# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core import numpy as np class TestBilinearAPI(unittest.TestCase): def test_api(self): with fluid.program_guard(fluid.default_startup_program(), fluid.default_main_program()): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = fluid.Executor(place) data1 = fluid.data(name='X1', shape=[5, 5], dtype='float32') data2 = fluid.data(name='X2', shape=[5, 4], dtype='float32') layer1 = np.random.random((5, 5)).astype('float32') layer2 = np.random.random((5, 4)).astype('float32') bilinear = paddle.nn.Bilinear( in1_features=5, in2_features=4, out_features=1000) ret = bilinear(data1, data2) exe.run(fluid.default_startup_program()) ret_fetch = exe.run(feed={'X1': layer1, 'X2': layer2}, fetch_list=[ret.name]) self.assertEqual(ret_fetch[0].shape, (5, 1000)) class TestBilinearAPIDygraph(unittest.TestCase): def test_api(self): paddle.disable_static() layer1 = np.random.random((5, 5)).astype('float32') layer2 = np.random.random((5, 4)).astype('float32') bilinear = paddle.nn.Bilinear( in1_features=5, in2_features=4, out_features=1000) ret = bilinear(paddle.to_tensor(layer1), paddle.to_tensor(layer2)) self.assertEqual(ret.shape, [5, 1000]) if __name__ == "__main__": unittest.main()