// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/pull_sparse_op.h" #include namespace paddle { namespace operators { class PullSparseOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_GE(ctx->Inputs("Ids").size(), 1UL, platform::errors::InvalidArgument( "Input(Ids) of PullSparseOp can not be null")); PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL, platform::errors::InvalidArgument( "Output(Out) of PullSparseOp can not be null")); auto hidden_size = static_cast(ctx->Attrs().Get("EmbeddingDim")); auto all_ids_dim = ctx->GetInputsDim("Ids"); const size_t n_ids = all_ids_dim.size(); std::vector outs_dims; outs_dims.resize(n_ids); for (size_t i = 0; i < n_ids; ++i) { const auto ids_dims = all_ids_dim[i]; int ids_rank = ids_dims.size(); PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1, platform::errors::InvalidArgument( "Shape error in %lu id, the last dimension of " " the 'Ids' tensor must be 1.", i)); auto out_dim = framework::vectorize( framework::slice_ddim(ids_dims, 0, ids_rank - 1)); out_dim.push_back(hidden_size); outs_dims[i] = framework::make_ddim(out_dim); } ctx->SetOutputsDim("Out", outs_dims); for (size_t i = 0; i < n_ids; ++i) { ctx->ShareLoD("Ids", "Out", i, i); } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(framework::proto::VarType::FP32, ctx.device_context()); } }; class PullSparseOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("Ids", "Input tensors with type int64 contains " "the ids to be looked up in PSLib. " "The last dimension size must be 1.") .AsDuplicable(); AddInput("W", "The lookup table tensors.").AsDuplicable(); AddOutput("Out", "The lookup results tensors.").AsDuplicable(); AddAttr("EmbeddingDim", "(int, the embedding hidden size") .SetDefault(11); AddAttr("TableId", "(int, the table id of this embedding") .SetDefault(0); AddAttr("AccessorClass", "(string, the class name of accessor") .SetDefault(""); AddAttr("CtrLabelName", "(string, ctr label name") .SetDefault(""); AddAttr("PaddingId", "(int, the padding id of this embedding") .SetDefault(0); AddAttr("ScaleSparseGrad", "(bool, whether scale sparse gradient with batch size") .SetDefault(true); AddAttr>("InputNames", "(vector, slot names") .SetDefault(std::vector()); AddAttr("is_distributed", "(bool, it must be true").SetDefault(true); AddComment(R"DOC( Pull Sparse Operator. This operator is used to perform lookups on the PSLib then concatenated into a dense tensor. The input Ids can carry the LoD (Level of Details) information, or not. And the output only shares the LoD information with input Ids. )DOC"); } }; template class PushSparseOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr retv) const override { retv->SetType("push_sparse"); retv->SetInput("Ids", this->Input("Ids")); retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); retv->SetInput("W", this->Input("W")); retv->SetOutput(framework::GradVarName("Out"), this->OutputGrad("Out")); retv->SetAttrMap(this->Attrs()); } }; class PushSparseOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override {} protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")), ctx.device_context()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(pull_sparse, ops::PullSparseOp, ops::PullSparseOpMaker, ops::PushSparseOpMaker, ops::PushSparseOpMaker); REGISTER_OPERATOR(push_sparse, ops::PushSparseOp); REGISTER_OP_CPU_KERNEL(pull_sparse, ops::PullSparseCPUKernel) REGISTER_OP_CPU_KERNEL(push_sparse, ops::PushSparseCPUKernel)