diff --git a/doc/doc_ch/inference.md b/doc/doc_ch/inference.md index 1b8554b..805414d 100644 --- a/doc/doc_ch/inference.md +++ b/doc/doc_ch/inference.md @@ -23,9 +23,8 @@ inference 模型(`paddle.jit.save`保存的模型) - [1. 超轻量中文识别模型推理](#超轻量中文识别模型推理) - [2. 基于CTC损失的识别模型推理](#基于CTC损失的识别模型推理) - [3. 基于Attention损失的识别模型推理](#基于Attention损失的识别模型推理) - - [4. 基于SRN损失的识别模型推理](#基于SRN损失的识别模型推理) - - [5. 自定义文本识别字典的推理](#自定义文本识别字典的推理) - - [6. 多语言模型的推理](#多语言模型的推理) + - [4. 自定义文本识别字典的推理](#自定义文本识别字典的推理) + - [5. 多语言模型的推理](#多语言模型的推理) - [四、方向分类模型推理](#方向识别模型推理) - [1. 方向分类模型推理](#方向分类模型推理) @@ -295,20 +294,7 @@ self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) ``` - -### 4. 基于SRN损失的识别模型推理 - -基于SRN损失的识别模型需要保证预测shape与训练时一致,如: --rec_image_shape="1, 64, 256" - -``` -python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \ - --rec_model_dir="./inference/srn/" \ - --rec_image_shape="1, 64, 256" \ - --rec_char_type="en" -``` - - -### 5. 自定义文本识别字典的推理 +### 4. 自定义文本识别字典的推理 如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径 ``` @@ -316,7 +302,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png ``` -### 6. 多语言模型的推理 +### 5. 多语言模型的推理 如果您需要预测的是其他语言模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果, 需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/` 路径下有默认提供的小语种字体,例如韩文识别: diff --git a/doc/doc_en/inference_en.md b/doc/doc_en/inference_en.md index 31f6b1e..8ce0ea4 100644 --- a/doc/doc_en/inference_en.md +++ b/doc/doc_en/inference_en.md @@ -26,9 +26,8 @@ Next, we first introduce how to convert a trained model into an inference model, - [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION) - [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION) - [3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE](#ATTENTION-BASED_RECOGNITION) - - [4. SRN-BASED TEXT RECOGNITION MODEL INFERENCE](#SRN-BASED_RECOGNITION) - - [5. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS) - - [6. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE) + - [4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS) + - [5. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE) - [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE) - [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE) @@ -296,21 +295,8 @@ self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) ``` - -### 4. SRN-BASED TEXT RECOGNITION MODEL INFERENCE - -The recognition model based on SRN need to ensure that the predicted shape is consistent with the training, such as: --rec_image_shape="1, 64, 256" - -``` -python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \ - --rec_model_dir="./inference/srn/" \ - --rec_image_shape="1, 64, 256" \ - --rec_char_type="en" -``` - - -### 5. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY +### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY If the chars dictionary is modified during training, you need to specify the new dictionary path by setting the parameter `rec_char_dict_path` when using your inference model to predict. ``` @@ -318,7 +304,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png ``` -### 6. MULTILINGAUL MODEL INFERENCE +### 5. MULTILINGAUL MODEL INFERENCE If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results, You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/` path, such as Korean recognition: