diff --git a/ge/hybrid/common/npu_memory_allocator.cc b/ge/hybrid/common/npu_memory_allocator.cc index ccd6a624..7561d2e1 100644 --- a/ge/hybrid/common/npu_memory_allocator.cc +++ b/ge/hybrid/common/npu_memory_allocator.cc @@ -39,7 +39,8 @@ AllocationAttr::AllocationAttr(void *try_reuse_addr) : AllocationAttr(0, try_reu NpuMemoryAllocator *NpuMemoryAllocator::GetAllocator() { int32_t device_id = 0; if (rtGetDevice(&device_id) != RT_ERROR_NONE) { - GELOGE(RT_FAILED, "Failed to get device id"); + GELOGE(RT_FAILED, "[Get][Device] Failed when %s.", __FUNCTION__); + REPORT_INNER_ERROR("E19999", "rtGetDevice failed when %s.", __FUNCTION__); return nullptr; } @@ -57,7 +58,10 @@ void *NpuMemoryAllocator::Allocate(std::size_t size, AllocationAttr *attr) { } if (allocate_size == 0) { - GELOGE(MEMALLOC_FAILED, "Memory size is 0, device_id = %u, size = %zu", device_id_, allocate_size); + GELOGE(MEMALLOC_FAILED, "[Check][Param:size_t]Memory size is 0, device_id = %u, size = %zu when %s.", + device_id_, allocate_size, __FUNCTION__); + REPORT_INNER_ERROR("E19999", "Memory size is 0, device_id = %u, size = %zu when %s.", + device_id_, allocate_size, __FUNCTION__); return nullptr; } @@ -68,7 +72,8 @@ void *NpuMemoryAllocator::Allocate(std::size_t size, AllocationAttr *attr) { buffer = MemManager::Instance().HostMemInstance(RT_MEMORY_HBM).Malloc(allocate_size); } else { if (allocate_size > kMaxHbmMemorySize) { - GELOGE(PARAM_INVALID, "Invalid HBM memory size: %zu", allocate_size); + GELOGE(PARAM_INVALID, "[Check][Param:size_t]Invalid HBM memory size: %zu when %s.", allocate_size, __FUNCTION__); + REPORT_CALL_ERROR("E19999", "Invalid HBM memory size: %zu when %s.", allocate_size, __FUNCTION__); return nullptr; } void *try_reuse_addr = nullptr; @@ -87,7 +92,10 @@ void *NpuMemoryAllocator::Allocate(std::size_t size, AllocationAttr *attr) { .Malloc(allocate_size, reinterpret_cast(try_reuse_addr), device_id_); } if (buffer == nullptr) { - GELOGE(MEMALLOC_FAILED, "Failed to malloc memory, device_id = %u, size = %zu", device_id_, allocate_size); + GELOGE(MEMALLOC_FAILED, "[Malloc][Memory] Failed, device_id = %u, size = %zu when %s.", + device_id_, allocate_size, __FUNCTION__); + REPORT_CALL_ERROR("E19999", "malloc memory failed, device_id = %u, size = %zu when %s.", + device_id_, allocate_size, __FUNCTION__); return nullptr; } diff --git a/ge/hybrid/common/tensor_value.cc b/ge/hybrid/common/tensor_value.cc index c691c6f3..81670c57 100644 --- a/ge/hybrid/common/tensor_value.cc +++ b/ge/hybrid/common/tensor_value.cc @@ -32,7 +32,8 @@ std::unique_ptr TensorBuffer::Create(NpuMemoryAllocator *allocator } if (allocator == nullptr) { - GELOGE(INTERNAL_ERROR, "allocator is NULL"); + GELOGE(INTERNAL_ERROR, "[Check][Param:NpuMemoryAllocator] allocator is NULL, when %s.", __FUNCTION__); + REPORT_INNER_ERROR("E19999", "input allocator is NULL, when %s.", __FUNCTION__); return nullptr; } @@ -42,7 +43,8 @@ std::unique_ptr TensorBuffer::Create(NpuMemoryAllocator *allocator } buffer = allocator->Allocate(size, attr); if (buffer == nullptr) { - GELOGE(MEMALLOC_FAILED, "Failed to allocate memory. size = %zu", size); + GELOGE(MEMALLOC_FAILED, "[Allocate][Memory] Failed. size = %zu, when %s.", size, __FUNCTION__); + REPORT_CALL_ERROR("E19999", "allocate failed, size = %zu, when %s.", size, __FUNCTION__); return nullptr; } diff --git a/ge/hybrid/executor/hybrid_execution_context.cc b/ge/hybrid/executor/hybrid_execution_context.cc index 50f6287c..00a203d7 100644 --- a/ge/hybrid/executor/hybrid_execution_context.cc +++ b/ge/hybrid/executor/hybrid_execution_context.cc @@ -59,7 +59,10 @@ Status GraphExecutionContext::Synchronize(rtStream_t rt_stream) { return SUCCESS; } - GELOGE(RT_FAILED, "Failed to invoke rtStreamSynchronize, ret = %d", rt_ret); + GELOGE(RT_FAILED, + "[Invoke][rtStreamSynchronize] failed when GraphExecutionContext %s, ret = %d", __FUNCTION__, rt_ret); + REPORT_CALL_ERROR("E19999", + "invoke rtStreamSynchronize failed when GraphExecutionContext %s, ret = %d", __FUNCTION__, rt_ret); return RT_FAILED; } } // namespace hybrid diff --git a/ge/hybrid/executor/hybrid_model_async_executor.cc b/ge/hybrid/executor/hybrid_model_async_executor.cc index db183f52..ec1080db 100644 --- a/ge/hybrid/executor/hybrid_model_async_executor.cc +++ b/ge/hybrid/executor/hybrid_model_async_executor.cc @@ -52,7 +52,7 @@ void HybridModelAsyncExecutor::SetModelName(const string &model_name) { Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr &data) { GE_CHK_STATUS_EXEC(data_inputer_->Push(data), return domi::DATA_QUEUE_ISFULL, - "Data queue is full, please call again later, model_id %u ", model_id_); + "[Push][Data] Data queue is full, please call again later, model_id %u ", model_id_); GELOGD("EnqueueData successfully. model_id = %u, data_index = %u", data->GetInput().model_id, data->GetInput().index); return SUCCESS; } @@ -60,7 +60,8 @@ Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr Status HybridModelAsyncExecutor::Start(const std::shared_ptr &listener) { GELOGD("HybridModelExecutor::Start IN, has listener = %d", listener != nullptr); std::lock_guard lk(mu_); - GE_CHK_BOOL_RET_STATUS(!run_flag_, INTERNAL_ERROR, "Model already started."); + GE_CHK_BOOL_RET_STATUS(!run_flag_, INTERNAL_ERROR, + "[Check][RunState] Model already started when HybridModelAsyncExecutor %s.", __FUNCTION__); run_flag_ = true; listener_ = listener; @@ -71,7 +72,8 @@ Status HybridModelAsyncExecutor::Start(const std::shared_ptr &lis return RunInternal(); }); - GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR, "Failed to start."); + GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR, + "[Check][RunState] Failed to start when HybridModelAsyncExecutor %s.", __FUNCTION__); GELOGD("HybridModelExecutor::Start successfully"); return SUCCESS; } @@ -105,26 +107,29 @@ Status HybridModelAsyncExecutor::Init() { executor_ = std::unique_ptr(new(std::nothrow) HybridModelExecutor(model_, device_id_, stream_)); GE_CHECK_NOTNULL(executor_); - GE_CHK_STATUS_RET(executor_->Init(), "Failed to init hybrid engine"); - GE_CHK_STATUS_RET(DumpOpDebug(), "Dump op debug failed in hybrid engine"); + GE_CHK_STATUS_RET(executor_->Init(), + "[Init][HybridModelExecutor] failed when HybridModelAsyncExecutor %s.", __FUNCTION__); + GE_CHK_STATUS_RET(DumpOpDebug(), "[Dump][OpDebug] failed when HybridModelAsyncExecutor %s.", __FUNCTION__); GELOGI("HybridModel stage nums:%zu", model_->GetRootGraphItem()->NumGroups()); if (model_->GetRootGraphItem()->NumGroups() >= kMinimumPiplineStages) { pipe_executor_ = std::unique_ptr(new(std::nothrow) HybridModelPipelineExecutor(model_, device_id_)); GE_CHECK_NOTNULL(pipe_executor_); - GE_CHK_STATUS_RET(pipe_executor_->Init(), "Failed to init hybrid engine"); + GE_CHK_STATUS_RET(pipe_executor_->Init(), + "[Init][HybridModelPipelineExecutor] failed when HybridModelAsyncExecutor %s.", __FUNCTION__); } - GE_CHK_STATUS_RET(InitInputDesc(), "Failed to init input tensors"); + GE_CHK_STATUS_RET(InitInputDesc(), "[Init][InputDesc] failed when HybridModelAsyncExecutor %s.", __FUNCTION__); return SUCCESS; } Status HybridModelAsyncExecutor::PreRun(InputData ¤t_data, HybridModelExecutor::ExecuteArgs &args) { - GE_CHK_STATUS_RET(SyncVarData(), "Failed to sync var data"); + GE_CHK_STATUS_RET(SyncVarData(), "[Invoke][SyncVarData] failed when HybridModelAsyncExecutor %s.", __FUNCTION__); RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[SyncVarData] End"); - GE_CHK_STATUS_RET(PrepareInputs(current_data, args), "Failed to copy input data to model"); + GE_CHK_STATUS_RET(PrepareInputs(current_data, args), + "[Invoke][PrepareInputs] failed to copy input data to model when HybridModelAsyncExecutor %s.", __FUNCTION__); RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[CopyInputData] End"); return SUCCESS; } @@ -155,7 +160,7 @@ Status HybridModelAsyncExecutor::RunInternal() { GE_CHK_BOOL_TRUE_EXEC_WITH_LOG( ret != SUCCESS, (void) HandleResult(ret, current_data.index, args, data_wrapper->GetOutput()); CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC); - continue, "PreRun failed."); // [No need to check value] + continue, "[Invoke][PreRun] failed when HybridModelAsyncExecutor %s.", __FUNCTION__); // [No need to check value] if (pipe_executor_ != nullptr) { GELOGI("HybridModel will execute in pipeline mode"); @@ -199,7 +204,11 @@ Status HybridModelAsyncExecutor::HandleResult(Status exec_ret, } if (exec_ret != SUCCESS) { - GELOGE(exec_ret, "Failed to execute graph. model_id = %u", model_id_); + GELOGE(exec_ret, + "[Check][Param:Status] failed to execute graph when HybridModelAsyncExecutor %s. model_id = %u", + __FUNCTION__, model_id_); + REPORT_INNER_ERROR("E19999", + "failed to execute graph when HybridModelAsyncExecutor %s. model_id = %u", __FUNCTION__, model_id_); return OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list); } @@ -235,8 +244,12 @@ Status HybridModelAsyncExecutor::SyncVarData() { Status HybridModelAsyncExecutor::PrepareInputs(const InputData ¤t_data, HybridModelExecutor::ExecuteArgs &args) { if (current_data.blobs.size() < input_tensor_desc_.size()) { - GELOGE(PARAM_INVALID, "Blob size mismatches, expect at least %zu, but got %zu", - input_tensor_desc_.size(), current_data.blobs.size()); + GELOGE(PARAM_INVALID, + "[Check][Size]Blob size mismatches, expect at least %zu, but got %zu when HybridModelAsyncExecutor %s.", + input_tensor_desc_.size(), current_data.blobs.size(), __FUNCTION__); + REPORT_INNER_ERROR("E19999", + "Blob size mismatches, expect at least %zu, but got %zu when HybridModelAsyncExecutor %s.", + input_tensor_desc_.size(), current_data.blobs.size(), __FUNCTION__); return PARAM_INVALID; } @@ -248,8 +261,12 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData ¤t_data, Hy auto tensor_size = input_sizes_[input_index]; if (is_input_dynamic_[input_index]) { if (input_index >= current_data.shapes.size()) { - GELOGE(PARAM_INVALID, "Shape index out of range, index = %zu, shape size = %zu", - input_index, current_data.shapes.size()); + GELOGE(PARAM_INVALID, + "[Check][Range]Shape index out of range, index = %zu, shape size = %zu when HybridModelAsyncExecutor %s.", + input_index, current_data.shapes.size(), __FUNCTION__); + REPORT_INNER_ERROR("E19999", + "Shape index out of range, index = %zu, shape size = %zu when HybridModelAsyncExecutor %s.", + input_index, current_data.shapes.size(), __FUNCTION__); return PARAM_INVALID; } auto &tensor_desc = input_tensor_desc_[input_index]; @@ -257,15 +274,19 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData ¤t_data, Hy std::vector> range; auto range_ret = tensor_desc->GetShapeRange(range); GE_CHK_BOOL_RET_STATUS(range_ret == GRAPH_SUCCESS, INTERNAL_ERROR, - "Get shape range failed, ret=%u.", range_ret); + "[Invoke][GetShapeRange] failed, ret=%u.", range_ret); for (size_t k = 0; k < range.size(); ++k) { if (k >= shape.GetDimNum()) { break; } // range[k].second can be -1 if (shape.GetDim(k) < range[k].first || (range[k].second >= 0 && shape.GetDim(k) > range[k].second)) { - GELOGE(PARAM_INVALID, "Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]", - input_index, k, shape.GetDim(k), range[k].first, range[k].second); + GELOGE(PARAM_INVALID, + "[Check][Range]Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]", + input_index, k, shape.GetDim(k), range[k].first, range[k].second); + REPORT_INNER_ERROR("E19999", + "Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]", + input_index, k, shape.GetDim(k), range[k].first, range[k].second); return PARAM_INVALID; } } @@ -273,9 +294,8 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData ¤t_data, Hy args.input_desc[input_index] = tensor_desc; GELOGD("Update shape of input[%zu] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str()); GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size), - "Failed to calc tensor size, index = %zu, shape = [%s]", - input_index, - tensor_desc->GetShape().ToString().c_str()); + "[Invoke][GetTensorMemorySizeInBytes]Failed to calc tensor size, index = %zu, shape = [%s]", + input_index, tensor_desc->GetShape().ToString().c_str()); GELOGD("Input tensor[%zu] size = %zu", input_index, tensor_size); } @@ -293,7 +313,7 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData ¤t_data, Hy auto mem_size = static_cast(tensor_size); GE_CHK_BOOL_RET_STATUS(mem_size >= data_buf.length, PARAM_INVALID, - "input data size(%lu) does not match model required size(%lu), ret failed.", + "[Check][Size]input data size(%lu) does not match model required size(%lu), ret failed.", data_buf.length, mem_size); @@ -351,7 +371,7 @@ Status HybridModelAsyncExecutor::OnComputeDone(uint32_t data_index, uint32_t res GELOGD("OnComputeDone. model id = %u, data index = %u, execution ret = %u", model_id_, data_index, result_code); if (listener_ != nullptr) { GE_CHK_STATUS(listener_->OnComputeDone(model_id_, data_index, result_code, outputs), - "OnComputeDone failed"); + "[Invoke][OnComputeDone] failed."); } return result_code; @@ -365,9 +385,12 @@ Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &a std::vector &output_tensors = args.outputs; if (output_tensor_desc_list.size() != output_tensors.size()) { GELOGE(INTERNAL_ERROR, - "Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu", - output_tensor_desc_list.size(), - output_tensors.size()); + "[Check][Size]Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu " + "when HybridModelAsyncExecutor %s.", + output_tensor_desc_list.size(), output_tensors.size(), __FUNCTION__); + REPORT_INNER_ERROR("E19999", "Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu " + "when HybridModelAsyncExecutor %s.", + output_tensor_desc_list.size(), output_tensors.size(), __FUNCTION__); return INTERNAL_ERROR; } @@ -399,8 +422,10 @@ Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &a GE_CHECK_LE(output_size, UINT32_MAX); if (output_tensor.GetSize() < static_cast(output_size)) { GELOGE(INTERNAL_ERROR, - "output[%zu] tensor size(%zu) is not enough for output shape [%s]", - i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str()); + "[Check][Size]output[%zu] tensor size(%zu) is not enough for output shape [%s]", + i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str()); + REPORT_INNER_ERROR("E19999", "output[%zu] tensor size(%zu) is not enough for output shape [%s]", + i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str()); return INTERNAL_ERROR; } @@ -456,7 +481,7 @@ Status HybridModelAsyncExecutor::Execute(const std::vector &inputs, args.input_desc.emplace_back(tensor_desc_ptr); } - GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model."); + GE_CHK_STATUS_RET(executor_->Execute(args), "[Invoke][Execute] Failed when HybridModelAsyncExecutor %s.", __FUNCTION__); for (const auto &output_tensor_desc : args.output_desc) { output_desc.emplace_back(*output_tensor_desc); } @@ -477,13 +502,14 @@ Status HybridModelAsyncExecutor::Execute(const vector &inputs, vector< } HybridModelExecutor::ExecuteArgs args; - GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "Failed to copy input data to model"); + GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "[Invoke][PrepareInputs]Failed to copy input data to model"); GELOGD("Done copying input data successfully."); - GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model."); + GE_CHK_STATUS_RET(executor_->Execute(args), "[Invoke][Execute] Failed."); std::vector output_tensor_info_list; OutputData output_data; - GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list), "Failed to copy outputs."); + GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list), + "[Invoke][CopyOutputs]Failed to copy outputs."); GELOGD("Done copying output data successfully. output count = %zu", output_tensor_info_list.size()); int out_index = 0; @@ -534,7 +560,7 @@ Status HybridModelAsyncExecutor::DumpOpDebug() { loop_cond = const_cast(varible_loop_cond->GetData()); } data_dumper_.SetLoopAddr(global_step, loop_per_iter, loop_cond); - GE_CHK_STATUS_RET(data_dumper_.LoadDumpInfo(), "LoadDumpInfo failed in hybrid engine"); + GE_CHK_STATUS_RET(data_dumper_.LoadDumpInfo(), "[Invoke][LoadDumpInfo] failed in hybrid engine"); GELOGD("Dump op debug SUCCESS in hybrid engine"); } return SUCCESS; diff --git a/ge/hybrid/executor/worker/execution_engine.cc b/ge/hybrid/executor/worker/execution_engine.cc index de3bdc37..3d21fac3 100755 --- a/ge/hybrid/executor/worker/execution_engine.cc +++ b/ge/hybrid/executor/worker/execution_engine.cc @@ -102,11 +102,13 @@ Status NodeDoneCallback::PrepareConstInputs(const NodeItem &node_item) { if (output_tensor->GetSize() < static_cast(tensor_size)) { GELOGE(INTERNAL_ERROR, - "[%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s", - node_item.NodeName().c_str(), - output_idx, - tensor_size, - output_tensor->DebugString().c_str()); + "[Check][Size][%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s when %s.", + node_item.NodeName().c_str(), output_idx, tensor_size, + output_tensor->DebugString().c_str(), __FUNCTION__); + REPORT_INNER_ERROR("E19999", + "[%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s when %s.", + node_item.NodeName().c_str(), output_idx, tensor_size, + output_tensor->DebugString().c_str(), __FUNCTION__); return INTERNAL_ERROR; } @@ -128,7 +130,7 @@ Status NodeDoneCallback::PrepareConstInputs(const NodeItem &node_item) { GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(context_id, &runtime_infer_ctx), "Failed to get RuntimeInferenceContext, context_id = %s", context_id.c_str()); GE_CHK_STATUS_RET(runtime_infer_ctx->SetTensor(node_item.node_id, output_idx, std::move(tensor)), - "Failed to SetTensor, node = %s, output_index = %d", node_item.NodeName().c_str(), output_idx); + "[Set][Tensor] Failed, node = %s, output_index = %d", node_item.NodeName().c_str(), output_idx); GELOGD("[%s] Output[%d] cached successfully in context: %s. node_id = %d, shape = [%s]", node_item.NodeName().c_str(), output_idx, @@ -173,7 +175,8 @@ Status NodeDoneCallback::GetTaskDescInfo(const NodePtr node, const HybridModel * Status NodeDoneCallback::ProfilingReport() { auto node = context_->GetNodeItem().node; if (node == nullptr) { - GELOGE(PARAM_INVALID, "Get node is nullptr"); + GELOGE(PARAM_INVALID, "[Get][Node] value is nullptr when %s.", __FUNCTION__); + REPORT_INNER_ERROR("E19999", "Get node failed, when %s.", __FUNCTION__); return PARAM_INVALID; } @@ -190,7 +193,8 @@ Status NodeDoneCallback::ProfilingReport() { std::vector task_desc_info; auto profiling_ret = GetTaskDescInfo(node, model, task_desc_info); if (profiling_ret != RT_ERROR_NONE) { - GELOGE(profiling_ret, "Get task info of node[%s] failed.", node->GetName().c_str()); + GELOGE(profiling_ret, "[Get][TaskDescInfo] of node:%s failed, when %s.", node->GetName().c_str(), __FUNCTION__); + REPORT_CALL_ERROR("E19999", "GetTaskDescInfo of node:%s failed, when %s.", node->GetName().c_str(), __FUNCTION__); return profiling_ret; } @@ -202,7 +206,8 @@ Status NodeDoneCallback::ProfilingReport() { Status NodeDoneCallback::DumpDynamicNode() { auto node = context_->GetNodeItem().node; if (node == nullptr) { - GELOGE(PARAM_INVALID, "Get node is nullptr"); + GELOGE(PARAM_INVALID, "[Get][Node] value is nullptr when %s.", __FUNCTION__); + REPORT_INNER_ERROR("E19999", "get node is nullptr when %s.", __FUNCTION__); return PARAM_INVALID; } auto op_desc = node->GetOpDesc(); @@ -211,13 +216,13 @@ Status NodeDoneCallback::DumpDynamicNode() { vector output_addrs; for (int i = 0; i < context_->NumInputs(); i++) { auto tensor_value = context_->GetInput(i); - GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr"); + GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "[Get][Tensor] value is nullptr."); uint64_t input_addr = reinterpret_cast(tensor_value->GetData()); input_addrs.emplace_back(input_addr); } for (int j = 0; j < context_->NumOutputs(); j++) { auto tensor_value = context_->GetOutput(j); - GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr"); + GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "[Get][Tensor] value is nullptr."); uint64_t output_addr = reinterpret_cast(tensor_value->GetData()); output_addrs.emplace_back(output_addr); } @@ -245,11 +250,12 @@ Status NodeDoneCallback::DumpDynamicNode() { void *global_step = context_->GetExecutionContext()->global_step; dump_op_.SetLoopAddr(global_step, loop_per_iter, loop_cond); - GE_CHK_STATUS_RET(dump_op_.LaunchDumpOp(), "Failed to launch dump op in hybird model"); + GE_CHK_STATUS_RET(dump_op_.LaunchDumpOp(), "[Launch][DumpOp] failed in hybird model when %s.", __FUNCTION__); auto rt_ret = rtStreamSynchronize(stream); if (rt_ret != RT_ERROR_NONE) { - GELOGE(rt_ret, "rtStreamSynchronize failed"); + GELOGE(rt_ret, "[Call][rtStreamSynchronize] failed when %s.", __FUNCTION__); + REPORT_CALL_ERROR("E19999", "call rtStreamSynchronize failed when %s.", __FUNCTION__); return rt_ret; } return SUCCESS; @@ -264,12 +270,12 @@ Status NodeDoneCallback::OnNodeDone() { const DumpProperties &dump_properties = context_->GetDumpProperties(); if (dump_properties.IsDumpOpen() || context_->IsOverFlow()) { GELOGI("Start to dump dynamic shape op"); - GE_CHK_STATUS_RET(DumpDynamicNode(), "Failed to dump dynamic node"); + GE_CHK_STATUS_RET(DumpDynamicNode(), "[Call][DumpDynamicNode] Failed when %s.", __FUNCTION__); } if (ProfilingManager::Instance().ProfilingModelExecuteOn()) { - GE_CHK_STATUS_RET(ProfilingReport(), "Report node[%s] to profiling failed.", - node_item.NodeName().c_str()); + GE_CHK_STATUS_RET(ProfilingReport(), "[Report][Profiling] of node[%s] failed when %s.", + node_item.NodeName().c_str(), __FUNCTION__); } // release workspace @@ -292,8 +298,7 @@ Status NodeDoneCallback::OnNodeDone() { } GE_CHK_STATUS_RET(context_->PropagateOutputs(), - "[%s] Failed to propagate outputs failed", - node_item.NodeName().c_str()); + "[Propagate][Outputs] of [%s] failed when %s.", node_item.NodeName().c_str(), __FUNCTION__); RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[PropagateOutputs] End"); } @@ -333,7 +338,8 @@ Status ExecutionEngine::DoExecuteAsync(NodeState &node_state, const std::function &callback) { const auto &task = node_state.GetKernelTask(); if (task == nullptr) { - GELOGE(INTERNAL_ERROR, "[%s] NodeTask is null.", node_state.GetName().c_str()); + GELOGE(INTERNAL_ERROR, "[Get][KernelTask] of [%s] is null when %s.", node_state.GetName().c_str(), __FUNCTION__); + REPORT_CALL_ERROR("E19999", "GetKernelTask of %s is null when %s.", node_state.GetName().c_str(), __FUNCTION__); return INTERNAL_ERROR; } @@ -348,8 +354,7 @@ Status ExecutionEngine::DoExecuteAsync(NodeState &node_state, GE_CHECK_NOTNULL(executor); RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] Start"); GE_CHK_STATUS_RET(executor->PrepareTask(*task, task_context), - "[%s] Failed to prepare task", - node_state.GetName().c_str()); + "[Prepare][Task] for [%s] failed when %s", node_state.GetName().c_str(), __FUNCTION__); RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] End"); GELOGD("[%s] Done task preparation successfully.", node_state.GetName().c_str()); @@ -360,7 +365,8 @@ Status ExecutionEngine::DoExecuteAsync(NodeState &node_state, } } - GE_CHK_STATUS_RET(ValidateInputTensors(node_state, task_context), "Failed to validate input tensors."); + GE_CHK_STATUS_RET(ValidateInputTensors(node_state, task_context), "[Validate][InputTensors] for %s failed when %s.", + node_state.GetName().c_str(), __FUNCTION__); RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ValidateInputTensors] End"); if (context.profiling_level > 0) { @@ -414,11 +420,10 @@ Status ExecutionEngine::ValidateInputTensors(const NodeState &node_state, const input_tensor->GetSize()); } else { GELOGE(INTERNAL_ERROR, - "[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu", - task_context.GetNodeName(), - i, - expected_size, - input_tensor->GetSize()); + "[Check][Size] for [%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu when %s.", + task_context.GetNodeName(), i, expected_size, input_tensor->GetSize(), __FUNCTION__); + REPORT_INNER_ERROR("E19999", "[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu when %s.", + task_context.GetNodeName(), i, expected_size, input_tensor->GetSize(), __FUNCTION__); return INTERNAL_ERROR; } } @@ -432,8 +437,7 @@ Status ExecutionEngine::PropagateOutputs(const NodeItem &node_item, GraphExecutionContext &context) { if (node_item.shape_inference_type != DEPEND_COMPUTE) { GE_CHK_STATUS_RET(task_context.PropagateOutputs(), - "[%s] Failed to propagate outputs.", - node_item.NodeName().c_str()); + "[Propagate][Outputs] for [%s] failed when ExecutionEngine %s.", node_item.NodeName().c_str(), __FUNCTION__); RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PropagateOutputs] End"); GELOGD("[%s] Done propagating outputs successfully.", node_item.NodeName().c_str()); } diff --git a/ge/hybrid/executor/worker/shape_inference_engine.cc b/ge/hybrid/executor/worker/shape_inference_engine.cc index 27919589..97ea77a1 100755 --- a/ge/hybrid/executor/worker/shape_inference_engine.cc +++ b/ge/hybrid/executor/worker/shape_inference_engine.cc @@ -70,7 +70,7 @@ Status ShapeInferenceEngine::InferShape(NodeState &node_state) { { RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] Start"); GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndTypeForRunning(node_item.node, true), - "Invoke InferShapeAndType failed."); + "[Invoke][InferShapeAndType] for %s failed when %s.", node_item.NodeName().c_str(), __FUNCTION__); RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] End"); } @@ -172,8 +172,7 @@ Status ShapeInferenceEngine::InferShapeForSubgraph(const NodeItem &node_item, co GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndType(node)); GELOGD("[%s] Done invoking InferShapeAndType", node->GetName().c_str()); GE_CHK_STATUS_RET(UpdatePeerNodeShape(*node), - "[%s] Failed to update shapes of peer node.", - node->GetName().c_str()); + "[Update][PeerNodeShape] failed for [%s] when %s.", node->GetName().c_str(), __FUNCTION__); } for (auto &it : fused_subgraph.output_mapping) { @@ -205,7 +204,10 @@ Status ShapeInferenceEngine::UpdatePeerNodeShape(const Node &node) { GE_CHECK_NOTNULL(peer_op_desc); auto peer_input_desc = peer_op_desc->MutableInputDesc(peer_anchor->GetIdx()); if (peer_input_desc == nullptr) { - GELOGE(GRAPH_FAILED, "peer_input_desc is nullptr"); + GELOGE(GRAPH_FAILED, "[Call][MutableInputDesc] for %s return nullptr when ShapeInferenceEngine %s.", + peer_op_desc->GetName().c_str(), __FUNCTION__); + REPORT_CALL_ERROR("E19999", "%s call MutableInputDesc return nullptr when ShapeInferenceEngine %s.", + peer_op_desc->GetName().c_str(), __FUNCTION__); continue; } @@ -230,8 +232,11 @@ Status ShapeInferenceEngine::CanonicalizeShape(GeTensorDesc &tensor_desc, const auto &tensor_shape = tensor_desc.MutableShape(); if (tensor_shape.IsUnknownShape()) { if (!fallback_with_range) { - GELOGE(INTERNAL_ERROR, "Output shape is still unknown after shape inference. shape = [%s]", - tensor_shape.ToString().c_str()); + GELOGE(INTERNAL_ERROR, + "[Is][UnknownShape] Output shape is still unknown after shape inference. " + "shape = [%s] when ShapeInferenceEngine %s.", tensor_shape.ToString().c_str(), __FUNCTION__); + REPORT_INNER_ERROR("E19999", "Output shape is still unknown after shape inference. " + "shape = [%s] when ShapeInferenceEngine %s.", tensor_shape.ToString().c_str(), __FUNCTION__); return INTERNAL_ERROR; } @@ -239,9 +244,10 @@ Status ShapeInferenceEngine::CanonicalizeShape(GeTensorDesc &tensor_desc, std::vector> shape_range; GE_CHK_GRAPH_STATUS_RET(tensor_desc.GetShapeRange(shape_range), "Failed to get shape range"); if (shape_range.size() != shape.size()) { - GELOGE(INTERNAL_ERROR, "Number of shape ranges (%zu) mismatches that of dims (%zu)", - shape_range.size(), - shape.size()); + GELOGE(INTERNAL_ERROR, "[Check][Size] Number of shape ranges (%zu) mismatches that of dims (%zu)" + " when ShapeInferenceEngine %s.", shape_range.size(), shape.size(), __FUNCTION__); + REPORT_INNER_ERROR("E19999", "Number of shape ranges (%zu) mismatches that of dims (%zu)" + " when ShapeInferenceEngine %s.", shape_range.size(), shape.size(), __FUNCTION__); return INTERNAL_ERROR; } @@ -265,7 +271,10 @@ Status ShapeInferenceEngine::CalcTensorSize(DataType data_type, GELOGD("To calc tensor size by shape = [%s]", GeShape(shape).ToString().c_str()); uint32_t type_size; if (!TypeUtils::GetDataTypeLength(data_type, type_size)) { - GELOGE(INTERNAL_ERROR, "Failed to get data type size"); + GELOGE(INTERNAL_ERROR, "[Get][DataTypeLength] failed for type:%s when ShapeInferenceEngine %s.", + TypeUtils::DataTypeToSerialString(data_type).c_str(), __FUNCTION__); + REPORT_CALL_ERROR("E19999", "GetDataTypeLength failed for type:%s when ShapeInferenceEngine %s.", + TypeUtils::DataTypeToSerialString(data_type).c_str(), __FUNCTION__); return INTERNAL_ERROR; } @@ -273,15 +282,13 @@ Status ShapeInferenceEngine::CalcTensorSize(DataType data_type, for (const auto &dim : shape) { GE_CHECK_GE(dim, 0); GE_CHK_STATUS_RET(Int64MulCheckOverflow(tensor_size, dim), - "Shape size overflow, shape = [%s]", - GeShape(shape).ToString().c_str()); + "[Check][Overflow] Shape size overflow, shape = [%s]", GeShape(shape).ToString().c_str()); tensor_size *= dim; } GE_CHK_STATUS_RET(CheckInt64AddOverflow(tensor_size, kAlignment - 1), - "Tensor size is too large: %ld, shape = [%s]", - tensor_size, - GeShape(shape).ToString().c_str()); + "[Check][Overflow]Tensor size is too large: %ld, shape = [%s]", + tensor_size, GeShape(shape).ToString().c_str()); tensor_size = (tensor_size + kAlignment - 1) / kAlignment * kAlignment; return SUCCESS; } @@ -295,15 +302,13 @@ Status ShapeInferenceEngine::CalcOutputTensorSizes(const NodeItem &node_item, bo // modify on copy auto dims = shape.GetDims(); GE_CHK_STATUS_RET(CanonicalizeShape(*tensor_desc, dims, fallback_with_range), - "[%s] Failed to canonicalize shape for output %zu", - node_item.NodeName().c_str(), - output_index); + "[Canonicalize][Shape] failed for [%s], output %zu, when ShapeInferenceEngine %s.", + node_item.NodeName().c_str(), output_index, __FUNCTION__); int64_t tensor_size; GE_CHK_STATUS_RET(CalcTensorSize(tensor_desc->GetDataType(), dims, tensor_size), - "[%s] Failed to calc tensor size for output %zu", - node_item.NodeName().c_str(), - output_index); + "[Calc][TensorSize] failed for [%s], output %zu when ShapeInferenceEngine %s.", + node_item.NodeName().c_str(), output_index, __FUNCTION__); GELOGD("[%s] Tensor size of output %zu = %ld", node_item.NodeName().c_str(), output_index, tensor_size); (void) TensorUtils::SetSize(*tensor_desc, tensor_size); } diff --git a/ge/hybrid/executor/worker/task_compile_engine.cc b/ge/hybrid/executor/worker/task_compile_engine.cc index f80374c6..b4353400 100755 --- a/ge/hybrid/executor/worker/task_compile_engine.cc +++ b/ge/hybrid/executor/worker/task_compile_engine.cc @@ -32,7 +32,8 @@ Status TaskCompileEngine::Compile(NodeState &node_state, GraphExecutionContext * shared_ptr kernel_task; auto ret = node_item.node_executor->CompileTask(*context->model, node_item.node, kernel_task); RECORD_COMPILE_EVENT(context, node_state.GetName().c_str(), "[Compile] End"); - GE_CHK_STATUS_RET(ret, "Failed to create task for node: %s", node_item.NodeName().c_str()); + GE_CHK_STATUS_RET(ret, "[Compile][Task] failed for node: %s, when TaskCompileEngine %s.", + node_item.NodeName().c_str(), __FUNCTION__); node_state.SetKernelTask(kernel_task); GELOGI("Compiling node %s successfully", node_state.GetName().c_str()); return SUCCESS;