# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid class TestExponentialMovingAverage(unittest.TestCase): def setUp(self): self._places = [fluid.CPUPlace()] if fluid.core.is_compiled_with_cuda(): self._places.append(fluid.CUDAPlace(0)) self._ema_decay = 0.999 self._param_name = "fc.weight" self._train_program = fluid.Program() self._startup_prog = fluid.Program() with fluid.program_guard(self._train_program, self._startup_prog): with fluid.unique_name.guard(): data = fluid.data(name='x', shape=[-1, 5], dtype='float32') hidden = fluid.layers.fc(input=data, size=10, param_attr=self._param_name) cost = fluid.layers.mean(hidden) self._test_program = fluid.default_main_program().clone( for_test=True) optimizer = fluid.optimizer.Adam(learning_rate=0.001) optimizer.minimize(cost) self._ema = fluid.optimizer.ExponentialMovingAverage( self._ema_decay) self._ema.update() def train(self, place): exe = fluid.Executor(place) exe.run(self._startup_prog) params = [] for pass_id in range(2): for batch_id in range(3): data = np.random.random(size=(10, 5)).astype('float32') tmp_param = np.array(fluid.global_scope().find_var( self._param_name).get_tensor()) exe.run(program=self._train_program, feed={'x': data}) tmp_param = np.array(fluid.global_scope().find_var( self._param_name).get_tensor()) params.append(tmp_param) with self._ema.apply(exe): final_ema = np.array(fluid.global_scope().find_var(self._param_name) .get_tensor()) data = np.random.random(size=(10, 5)).astype('float32') exe.run(program=self._test_program, feed={'x': data}) return params, final_ema def test_check_ema(self): for place in self._places: params, final_ema = self.train(place) manu_ema = np.zeros_like(final_ema) if len(params) > 0: for param in params: manu_ema = self._ema_decay * manu_ema + (1 - self._ema_decay ) * param manu_ema = manu_ema / (1.0 - self._ema_decay**len(params)) self.assertTrue(np.allclose(manu_ema, final_ema)) if __name__ == '__main__': unittest.main()