/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "host_kernels/mul_kernel.h" #include #include #include "common/debug/log.h" #include "common/math/math_util.h" #include "common/types.h" #include "common/util.h" #include "framework/common/debug/ge_log.h" #include "framework/common/ge_inner_error_codes.h" #include "graph/common/bcast.h" #include "graph/utils/type_utils.h" #include "inc/kernel_factory.h" namespace ge { namespace { const std::set kMulSupportedType = {DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE}; template Status OverflowCheck(T const &x, T const &y, DataType &type) { switch (type) { case DT_INT8: FMK_INT8_MULCHECK(x, y) break; case DT_INT16: FMK_INT16_MULCHECK(x, y) break; case DT_INT32: FMK_INT32_MULCHECK(x, y) break; case DT_INT64: FMK_INT64_MULCHECK(x, y) break; case DT_UINT8: FMK_UINT8_MULCHECK(x, y) break; case DT_UINT16: FMK_UINT16_MULCHECK(x, y) break; case DT_UINT32: FMK_UINT32_MULCHECK(x, y) break; case DT_UINT64: FMK_UINT64_MULCHECK(x, y) break; case DT_FLOAT16: FMK_FP16_MULCHECK(x, y) break; case DT_FLOAT: FMK_FLOAT_MULCHECK(x, y) break; case DT_DOUBLE: FMK_DOUBLE_MULCHECK(x, y) break; default: break; } return SUCCESS; } #define DEFINE_FUNC_WITH_STATUS_BY_TYPE(TYPE) \ std::function func_##TYPE = \ [](TYPE const &a, TYPE const &b, DataType &type, Status &ret) -> TYPE { \ ret = OverflowCheck(a, b, type); \ if (ret != SUCCESS) { \ GELOGE(PARAM_INVALID, "Result of mul is overflow."); \ return static_cast(0); \ } \ return static_cast(a) * static_cast(b); \ }; #define SET_BCAST_COMPUTE_CASE(DTYPE, TYPE) \ case DTYPE: \ ret = bcast.BCastComputeCheck(input, y_data_##TYPE##_, func_##TYPE); \ break; #define SET_OUTPUT(DTYPE, TYPE) \ case DTYPE: \ (void)output_ptr->SetData(reinterpret_cast(y_data_##TYPE##_.data()), y_data_##TYPE##_.size() * length); \ break; // [no need to check result] DEFINE_FUNC_WITH_STATUS_BY_TYPE(int8_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(int16_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(int32_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(int64_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(uint8_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(uint16_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(uint32_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(uint64_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(fp16_t) DEFINE_FUNC_WITH_STATUS_BY_TYPE(float) DEFINE_FUNC_WITH_STATUS_BY_TYPE(double) } // namespace Status MulKernel::Compute(const OpDescPtr op_desc_ptr, const std::vector &input, std::vector &v_output) { GELOGD("MulKernel in"); if (op_desc_ptr == nullptr) { GELOGE(PARAM_INVALID, "Parameter's invalid, input opDescPtr is nullptr."); return PARAM_INVALID; } Status ret = MulCheck(input); if (ret != SUCCESS) { return ret; } DataType data_type = input[0]->GetTensorDesc().GetDataType(); BCast bcast; switch (data_type) { SET_BCAST_COMPUTE_CASE(DT_INT8, int8_t) SET_BCAST_COMPUTE_CASE(DT_INT16, int16_t) SET_BCAST_COMPUTE_CASE(DT_INT32, int32_t) SET_BCAST_COMPUTE_CASE(DT_INT64, int64_t) SET_BCAST_COMPUTE_CASE(DT_UINT8, uint8_t) SET_BCAST_COMPUTE_CASE(DT_UINT16, uint16_t) SET_BCAST_COMPUTE_CASE(DT_UINT32, uint32_t) SET_BCAST_COMPUTE_CASE(DT_UINT64, uint64_t) SET_BCAST_COMPUTE_CASE(DT_FLOAT16, fp16_t) SET_BCAST_COMPUTE_CASE(DT_FLOAT, float) SET_BCAST_COMPUTE_CASE(DT_DOUBLE, double) default: ret = NOT_CHANGED; break; } if (ret != SUCCESS) { GELOGW("BCastCompute fail, data_type: %s, ret: %s", TypeUtils::DataTypeToSerialString(data_type).c_str(), GET_ERRORNO_STR(ret).c_str()); return NOT_CHANGED; } uint32_t length = 1; if (!TypeUtils::GetDataTypeLength(data_type, length)) { GELOGW("Can't GetDataTypeLength of data_type: %s", TypeUtils::DataTypeToSerialString(data_type).c_str()); return NOT_CHANGED; } GeTensorPtr output_ptr = MakeShared(op_desc_ptr->GetOutputDesc(0)); if (output_ptr == nullptr) { GELOGE(MEMALLOC_FAILED, "Make shared failed"); return MEMALLOC_FAILED; } output_ptr->MutableTensorDesc().SetShape(GeShape(bcast.GetOutputShape())); // only return GRAPH_SUCCESS here switch (data_type) { SET_OUTPUT(DT_INT8, int8_t) SET_OUTPUT(DT_INT16, int16_t) SET_OUTPUT(DT_INT32, int32_t) SET_OUTPUT(DT_INT64, int64_t) SET_OUTPUT(DT_UINT8, uint8_t) SET_OUTPUT(DT_UINT16, uint16_t) SET_OUTPUT(DT_UINT32, uint32_t) SET_OUTPUT(DT_UINT64, uint64_t) SET_OUTPUT(DT_FLOAT16, fp16_t) SET_OUTPUT(DT_FLOAT, float) SET_OUTPUT(DT_DOUBLE, double) default: break; } output_ptr->MutableTensorDesc().SetDataType(data_type); v_output.push_back(output_ptr); GELOGD("MulKernel success"); return SUCCESS; } Status MulKernel::MulCheck(const std::vector &input) { // check input number if (input.size() != static_cast(MUL_INPUT_NUM)) { GELOGI("The number of input for Mul must be %u.", MUL_INPUT_NUM); return NOT_CHANGED; } ConstGeTensorPtr input_x1 = input.at(0); ConstGeTensorPtr input_x2 = input.at(1); GE_CHECK_NOTNULL(input_x1); GE_CHECK_NOTNULL(input_x2); // check whether there is data in Tensor if (input_x1->GetData().size() == 0 || input_x2->GetData().size() == 0) { GELOGI("Check data size fail. x1: %zu, x2: %zu", input_x1->GetData().size(), input_x2->GetData().size()); return NOT_CHANGED; } // check whether the data types are the same DataType type = input_x1->GetTensorDesc().GetDataType(); if (type != input_x2->GetTensorDesc().GetDataType()) { GELOGI("Data type of inputs for Mul not matched."); return NOT_CHANGED; } // check if input data type is supported if (kMulSupportedType.find(type) == kMulSupportedType.end()) { GELOGI("Mul does not support this Data type: %s", TypeUtils::DataTypeToSerialString(type).c_str()); return NOT_CHANGED; } return SUCCESS; } REGISTER_KERNEL(MUL, MulKernel); } // namespace ge