/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "host_kernels/transpose_kernel.h" #include #include #include "common/debug/log.h" #include "common/formats/format_transfers/format_transfer_transpose.h" #include "common/formats/formats.h" #include "common/formats/utils/formats_trans_utils.h" #include "common/op/ge_op_utils.h" #include "common/types.h" #include "common/util.h" #include "framework/common/debug/ge_log.h" #include "framework/common/ge_inner_error_codes.h" #include "host_kernels/kernel_utils.h" #include "graph/utils/type_utils.h" #include "inc/kernel_factory.h" namespace ge { namespace { const size_t kTransposeInputX = 0; const size_t kTransposeInputPerm = 1; const size_t kTransposeInputSize = 2; const size_t kTransposeOutputY = 0; const size_t kTransposeOutputSize = 1; } // namespace Status TransposeKernel::ValidateInput(const OpDescPtr &op_desc_ptr, const std::vector &input) { if (op_desc_ptr == nullptr) { GELOGW("Input opDescPtr is nullptr."); return PARAM_INVALID; } if (op_desc_ptr->GetInputsSize() != kTransposeInputSize || op_desc_ptr->GetOutputsSize() != kTransposeOutputSize) { GELOGW("The input_size(%zu) and output_size(%zu) of op are invalid, op name: %s.", op_desc_ptr->GetInputsSize(), op_desc_ptr->GetOutputsSize(), op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } if (input.size() != kTransposeInputSize) { GELOGW("The size of input tensor vector is invalid, input size is %zu, op name: %s.", input.size(), op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } ConstGeTensorPtr tensor_x_ptr = input[kTransposeInputX]; ConstGeTensorPtr tensor_perm_ptr = input[kTransposeInputPerm]; if (tensor_x_ptr == nullptr || tensor_perm_ptr == nullptr) { GELOGW("Input tensor of op is nullptr, node name: %s.", op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } return SUCCESS; } Status TransposeKernel::Compute(const OpDescPtr op_desc_ptr, const std::vector &input, std::vector &v_output) { GELOGD("TransposeKernel in."); Status status = ValidateInput(op_desc_ptr, input); if (status != SUCCESS) { GELOGW("TransposeKernel input is invalid, failed to fold node."); return NOT_CHANGED; } ConstGeTensorPtr const_weight_ptr = input[kTransposeInputX]; GeTensorDesc op_desc = op_desc_ptr->GetOutputDesc(kTransposeOutputY); GeTensorDesc op_desc_in = op_desc_ptr->GetInputDesc(kTransposeInputX); auto src_format = op_desc_in.GetFormat(); auto src_shape = op_desc_in.GetShape().GetDims(); auto src_data_type = op_desc_in.GetDataType(); auto data_shape = op_desc.GetShape().GetDims(); auto data_format = op_desc.GetFormat(); auto data_type = op_desc.GetDataType(); GELOGD( "current node %s, format %s, input shape %s, data type %s, weight format %s, shape %s, data type %s. " "output format %s, shape %s, data type %s", op_desc_ptr->GetName().c_str(), TypeUtils::FormatToSerialString(src_format).c_str(), formats::ShapeToString(src_shape).c_str(), TypeUtils::DataTypeToSerialString(src_data_type).c_str(), TypeUtils::FormatToSerialString(const_weight_ptr->GetTensorDesc().GetFormat()).c_str(), formats::ShapeToString(const_weight_ptr->GetTensorDesc().GetShape()).c_str(), TypeUtils::DataTypeToSerialString(const_weight_ptr->GetTensorDesc().GetDataType()).c_str(), TypeUtils::FormatToSerialString(data_format).c_str(), formats::ShapeToString(data_shape).c_str(), TypeUtils::DataTypeToSerialString(data_type).c_str()); ConstGeTensorPtr tensor_perm_ptr = input[kTransposeInputPerm]; DataType data_dtype = tensor_perm_ptr->GetTensorDesc().GetDataType(); auto input_perm_shape = tensor_perm_ptr->GetTensorDesc().GetShape(); auto output_size = input_perm_shape.GetShapeSize(); uint32_t data_size = GetSizeByDataType(data_dtype); if (static_cast(output_size * data_size) != tensor_perm_ptr->GetData().size()) { GELOGW("TransposeKernel input perm shape size and data size do not match."); return NOT_CHANGED; } vector perm_list; auto input_perm = tensor_perm_ptr->GetData().data(); if (data_dtype == DT_INT32) { int32_t *input_perm_data = const_cast(reinterpret_cast(input_perm)); for (int64_t i = 0; i < output_size; i++) { perm_list.push_back(static_cast(input_perm_data[i])); } } else if (data_dtype == DT_INT64) { int64_t *input_perm_data = const_cast(reinterpret_cast(input_perm)); for (int64_t i = 0; i < output_size; i++) { perm_list.push_back(input_perm_data[i]); } } else { GELOGW("TransposeKernel input perm data type is invalid, data type is %s.", TypeUtils::DataTypeToSerialString(data_dtype).c_str()); return NOT_CHANGED; } GELOGD("Transpose from %s to %s, shape %s to %s, perm_list %s, data type %s", TypeUtils::FormatToSerialString(src_format).c_str(), TypeUtils::FormatToSerialString(data_format).c_str(), formats::ShapeToString(src_shape).c_str(), formats::ShapeToString(data_shape).c_str(), formats::ShapeToString(perm_list).c_str(), TypeUtils::DataTypeToSerialString(src_data_type).c_str()); if ((data_shape.empty()) || (src_data_type != data_type)) { GELOGW("Transpose is not supported. Invalid shape (src: %s, dst: %s) or inconsistent datatype (src: %s, dst: %s)", formats::ShapeToString(src_shape).c_str(), formats::ShapeToString(data_shape).c_str(), TypeUtils::DataTypeToSerialString(src_data_type).c_str(), TypeUtils::DataTypeToSerialString(data_type).c_str()); return NOT_CHANGED; } if (!KernelUtils::CheckSizeForTransOp(const_weight_ptr, op_desc_ptr)) { GELOGW("CheckSize failed, input size is not equal to weight size"); return NOT_CHANGED; } const uint8_t *src_data = const_weight_ptr->GetData().data(); formats::TransResult trans_result; auto ret = formats::TransposeWithShapeCheck(src_data, src_shape, data_shape, src_data_type, perm_list, trans_result); if (ret != SUCCESS) { GELOGW("Failed to Transpose from %s to %s, shape %s to %s, perm_list %s, data type %s", TypeUtils::FormatToSerialString(src_format).c_str(), TypeUtils::FormatToSerialString(data_format).c_str(), formats::ShapeToString(src_shape).c_str(), formats::ShapeToString(data_shape).c_str(), formats::ShapeToString(perm_list).c_str(), TypeUtils::DataTypeToSerialString(src_data_type).c_str()); return NOT_CHANGED; } GeTensorPtr output_ptr = MakeShared(op_desc_ptr->GetOutputDesc(kTransposeOutputY)); GE_CHECK_NOTNULL(output_ptr); if (output_ptr->SetData(trans_result.data.get(), trans_result.length) != GRAPH_SUCCESS) { GELOGW("Compute: SetData failed"); } v_output.push_back(output_ptr); GELOGI("TransposeKernel success."); return SUCCESS; } REGISTER_KERNEL(TRANSPOSE, TransposeKernel); } // namespace ge