/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "host_kernels/floordiv_kernel.h" #include #include #include #include "common/op/ge_op_utils.h" #include "common/types.h" #include "framework/common/debug/ge_log.h" #include "host_kernels/kernel_utils.h" #include "graph/utils/type_utils.h" #include "inc/kernel_factory.h" namespace ge { namespace { const size_t kFloorDivInputX = 0; const size_t kFloorDivInputY = 1; const size_t kFloorDivTensorShapeIsEmpty = 0; const size_t kFloorDivInputSize = 2; const std::set kFloorDivSupportedType = {DT_FLOAT, DT_DOUBLE, DT_UINT8, DT_INT8, DT_UINT16, DT_INT16, DT_INT32, DT_INT64}; } // namespace Status FloorDivKernel::FloorDivCheck(const OpDescPtr &op_desc_ptr, const std::vector &input) const { // check input size if (op_desc_ptr == nullptr) { GELOGW("Input opdesc is nullptr."); return PARAM_INVALID; } if (input.size() != kFloorDivInputSize) { GELOGW("Unexpected FloorDiv node, node input size: %zu, node name: %s", input.size(), op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } // check dims of x and y ConstGeTensorPtr x_tensor = input.at(kFloorDivInputX); ConstGeTensorPtr y_tensor = input.at(kFloorDivInputY); GE_CHECK_NOTNULL(x_tensor); GE_CHECK_NOTNULL(y_tensor); if (x_tensor->GetTensorDesc().GetShape().GetDimNum() != kFloorDivTensorShapeIsEmpty && y_tensor->GetTensorDesc().GetShape().GetDimNum() != kFloorDivTensorShapeIsEmpty) { // x and y are not scalars vector x_dims = x_tensor->GetTensorDesc().GetShape().GetDims(); vector y_dims = y_tensor->GetTensorDesc().GetShape().GetDims(); if (x_dims.size() != y_dims.size()) { GELOGW("FloorDivKernel dims of x and y do not match, node name: %s", op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } else { for (size_t i = 0; i < x_dims.size(); ++i) { if (x_dims[i] != y_dims[i]) { GELOGW("FloorDivKernel dims of x and y do not match, node name: %s", op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } } } } // check data type DataType x_data_dtype = x_tensor->GetTensorDesc().GetDataType(); DataType y_data_dtype = y_tensor->GetTensorDesc().GetDataType(); if (x_data_dtype != y_data_dtype) { GELOGW("FloorDivKernel data type of x and y do not match, x data type is %s, but y data type is %s, node name: %s.", TypeUtils::DataTypeToSerialString(x_data_dtype).c_str(), TypeUtils::DataTypeToSerialString(y_data_dtype).c_str(), op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } if (kFloorDivSupportedType.find(x_data_dtype) == kFloorDivSupportedType.end()) { GELOGW("FloorDivKernel data type %s not support, node name: %s", TypeUtils::DataTypeToSerialString(x_data_dtype).c_str(), op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } // check data if (x_tensor->GetData().size() == 0 || y_tensor->GetData().size() == 0) { GELOGW("FloorDivKernel data size of inputs is 0, node name: %s", op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } return SUCCESS; } void FloorDivKernel::ShapeCal(const std::vector &input, GeTensorPtr output_ptr) { vector output_dims; size_t x_dim = input.at(kFloorDivInputX)->GetTensorDesc().GetShape().GetDimNum(); size_t y_dim = input.at(kFloorDivInputY)->GetTensorDesc().GetShape().GetDimNum(); if (x_dim >= y_dim) { output_dims = input.at(kFloorDivInputX)->GetTensorDesc().GetShape().GetDims(); } else { output_dims = input.at(kFloorDivInputY)->GetTensorDesc().GetShape().GetDims(); } output_ptr->MutableTensorDesc().SetShape(GeShape(output_dims)); } template T FloorDivKernel::DivCal(const T &x_i, const T &y_i) { if ((x_i < static_cast(0)) != (y_i < static_cast(0))) { T abs_x_i = x_i < 0 ? -x_i : x_i; T abs_y_i = y_i < 0 ? -y_i : y_i; return static_cast(static_cast(-(abs_x_i + abs_y_i - 1) / abs_y_i)); } else { return static_cast(static_cast(x_i / y_i)); } } template bool FloorDivKernel::ZeroCheck(const T &element, DataType data_type) { bool result = false; if (data_type == DT_UINT8 || data_type == DT_INT8 || data_type == DT_UINT16 || data_type == DT_INT16 || data_type == DT_INT32 || data_type == DT_INT64) { result = (element == 0); } else if (data_type == DT_FLOAT) { result = (fabs(element) < FLT_EPSILON); } else if (data_type == DT_DOUBLE) { result = (fabs(element) < DBL_EPSILON); } return result; } template Status FloorDivKernel::DataCalBroadcast(const T &x, const T &y, size_t num_x, size_t num_y, DataType data_type, GeTensorPtr output_ptr) { size_t data_num = (num_x > num_y) ? num_x : num_y; unique_ptr buf(new (std::nothrow) T[data_num]()); if (buf == nullptr) { GELOGE(MEMALLOC_FAILED, "new buf failed"); return INTERNAL_ERROR; } if (num_x > num_y) { if (ZeroCheck(y, data_type)) { GELOGE(PARAM_INVALID, "The divisor of FloorDiv can not be zero."); return PARAM_INVALID; } for (size_t i = 0; i < num_x; ++i) { buf[i] = DivCal((&x)[i], y); } } else { for (size_t i = 0; i < num_y; ++i) { if (ZeroCheck((&y)[i], data_type)) { GELOGE(PARAM_INVALID, "The divisor of FloorDiv can not be zero."); return PARAM_INVALID; } buf[i] = DivCal(x, (&y)[i]); } } if (output_ptr->SetData(reinterpret_cast(buf.get()), data_num * sizeof(T)) != GRAPH_SUCCESS) { GELOGE(PARAM_INVALID, "set data failed"); return PARAM_INVALID; } return SUCCESS; } template Status FloorDivKernel::DataCal(const std::vector &input, GeTensorPtr output_ptr) { ConstGeTensorPtr x_tensor = input.at(kFloorDivInputX); ConstGeTensorPtr y_tensor = input.at(kFloorDivInputY); GE_CHECK_NOTNULL(x_tensor); GE_CHECK_NOTNULL(y_tensor); T *x = const_cast(reinterpret_cast(x_tensor->GetData().GetData())); T *y = const_cast(reinterpret_cast(y_tensor->GetData().GetData())); if (x == nullptr || y == nullptr) { GELOGE(PARAM_INVALID, "Input tensor is nullptr."); return PARAM_INVALID; } size_t data_num_x = x_tensor->GetData().size() / sizeof(T); size_t data_num_y = y_tensor->GetData().size() / sizeof(T); DataType data_type = x_tensor->GetTensorDesc().GetDataType(); if (x_tensor->GetTensorDesc().GetShape().GetDimNum() == y_tensor->GetTensorDesc().GetShape().GetDimNum()) { // x and y are both scalars or vector, no need broadcast unique_ptr buf(new (std::nothrow) T[data_num_x]()); if (buf == nullptr) { GELOGE(MEMALLOC_FAILED, "new buf failed"); return INTERNAL_ERROR; } for (size_t i = 0; i < data_num_x; ++i) { if (ZeroCheck(y[i], data_type)) { GELOGE(PARAM_INVALID, "The divisor of FloorDiv can not be zero."); return PARAM_INVALID; } buf[i] = DivCal(x[i], y[i]); } if (output_ptr->SetData(reinterpret_cast(buf.get()), data_num_x * sizeof(T)) != GRAPH_SUCCESS) { GELOGE(PARAM_INVALID, "set data failed"); return PARAM_INVALID; } } else { // x-y is vector-scalar, need broadcast if (DataCalBroadcast(*x, *y, data_num_x, data_num_y, data_type, output_ptr) != SUCCESS) { return PARAM_INVALID; } } return SUCCESS; } Status FloorDivKernel::ComputeByDataType(DataType data_type, const std::vector &input, GeTensorPtr output_ptr) { Status ret; switch (data_type) { case DT_FLOAT: ret = DataCal(input, output_ptr); break; case DT_DOUBLE: ret = DataCal(input, output_ptr); break; case DT_UINT8: ret = DataCal(input, output_ptr); break; case DT_INT8: ret = DataCal(input, output_ptr); break; case DT_UINT16: ret = DataCal(input, output_ptr); break; case DT_INT16: ret = DataCal(input, output_ptr); break; case DT_INT32: ret = DataCal(input, output_ptr); break; case DT_INT64: ret = DataCal(input, output_ptr); break; default: GELOGW("FloorDivKernel does not support Data type:%s", TypeUtils::DataTypeToSerialString(data_type).c_str()); return NOT_CHANGED; } return ret; } Status FloorDivKernel::Compute(const OpDescPtr op_desc_ptr, const std::vector &input, std::vector &v_output) { GELOGI("FloorDivKernel in"); if (FloorDivCheck(op_desc_ptr, input) != SUCCESS) { GELOGW("FloorDivKernel input is invalid, failed to fold node."); return NOT_CHANGED; } // Index 0 can always gets a GeTensorDesc object from any OpDescPtr. auto output_tensor_desc = op_desc_ptr->GetOutputDesc(0); GeTensorPtr output_ptr = MakeShared(output_tensor_desc); if (output_ptr == nullptr) { GELOGW("make_shared ge::GeTensor failed, node name %s.", op_desc_ptr->GetName().c_str()); return NOT_CHANGED; } // calculate shape ShapeCal(input, output_ptr); // calculate data and data type DataType x_data_dtype = input.at(kFloorDivInputX)->GetTensorDesc().GetDataType(); output_ptr->MutableTensorDesc().SetDataType(x_data_dtype); if (ComputeByDataType(x_data_dtype, input, output_ptr) != SUCCESS) { return NOT_CHANGED; } // print output tensor information, and will be deleted GELOGD("FloorDiv op %s output tensor data size is %zu", op_desc_ptr->GetName().c_str(), output_ptr->GetData().size()); vector data_dims = output_ptr->GetTensorDesc().GetShape().GetDims(); GELOGD("FloorDiv op %s output tensor dim size is %zu", op_desc_ptr->GetName().c_str(), data_dims.size()); v_output.emplace_back(output_ptr); GELOGI("FloorDivKernel success."); return SUCCESS; } REGISTER_KERNEL(FLOORDIV, FloorDivKernel); } // namespace ge