diff --git a/src/main/java/org/wlld/nerveEntity/OutNerve.java b/src/main/java/org/wlld/nerveEntity/OutNerve.java index c56ffee..e8aae9b 100644 --- a/src/main/java/org/wlld/nerveEntity/OutNerve.java +++ b/src/main/java/org/wlld/nerveEntity/OutNerve.java @@ -72,6 +72,7 @@ public class OutNerve extends Nerve { if (isKernelStudy) {//回传 Matrix matrix1 = matrixMapE.get(E); if (isShowLog) { + System.out.println("E======" + E); System.out.println(myMatrix.getString()); } if (matrix1.getX() <= myMatrix.getX() && matrix1.getY() <= myMatrix.getY()) { diff --git a/src/test/java/coverTest/FoodTest.java b/src/test/java/coverTest/FoodTest.java index bfec293..3e7a95a 100644 --- a/src/test/java/coverTest/FoodTest.java +++ b/src/test/java/coverTest/FoodTest.java @@ -21,44 +21,44 @@ public class FoodTest { public static void food() throws Exception { Picture picture = new Picture(); - TempleConfig templeConfig = new TempleConfig(false, false); + TempleConfig templeConfig = new TempleConfig(false, true); templeConfig.setClassifier(Classifier.DNN); templeConfig.isShowLog(true); templeConfig.init(StudyPattern.Accuracy_Pattern, true, 640, 640, 4); - ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA3, ModelParameter.class); - templeConfig.insertModel(modelParameter2); +// ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA3, ModelParameter.class); +// templeConfig.insertModel(modelParameter2); Operation operation = new Operation(templeConfig); // 一阶段 -// for (int j = 0; j < 1; j++) { -// for (int i = 1; i < 1900; i++) {//一阶段 -// System.out.println("study1===================" + i); -// //读取本地URL地址图片,并转化成矩阵 -// Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg"); -// Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg"); -// Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg"); -// Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg"); -// //将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习 -// //第二次学习的时候,第三个参数必须是 true -// operation.learning(a, 1, false); -// operation.learning(b, 2, false); -// operation.learning(c, 3, false); -// operation.learning(d, 4, false); -// } -// } + for (int j = 0; j < 1; j++) { + for (int i = 1; i < 1500; i++) {//一阶段 + System.out.println("study1===================" + i); + //读取本地URL地址图片,并转化成矩阵 + Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg"); + Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg"); + Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg"); + Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg"); + //将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习 + //第二次学习的时候,第三个参数必须是 true + operation.learning(a, 1, false); + operation.learning(b, 2, false); + operation.learning(c, 3, false); + operation.learning(d, 4, false); + } + } //二阶段 -// for (int i = 1; i < 1900; i++) { -// System.out.println("avg==" + i); -// Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg"); -// Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg"); -// Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg"); -// Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg"); -// operation.normalization(a, templeConfig.getConvolutionNerveManager()); -// operation.normalization(b, templeConfig.getConvolutionNerveManager()); -// operation.normalization(c, templeConfig.getConvolutionNerveManager()); -// operation.normalization(d, templeConfig.getConvolutionNerveManager()); -// } -// templeConfig.getNormalization().avg(); + for (int i = 1; i < 1500; i++) { + System.out.println("avg==" + i); + Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg"); + Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg"); + Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg"); + Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg"); + operation.normalization(a, templeConfig.getConvolutionNerveManager()); + operation.normalization(b, templeConfig.getConvolutionNerveManager()); + operation.normalization(c, templeConfig.getConvolutionNerveManager()); + operation.normalization(d, templeConfig.getConvolutionNerveManager()); + } + templeConfig.getNormalization().avg(); for (int j = 0; j < 1; j++) { for (int i = 1; i < 1500; i++) { System.out.println("j==" + j + ",study2==================" + i);