// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h" #include <memory> #include <string> namespace paddle { namespace operators { // NOTE: Input(Out) is unnecessary in reduce_sum_grad, and Input(X) needs no // buffer template <typename T> class ReduceSumOpGradMaker : public framework::SingleGradOpMaker<T> { public: using framework::SingleGradOpMaker<T>::SingleGradOpMaker; protected: void Apply(GradOpPtr<T> op) const override { op->SetType("reduce_sum_grad"); op->SetInput("X", this->Input("X")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetAttrMap(this->Attrs()); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); } framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const { int in_dtype = ctx.Attr<int>("in_dtype"); if (in_dtype >= 0) { return framework::OpKernelType( static_cast<framework::proto::VarType::Type>(in_dtype), ctx.GetPlace()); } return framework::OpKernelType( framework::OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")), ctx.GetPlace()); } }; DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReduceSumGradNoNeedBufferVarInferer, "X"); class ReduceSumVarTypeInference : public paddle::framework::VarTypeInference { public: void operator()(paddle::framework::InferVarTypeContext* ctx) const override { auto data_type = static_cast<paddle::framework::proto::VarType::Type>( BOOST_GET_CONST(int, ctx->GetAttr("out_dtype"))); if (data_type >= 0) { ctx->SetOutputDataType("Out", data_type); } } }; } // namespace operators } // namespace paddle class ReduceSumOpMaker : public ops::ReduceOpMaker { protected: virtual std::string GetName() const { return "reduce_sum"; } virtual std::string GetOpType() const { return "Reduce reduce_sum"; } }; REGISTER_OPERATOR(reduce_sum, ops::ReduceOp, ReduceSumOpMaker, ops::ReduceSumVarTypeInference, ops::ReduceSumOpGradMaker<paddle::framework::OpDesc>, ops::ReduceSumOpGradMaker<paddle::imperative::OpBase>); REGISTER_OPERATOR(reduce_sum_grad, ops::ReduceGradOp, ops::ReduceSumGradNoNeedBufferVarInferer); REGISTER_OP_CPU_KERNEL( reduce_sum, ops::ReduceKernel<paddle::platform::CPUDeviceContext, float, ops::SumFunctor>, ops::ReduceKernel<paddle::platform::CPUDeviceContext, double, ops::SumFunctor>, ops::ReduceKernel<paddle::platform::CPUDeviceContext, int, ops::SumFunctor>, ops::ReduceKernel<paddle::platform::CPUDeviceContext, int64_t, ops::SumFunctor>); template <typename T> using CPUReduceSumGradKernel = ops::ReduceSumGradKernel<paddle::platform::CPUDeviceContext, T, ops::SumGradFunctor, true>; REGISTER_OP_CPU_KERNEL(reduce_sum_grad, CPUReduceSumGradKernel<float>, CPUReduceSumGradKernel<double>, CPUReduceSumGradKernel<int>, CPUReduceSumGradKernel<int64_t>);