# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import paddle import logging import paddle.fluid as fluid logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) def load_vocab(filename): vocab = {} with open(filename) as f: wid = 0 for line in f: vocab[line.strip()] = wid wid += 1 vocab[""] = len(vocab) return vocab if __name__ == "__main__": vocab = load_vocab('imdb.vocab') dict_dim = len(vocab) model_name = sys.argv[1] data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") dataset = fluid.DatasetFactory().create_dataset() dataset.set_batch_size(128) dataset.set_pipe_command("python imdb_reader.py") dataset.set_use_var([data, label]) desc = dataset.proto_desc with open("data.proto", "w") as f: f.write(dataset.desc()) from nets import * if model_name == 'cnn': logger.info("Generate program description of CNN net") avg_cost, acc, prediction = cnn_net(data, label, dict_dim) elif model_name == 'bow': logger.info("Generate program description of BOW net") avg_cost, acc, prediction = bow_net(data, label, dict_dim) else: logger.error("no such model: " + model_name) exit(0) # optimizer = fluid.optimizer.SGD(learning_rate=0.01) optimizer = fluid.optimizer.Adagrad(learning_rate=0.01) optimizer.minimize(avg_cost) with open(model_name + "_main_program", "wb") as f: f.write(fluid.default_main_program().desc.serialize_to_string()) with open(model_name + "_startup_program", "wb") as f: f.write(fluid.default_startup_program().desc.serialize_to_string())