To allow each level of RNN to handle its input, we define **the slicing of a LoD Tensor is defined as getting the j-th sequence on level i, or the -slice** +It is indeed a tree, where leaves are elementary sequences identified by **branches**. + +For example, the third sentence in above example is identified by branch <0,2>, where 0 indicates the first article with length 3, and 2 indicates the third sentence in this article with length 4. + +### The LoD Index -For example, the <2,1>-slice of above slice is +We can save the LoD index in the above example ``` -2 -|| +3 1 2 +3 2 4 1 2 3 ``` -and the <1,2>-slice of above example is +in a not-full 2D matrix: +```c++ +typedef std::vector > LoD; ``` -2 -2 3 -|| ||| -``` -Let's go on slicing this slice. Its <1,1>-slice is +where + +- `LoD.size()` is the number of levels, or the maximum length of branches, +- `LoD[i][j]` is the length of the j-th segment at the i-th level. + +## The Offset Representation + +To quickly access elementary sequences, we adopt an offset representation -- instead of saving the lengths, we save the beginning and ending elements of sequences. + +In the above example, we accumulate the length of elementary sequences: ``` -1 -1 -| +3 2 4 1 2 3 ``` -### The Slicing Algorithm +into offsets -The algorithm, with over-simplified data structure, is defined as +``` +0 3 5 9 10 12 15 + = = = = = = + 3 2+3 4+5 1+9 2+10 3+12 +``` -```c++ -typedef std::vector> LoD; +so we know that the first sentence is from word 0 to word 3, and the second sentence from work 3 to word 5. -struct LoDTensor { - LoD lod_; - float* tensor_; -}; +Similarly, the lengths in the top level LoD -LoDTensor Slice(const LoDTensor& lodt, int level, int sequence); +``` +3 1 2 ``` -Let us revisit the example above +are transformed into offsets of elements/words as follows: ``` - 3 -3 1 2 -3 2 4 1 2 3 -||| || |||| | || ||| +0 9 10 15 + = = = + 3+2+4 1+9 2+3+10 ``` -Suppose that we want to retrieve the <1,2>-slice +so we can tell that the first article is from word 0 to word 9, and the second article is from word 9 to word 10. + +The complete offset representation is as follows: ``` -2 -2 3 -|| ||| +0 9 10 15 +0 3 5 9 10 12 15 + ||| || |||| | || ||| ``` -we will need to find out the starting position of this slice by summing over all leaf nodes in `LoD` to the left of the slice, i.e., 3 + 2 + 4 + 1 = 10. +## Slicing of LoD Tensors + +When we use the above 2-level LoD Tensor as the input to a nested-RNN, we need to retrieve certain sequences. Here we define the sequence identified by branch as the **-slice**. -To avoid the traversal of the LoD tree at slicing time, we can do it at the construction time -- instead of saving the lengths of the next level in the LoD tree, we can save the starting offset of the next level. For example, above LoD Tensor can be transformed into +For example, the <2>-slice of above example is ``` - 0 -0 9 10 -0 3 5 9 10 12 -||| || |||| | || ||| +10 15 +10 12 15 + || ||| ``` -We don't really need the 0 on top, so the LoD Tensor could be +and the <2,0>-slice of above slice is ``` -0 9 10 -0 3 5 9 10 12 -||| || |||| | || ||| +10 12 + || ``` diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc index 33a064890c..852f0f1eb8 100644 --- a/paddle/framework/op_desc.cc +++ b/paddle/framework/op_desc.cc @@ -31,15 +31,6 @@ const std::vector &OpDescBind::Input( return it->second; } -std::vector OpDescBind::InputNames() const { - std::vector retv; - retv.reserve(this->inputs_.size()); - for (auto &ipt : this->inputs_) { - retv.push_back(ipt.first); - } - return retv; -} - void OpDescBind::SetInput(const std::string ¶m_name, const std::vector &args) { need_update_ = true; @@ -54,15 +45,6 @@ const std::vector &OpDescBind::Output( return it->second; } -std::vector OpDescBind::OutputNames() const { - std::vector retv; - retv.reserve(this->outputs_.size()); - for (auto &ipt : this->outputs_) { - retv.push_back(ipt.first); - } - return retv; -} - void OpDescBind::SetOutput(const std::string ¶m_name, const std::vector &args) { need_update_ = true; diff --git a/paddle/framework/op_desc.h b/paddle/framework/op_desc.h index 0af4169715..397393f796 100644 --- a/paddle/framework/op_desc.h +++ b/paddle/framework/op_desc.h @@ -35,15 +35,11 @@ class OpDescBind { const std::vector &Input(const std::string &name) const; - std::vector InputNames() const; - void SetInput(const std::string ¶m_name, const std::vector &args); const std::vector &Output(const std::string &name) const; - std::vector OutputNames() const; - void SetOutput(const std::string ¶m_name, const std::vector &args); @@ -61,9 +57,6 @@ class OpDescBind { void SetBlockAttr(const std::string &name, BlockDescBind &block); - // Only be used in C++ - void SetAttrMap(const AttributeMap &attr_map); - Attribute GetAttr(const std::string &name) const; int GetBlockAttr(const std::string &name) const; @@ -71,7 +64,23 @@ class OpDescBind { // Only be used in C++ const AttributeMap &GetAttrMap() const; + // Only be used in C++ + void SetAttrMap(const AttributeMap &attr_map); + + std::vector InputNames() const { return MapKeys(inputs_); } + std::vector OutputNames() const { return MapKeys(outputs_); } + private: + template + static std::vector MapKeys(const MapType &map) { + std::vector ret_val; + ret_val.reserve(map.size()); + std::transform( + map.begin(), map.end(), std::back_inserter(ret_val), + [](const typename MapType::value_type &pair) { return pair.first; }); + return ret_val; + } + void Sync(); OpDesc op_desc_; diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h index 9672e540c8..8b7882485f 100644 --- a/paddle/framework/op_info.h +++ b/paddle/framework/op_info.h @@ -25,16 +25,10 @@ namespace paddle { namespace framework { -class GradOpDescMakerBase { - public: - virtual ~GradOpDescMakerBase() = default; - virtual std::vector operator()(const OpDescBind&) const = 0; -}; - struct OpInfo { OpCreator creator_; std::string grad_op_type_; - GradOpDescMakerBase* grad_op_maker_{nullptr}; + GradOpMakerFN grad_op_maker_; OpProto* proto_{nullptr}; OpAttrChecker* checker_{nullptr}; diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 4ee2c7d275..aca6579f36 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -211,7 +211,7 @@ class OpKernelRegistrar : public Registrar { // TODO(fengjiayi): The following macros // seems ugly, do we have better method? -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU #define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU) #else #define USE_OP_KERNEL(op_type) \ diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 1012a30b0a..21c1c6f9e6 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -25,7 +25,7 @@ Eigen::DefaultDevice& ExecutionContext::GetEigenDevice< return *device_context_.GetEigenDevice(); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU template <> Eigen::GpuDevice& ExecutionContext::GetEigenDevice() const { diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index a5405f9c31..1cde1f74b8 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -65,7 +65,7 @@ inline T* Tensor::mutable_data(platform::Place place) { holder_.reset(new PlaceholderImpl( boost::get(place), size)); } else if (platform::is_gpu_place(place)) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); } #else @@ -103,7 +103,7 @@ inline void Tensor::CopyFrom(const Tensor& src, memory::Copy(boost::get(dst_place), dst_ptr, boost::get(src_place), src_ptr, size); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU else if (platform::is_gpu_place(src_place) && platform::is_cpu_place(dst_place)) { memory::Copy(boost::get(dst_place), dst_ptr, diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index e2ec738de3..86c6945ab5 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -74,7 +74,7 @@ TEST(Tensor, MutableData) { EXPECT_EQ(p1, p2); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU { Tensor src_tensor; float* p1 = nullptr; @@ -126,7 +126,7 @@ TEST(Tensor, ShareDataWith) { ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU { Tensor src_tensor; Tensor dst_tensor; @@ -163,7 +163,7 @@ TEST(Tensor, Slice) { EXPECT_EQ(src_data_address + 3 * 4 * 1 * sizeof(int), slice_data_address); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU { Tensor src_tensor; src_tensor.mutable_data(make_ddim({6, 9}), GPUPlace()); @@ -218,7 +218,7 @@ TEST(Tensor, CopyFrom) { EXPECT_EQ(dst_ptr[i], slice_ptr[i]); } } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU { Tensor src_tensor; Tensor gpu_tensor; diff --git a/paddle/framework/type_defs.h b/paddle/framework/type_defs.h index dec5066f1e..a5b9472213 100644 --- a/paddle/framework/type_defs.h +++ b/paddle/framework/type_defs.h @@ -20,6 +20,7 @@ namespace paddle { namespace framework { class OperatorBase; +class OpDescBind; using VariableNameMap = std::map>; // The order should be as same as framework.proto @@ -34,5 +35,8 @@ using OpCreator = std::function; +using GradOpMakerFN = + std::function>(const OpDescBind&)>; + } // namespace framework } // namespace paddle diff --git a/paddle/function/BlockExpandOp.cpp b/paddle/function/BlockExpandOp.cpp index a89b6bba45..ad78f5f584 100644 --- a/paddle/function/BlockExpandOp.cpp +++ b/paddle/function/BlockExpandOp.cpp @@ -194,7 +194,7 @@ public: REGISTER_TYPED_FUNC(BlockExpand, CPU, BlockExpandForward); REGISTER_TYPED_FUNC(BlockExpandGrad, CPU, BlockExpandBackward); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(BlockExpand, GPU, BlockExpandForward); REGISTER_TYPED_FUNC(BlockExpandGrad, GPU, BlockExpandBackward); #endif diff --git a/paddle/function/ContextProjectionOp.cpp b/paddle/function/ContextProjectionOp.cpp index b87750b742..ab18c39df8 100644 --- a/paddle/function/ContextProjectionOp.cpp +++ b/paddle/function/ContextProjectionOp.cpp @@ -395,7 +395,7 @@ REGISTER_TYPED_FUNC(ContextProjectionForward, REGISTER_TYPED_FUNC(ContextProjectionBackward, CPU, ContextProjectionBackwardFunc); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(ContextProjectionForward, GPU, ContextProjectionForwardFunc); diff --git a/paddle/function/CosSimOp.cpp b/paddle/function/CosSimOp.cpp index 7ece7b2dfe..4418f144d3 100644 --- a/paddle/function/CosSimOp.cpp +++ b/paddle/function/CosSimOp.cpp @@ -233,7 +233,7 @@ private: REGISTER_TYPED_FUNC(CosSimForward, CPU, CosSimForwardFunc); REGISTER_TYPED_FUNC(CosSimBackward, CPU, CosSimBackwardFunc); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(CosSimForward, GPU, CosSimForwardFunc); REGISTER_TYPED_FUNC(CosSimBackward, GPU, CosSimBackwardFunc); #endif diff --git a/paddle/function/CropOp.cpp b/paddle/function/CropOp.cpp index f12ee43e3d..39504cc2c1 100644 --- a/paddle/function/CropOp.cpp +++ b/paddle/function/CropOp.cpp @@ -169,7 +169,7 @@ private: REGISTER_TYPED_FUNC(Crop, CPU, CropFunc); REGISTER_TYPED_FUNC(CropGrad, CPU, CropGradFunc); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(Crop, GPU, CropFunc); REGISTER_TYPED_FUNC(CropGrad, GPU, CropGradFunc); #endif diff --git a/paddle/function/CrossMapNormalOp.cpp b/paddle/function/CrossMapNormalOp.cpp index ef878bfbba..1cf0918bed 100644 --- a/paddle/function/CrossMapNormalOp.cpp +++ b/paddle/function/CrossMapNormalOp.cpp @@ -336,7 +336,7 @@ private: REGISTER_TYPED_FUNC(CrossMapNormal, CPU, CrossMapNormalFunc); REGISTER_TYPED_FUNC(CrossMapNormalGrad, CPU, CrossMapNormalGradFunc); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(CrossMapNormal, GPU, CrossMapNormalFunc); REGISTER_TYPED_FUNC(CrossMapNormalGrad, GPU, CrossMapNormalGradFunc); #endif diff --git a/paddle/function/DepthwiseConvOp.cpp b/paddle/function/DepthwiseConvOp.cpp index 2f3112fe65..7656ab3d0a 100644 --- a/paddle/function/DepthwiseConvOp.cpp +++ b/paddle/function/DepthwiseConvOp.cpp @@ -292,7 +292,7 @@ REGISTER_TYPED_FUNC(DepthwiseConvGradInput, REGISTER_TYPED_FUNC(DepthwiseConvGradFilter, CPU, DepthwiseConvGradFilterFunction); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(DepthwiseConv, GPU, DepthwiseConvFunction); REGISTER_TYPED_FUNC(DepthwiseConvGradInput, GPU, diff --git a/paddle/function/DepthwiseConvOpTest.cpp b/paddle/function/DepthwiseConvOpTest.cpp index d8e8c889d5..39033ecb2b 100644 --- a/paddle/function/DepthwiseConvOpTest.cpp +++ b/paddle/function/DepthwiseConvOpTest.cpp @@ -17,7 +17,7 @@ limitations under the License. */ namespace paddle { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(DepthwiseConv, Forward) { DepthwiseConvolution( "GemmConv-CPU", "DepthwiseConv-GPU", forward); diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp index f8cf4ebea8..68e08c1480 100644 --- a/paddle/function/GemmConvOp.cpp +++ b/paddle/function/GemmConvOp.cpp @@ -340,7 +340,7 @@ public: REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction); REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction); REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction); diff --git a/paddle/function/GemmConvOpTest.cpp b/paddle/function/GemmConvOpTest.cpp index 5283d79a5a..bd1cf3c6a4 100644 --- a/paddle/function/GemmConvOpTest.cpp +++ b/paddle/function/GemmConvOpTest.cpp @@ -24,7 +24,7 @@ TEST(GemmConv, NaiveConv) { "NaiveConv-CPU", "GemmConv-CPU", forward); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(GemmConv, Forward) { Convolution( "GemmConv-CPU", "GemmConv-GPU", forward); diff --git a/paddle/function/Im2ColTest.cpp b/paddle/function/Im2ColTest.cpp index acc88a553a..55325e94b5 100644 --- a/paddle/function/Im2ColTest.cpp +++ b/paddle/function/Im2ColTest.cpp @@ -116,7 +116,7 @@ void TestIm2ColFunctor() { TEST(Im2ColFunctor, CPU) { TestIm2ColFunctor(); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(Im2ColFunctor, GPU) { TestIm2ColFunctor(); } diff --git a/paddle/function/MulOp.cpp b/paddle/function/MulOp.cpp index 25e41edad5..655026320c 100644 --- a/paddle/function/MulOp.cpp +++ b/paddle/function/MulOp.cpp @@ -341,7 +341,7 @@ private: }; REGISTER_TYPED_FUNC(MulOp, CPU, MulFunc); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(MulOp, GPU, MulFunc); #endif } // namespace paddle diff --git a/paddle/function/PadOp.cpp b/paddle/function/PadOp.cpp index adba7c92ec..24c9bf4e72 100644 --- a/paddle/function/PadOp.cpp +++ b/paddle/function/PadOp.cpp @@ -207,7 +207,7 @@ private: REGISTER_TYPED_FUNC(Pad, CPU, PadFunc); REGISTER_TYPED_FUNC(PadGrad, CPU, PadGradFunc); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(Pad, GPU, PadFunc); REGISTER_TYPED_FUNC(PadGrad, GPU, PadGradFunc); #endif diff --git a/paddle/function/RowConvOp.cpp b/paddle/function/RowConvOp.cpp index b6501e8f4d..09e702f71a 100644 --- a/paddle/function/RowConvOp.cpp +++ b/paddle/function/RowConvOp.cpp @@ -217,7 +217,7 @@ public: REGISTER_TYPED_FUNC(RowConv, CPU, RowConvFunc); REGISTER_TYPED_FUNC(RowConvGrad, CPU, RowConvGradFunc); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(RowConv, GPU, RowConvFunc); REGISTER_TYPED_FUNC(RowConvGrad, GPU, RowConvGradFunc); #endif diff --git a/paddle/function/SwitchOp.cpp b/paddle/function/SwitchOp.cpp index 01e252a8dc..db839b5b76 100644 --- a/paddle/function/SwitchOp.cpp +++ b/paddle/function/SwitchOp.cpp @@ -132,7 +132,7 @@ public: REGISTER_TYPED_FUNC(NCHW2NHWC, CPU, NCHW2NHWCFunc); REGISTER_TYPED_FUNC(NHWC2NCHW, CPU, NHWC2NCHWFunc); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU REGISTER_TYPED_FUNC(NCHW2NHWC, GPU, NCHW2NHWCFunc); REGISTER_TYPED_FUNC(NHWC2NCHW, GPU, NHWC2NCHWFunc); #endif diff --git a/paddle/gserver/layers/BatchNormBaseLayer.cpp b/paddle/gserver/layers/BatchNormBaseLayer.cpp index f7a80e23e1..55f52816ab 100644 --- a/paddle/gserver/layers/BatchNormBaseLayer.cpp +++ b/paddle/gserver/layers/BatchNormBaseLayer.cpp @@ -16,7 +16,7 @@ limitations under the License. */ #include "BatchNormalizationLayer.h" #include "Layer.h" #include "paddle/utils/Stat.h" -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include "CudnnBatchNormLayer.h" #endif diff --git a/paddle/gserver/layers/BatchNormalizationLayer.cpp b/paddle/gserver/layers/BatchNormalizationLayer.cpp index 412762d384..33cf24431d 100644 --- a/paddle/gserver/layers/BatchNormalizationLayer.cpp +++ b/paddle/gserver/layers/BatchNormalizationLayer.cpp @@ -13,7 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/utils/Stat.h" -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include "hl_batch_transpose.h" #endif #include "BatchNormalizationLayer.h" @@ -90,7 +90,7 @@ void BatchNormalizationLayer::expandMat(const MatrixPtr& in, MatrixPtr& out) { size_t batchSize = in->getHeight(); CHECK_EQ(out->getHeight(), batchSize * imgPixels_); if (useGpu_) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU LOG(FATAL) << "paddle is compiled only for cpu"; #else batchTranspose( @@ -127,7 +127,7 @@ void BatchNormalizationLayer::shrinkMat(const MatrixPtr& in, MatrixPtr& out) { } CHECK_EQ(in->getHeight(), static_cast(batchSize * imgPixels_)); if (useGpu_) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU LOG(FATAL) << "paddle is compiled only for cpu"; #else batchTranspose( diff --git a/paddle/gserver/layers/PoolLayer.cpp b/paddle/gserver/layers/PoolLayer.cpp index 96d5c54acc..43ab4e4d47 100644 --- a/paddle/gserver/layers/PoolLayer.cpp +++ b/paddle/gserver/layers/PoolLayer.cpp @@ -15,7 +15,7 @@ limitations under the License. */ #include "PoolLayer.h" #include "PoolProjectionLayer.h" #include "paddle/utils/Logging.h" -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include "CudnnPoolLayer.h" #endif namespace paddle { @@ -53,7 +53,7 @@ Layer* PoolLayer::create(const LayerConfig& config) { const std::string& pool = config.inputs(0).pool_conf().pool_type(); if (pool == "max-projection" || pool == "avg-projection") { return new PoolProjectionLayer(config); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU } else if (CudnnPoolLayer::typeCheck(pool)) { return new CudnnPoolLayer(config); #endif diff --git a/paddle/gserver/tests/LayerGradUtil.cpp b/paddle/gserver/tests/LayerGradUtil.cpp index a38880e14c..59df057a80 100644 --- a/paddle/gserver/tests/LayerGradUtil.cpp +++ b/paddle/gserver/tests/LayerGradUtil.cpp @@ -674,7 +674,7 @@ void testLayerGradKernel(TestConfig testConf, bool useGpu, bool useWeight, float epsilon) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) return; #endif FLAGS_use_gpu = useGpu; diff --git a/paddle/gserver/tests/test_BatchNorm.cpp b/paddle/gserver/tests/test_BatchNorm.cpp index 659eefa31b..c1c85f8fac 100644 --- a/paddle/gserver/tests/test_BatchNorm.cpp +++ b/paddle/gserver/tests/test_BatchNorm.cpp @@ -119,7 +119,7 @@ TEST(Layer, batchNorm) { CHECK_EQ(static_cast(convLayer->getOutputValue()->getWidth()), 576); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU void batchNormInference(int n, int c, int h, int w) { MatrixPtr input = std::make_shared(n, c * h * w); MatrixPtr cudnnOut = std::make_shared(n, c * h * w); diff --git a/paddle/gserver/tests/test_ConvUnify.cpp b/paddle/gserver/tests/test_ConvUnify.cpp index e7325e0cc3..16556469cb 100644 --- a/paddle/gserver/tests/test_ConvUnify.cpp +++ b/paddle/gserver/tests/test_ConvUnify.cpp @@ -117,7 +117,7 @@ MatrixPtr doOneConvTest(size_t imgSize, } TEST(Layer, convParaUnified) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU MatrixPtr input, resultCpu, resultGpu; /// TEST1 for conv /// diff --git a/paddle/gserver/tests/test_DetectionOutput.cpp b/paddle/gserver/tests/test_DetectionOutput.cpp index af43dc51fa..1a83f48fae 100644 --- a/paddle/gserver/tests/test_DetectionOutput.cpp +++ b/paddle/gserver/tests/test_DetectionOutput.cpp @@ -150,7 +150,7 @@ TEST(Layer, detectionOutputLayerFwd) { useGpu, result2); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU // GPU case 1. useGpu = true; inputLoc = Matrix::create(1, 16, false, useGpu); diff --git a/paddle/gserver/tests/test_Evaluator.cpp b/paddle/gserver/tests/test_Evaluator.cpp index 93996392d2..42bb570572 100644 --- a/paddle/gserver/tests/test_Evaluator.cpp +++ b/paddle/gserver/tests/test_Evaluator.cpp @@ -51,7 +51,7 @@ void testEvaluator(TestConfig testConf, string testEvaluatorName, size_t batchSize, bool useGpu) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) return; #endif FLAGS_use_gpu = useGpu; diff --git a/paddle/gserver/tests/test_KmaxSeqScore.cpp b/paddle/gserver/tests/test_KmaxSeqScore.cpp index 308abe6816..1594de8502 100644 --- a/paddle/gserver/tests/test_KmaxSeqScore.cpp +++ b/paddle/gserver/tests/test_KmaxSeqScore.cpp @@ -97,7 +97,7 @@ TEST(Layer, kmaxSeqScoreLayer) { Matrix::create(subSeqStartPosition.back(), 1, false, false); std::vector mode = {false}; -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU mode.push_back(true); #endif diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index 090bde7b20..e887dee5f9 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include #endif #include @@ -258,7 +258,7 @@ void testProjectionConv(size_t groups, bool isDeconv) { true); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(Projection, conv) { /// test ConvProjection testProjectionConv(1, false); @@ -422,7 +422,7 @@ TEST(Layer, depthwiseConvLayer) { // 'depthwise_conv' is a sepecial case of 'exconv' whose // groups size equals to the input channels size. testDepthwiseConvLayer("exconv", /* useGpu= */ false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testDepthwiseConvLayer("exconv", /* useGpu= */ true); #endif } @@ -480,7 +480,7 @@ void testConvLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, convLayer) { testConvLayer("exconv", /* trans= */ false, /* useGpu= */ false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testConvLayer("exconv", /* trans= */ false, /* useGpu= */ true); testConvLayer("cudnn_conv", /* trans= */ false, /* useGpu= */ true); #endif @@ -525,7 +525,7 @@ TEST(Layer, convTransLayer) { for (auto useGpu : {false, true}) { testConvTransLayer("exconvt", /* trans= */ false, /* useGpu= */ useGpu); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testConvTransLayer("cudnn_convt", /* trans= */ false, /* useGpu= */ true); #endif } @@ -638,7 +638,7 @@ TEST(Layer, SelectiveFullyConnectedLayer) { /* trans= */ false, /* useGup= */ false, false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testLayerGrad(config, "selective_fc", 100, @@ -1210,7 +1210,7 @@ void testPoolLayer(const string& poolType, bool trans, bool useGpu) { testLayerGrad(config, "pool", 100, trans, useGpu); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU void testPoolLayer2(const string& poolType, bool trans, bool useGpu) { TestConfig config; config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0}); @@ -1236,7 +1236,7 @@ TEST(Layer, PoolLayer) { testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false); testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true); testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ true); testPoolLayer("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true); @@ -1309,7 +1309,7 @@ void testPool3DLayer(const string& poolType, bool trans, bool useGpu) { TEST(Layer, Pool3DLayer) { testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ false); testPool3DLayer("max", /* trans= */ false, /* useGpu= */ false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ true); testPool3DLayer("max", /* trans= */ false, /* useGpu= */ true); #endif @@ -1695,7 +1695,7 @@ void testBatchNormLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, BatchNormalizationLayer) { testBatchNormLayer("batch_norm", false, false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testBatchNormLayer("batch_norm", false, true); if (hl_get_cudnn_lib_version() >= int(4000)) { testBatchNormLayer("cudnn_batch_norm", false, true); @@ -1744,7 +1744,7 @@ void testBatchNorm3DLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, testBatchNorm3DLayer) { testBatchNorm3DLayer("batch_norm", false, false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testBatchNorm3DLayer("batch_norm", false, true); if (hl_get_cudnn_lib_version() >= int(4000)) { testBatchNorm3DLayer("cudnn_batch_norm", false, true); @@ -2262,7 +2262,7 @@ void test3DConvLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, test3DConvLayer) { test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ true); #endif } @@ -2339,7 +2339,7 @@ void test3DDeConvLayer(const string& type, bool trans, bool useGpu) { TEST(Layer, test3DDeConvLayer) { test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ true); #endif } diff --git a/paddle/gserver/tests/test_NetworkCompare.cpp b/paddle/gserver/tests/test_NetworkCompare.cpp index d36f72360f..e322fef9a4 100644 --- a/paddle/gserver/tests/test_NetworkCompare.cpp +++ b/paddle/gserver/tests/test_NetworkCompare.cpp @@ -243,7 +243,7 @@ TEST(Compare, concat_slice) { compareNetwork(config_file_a, config_file_b); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(Compare, img_pool) { std::string config_file_a = "./gserver/tests/img_pool_a.conf"; std::string config_file_b = "./gserver/tests/img_pool_b.conf"; diff --git a/paddle/gserver/tests/test_PriorBox.cpp b/paddle/gserver/tests/test_PriorBox.cpp index ae0e3bc3d2..cbc0fff7b8 100644 --- a/paddle/gserver/tests/test_PriorBox.cpp +++ b/paddle/gserver/tests/test_PriorBox.cpp @@ -151,7 +151,7 @@ TEST(Layer, priorBoxLayerFwd) { useGpu, result); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU // reset the input parameters variance[1] = 0.1; variance[3] = 0.2; diff --git a/paddle/gserver/tests/test_ProtoDataProvider.cpp b/paddle/gserver/tests/test_ProtoDataProvider.cpp index e11bf402c2..988dbc2513 100644 --- a/paddle/gserver/tests/test_ProtoDataProvider.cpp +++ b/paddle/gserver/tests/test_ProtoDataProvider.cpp @@ -485,7 +485,7 @@ TEST(ProtoDataProvider, test) { // Currently in async mode, useGpu is not supported continue; } -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) { continue; } @@ -525,7 +525,7 @@ TEST(ProtoDataProvider, constant_slots) { for (int numConstantSlots : {1, 2}) { for (int useGpu : numTwoArray) { for (int dataCompression : numTwoArray) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) { continue; } @@ -708,7 +708,7 @@ TEST(ProtoSequenceDataProvider, test) { // Currently in async mode, useGpu is not supported continue; } -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) { continue; } diff --git a/paddle/gserver/tests/test_PyDataProvider.cpp b/paddle/gserver/tests/test_PyDataProvider.cpp index db883543c3..f6522febf8 100644 --- a/paddle/gserver/tests/test_PyDataProvider.cpp +++ b/paddle/gserver/tests/test_PyDataProvider.cpp @@ -37,7 +37,7 @@ TEST(PyDataProvider, py_fill_slots) { config.clear_files(); std::string dataFile = "gserver/tests/pyDataProvider/pyDataProviderList"; config.set_files(dataFile); -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU bool useGpu = false; #else bool useGpu = true; @@ -71,7 +71,7 @@ TEST(PyDataProvider, py_fill_nest_slots) { std::string dataFile = "gserver/tests/pyDataProvider/pyDataProviderList"; config.set_files(dataFile); EXPECT_EQ(config.IsInitialized(), true); -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU bool useGpu = false; #else bool useGpu = true; diff --git a/paddle/gserver/tests/test_SelectiveFCLayer.cpp b/paddle/gserver/tests/test_SelectiveFCLayer.cpp index ab23d00a2c..b25d32fb2c 100644 --- a/paddle/gserver/tests/test_SelectiveFCLayer.cpp +++ b/paddle/gserver/tests/test_SelectiveFCLayer.cpp @@ -321,7 +321,7 @@ TEST(Layer, SelectiveFcLayer_train_dense_mul) { "filelist=gserver/tests/SelectiveFcTest/dense_mul_list"; for (auto useGpu : {false, true}) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) { break; } @@ -388,7 +388,7 @@ void testSelectiveFcLayerTrainSparseMul(const LayerConfig& config, outMatSelfc->getWidth(), outMatSelfc->getElementCnt())); cpuOutMatSelfc->copyFrom(*outMatSelfc, HPPL_STREAM_DEFAULT); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU if (useGpu) { hl_stream_synchronize(HPPL_STREAM_DEFAULT); } @@ -418,7 +418,7 @@ void testSelectiveFcLayerTrainSparseMul(const LayerConfig& config, MatrixPtr cpuOutMatFc( new CpuMatrix(outMatFc->getHeight(), outMatFc->getWidth())); cpuOutMatFc->copyFrom(*outMatFc, HPPL_STREAM_DEFAULT); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU if (useGpu) { hl_stream_synchronize(HPPL_STREAM_DEFAULT); } @@ -443,7 +443,7 @@ TEST(Layer, SelectiveFcLayer_train_sparse_mul) { selLayerConfig.set_size(fcLayerWidth); testSelectiveFcLayerTrainSparseMul(selLayerConfig, false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testSelectiveFcLayerTrainSparseMul(selLayerConfig, true); #endif } diff --git a/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp b/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp index e1d4ae1617..f28149081b 100644 --- a/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp +++ b/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp @@ -195,7 +195,7 @@ TEST(Layer, SeqSliceLayer) { vector> ends; std::vector mode = {false}; -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU mode.push_back(true); #endif genSeqInfo(seqStartPos, subSeqStartPos); diff --git a/paddle/gserver/tests/test_WarpCTCLayer.cpp b/paddle/gserver/tests/test_WarpCTCLayer.cpp index 55427e2f12..ae5b64257f 100644 --- a/paddle/gserver/tests/test_WarpCTCLayer.cpp +++ b/paddle/gserver/tests/test_WarpCTCLayer.cpp @@ -199,7 +199,7 @@ TEST(Layer, WarpCTCLayer) { for (auto batchSize : {1, 10, 32}) { for (auto normByTimes : {false, true}) { for (auto useGpu : {false, true}) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) continue; #endif LOG(INFO) << "layerSize=" << layerSize << " batchSize=" << batchSize diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp index 0023b4d0f5..de02f9c0d5 100644 --- a/paddle/math/Matrix.cpp +++ b/paddle/math/Matrix.cpp @@ -670,7 +670,7 @@ void GpuMatrix::leftMul(Matrix& a, real scaleAB, real scaleT) { } void GpuMatrix::selectRows(Matrix& table, IVector& ids) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU CHECK(dynamic_cast(&table)); CHECK(table.useGpu()); CHECK(ids.useGpu()); @@ -694,7 +694,7 @@ void GpuMatrix::selectRows(Matrix& table, IVector& ids) { } void GpuMatrix::addToRows(Matrix& table, IVector& ids) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU CHECK(dynamic_cast(&table)); CHECK(table.useGpu()); CHECK(ids.useGpu()); @@ -741,7 +741,7 @@ void GpuMatrix::rowMax(Matrix& max) { } void GpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU CHECK(maxIds.useGpu() && maxVal.useGpu()) << "Matrix type are not equal"; size_t numSamples = getHeight(); size_t beam = maxVal.getWidth(); diff --git a/paddle/math/SparseMatrix.cpp b/paddle/math/SparseMatrix.cpp index 6370c77386..1f31082ae8 100644 --- a/paddle/math/SparseMatrix.cpp +++ b/paddle/math/SparseMatrix.cpp @@ -836,7 +836,7 @@ void GpuSparseMatrix::zeroMem() { } void GpuSparseMatrix::rowMax(IVector& maxIds, Matrix& maxVal) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU CHECK(maxIds.useGpu() && maxVal.useGpu()) << "Matrix type are not equal"; size_t numSamples = getHeight(); size_t beam = maxVal.getWidth(); diff --git a/paddle/math/Vector.cpp b/paddle/math/Vector.cpp index eb87ee9bb7..54e57b255d 100644 --- a/paddle/math/Vector.cpp +++ b/paddle/math/Vector.cpp @@ -172,7 +172,7 @@ void GpuVectorT::isEqualTo(const VectorT& b, const T& value) { template void GpuVectorT::selectFrom(const VectorT& src, const VectorT& ids) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU hl_vector_select_from(this->getData(), this->getSize(), src.getData(), @@ -850,7 +850,7 @@ CpuGpuVectorT::CpuGpuVectorT(CpuGpuVectorT& src, size_t size) : sync_(nullptr) { CHECK_LE(offset + size, static_cast(src.getSize())); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU SyncedFlag* flag = src.getSync(); if (*flag == DATA_AT_CPU) { src.copyToGpu(); // will set synchronous data between CPU and GPU @@ -861,7 +861,7 @@ CpuGpuVectorT::CpuGpuVectorT(CpuGpuVectorT& src, auto cMemHandle = (src.getVector(false))->getMemoryHandle(); cpuVectorT_ = std::make_shared>( size, std::dynamic_pointer_cast(cMemHandle), offset); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU auto gMemHandle = (src.getVector(true))->getMemoryHandle(); gpuVectorT_ = std::make_shared>( size, std::dynamic_pointer_cast(gMemHandle), offset); diff --git a/paddle/math/tests/test_Allocator.cpp b/paddle/math/tests/test_Allocator.cpp index 1ca70ea84c..cf2f66aea1 100644 --- a/paddle/math/tests/test_Allocator.cpp +++ b/paddle/math/tests/test_Allocator.cpp @@ -68,7 +68,7 @@ void testPoolAllocator() { TEST(Allocator, Pool) { testPoolAllocator(); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testPoolAllocator(); #endif } @@ -92,7 +92,7 @@ TEST(MemoryHandle, Cpu) { EXPECT_EQ(ptr1, ptr2); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(MemoryHandle, Gpu) { int numGpu = hl_get_device_count(); diff --git a/paddle/math/tests/test_BaseMatrix.cpp b/paddle/math/tests/test_BaseMatrix.cpp index 22ce39701f..730759f3db 100644 --- a/paddle/math/tests/test_BaseMatrix.cpp +++ b/paddle/math/tests/test_BaseMatrix.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU /** * This test file use autotest::AutoCompare and cmpWithoutArg to compares the * implementation of CPU and GPU member function in diff --git a/paddle/math/tests/test_CpuGpuVector.cpp b/paddle/math/tests/test_CpuGpuVector.cpp index 58bc43a38b..ccb4a902b0 100644 --- a/paddle/math/tests/test_CpuGpuVector.cpp +++ b/paddle/math/tests/test_CpuGpuVector.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include #include "paddle/math/Vector.h" diff --git a/paddle/math/tests/test_ExecViaCpu.cpp b/paddle/math/tests/test_ExecViaCpu.cpp index 04c856453d..2d439cd060 100644 --- a/paddle/math/tests/test_ExecViaCpu.cpp +++ b/paddle/math/tests/test_ExecViaCpu.cpp @@ -94,7 +94,7 @@ void testWrapper(F&& f) { } } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(ExecViaCpu, test1) { testWrapper(f); testWrapper(&f); diff --git a/paddle/math/tests/test_GpuProfiler.cpp b/paddle/math/tests/test_GpuProfiler.cpp index e6b5dba446..6dab187e3e 100644 --- a/paddle/math/tests/test_GpuProfiler.cpp +++ b/paddle/math/tests/test_GpuProfiler.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include #include "paddle/math/Matrix.h" diff --git a/paddle/math/tests/test_Matrix.cpp b/paddle/math/tests/test_Matrix.cpp index 1c21da5b76..7a145eae6a 100644 --- a/paddle/math/tests/test_Matrix.cpp +++ b/paddle/math/tests/test_Matrix.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU /** * This test file use autotest::AutoCompare and cmpWithArg to compares the * implementation of CPU and GPU member function in Matrix.cpp. diff --git a/paddle/math/tests/test_SparseMatrix.cpp b/paddle/math/tests/test_SparseMatrix.cpp index c0572dfdbf..8151dde106 100644 --- a/paddle/math/tests/test_SparseMatrix.cpp +++ b/paddle/math/tests/test_SparseMatrix.cpp @@ -47,7 +47,7 @@ struct MatrixPara { SparseFormat format; }; -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU void test_sparse_matrix_mul(MatrixPara paraA, MatrixPara paraB, MatrixPara paraC) { @@ -452,7 +452,7 @@ TEST(Matrix, SparseMatrixCSRFormatTrimFrom) { matB->trimFrom(*mat); checkSMatrixEqual2(matA, matB); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU GpuSparseMatrixPtr matC = std::make_shared( height, trimedWidth, height, FLOAT_VALUE, SPARSE_CSR, true); matC->trimFrom(*mat); @@ -546,7 +546,7 @@ TEST(Matrix, SparseMatrixCSCFormatTrimFrom) { matB->trimFrom(*mat); checkSMatrixEqual2(matA, matB); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU GpuSparseMatrixPtr matC = std::make_shared( height, trimedWidth, height, FLOAT_VALUE, SPARSE_CSC, true); matC->trimFrom(*mat); diff --git a/paddle/math/tests/test_Tensor.cu b/paddle/math/tests/test_Tensor.cu index 31b693afa8..d03698dee2 100644 --- a/paddle/math/tests/test_Tensor.cu +++ b/paddle/math/tests/test_Tensor.cu @@ -270,7 +270,7 @@ TEST(Unary, BaseOp) { TestUnaryVectorT testCpuIVector( testUnaryBaseOpInt); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestUnaryMatrix testGpuMatrix(testUnaryBaseOp); TestUnaryVectorT testGpuVector(testUnaryBaseOp); TestUnaryVectorT testGpuIVector( @@ -317,7 +317,7 @@ void testUnayrMathOp(Tensor& A1, Tensor& A2) { TEST(Unary, MathOp) { TestUnaryMatrix testCpu(testUnayrMathOp); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestUnaryMatrix testGpu(testUnayrMathOp); #endif } @@ -374,7 +374,7 @@ void testUnayrCompareOp(Tensor& A1, Tensor& A2) { TEST(Unary, CompareOp) { TestUnaryMatrix testCpu(testUnayrCompareOp); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestUnaryMatrix testGpu(testUnayrCompareOp); #endif } @@ -536,7 +536,7 @@ void testBinaryBaseOp(Tensor& A1, Tensor& A2, Tensor& B) { TEST(Binary, BaseOp) { TestBinaryMatrix testCpu(testBinaryBaseOp); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestBinaryMatrix testGpu(testBinaryBaseOp); #endif } @@ -710,7 +710,7 @@ void testBinaryMathOp(Tensor& A1, Tensor& A2, Tensor& B) { TEST(Binary, MathOp) { TestBinaryMatrix testCpu(testBinaryMathOp); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestBinaryMatrix testGpu(testBinaryMathOp); #endif } @@ -810,7 +810,7 @@ void testBinaryCompareOp(Tensor& A1, Tensor& A2, Tensor& B) { TEST(Binary, CompareOp) { TestBinaryMatrix testCpu(testBinaryCompareOp); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestBinaryMatrix testGpu(testBinaryCompareOp); #endif } @@ -955,7 +955,7 @@ void testTernaryBaseOp(Tensor& A1, Tensor& A2, Tensor& B, Tensor& C) { TEST(Ternary, BaseOp) { TestTernaryMatrix testCpu(testTernaryBaseOp); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestTernaryMatrix testGpu(testTernaryBaseOp); #endif } @@ -1058,7 +1058,7 @@ void testTernaryCompareOp(Tensor& A1, Tensor& A2, Tensor& B, Tensor& C) { TEST(Ternary, CompareOp) { TestTernaryMatrix testCpu(testTernaryCompareOp); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestTernaryMatrix testGpu(testTernaryCompareOp); #endif } @@ -1086,7 +1086,7 @@ void testQuaternaryAdd( TEST(Quaternary, BaseOp) { TestQuaternaryMatrix testCpu(testQuaternaryAdd); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestQuaternaryMatrix testGpu(testQuaternaryAdd); #endif } @@ -1156,7 +1156,7 @@ void testQuaternaryCompareOp( TEST(Quaternary, CompareOp) { TestQuaternaryMatrix testCpu(testQuaternaryCompareOp); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TestQuaternaryMatrix testGpu(testQuaternaryCompareOp); #endif } diff --git a/paddle/math/tests/test_TrainingAlgorithm.cpp b/paddle/math/tests/test_TrainingAlgorithm.cpp index 4a88844b43..36ac024007 100644 --- a/paddle/math/tests/test_TrainingAlgorithm.cpp +++ b/paddle/math/tests/test_TrainingAlgorithm.cpp @@ -91,7 +91,7 @@ int VectorCheckErr(const VectorPtr& vector1, const VectorPtr& vector2) { typedef std::function testMatrixFunc; void testCase(testMatrixFunc matrixFunc) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU for (auto useGpu : {false, true}) { #else for (auto useGpu : {false}) { diff --git a/paddle/math/tests/test_batchTranspose.cpp b/paddle/math/tests/test_batchTranspose.cpp index 4eb9837909..0189e534eb 100644 --- a/paddle/math/tests/test_batchTranspose.cpp +++ b/paddle/math/tests/test_batchTranspose.cpp @@ -17,7 +17,7 @@ limitations under the License. */ using namespace paddle; // NOLINT -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(MatrixBatchTransTest, test_batch_matrix_transpose) { const int nx = 100; const int ny = 50; diff --git a/paddle/math/tests/test_lazyAssign.cu b/paddle/math/tests/test_lazyAssign.cu index 92afab4ff7..04f23cff55 100644 --- a/paddle/math/tests/test_lazyAssign.cu +++ b/paddle/math/tests/test_lazyAssign.cu @@ -72,7 +72,7 @@ void testLazyAssign(int height, int width) { TEST(lazyAssign, CPU) { testMatrixCase(testLazyAssign); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(lazyAssign, GPU) { testMatrixCase(testLazyAssign); } #endif @@ -142,6 +142,6 @@ void testSgdUpdate(int height, int width) { TEST(sgdUpdate, CPU) { testMatrixCase(testSgdUpdate); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(sgdUpdate, GPU) { testMatrixCase(testSgdUpdate); } #endif diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp index 061fb22e3f..7735877ac8 100644 --- a/paddle/math/tests/test_matrixCompare.cpp +++ b/paddle/math/tests/test_matrixCompare.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU /// This unittest checks GpuMatrix/CpuMatrix get same result, so disable when /// only cpu version. diff --git a/paddle/math/tests/test_perturbation.cpp b/paddle/math/tests/test_perturbation.cpp index 60ebae0153..dff18136ae 100644 --- a/paddle/math/tests/test_perturbation.cpp +++ b/paddle/math/tests/test_perturbation.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include #include diff --git a/paddle/math/tests/test_sparseMatrixCompare.cpp b/paddle/math/tests/test_sparseMatrixCompare.cpp index a9185a4b24..e39cc0a2f6 100644 --- a/paddle/math/tests/test_sparseMatrixCompare.cpp +++ b/paddle/math/tests/test_sparseMatrixCompare.cpp @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU /// This unittest checks GpuSparseMatrix/CpuSparseMatrix get same result, // so disable when /// only cpu version. diff --git a/paddle/memory/detail/buddy_allocator.cc b/paddle/memory/detail/buddy_allocator.cc index bb44970109..ed0c3374ff 100644 --- a/paddle/memory/detail/buddy_allocator.cc +++ b/paddle/memory/detail/buddy_allocator.cc @@ -175,7 +175,7 @@ void* BuddyAllocator::SystemAlloc(size_t size) { } BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool() { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU if (system_allocator_->UseGpu()) { if ((total_used_ + total_free_) == 0) { // Compute the maximum allocation size for the first allocation. diff --git a/paddle/memory/detail/system_allocator.cc b/paddle/memory/detail/system_allocator.cc index a270bd5958..64f8182b5c 100644 --- a/paddle/memory/detail/system_allocator.cc +++ b/paddle/memory/detail/system_allocator.cc @@ -62,7 +62,7 @@ void CPUAllocator::Free(void* p, size_t size, size_t index) { bool CPUAllocator::UseGpu() const { return false; } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU void* GPUAllocator::Alloc(size_t& index, size_t size) { // CUDA documentation doesn't explain if cudaMalloc returns nullptr diff --git a/paddle/memory/detail/system_allocator.h b/paddle/memory/detail/system_allocator.h index 82ba322e05..6b1f40347b 100644 --- a/paddle/memory/detail/system_allocator.h +++ b/paddle/memory/detail/system_allocator.h @@ -40,7 +40,7 @@ class CPUAllocator : public SystemAllocator { virtual bool UseGpu() const; }; -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU class GPUAllocator : public SystemAllocator { public: virtual void* Alloc(size_t& index, size_t size); diff --git a/paddle/memory/detail/system_allocator_test.cc b/paddle/memory/detail/system_allocator_test.cc index ba44e06ddb..57d5443d50 100644 --- a/paddle/memory/detail/system_allocator_test.cc +++ b/paddle/memory/detail/system_allocator_test.cc @@ -56,7 +56,7 @@ TEST(CPUAllocator, LockMem) { TestAllocator(a, 0); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(GPUAllocator, Alloc) { paddle::memory::detail::GPUAllocator a; TestAllocator(a, 2048); diff --git a/paddle/memory/memcpy.cc b/paddle/memory/memcpy.cc index c96a697a7e..184d0f8fa7 100644 --- a/paddle/memory/memcpy.cc +++ b/paddle/memory/memcpy.cc @@ -26,7 +26,7 @@ void Copy(platform::CPUPlace, void* dst, std::memcpy(dst, src, num); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU template <> void Copy(platform::CPUPlace dst_place, void* dst, diff --git a/paddle/memory/memcpy.h b/paddle/memory/memcpy.h index 2b9c0eada6..7142831d43 100644 --- a/paddle/memory/memcpy.h +++ b/paddle/memory/memcpy.h @@ -33,7 +33,7 @@ namespace memory { template void Copy(DstPlace, void* dst, SrcPlace, const void* src, size_t num); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU /** * \brief Copy memory from one place to another place. diff --git a/paddle/memory/memory.cc b/paddle/memory/memory.cc index 29bc26f9d3..6d5a74dafe 100644 --- a/paddle/memory/memory.cc +++ b/paddle/memory/memory.cc @@ -62,7 +62,7 @@ size_t Used(platform::CPUPlace place) { return GetCPUBuddyAllocator()->Used(); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { using BuddyAllocVec = std::vector; diff --git a/paddle/memory/memory_test.cc b/paddle/memory/memory_test.cc index 53cc63a098..7a617f04dc 100644 --- a/paddle/memory/memory_test.cc +++ b/paddle/memory/memory_test.cc @@ -80,7 +80,7 @@ TEST(BuddyAllocator, CPUMultAlloc) { } } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU size_t align(size_t size, paddle::platform::GPUPlace place) { size += sizeof(paddle::memory::detail::Metadata); diff --git a/paddle/operators/cond_op.cc b/paddle/operators/cond_op.cc index db20b69f3f..2737104a20 100644 --- a/paddle/operators/cond_op.cc +++ b/paddle/operators/cond_op.cc @@ -126,8 +126,7 @@ void CondOp::PrepareDataForSubnet( dim[0] = index_tensors[i].dims()[0]; tensor_child->mutable_data(dim, platform::CPUPlace()); - Gather(dev_ctx.GetPlace(), tensor_parent, &index_tensors[i], - tensor_child); + CPUGather(dev_ctx, *tensor_parent, index_tensors[i], tensor_child); } } @@ -188,7 +187,7 @@ void CondOp::MergeDataFromSubnet(const framework::Scope& scope, Variable* var_child = sub_scopes[i]->FindVar(output); PADDLE_ENFORCE_NOT_NULL(var_child); auto* tensor_child = &var_child->Get(); - ScatterUpdate(dev_ctx.GetPlace(), tensor_child, &index_tensors[i], + ScatterAssign(dev_ctx, *tensor_child, index_tensors[i], tensor_parent); } } diff --git a/paddle/operators/detail/strided_memcpy.h b/paddle/operators/detail/strided_memcpy.h index b165224b37..9f05a26322 100644 --- a/paddle/operators/detail/strided_memcpy.h +++ b/paddle/operators/detail/strided_memcpy.h @@ -34,7 +34,7 @@ struct StridedMemcpyFunctor { auto& cpu_place = boost::get(place); memory::Copy(cpu_place, dst, cpu_place, src, sizeof(T) * dst_dim.head); } else { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU auto& gpu_place = boost::get(place); auto& cuda_ctx = reinterpret_cast(dev_ctx); diff --git a/paddle/operators/gather.cu.h b/paddle/operators/gather.cu.h new file mode 100644 index 0000000000..8d04ecd284 --- /dev/null +++ b/paddle/operators/gather.cu.h @@ -0,0 +1,79 @@ +/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/tensor.h" +#include "paddle/platform/place.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; +using platform::Place; + +#define CUDA_1D_KERNEL_LOOP(i, n) \ + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ + i += blockDim.x * gridDim.x) + +template +__global__ void GatherCUDAKernel(const T* params, const int* indices, T* output, + size_t index_size, size_t slice_size) { + CUDA_1D_KERNEL_LOOP(i, index_size * slice_size) { + int indices_i = i / slice_size; + int slice_i = i - indices_i * slice_size; // offset inside the slice + int gather_i = indices[indices_i]; + int params_i = gather_i * slice_size + slice_i; + *(output + i) = *(params + params_i); + } +} + +/** + * A thin wrapper on gpu tensor + * Return a new tensor from source tensor, gathered according to index + * input[src]: type-T source Tensor + * input[index]: type-int index Tensor (1-D) + * return: output tensor + */ +template +void GPUGather(const platform::DeviceContext& ctx, const Tensor& src, + const Tensor& index, Tensor* output) { + // PADDLE_ENFORCE(platform::is_gpu_place(place)); + // check index of shape 1-D + PADDLE_ENFORCE(index.dims().size() == 1); + int index_size = index.dims()[0]; + + auto src_dims = src.dims(); + framework::DDim output_dims(src_dims); + output_dims[0] = index_size; + + // slice size + int slice_size = 1; + for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i]; + + const T* p_src = src.data(); + const int* p_index = index.data(); + T* p_output = output->data(); + + int block = 512; + int n = slice_size * index_size; + int grid = (n + block - 1) / block; + + GatherCUDAKernel<<< + grid, block, 0, + reinterpret_cast(ctx).stream()>>>( + p_src, p_index, p_output, index_size, slice_size); +} + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/gather.h b/paddle/operators/gather.h index 92fb51ec17..052db49cb3 100644 --- a/paddle/operators/gather.h +++ b/paddle/operators/gather.h @@ -24,49 +24,40 @@ limitations under the License. */ namespace paddle { namespace operators { -// Implementation of CPU copy -template -void CPUGather(const T* src, const int* indices, const int slice_size, - const int index_size, T* output) { - const size_t slice_bytes = slice_size * sizeof(T); - - for (int i = 0; i < index_size; ++i) { - int index_ = indices[i]; - memcpy(output + i * slice_size, src + index_ * slice_size, slice_bytes); - } -} - -// Implementation of GPU copy: -template -void GPUGather(const T* src, const int* index, const int slice_size, - const int index_size, T* output); +using framework::Tensor; /** + * A thin wrapper for gathering on cpu tensor * Return a new tensor from source tensor, gathered according to index * input[src]: type-T source Tensor * input[index]: type-int index Tensor (1-D) * return: output tensor */ template -void Gather(const platform::Place& place, const paddle::framework::Tensor* src, - const paddle::framework::Tensor* index, - paddle::framework::Tensor* output) { +void CPUGather(const platform::DeviceContext& ctx, const Tensor& src, + const Tensor& index, Tensor* output) { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace())); // check index of shape 1-D - PADDLE_ENFORCE(index->dims().size() == 1); - int index_size = index->dims()[0]; + PADDLE_ENFORCE(index.dims().size() == 1); + int index_size = index.dims()[0]; - auto src_dims = src->dims(); + auto src_dims = src.dims(); framework::DDim output_dims(src_dims); output_dims[0] = index_size; + const T* p_src = src.data(); + const int* p_index = index.data(); + T* p_output = output->data(); + // slice size int slice_size = 1; for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i]; - // Gathering - if (platform::is_cpu_place(place)) { - CPUGather(src->data(), index->data(), slice_size, index_size, - output->data()); + const size_t slice_bytes = slice_size * sizeof(T); + + for (int i = 0; i < index_size; ++i) { + int index_ = p_index[i]; + memcpy(p_output + i * slice_size, p_src + index_ * slice_size, slice_bytes); } } diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index da22bd0c52..fe305337cb 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -31,6 +31,8 @@ class GatherOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of GatherOp should not be null."); + auto index_dims = ctx->GetInputDim("Index"); + PADDLE_ENFORCE(index_dims.size() == 1); int batch_size = ctx->GetInputDim("Index")[0]; PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0"); framework::DDim output_dims(ctx->GetInputDim("X")); @@ -79,8 +81,5 @@ Out = X[Index] namespace ops = paddle::operators; REGISTER_OP(gather, ops::GatherOp, ops::GatherOpMaker, gather_grad, ops::GatherGradOp); -REGISTER_OP_CPU_KERNEL(gather, - ops::GatherOpKernel); -REGISTER_OP_CPU_KERNEL( - gather_grad, - ops::GatherGradientOpKernel); +REGISTER_OP_CPU_KERNEL(gather, ops::GatherOpKernel); +REGISTER_OP_CPU_KERNEL(gather_grad, ops::GatherGradientOpKernel); diff --git a/paddle/operators/gather_op.cu b/paddle/operators/gather_op.cu new file mode 100644 index 0000000000..92219d6a43 --- /dev/null +++ b/paddle/operators/gather_op.cu @@ -0,0 +1,64 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "gather.cu.h" +#include "paddle/framework/eigen.h" +#include "paddle/operators/gather_op.h" +#include "scatter.cu.h" + +namespace paddle { +namespace operators { + +template +class GatherOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "This kernel only runs on GPU device."); + auto *x = ctx.Input("X"); + auto *index = ctx.Input("Index"); + auto *output = ctx.Output("Out"); + + output->mutable_data(ctx.GetPlace()); + + GPUGather(ctx.device_context(), *x, *index, output); + } +}; + +template +class GatherGradOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "This kernel only runs on GPU device."); + auto *Index = ctx.Input("Index"); + auto *dX = ctx.Output(framework::GradVarName("X")); + auto *dO = ctx.Input(framework::GradVarName("Out")); + auto *x = ctx.Input("X"); + + dX->mutable_data(ctx.GetPlace()); + auto dxt = framework::EigenVector::Flatten(*dX); + auto place = ctx.GetEigenDevice(); + dxt.device(place) = dxt.constant(static_cast(0)); + + GPUScatterAssign(ctx.device_context(), *dO, *Index, dX); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(gather, ops::GatherOpCUDAKernel); +REGISTER_OP_GPU_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel); diff --git a/paddle/operators/gather_op.h b/paddle/operators/gather_op.h index 073e566e8f..8276ed0d3d 100644 --- a/paddle/operators/gather_op.h +++ b/paddle/operators/gather_op.h @@ -23,29 +23,40 @@ namespace operators { using Tensor = framework::Tensor; -template +template class GatherOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { - auto *X = ctx.Input("X"); - auto *Index = ctx.Input("Index"); - auto *Y = ctx.Output("Out"); + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "This kernel only runs on CPU."); + + auto *x = ctx.Input("X"); + auto *index = ctx.Input("Index"); + auto *output = ctx.Output("Out"); + + output->mutable_data(ctx.GetPlace()); - Y->mutable_data(ctx.GetPlace()); - Gather(ctx.GetPlace(), X, Index, Y); + CPUGather(ctx.device_context(), *x, *index, output); } }; -template +template class GatherGradientOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "This kernel only runs on CPU."); + auto *Index = ctx.Input("Index"); auto *dX = ctx.Output(framework::GradVarName("X")); auto *dO = ctx.Input(framework::GradVarName("Out")); dX->mutable_data(ctx.GetPlace()); - ScatterUpdate(ctx.GetPlace(), dO, Index, dX); + auto dxt = framework::EigenVector::Flatten(*dX); + auto place = ctx.GetEigenDevice(); + dxt.device(place) = dxt.constant(static_cast(0)); + + ScatterAssign(ctx.device_context(), *dO, *Index, dX); } }; diff --git a/paddle/operators/gather_test.cc b/paddle/operators/gather_test.cc index 0ae1e99452..cbd86b8796 100644 --- a/paddle/operators/gather_test.cc +++ b/paddle/operators/gather_test.cc @@ -41,7 +41,9 @@ TEST(Gather, GatherData) { int* p_output = output->mutable_data(make_ddim({2, 4}), CPUPlace()); - Gather(CPUPlace(), src, index, output); + auto* cpu_place = new paddle::platform::CPUPlace(); + paddle::platform::CPUDeviceContext ctx(*cpu_place); + CPUGather(ctx, *src, *index, output); for (int i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], i + 4); for (int i = 4; i < 8; ++i) EXPECT_EQ(p_output[i], i - 4); diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index f0b8c88591..3d040ca2b5 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -71,7 +71,7 @@ void testIm2col() { context = new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace()); } else { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU context = new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); #else @@ -116,7 +116,7 @@ void testIm2col() { TEST(math, im2col) { testIm2col(); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU testIm2col(); #endif } diff --git a/paddle/operators/math/math_function_test.cc b/paddle/operators/math/math_function_test.cc index 22468a0c4a..2252268620 100644 --- a/paddle/operators/math/math_function_test.cc +++ b/paddle/operators/math/math_function_test.cc @@ -1,7 +1,7 @@ #include "paddle/operators/math/math_function.h" #include "gtest/gtest.h" -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(math_function, notrans_mul_trans) { paddle::framework::Tensor input1; paddle::framework::Tensor input1_gpu; diff --git a/paddle/operators/scatter.cu.h b/paddle/operators/scatter.cu.h new file mode 100644 index 0000000000..d95436be4f --- /dev/null +++ b/paddle/operators/scatter.cu.h @@ -0,0 +1,80 @@ +/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/tensor.h" +#include "paddle/platform/place.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +#define CUDA_1D_KERNEL_LOOP(i, n) \ + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ + i += blockDim.x * gridDim.x) + +template +__global__ void ScatterCUDAKernel(const T* params, const int* indices, + T* output, size_t index_size, + size_t slice_size) { + CUDA_1D_KERNEL_LOOP(i, index_size * slice_size) { + int indices_i = i / slice_size; + int slice_i = i - indices_i * slice_size; // offset inside the slice + int scatter_i = indices[indices_i]; + int out_i = scatter_i * slice_size + slice_i; + *(output + out_i) = *(params + i); + } +} + +/** + * A thin wrapper on gpu tensor + * Return a new updated tensor from source tensor, scatter-assigned according to + * index + * input[src]: type-T source Tensor + * input[index]: type-int index Tensor (1-D) + * return: output tensor + */ +template +void GPUScatterAssign(const platform::DeviceContext& ctx, const Tensor& src, + const Tensor& index, Tensor* output) { + // PADDLE_ENFORCE(platform::is_gpu_place(place)); + // check index of shape 1-D + PADDLE_ENFORCE(index.dims().size() == 1); + int index_size = index.dims()[0]; + + auto src_dims = src.dims(); + framework::DDim output_dims(src_dims); + output_dims[0] = index_size; + + // slice size + int slice_size = 1; + for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i]; + + const T* p_src = src.data(); + const int* p_index = index.data(); + T* p_output = output->data(); + + int block = 512; + int n = slice_size * index_size; + int grid = (n + block - 1) / block; + + ScatterCUDAKernel<<< + grid, block, 0, + reinterpret_cast(ctx).stream()>>>( + p_src, p_index, p_output, index_size, slice_size); +} + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/scatter.h b/paddle/operators/scatter.h index fec1046a97..c1fb844ebd 100644 --- a/paddle/operators/scatter.h +++ b/paddle/operators/scatter.h @@ -24,63 +24,42 @@ namespace paddle { namespace operators { using Tensor = framework::Tensor; -template -using EigenVector = framework::EigenVector; - -// Implementation of CPU copy -template -void CPUScatterUpdate(const paddle::framework::Tensor* src, const int* index, - const size_t index_size, - paddle::framework::Tensor* output) { - paddle::framework::DDim output_dims = output->dims(); - - for (size_t i = 0; i < index_size; ++i) { - int index_ = index[i]; - - paddle::framework::Tensor src_ = *src; - paddle::framework::Tensor output_ = *output; - if (index_size > 1) src_ = src->Slice(i, i + 1); - if (output_dims[0] > 1) output_ = output->Slice(index_, index_ + 1); - - auto X = EigenVector::Flatten(src_); - auto Y = EigenVector::Flatten(output_); - - Y = X + Y; - } -} - -// Implementation of GPU scatter: -template -void GPUScatterUpdate(const T* src, const int* index, const int slice_size, - const int index_size, T* output); /** * Return a updated tensor from source tensor, scattered according to index: - * dst[i] += src[index[i]] + * dst[i] = src[index[i]] * input[src]: type-T source Tensor * input[index]: type-int index Tensor (1-D) * return: output tensor */ template -void ScatterUpdate(const platform::Place& place, - const paddle::framework::Tensor* src, - const paddle::framework::Tensor* index, - paddle::framework::Tensor* output) { +void ScatterAssign(const platform::DeviceContext& ctx, const Tensor& src, + const Tensor& index, Tensor* output) { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace())); // check index of shape 1-D - PADDLE_ENFORCE(index->dims().size() == 1); - int index_size = index->dims()[0]; + PADDLE_ENFORCE(index.dims().size() == 1); + int index_size = index.dims()[0]; - auto src_dims = src->dims(); + auto src_dims = src.dims(); auto dst_dims = output->dims(); + const T* p_src = src.data(); + const int* p_index = index.data(); + T* p_output = output->data(); + // check src shape and dst shape should match for (int i = 1; i < src_dims.size(); i++) PADDLE_ENFORCE(src_dims[i] == dst_dims[i]); - if (platform::is_cpu_place(place)) { - CPUScatterUpdate(src, index->data(), index_size, output); - } else { + // slice size + size_t slice_size = 1; + for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i]; + + const size_t slice_bytes = slice_size * sizeof(T); + + for (int i = 0; i < index_size; ++i) { + int index_ = p_index[i]; + memcpy(p_output + index_ * slice_size, p_src + i * slice_size, slice_bytes); } } diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc index cadd8841b6..d15ba15153 100644 --- a/paddle/operators/scatter_op.cc +++ b/paddle/operators/scatter_op.cc @@ -97,8 +97,5 @@ Out[Index] = Ref[Index] + Updates namespace ops = paddle::operators; REGISTER_OP(scatter, ops::ScatterOp, ops::ScatterOpMaker, scatter_grad, ops::ScatterGradOp); -REGISTER_OP_CPU_KERNEL(scatter, - ops::ScatterOpKernel); -REGISTER_OP_CPU_KERNEL( - scatter_grad, - ops::ScatterGradientOpKernel); +REGISTER_OP_CPU_KERNEL(scatter, ops::ScatterOpKernel); +REGISTER_OP_CPU_KERNEL(scatter_grad, ops::ScatterGradientOpKernel); diff --git a/paddle/operators/scatter_op.cu b/paddle/operators/scatter_op.cu new file mode 100644 index 0000000000..06f4d75944 --- /dev/null +++ b/paddle/operators/scatter_op.cu @@ -0,0 +1,63 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "gather.cu.h" +#include "paddle/operators/gather_op.h" +#include "scatter.cu.h" + +namespace paddle { +namespace operators { + +template +class ScatterOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "This kernel only runs on GPU device."); + auto *Ref = ctx.Input("Ref"); + auto *Index = ctx.Input("Index"); + auto *Updates = ctx.Input("Updates"); + auto *Out = ctx.Output("Out"); + + Out->ShareDataWith(*Ref); + + GPUScatterAssign(ctx.device_context(), *Updates, *Index, Out); + } +}; + +template +class ScatterGradOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "This kernel only runs on GPU device."); + auto *dRef = ctx.Output(framework::GradVarName("Ref")); + auto *dUpdates = ctx.Output(framework::GradVarName("Updates")); + auto *Index = ctx.Input("Index"); + auto *dOut = ctx.Input(framework::GradVarName("Out")); + + // In place gradient: dRef = dO + dRef->ShareDataWith(*dOut); + dUpdates->mutable_data(ctx.GetPlace()); + // Gradient by Gather: dUpdates = dO[Index] + GPUGather(ctx.device_context(), *dOut, *Index, dUpdates); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(scatter, ops::ScatterOpCUDAKernel); +REGISTER_OP_GPU_KERNEL(scatter_grad, ops::ScatterGradOpCUDAKernel); diff --git a/paddle/operators/scatter_op.h b/paddle/operators/scatter_op.h index a8eb54399a..6101219006 100644 --- a/paddle/operators/scatter_op.h +++ b/paddle/operators/scatter_op.h @@ -23,10 +23,12 @@ namespace operators { using Tensor = framework::Tensor; -template +template class ScatterOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "This kernel only runs on CPU."); auto *Ref = ctx.Input("Ref"); auto *Index = ctx.Input("Index"); auto *Updates = ctx.Input("Updates"); @@ -35,14 +37,16 @@ class ScatterOpKernel : public framework::OpKernel { // In place output: Out = Ref, Out[Index] += Updates Out->ShareDataWith(*Ref); // Apply ScatterUpdate: Out[index] += Updates[:] - ScatterUpdate(ctx.GetPlace(), Updates, Index, Out); + ScatterAssign(ctx.device_context(), *Updates, *Index, Out); } }; -template +template class ScatterGradientOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "This kernel only runs on CPU."); auto *dRef = ctx.Output(framework::GradVarName("Ref")); auto *dUpdates = ctx.Output(framework::GradVarName("Updates")); auto *Index = ctx.Input("Index"); @@ -52,7 +56,7 @@ class ScatterGradientOpKernel : public framework::OpKernel { dRef->ShareDataWith(*dOut); dUpdates->mutable_data(ctx.GetPlace()); // Gradient by Gather: dUpdates += dO[Index] - Gather(ctx.GetPlace(), dOut, Index, dUpdates); + CPUGather(ctx.device_context(), *dOut, *Index, dUpdates); } }; diff --git a/paddle/operators/scatter_test.cc b/paddle/operators/scatter_test.cc index 26fdaff146..00dbdacbfe 100644 --- a/paddle/operators/scatter_test.cc +++ b/paddle/operators/scatter_test.cc @@ -40,7 +40,9 @@ TEST(scatter, ScatterUpdate) { float* p_output = output->mutable_data(make_ddim({4, 4}), CPUPlace()); - ScatterUpdate(CPUPlace(), src, index, output); + auto* cpu_place = new paddle::platform::CPUPlace(); + paddle::platform::CPUDeviceContext ctx(*cpu_place); + ScatterAssign(ctx, *src, *index, output); for (size_t i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], float(0)); for (size_t i = 0; i < 4; ++i) EXPECT_EQ(output->data()[i], float(0)); diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index 8f9eae4186..31d491f130 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -23,19 +23,22 @@ class SGDOp : public framework::OperatorWithKernel { protected: void InferShape(framework::InferShapeContextBase *ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("param"), - "Input(param) of SGDOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("grad"), - "Input(grad) of SGDOp should not be null."); - PADDLE_ENFORCE(ctx->HasInput("learning_rate"), - "Input(learning_rate) of SGDOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("param_out"), - "Output(param_out) of SGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of SGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of SGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of SGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of SGDOp should not be null."); - auto param_dim = ctx->GetInputDim("param"); - PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("grad"), + auto lr_dims = ctx->GetInputDim("LearningRate"); + PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, + "Learning rate should have 1 element"); + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"), "Two input of SGD Op's dimension must be same."); - ctx->SetOutputDim("param_out", param_dim); + ctx->SetOutputDim("ParamOut", param_dim); } }; @@ -43,10 +46,10 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker { public: SGDOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("param", "input parameter"); - AddInput("learning_rate", "learning rate of sgd"); - AddInput("grad", "input gradient"); - AddOutput("param_out", "output parameter"); + AddInput("Param", "Input parameter"); + AddInput("LearningRate", "Learning rate of SGD"); + AddInput("Grad", "Input gradient"); + AddOutput("ParamOut", "output parameter"); AddComment(R"DOC( Simplest sgd algorithm. diff --git a/paddle/operators/sgd_op.h b/paddle/operators/sgd_op.h index 977d201ced..d72d333a9a 100644 --- a/paddle/operators/sgd_op.h +++ b/paddle/operators/sgd_op.h @@ -28,10 +28,10 @@ template class SGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto param = ctx.Input("param"); - auto grad = ctx.Input("grad"); - auto param_out = ctx.Output("param_out"); - float lr = *ctx.Input("learning_rate"); + auto param = ctx.Input("Param"); + auto grad = ctx.Input("Grad"); + auto param_out = ctx.Output("ParamOut"); + float lr = ctx.Input("LearningRate")->data()[0]; param_out->mutable_data(ctx.GetPlace()); diff --git a/paddle/operators/strided_memcpy_test.cc b/paddle/operators/strided_memcpy_test.cc index 05882a8873..e0dd7b19f1 100644 --- a/paddle/operators/strided_memcpy_test.cc +++ b/paddle/operators/strided_memcpy_test.cc @@ -72,7 +72,7 @@ TEST(StridedMemcpy, CPUConcat) { } } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(StridedMemcpy, GPUCrop) { // clang-format off int src[] = { diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index 36af1ac677..8dcc357a16 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -35,7 +35,7 @@ Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const { Place CPUDeviceContext::GetPlace() const { return CPUPlace(); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU template <> Eigen::GpuDevice* diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index d805d2ab08..c1c4c7f760 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -14,7 +14,7 @@ limitations under the License. */ #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include "paddle/platform/dynload/cublas.h" #include "paddle/platform/dynload/cudnn.h" #include "paddle/platform/gpu_info.h" @@ -61,7 +61,7 @@ class CPUDeviceContext : public DeviceContext { std::unique_ptr eigen_device_; }; -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU template <> struct EigenDeviceConverter { using EigenDeviceType = Eigen::GpuDevice; diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h index 52bd23039b..f9fe521d50 100644 --- a/paddle/platform/enforce.h +++ b/paddle/platform/enforce.h @@ -29,7 +29,7 @@ limitations under the License. */ #include // for __cxa_demangle #endif -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include "paddle/platform/dynload/cublas.h" #include "paddle/platform/dynload/cudnn.h" @@ -113,7 +113,7 @@ inline typename std::enable_if::type throw_on_error( } } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU template inline typename std::enable_if::type throw_on_error( diff --git a/paddle/platform/gpu_info.h b/paddle/platform/gpu_info.h index f0c825bd9b..ac884386dd 100644 --- a/paddle/platform/gpu_info.h +++ b/paddle/platform/gpu_info.h @@ -14,7 +14,7 @@ limitations under the License. */ #pragma once -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU #include #include diff --git a/paddle/platform/variant.h b/paddle/platform/variant.h index 16ee00efe7..8145799dfd 100644 --- a/paddle/platform/variant.h +++ b/paddle/platform/variant.h @@ -16,7 +16,7 @@ #include -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU // Because boost's variadic templates has bug on nvcc, boost will disable // variadic template support when GPU enabled on nvcc. diff --git a/paddle/pserver/test/SocketTest.cpp b/paddle/pserver/test/SocketTest.cpp index 6f6c9e596c..96724530f5 100644 --- a/paddle/pserver/test/SocketTest.cpp +++ b/paddle/pserver/test/SocketTest.cpp @@ -215,7 +215,7 @@ int main(int argc, char** argv) { uint64_t dataSize = FLAGS_dim * sizeof(real); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU GpuVector gpuParam(FLAGS_dim); GpuVector gpuGrad(FLAGS_dim); #else diff --git a/paddle/pserver/test/test_ProtoServer.cpp b/paddle/pserver/test/test_ProtoServer.cpp index 04236fda2f..74ab1f2f77 100644 --- a/paddle/pserver/test/test_ProtoServer.cpp +++ b/paddle/pserver/test/test_ProtoServer.cpp @@ -99,7 +99,7 @@ TEST(ProtoServer, regular) { } TEST(ProtoServer, extended) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU ProtoClient* client; if (FLAGS_rdma_tcp == "rdma") client = new ProtoClient(FLAGS_server_addr, FLAGS_port, F_RDMA); diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index d480427f59..761d82fc4d 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -34,7 +34,7 @@ static size_t UniqueIntegerGenerator() { } bool IsCompileGPU() { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU return false; #else return true; @@ -78,7 +78,7 @@ PYBIND11_PLUGIN(core) { .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) @@ -96,7 +96,7 @@ PYBIND11_PLUGIN(core) { .def( "__init__", [](LoDTensor &instance, const std::vector> &lod) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU new (&instance) LoDTensor(lod); #else LoD new_lod; @@ -107,7 +107,7 @@ PYBIND11_PLUGIN(core) { }) .def("set_lod", [](LoDTensor &self, const std::vector> &lod) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU self.set_lod(lod); #else LoD new_lod; @@ -117,7 +117,7 @@ PYBIND11_PLUGIN(core) { #endif }) .def("lod", [](LoDTensor &self) -> std::vector> { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU return self.lod(); #else auto lod = self.lod(); @@ -203,7 +203,7 @@ All parameter, weight, gradient are variables in Paddle. .def_static("create", [](paddle::platform::GPUPlace& place) -> paddle::platform::DeviceContext* { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU PADDLE_THROW("GPUPlace is not supported in CPU device."); #else return new paddle::platform::CUDADeviceContext(place); diff --git a/paddle/pybind/tensor_py.h b/paddle/pybind/tensor_py.h index 3e3e6bc031..62e85fa54f 100644 --- a/paddle/pybind/tensor_py.h +++ b/paddle/pybind/tensor_py.h @@ -106,7 +106,7 @@ void PyCPUTensorSetFromArray( std::memcpy(dst, array.data(), sizeof(T) * array.size()); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU template void PyCUDATensorSetFromArray( framework::Tensor &self, diff --git a/paddle/trainer/MergeModel.cpp b/paddle/trainer/MergeModel.cpp index 91d89b61a3..a37d53bc72 100644 --- a/paddle/trainer/MergeModel.cpp +++ b/paddle/trainer/MergeModel.cpp @@ -29,7 +29,7 @@ int main(int argc, char** argv) { initMain(argc, argv); initPython(argc, argv); string confFile = TrainerConfigHelper::getConfigNameFromPath(FLAGS_model_dir); -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU FLAGS_use_gpu = false; #endif auto config = std::make_shared(confFile); diff --git a/paddle/trainer/tests/test_Compare.cpp b/paddle/trainer/tests/test_Compare.cpp index e855a8fe2e..b5d29da45a 100644 --- a/paddle/trainer/tests/test_Compare.cpp +++ b/paddle/trainer/tests/test_Compare.cpp @@ -146,7 +146,7 @@ void compareGradient(comData& comDataCpu, comData& comDataGpu) { } int main(int argc, char** argv) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU exit(0); #endif paddle::initMain(argc, argv); diff --git a/paddle/trainer/tests/test_CompareSparse.cpp b/paddle/trainer/tests/test_CompareSparse.cpp index 813275518e..4da9ce20fb 100644 --- a/paddle/trainer/tests/test_CompareSparse.cpp +++ b/paddle/trainer/tests/test_CompareSparse.cpp @@ -174,7 +174,7 @@ TEST(compareSparse, multiGradientMachine) { FLAGS_local = local; FLAGS_ports_num_for_sparse = 5; for (bool useGpu : {false, true}) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) continue; #endif FLAGS_parallel_nn = useGpu; @@ -198,7 +198,7 @@ TEST(compareSparse, NeuralNetwork) { FLAGS_local = local; FLAGS_ports_num_for_sparse = 5; for (bool useGpu : {false, true}) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU if (useGpu) continue; #endif FLAGS_parallel_nn = useGpu; diff --git a/paddle/trainer/tests/test_Trainer.cpp b/paddle/trainer/tests/test_Trainer.cpp index 264bc46ebc..f69e1aafee 100644 --- a/paddle/trainer/tests/test_Trainer.cpp +++ b/paddle/trainer/tests/test_Trainer.cpp @@ -51,7 +51,7 @@ void checkGradientTest(const string& configFile, TEST(checkGradient, cpu) { checkGradientTest(configFile1, false, false); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(checkGradient, gpu) { checkGradientTest(configFile1, true, false); } TEST(checkGradient, multiGpu) { @@ -97,7 +97,7 @@ TEST(checkGradient, hsigmoid) { checkGradientTest(configFile2, false, false); } TEST(checkGradient, chunk) { checkGradientTest(configFile3, false, false); -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU checkGradientTest(configFile3, true, true); #endif } diff --git a/paddle/trainer/tests/test_TrainerOnePass.cpp b/paddle/trainer/tests/test_TrainerOnePass.cpp index 00ba61377a..4c4d124fa9 100644 --- a/paddle/trainer/tests/test_TrainerOnePass.cpp +++ b/paddle/trainer/tests/test_TrainerOnePass.cpp @@ -79,7 +79,7 @@ void trainerOnePassTest(const string& configFile, // 1. test trainer (cpu, gpu). TEST(trainerOnePass, cpu) { trainerOnePassTest(configFile1, false, false); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(trainerOnePass, gpu) { trainerOnePassTest(configFile1, true, false); } TEST(trainerOnePass, gpu2) { trainerOnePassTest(configFile1, true, false, 2); } @@ -94,7 +94,7 @@ TEST(trainerOnePass, parallel) { #endif // 2. test average_window. -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(average_window, gpu) { trainerOnePassTest(configFile1, true, false, 4, 0.01); } @@ -266,7 +266,7 @@ TEST(checkRemoteUpdater, cpuTrainerOldUpdater) { checkRemoteParameterUpdaterTest(configFile1, false, false, 1, true); } -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU TEST(checkRemoteUpdater, gpuTrainer) { checkRemoteParameterUpdaterTest(configFile1, true, false); } diff --git a/paddle/trainer/tests/test_recurrent_machine_generation.cpp b/paddle/trainer/tests/test_recurrent_machine_generation.cpp index 1322e77178..74b4fed7ed 100644 --- a/paddle/trainer/tests/test_recurrent_machine_generation.cpp +++ b/paddle/trainer/tests/test_recurrent_machine_generation.cpp @@ -113,7 +113,7 @@ void testGeneration(const string& configFile, #ifndef PADDLE_TYPE_DOUBLE TEST(RecurrentGradientMachine, test_generation) { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU const auto useGpuConfs = {false}; #else const auto useGpuConfs = {true, false}; diff --git a/paddle/utils/Flags.cpp b/paddle/utils/Flags.cpp index ab1c181c62..32155ded35 100644 --- a/paddle/utils/Flags.cpp +++ b/paddle/utils/Flags.cpp @@ -14,7 +14,7 @@ limitations under the License. */ #include "Flags.h" -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU DEFINE_bool(use_gpu, false, "Only support CPU training"); #else DEFINE_bool(use_gpu, true, "Whether to use GPU for training"); diff --git a/paddle/utils/Util.h b/paddle/utils/Util.h index 22ce2534d3..904d0f5061 100644 --- a/paddle/utils/Util.h +++ b/paddle/utils/Util.h @@ -218,7 +218,7 @@ protected: * *d2* is peer device to enable direct access to by the d1 device. */ inline void enablePeerAccess(int d1, int d2) { -#ifndef PADDLE_ONLY_CPU +#ifdef PADDLE_WITH_GPU if (hl_device_can_access_peer(d1, d2)) { SetDevice dev(d1); hl_device_enable_peer_access(d2); diff --git a/paddle/utils/Version.h b/paddle/utils/Version.h index f53d6420bb..611fda83d9 100644 --- a/paddle/utils/Version.h +++ b/paddle/utils/Version.h @@ -48,7 +48,7 @@ void printVersion(std::ostream& os); * @return return true if paddle compiled with GPU */ constexpr bool isWithGpu() { -#ifdef PADDLE_ONLY_CPU +#ifndef PADDLE_WITH_GPU return false; #else return true; diff --git a/python/paddle/v2/framework/tests/test_scatter_op.py b/python/paddle/v2/framework/tests/test_scatter_op.py index 33c73c5263..1032269d5d 100644 --- a/python/paddle/v2/framework/tests/test_scatter_op.py +++ b/python/paddle/v2/framework/tests/test_scatter_op.py @@ -10,7 +10,7 @@ class TestScatterOp(OpTest): index_np = np.array([1, 2]).astype("int32") updates_np = np.random.random((2, 3)).astype("float32") output_np = np.copy(ref_np) - output_np[index_np] += updates_np + output_np[index_np] = updates_np self.inputs = {'Ref': ref_np, 'Index': index_np, 'Updates': updates_np} self.outputs = {'Out': output_np} @@ -18,7 +18,7 @@ class TestScatterOp(OpTest): self.check_output() def test_check_grad(self): - self.check_grad(['Updates', 'Ref'], 'Out', in_place=True) + self.check_grad(['Updates'], 'Out', in_place=True) if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_sgd_op.py b/python/paddle/v2/framework/tests/test_sgd_op.py index f1125f4edb..2dd881e5e1 100644 --- a/python/paddle/v2/framework/tests/test_sgd_op.py +++ b/python/paddle/v2/framework/tests/test_sgd_op.py @@ -8,10 +8,10 @@ class TestSGDOp(OpTest): self.op_type = "sgd" w = np.random.random((102, 105)).astype("float32") g = np.random.random((102, 105)).astype("float32") - lr = 0.1 + lr = np.array([0.1]).astype("float32") - self.inputs = {'param': w, 'grad': g, 'learning_rate': lr} - self.outputs = {'param_out': w - lr * g} + self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr} + self.outputs = {'ParamOut': w - lr * g} def test_check_output(self): self.check_output()