You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.5 KiB
162 lines
5.5 KiB
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "ngraph/ngraph.hpp"
|
|
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
|
|
#include "paddle/fluid/platform/ngraph_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace ngraphs {
|
|
|
|
void BuildReduceSumNode(
|
|
const std::shared_ptr<paddle::framework::OperatorBase> &op,
|
|
std::shared_ptr<
|
|
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
|
ngb_node_map) {
|
|
auto input = paddle::platform::GetInputNode(op, "X", ngb_node_map);
|
|
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
|
|
bool reduce_all = op_attrs.Get<bool>("reduce_all");
|
|
bool keep_dim = op_attrs.Get<bool>("keep_dim");
|
|
std::vector<int> dim = op_attrs.Get<std::vector<int>>("dim");
|
|
auto input_shape = input->get_shape();
|
|
ngraph::AxisSet axes;
|
|
if (reduce_all == true) {
|
|
for (size_t i = 0; i < input_shape.size(); ++i) {
|
|
axes.insert(i);
|
|
}
|
|
} else {
|
|
for (auto &i : dim) {
|
|
if (i < 0) {
|
|
axes.insert(input_shape.size() + i);
|
|
} else {
|
|
axes.insert(i);
|
|
}
|
|
}
|
|
}
|
|
std::shared_ptr<ngraph::Node> reduce_sum =
|
|
std::make_shared<ngraph::op::Sum>(input, axes);
|
|
|
|
if (keep_dim == true) {
|
|
std::vector<size_t> dim_shape;
|
|
std::copy(input_shape.begin(), input_shape.end(),
|
|
std::back_inserter(dim_shape));
|
|
for (auto &i : dim) {
|
|
if (i < 0) {
|
|
i = input_shape.size() + i;
|
|
}
|
|
dim_shape[i] = 1;
|
|
}
|
|
|
|
std::vector<size_t> axis_vector(input_shape.size() - dim.size());
|
|
std::iota(axis_vector.begin(), axis_vector.end(), 0);
|
|
|
|
auto reduce_sum_dim = std::make_shared<ngraph::op::Reshape>(
|
|
reduce_sum, ngraph::AxisVector(axis_vector), ngraph::Shape(dim_shape));
|
|
|
|
paddle::platform::SetOutputNode(op, "Out", reduce_sum_dim, ngb_node_map);
|
|
} else {
|
|
if (reduce_sum->get_shape() == ngraph::Shape{}) {
|
|
reduce_sum = paddle::platform::NgReshaper(reduce_sum, ngraph::Shape{1});
|
|
}
|
|
paddle::platform::SetOutputNode(op, "Out", reduce_sum, ngb_node_map);
|
|
}
|
|
}
|
|
|
|
void BuildReduceSumGradNode(
|
|
const std::shared_ptr<paddle::framework::OperatorBase> &op,
|
|
std::shared_ptr<
|
|
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
|
ngb_node_map) {
|
|
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
|
|
auto og = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
|
|
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
|
|
std::vector<int> dim = op_attrs.Get<std::vector<int>>("dim");
|
|
bool reduce_all = op_attrs.Get<bool>("reduce_all");
|
|
bool keep_dim = op_attrs.Get<bool>("keep_dim");
|
|
|
|
auto og_shape = og->get_shape();
|
|
auto x_shape = x->get_shape();
|
|
float x_size = std::accumulate(std::begin(x_shape), std::end(x_shape), 1,
|
|
std::multiplies<float>());
|
|
float og_size = std::accumulate(std::begin(og_shape), std::end(og_shape), 1,
|
|
std::multiplies<float>());
|
|
ngraph::AxisSet axes;
|
|
|
|
if (reduce_all == true) {
|
|
for (size_t i = 0; i < x_shape.size(); i++) {
|
|
axes.insert(i);
|
|
}
|
|
} else {
|
|
for (auto &i : dim) {
|
|
if (i < 0) {
|
|
axes.insert(x_shape.size() + i);
|
|
} else {
|
|
axes.insert(i);
|
|
}
|
|
}
|
|
}
|
|
std::vector<size_t> axis_vector(og_shape.size());
|
|
std::iota(axis_vector.begin(), axis_vector.end(), 0);
|
|
std::vector<size_t> dim_shape;
|
|
|
|
for (size_t i = 0; i < x_shape.size(); i++) {
|
|
if (std::find(dim.begin(), dim.end(), i) == dim.end() &&
|
|
std::find(dim.begin(), dim.end(), i - x_shape.size()) == dim.end()) {
|
|
dim_shape.push_back(x_shape[i]);
|
|
}
|
|
}
|
|
|
|
if (keep_dim == true) {
|
|
// reshape
|
|
if (x_size == og_size) {
|
|
paddle::platform::SetOutputNode(op, "X@GRAD", og, ngb_node_map);
|
|
return;
|
|
}
|
|
auto og_dim = std::make_shared<ngraph::op::Reshape>(
|
|
og, ngraph::AxisVector(axis_vector), ngraph::Shape(dim_shape));
|
|
auto result =
|
|
std::make_shared<ngraph::op::Broadcast>(og_dim, x_shape, axes);
|
|
paddle::platform::SetOutputNode(op, "X@GRAD", result, ngb_node_map);
|
|
|
|
} else {
|
|
if (x_size == og_size) {
|
|
auto og_dim = std::make_shared<ngraph::op::Reshape>(
|
|
og, ngraph::AxisVector(axis_vector), x_shape);
|
|
paddle::platform::SetOutputNode(op, "X@GRAD", og_dim, ngb_node_map);
|
|
} else {
|
|
if (og->get_shape().size() == 1 && og->get_shape()[0] == 1) {
|
|
og = std::make_shared<ngraph::op::Reshape>(og, ngraph::AxisVector{0},
|
|
ngraph::Shape{});
|
|
}
|
|
auto result = std::make_shared<ngraph::op::Broadcast>(og, x_shape, axes);
|
|
paddle::platform::SetOutputNode(op, "X@GRAD", result, ngb_node_map);
|
|
}
|
|
}
|
|
}
|
|
} // namespace ngraphs
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_NG_OP(reduce_sum, BuildReduceSumNode);
|
|
REGISTER_NG_OP(reduce_sum_grad, BuildReduceSumGradNode);
|