// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include "gflags/gflags.h" #include "paddle/include/paddle_inference_api.h" DEFINE_string(modeldir, "", "Directory of the inference model."); DEFINE_bool(use_gpu, false, "Whether use gpu."); namespace paddle { namespace demo { void RunAnalysis() { // 1. create AnalysisConfig AnalysisConfig config; if (FLAGS_modeldir.empty()) { LOG(INFO) << "Usage: path\\mobilenet --modeldir=path/to/your/model"; exit(1); } // CreateConfig(&config); if (FLAGS_use_gpu) { config.EnableUseGpu(100, 0); } config.SetModel(FLAGS_modeldir + "/__model__", FLAGS_modeldir + "/__params__"); // use ZeroCopyTensor, Must be set to false config.SwitchUseFeedFetchOps(false); // 2. create predictor, prepare input data std::unique_ptr predictor = CreatePaddlePredictor(config); int batch_size = 1; int channels = 3; int height = 300; int width = 300; int nums = batch_size * channels * height * width; float* input = new float[nums]; for (int i = 0; i < nums; ++i) input[i] = 0; // 3. create input tensor, use ZeroCopyTensor auto input_names = predictor->GetInputNames(); auto input_t = predictor->GetInputTensor(input_names[0]); input_t->Reshape({batch_size, channels, height, width}); input_t->copy_from_cpu(input); // 4. run predictor predictor->ZeroCopyRun(); // 5. get out put std::vector out_data; auto output_names = predictor->GetOutputNames(); auto output_t = predictor->GetOutputTensor(output_names[0]); std::vector output_shape = output_t->shape(); int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies()); out_data.resize(out_num); output_t->copy_to_cpu(out_data.data()); delete[] input; } } // namespace demo } // namespace paddle int main(int argc, char** argv) { ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); paddle::demo::RunAnalysis(); std::cout << "=========================Runs successfully====================" << std::endl; return 0; }