# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import random import six def np_partial_concat(inputs, start, length): assert (len(inputs[0].shape) == 2) size = inputs[0].shape[1] assert (start >= -size and start < size) if start < 0: start += size if length < 0: length = size - start assert (size >= start + length) elems = [] for elem in inputs: assert (elem.shape == inputs[0].shape) elems.append(elem[:, start:start + length]) res = np.concatenate(elems, axis=1) return np.concatenate(elems, axis=1) class TestPartialConcatOp(OpTest): def setUp(self): self.op_type = "partial_concat" self.init_kernel_type() self.init_para() self.var_names = [ 'x' + str(num) for num in six.moves.range(self.var_num) ] self.vars = [np.random.random((self.batch_size, self.column)).astype(self.dtype)\ for num in six.moves.range(self.var_num) ] self.inputs = {'X': list(zip(self.var_names, self.vars))} self.attrs = {'start_index': self.start_index, 'length': self.length} y = np_partial_concat(self.vars[:], self.start_index, self.length) self.outputs = {'Out': y} def init_kernel_type(self): self.dtype = np.float64 def init_para(self): self.batch_size = random.randint(10, 20) self.column = random.randint(101, 200) self.start_index = random.randint(0, self.column - 1) self.length = -1 self.var_num = random.randint(1, 3) def test_check_output(self): self.check_output() def test_check_grad(self): for var_name in self.var_names: self.check_grad([var_name], 'Out') class TestPartialConcatOp2(TestPartialConcatOp): def init_para(self): self.batch_size = random.randint(1, 10) self.column = random.randint(101, 200) self.start_index = -5 self.length = -1 self.var_num = 3 class TestPartialConcatOp3(TestPartialConcatOp): def init_para(self): self.batch_size = random.randint(1, 10) self.column = random.randint(101, 200) self.start_index = 10 self.length = 20 self.var_num = 2 class TestPartialConcatOp4(TestPartialConcatOp): def init_para(self): self.batch_size = random.randint(1, 10) self.column = random.randint(101, 200) self.start_index = -1 self.length = -1 self.var_num = 1 if __name__ == '__main__': unittest.main()