# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid as fluid from paddle.fluid import Program, program_guard class TestPadConstantLikeOp(OpTest): def setUp(self): self.initTestCase() self.op_type = "pad_constant_like" self.inputs = { 'X': np.random.random(self.x_shape).astype("float64"), 'Y': np.random.random(self.y_shape).astype("float64") } self.attrs = {} self.attrs['pad_value'] = self.pad_value self.outputs = { 'Out': np.pad(self.inputs['Y'], self.paddings, mode='constant', constant_values=self.pad_value) } def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['Y'], 'Out') def initTestCase(self): self.x_shape = (16, 40) self.y_shape = (3, 40) self.pad_value = 0.1 self.paddings = [(0, 13), (0, 0)] class TestCase1(TestPadConstantLikeOp): def initTestCase(self): self.x_shape = (4, 3, 4, 5) self.y_shape = (2, 3, 4, 5) self.paddings = [(0, 2), (0, 0), (0, 0), (0, 0)] self.pad_value = 0.5 class TestCase2(TestPadConstantLikeOp): def initTestCase(self): self.x_shape = (4, 3, 4, 10) self.y_shape = (2, 3, 2, 10) self.paddings = [(0, 2), (0, 0), (0, 2), (0, 0)] self.pad_value = 0.5 class TestPadConstantLikeOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): x_data = np.random.random((2, 2, 2, 2)).astype("float32") y_data = np.random.random((2, 2, 2, 2)).astype("float32") def test_Variable_x(): var_y = fluid.data( name="data_y", shape=[2, 2, 2, 2], dtype="float32") fluid.layers.pad_constant_like(x=x_data, y=var_y) self.assertRaises(TypeError, test_Variable_x) def test_Variable_y(): var_x = fluid.data( name="data_x", shape=[2, 2, 2, 2], dtype="float32") fluid.layers.pad_constant_like(x=var_x, y=y_data) self.assertRaises(TypeError, test_Variable_y) if __name__ == '__main__': unittest.main()