// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/reduce_op_handle.h" #include "paddle/fluid/framework/details/container_cast.h" #include "paddle/fluid/framework/details/reduce_and_gather.h" #include "paddle/fluid/framework/details/variable_visitor.h" #include "paddle/fluid/platform/profiler.h" DEFINE_bool( cpu_deterministic, false, "Whether to make the result of computation deterministic in CPU side."); namespace paddle { namespace framework { namespace details { void ReduceOpHandle::RunImpl() { platform::RecordEvent r("reduce", nullptr); if (places_.size() == 1) return; // the input and output may have dummy var. auto in_var_handles = DynamicCast<VarHandle>(inputs_); PADDLE_ENFORCE_EQ( in_var_handles.size(), places_.size(), "The number of output should equal to the number of places."); VarHandle *out_var_handle; { auto out_var_handles = DynamicCast<VarHandle>(outputs_); PADDLE_ENFORCE_EQ(out_var_handles.size(), 1, "The number of output should be one."); out_var_handle = out_var_handles.front(); } auto in_0_handle = in_var_handles[0]; std::vector<const Scope *> var_scopes; for (auto *s : local_scopes_) { var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get<Scope *>()); } auto pre_in_var = var_scopes.at(in_0_handle->scope_idx_)->FindVar(in_0_handle->name_); PADDLE_ENFORCE_NOT_NULL(pre_in_var); // Wait input done, this Wait is asynchronous operation WaitInputVarGenerated(); // NOTE: The Places of all input tensor must be all on CPU or all on GPU. std::vector<platform::Place> in_places; // used to get dev_ctx for (auto *in_handle : in_var_handles) { in_places.emplace_back(in_handle->place_); auto in_var = var_scopes.at(in_handle->scope_idx_)->FindVar(in_handle->name_); PADDLE_ENFORCE_NOT_NULL(in_var); VariableVisitor::EnforceShapeAndDTypeEQ(*pre_in_var, *in_var); } auto out_var = var_scopes.at(out_var_handle->scope_idx_)->FindVar(out_var_handle->name_); PADDLE_ENFORCE_NOT_NULL(out_var); // NOTE: The tensors' Place of input and output must be all on GPU or all on // CPU. auto in_p = VariableVisitor::GetMutableTensor(pre_in_var).place(); platform::Place t_out_p; if (platform::is_gpu_place(in_p)) { PADDLE_ENFORCE(platform::is_gpu_place(out_var_handle->place_), "Places of input and output must be all on GPU."); t_out_p = out_var_handle->place_; } else { t_out_p = platform::CPUPlace(); } if (pre_in_var->IsType<framework::SelectedRows>()) { this->RunAndRecordEvent([&] { std::vector<const SelectedRows *> in_selected_rows = GetInputValues<SelectedRows>(in_var_handles, var_scopes); GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_, t_out_p, out_var->GetMutable<framework::SelectedRows>()); }); } else { std::vector<const LoDTensor *> lod_tensors = GetInputValues<LoDTensor>(in_var_handles, var_scopes); if (paddle::platform::is_cpu_place(lod_tensors[0]->place())) { this->RunAndRecordEvent([&] { // FIXME(zcd): The order of summing is important, // especially when the type of data is float or double. // For example, the result of `a+b+c+d` may be different // with the result of `c+a+b+d`, so the summing order should be fixed. if (!FLAGS_cpu_deterministic) { ReduceLoDTensor func(lod_tensors, out_var->GetMutable<framework::LoDTensor>()); VisitDataType(ToDataType(lod_tensors[0]->type()), func); } else { // We sum lod_tensors to reduce_sum_trg which is in local_scopes_0 // here, but it doesn't mean reduce_sum_trg must be in local_scopes_0. auto &reduce_sum_trg = *this->local_scopes_[0] ->FindVar(kLocalExecScopeName) ->Get<Scope *>() ->FindVar(out_var_handle->name_) ->GetMutable<framework::LoDTensor>(); ReduceLoDTensor func(lod_tensors, &reduce_sum_trg); VisitDataType(ToDataType(lod_tensors[0]->type()), func); auto trg = out_var->GetMutable<framework::LoDTensor>(); if (reduce_sum_trg.data<void>() != trg->data<void>()) { TensorCopy(reduce_sum_trg, platform::CPUPlace(), trg); } } }); } else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) { #ifdef PADDLE_WITH_CUDA auto pre_in = pre_in_var->Get<framework::LoDTensor>(); VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var); VariableVisitor::GetMutableTensor(out_var).mutable_data( out_var_handle->place_, pre_in.type()); auto out_p = out_var_handle->place_; int root_id = boost::get<platform::CUDAPlace>(out_p).device; std::vector<std::function<void()>> all_reduce_calls; for (size_t i = 0; i < var_scopes.size(); ++i) { auto &p = in_places[i]; auto &lod_tensor = *lod_tensors[i]; int dev_id = boost::get<platform::CUDAPlace>(p).device; auto &nccl_ctx = nccl_ctxs_->at(dev_id); void *buffer = const_cast<void *>(lod_tensor.data<void>()); void *recvbuffer = nullptr; if (root_id == dev_id) { recvbuffer = out_var->GetMutable<framework::LoDTensor>()->mutable_data( out_var_handle->place_); } int type = platform::ToNCCLDataType(lod_tensor.type()); size_t numel = static_cast<size_t>(lod_tensor.numel()); all_reduce_calls.emplace_back( [buffer, recvbuffer, type, numel, root_id, &nccl_ctx] { PADDLE_ENFORCE(platform::dynload::ncclReduce( buffer, recvbuffer, numel, static_cast<ncclDataType_t>(type), ncclSum, root_id, nccl_ctx.comm_, nccl_ctx.stream())); }); } this->RunAndRecordEvent([&] { platform::NCCLGroupGuard guard; for (auto &call : all_reduce_calls) { call(); } }); #else PADDLE_THROW("CUDA is not enabled."); #endif } else { PADDLE_THROW("Place should be CPUPlace or CUDAPlace."); } } } template <typename T> std::vector<const T *> ReduceOpHandle::GetInputValues( const std::vector<VarHandle *> &in_var_handles, const std::vector<const Scope *> &var_scopes) const { std::vector<const T *> in_selected_rows; for (auto *in_handle : in_var_handles) { auto &in_sr = var_scopes.at(in_handle->scope_idx_) ->FindVar(in_handle->name_) ->Get<T>(); in_selected_rows.emplace_back(&in_sr); } return in_selected_rows; } std::string ReduceOpHandle::Name() const { return "reduce"; } } // namespace details } // namespace framework } // namespace paddle