diff --git a/README.md b/README.md index 15e7e38..b7595ed 100644 --- a/README.md +++ b/README.md @@ -6,6 +6,9 @@ * 若有想扩充的功能请进群提意见,若是通用场景我会陆续补充,技术交流群:561433236 ## 详细视频教程地址: * 视频教程地址:https://www.bilibili.com/video/av89134035 +## 测试素材下载 +链接:https://pan.baidu.com/s/1Vzwn3iMPBI-FAXBDrCSglg +密码:7juj ## 框架效果演示结果: * 因为是框架没有图像化界面,演示结果就是控制台输出的数据,只能用视频展示,想看演示结果请看教学视频 ## 控制台输出演示 diff --git a/src/main/java/org/wlld/config/Classifier.java b/src/main/java/org/wlld/config/Classifier.java index 0d7bea3..9b218c4 100644 --- a/src/main/java/org/wlld/config/Classifier.java +++ b/src/main/java/org/wlld/config/Classifier.java @@ -1,7 +1,7 @@ package org.wlld.config; public class Classifier {//分类器 - public static final int LVQ = 1;//LVQ分类 - public static final int DNN = 2; //使用DNN分类 - public static final int VAvg = 3;//使用特征向量均值分类 + public static final int LVQ = 1;//LVQ分类 你的训练模版量非常少 比如 一种只有几十一百张照片/分类少 + public static final int DNN = 2; //使用DNN分类 训练量足够大,一个种类1500+训练图片 + public static final int VAvg = 3;//使用特征向量均值分类 一种只有几十一百张照片 } diff --git a/src/test/java/coverTest/FoodTest.java b/src/test/java/coverTest/FoodTest.java index c8b9a09..30ec044 100644 --- a/src/test/java/coverTest/FoodTest.java +++ b/src/test/java/coverTest/FoodTest.java @@ -37,8 +37,6 @@ public class FoodTest { ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA3, ModelParameter.class); templeConfig.insertModel(modelParameter2); Operation operation = new Operation(templeConfig); - - // 一阶段 // for (int j = 0; j < 1; j++) { // for (int i = 1; i < 1500; i++) {//一阶段 @@ -132,7 +130,7 @@ public class FoodTest { } } double wrongPoint = ArithUtil.div(wrong, allNub); - System.out.println("错误率1:" + (wrongPoint * 100) + "%"); + System.out.println("错误率:" + (wrongPoint * 100) + "%"); ModelParameter modelParameter = templeConfig.getModel(); String model = JSON.toJSONString(modelParameter); System.out.println(model); diff --git a/src/test/java/org/wlld/HelloWorld.java b/src/test/java/org/wlld/HelloWorld.java index 3c916c7..3f2adc6 100644 --- a/src/test/java/org/wlld/HelloWorld.java +++ b/src/test/java/org/wlld/HelloWorld.java @@ -40,6 +40,8 @@ public class HelloWorld { } public static void pictureDemo1() throws Exception {//图像学习DEMO + //easyAI 包持续更新,现阶段一直在优化 + // Picture picture = new Picture(); //使用精度计算 TempleConfig templeConfig = new TempleConfig(false, true); @@ -55,10 +57,10 @@ public class HelloWorld { for (int i = 1; i < 1900; i++) {//一阶段 System.out.println("study1===================" + i); //读取本地URL地址图片,并转化成矩阵 - Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg"); - Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg"); - Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg"); - Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg"); + Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg"); + Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg"); + Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg"); + Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg"); operation.learning(a, 1, false); operation.learning(b, 2, false); operation.learning(c, 3, false); @@ -66,12 +68,12 @@ public class HelloWorld { } //二阶段学习 - for (int i = 1; i < 1900; i++) { + for (int i = 1; i < 1900; i++) {//特征归一化 System.out.println("avg==" + i); - Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg"); - Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg"); - Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg"); - Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg"); + Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg"); + Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg"); + Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg"); + Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg"); operation.normalization(a, templeConfig.getConvolutionNerveManager()); operation.normalization(b, templeConfig.getConvolutionNerveManager()); operation.normalization(c, templeConfig.getConvolutionNerveManager());