/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file random_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_RANDOM_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_RANDOM_OPS_H_ #include #include "graph/operator_reg.h" namespace ge { /** *@brief Draws samples from a multinomial distribution . \n *@par Inputs: *Inputs include: * @li logits: A Tensor. Must be one of the following types: float16, float, double. 2-D Tensor with shape [batch_size, num_classes]. * @li num_samples: A Tensor of type int32. 0-D. Number of independent samples to draw for each row slice . \n *@par Attributes: *@li output_dtype: An optional type from: int32, int64. Defaults to int64. *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *y_indices: A Tensor of type output_dtype . \n *@attention Constraints: *The implementation for Multinomial on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow Multinomial operator. */ REG_OP(Multinomial) .INPUT(logits, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .INPUT(num_samples, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_INT32, DT_INT64})) .ATTR(dtype, Type, DT_INT64) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(Multinomial) /** *@brief Outputs random values from a normal distribution . \n *@par Inputs: *Inputs include: * @li shape: A Tensor. Must be one of the following types: int32, int64. The shape of the output tensor. Batches are indexed by the 0th dimension. * @li means: A Tensor. Must be one of the following types: half, bfloat16, float32, float64. * @li stdevs: A Tensor. Must have the same type as means. * @li min: A Tensor. Must have the same type as means. The minimum cutoff. May be -infinity. * @li max: A Tensor. Must have the same type as means . \n *@par Attributes: *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *y: A Tensor. Has the same type as means . \n *@attention Constraints: *The implementation for ParameterizedTruncatedNormal on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow ParameterizedTruncatedNormal operator. */ REG_OP(ParameterizedTruncatedNormal) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .INPUT(means, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .INPUT(stdevs, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .INPUT(min, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .INPUT(max, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(ParameterizedTruncatedNormal) /** *@brief Computes the derivative of a Gamma random sample w.r.t. alpha . \n *@par Inputs: *Inputs include: * @li alpha: A Tensor. Must be one of the following types: float32, float64. * @li sample: A Tensor. Must have the same type as alpha . \n *@par Outputs: *y: A Tensor. Has the same type as alpha . \n *@attention Constraints: *The implementation for RandomGammaGrad on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow RandomGammaGrad operator. */ REG_OP(RandomGammaGrad) .INPUT(alpha, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(sample, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(RandomGammaGrad) /** *@brief Outputs random values from the Gamma distribution(s) described by alpha . \n *@par Inputs: *Inputs include: * @li shape: A Tensor. Must be one of the following types: int32, int64. 1-D integer tensor. * @li alpha: A Tensor. Must be one of the following types: half, float32, float64 . \n *@par Attributes: *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *y: A Tensor. Has the same type as alpha . \n *@attention Constraints: *The implementation for RandomGamma on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow RandomGamma operator. */ REG_OP(RandomGamma) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .INPUT(alpha, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomGamma) /** *@brief Outputs random values from the Poisson distribution(s) described by rate . \n *@par Inputs: *Inputs include: * @li shape: A Tensor. Must be one of the following types: int32, int64. 1-D integer tensor. * @li rate: A Tensor. Must be one of the following types: half, float32, float64, int32, int64 . \n *@par Attributes: *@li dtype: An optional type from: half, float32, float64, int32, int64. Defaults to int64. *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *y: A Tensor of type dtype . \n *@attention Constraints: *The implementation for RandomPoisson on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow RandomPoisson operator. */ REG_OP(RandomPoisson) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .INPUT(rate, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, \ DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, \ DT_INT32, DT_INT64})) .ATTR(dtype, Type, DT_INT64) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomPoisson) /** *@brief Randomly shuffles a tensor along its first dimension . \n *@par Inputs: *Inputs include: *x: A Tensor. The tensor to be shuffled . \n *@par Attributes: *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *y: A Tensor. Has the same type as x . \n *@attention Constraints: *The implementation for RandomShuffle on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow RandomShuffle operator. */ REG_OP(RandomShuffle) .INPUT(x, TensorType({DT_INT64, DT_INT32, DT_UINT16, DT_INT16, DT_UINT8, DT_INT8, DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128, DT_BOOL, DT_STRING, DT_RESOURCE})) .OUTPUT(y, TensorType({DT_INT64, DT_INT32, DT_UINT16, DT_INT16, DT_UINT8, DT_INT8, DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128, DT_BOOL, DT_STRING, DT_RESOURCE})) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomShuffle) /** *@brief Outputs random values from a normal distribution . \n *@par Inputs: *Inputs include: *shape: A Tensor. Must be one of the following types: int32, int64. The shape of the output tensor . \n *@par Attributes: *@li dtype: A type from: half, float16, float32, float64. The type of the output. *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *y: A Tensor of type dtype . \n *@attention Constraints: *The implementation for RandomStandardNormal on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow RandomStandardNormal operator. */ REG_OP(RandomStandardNormal) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .REQUIRED_ATTR(dtype, Type) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomStandardNormal) /** *@brief Outputs random integers from a uniform distribution . \n *@par Inputs: *Inputs include: * @li shape: A Tensor. Must be one of the following types: int32, int64. The shape of the output tensor. * @li min: A Tensor. Must be one of the following types: int32, int64. 0-D. * @li max: A Tensor. Must have the same type as minval. 0-D . \n *@par Attributes: *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *y: A Tensor. Has the same type as min . \n *@attention Constraints: *The implementation for RandomUniformInt on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow RandomUniformInt operator. */ REG_OP(RandomUniformInt) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .INPUT(min, TensorType({DT_INT32, DT_INT64})) .INPUT(max, TensorType({DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_INT32, DT_INT64})) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomUniformInt) /** *@brief Outputs random values from a uniform distribution . \n *@par Inputs: *Inputs include: *shape: A Tensor. Must be one of the following types: int32, int64. The shape of the output tensor . \n *@par Attributes: *@li dtype: A type from: half, float16, float32, float64. The type of the output. *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *y: A Tensor of type dtype . \n *@attention Constraints: *The implementation for RandomUniform on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow RandomUniform operator. */ REG_OP(RandomUniform) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .REQUIRED_ATTR(dtype, Type) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomUniform) /** *@brief Outputs random values from a truncated normal distribution . \n *@par Inputs: *Inputs include: *shape: A Tensor. Must be one of the following types: int32, int64 . \n *@par Attributes: *@li seed: An optional int. Defaults to 0. *@li seed2: An optional int. Defaults to 0 . \n *@par Outputs: *size: A Tensor of types: float16, float32, double . \n *@attention Constraints: *The implementation for TruncatedNormal on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow TruncatedNormal operator. */ REG_OP(TruncatedNormal) .INPUT(shape, TensorType({ DT_INT32, DT_INT64 })) .OUTPUT(y, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE })) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(TruncatedNormal) /** *@brief Generate random bit mask for dropout . \n *@par Inputs: include: *@li shape:The shape of the output tensor. *@li prob:0-D. Number of bit 1 . \n *@par Attributes: *@li seed:If either seed or seed2 are set to be non-zero, the random number *generator is seeded by the given seed. Otherwise, it is seeded by a random seed. *@li seed2:A second seed to avoid seed collision . \n *@par Outputs: *y:Output (1-D) random number using uint data format . \n *@attention Constraints: *The output is aligned with 128 bits *@see DropOutGenMask() */ REG_OP(DropOutGenMask) .INPUT(shape, TensorType({ DT_INT32, DT_INT64 })) .INPUT(prob, TensorType({ DT_FLOAT16, DT_FLOAT })) .OUTPUT(y, TensorType({ DT_UINT8 })) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(DropOutGenMask) /** *@brief Generates values in an interval . \n *@par Inputs: * Four ND inputs, including: *@li assist: A 1D Tensor of type float32. *@li start: A 1D Tensor of type float32, for the first entry in the range. *@li stop: A 1D Tensor of type float32, for the last entry in the range. *@li num: A 1D Tensor of type int32 or int64, for the common difference of the entries . \n *@par Outputs: *output_op: A 1D Tensor of type float32 . \n *@attention Constraints: * "input_assist" is a sequence of "input_num" evenly-spaced values beginning at 0 with an common difference of 1 . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator lin_space. * * @par Restrictions: * Warning: THIS FUNCTION IS DEPRECATED. Please use LinSpace instead. */ REG_OP(LinSpaceD) .INPUT(assist, TensorType({DT_FLOAT})) .INPUT(start, TensorType({DT_FLOAT})) .INPUT(stop, TensorType({DT_FLOAT})) .INPUT(num, TensorType::IndexNumberType()) .OUTPUT(output, TensorType({DT_FLOAT})) .OP_END_FACTORY_REG(LinSpaceD) /** *@brief Generates values in an interval . \n *@par Inputs: * Four ND inputs, including: *@li start: A 1D Tensor of type float32, for the first entry in the range. *@li stop: A 1D Tensor of type float32, for the last entry in the range. *@li num: A 1D Tensor of type int32 or int64, for the common difference of the entries . \n *@par Outputs: *output_op: A 1D Tensor of type float32 . \n *@attention Constraints: * "input_assist" is a sequence of "input_num" evenly-spaced values beginning at 0 with an common difference of 1 . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator lin_space. */ REG_OP(LinSpace) .INPUT(start, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(stop, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(num, TensorType::IndexNumberType()) .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(LinSpace) /** *@brief The dropout operator randomly sets (according to the given dropout probability) *the outputs of some units to zero, while others are remain unchanged. . \n *@par Inputs: *One input, including: *@li x:The input tensor variable. The data type is float32. \n *@par Attributes: *@li dropout_ratio:Float between 0 and 1. Fraction of the input units to drop.Defaults to "0.5". *@li scale_train: Bool,default to true. *@li alpha: An optional float32. A scaling factor. Defaults to "1.0". *@li beta: An optional float32. An exponent. Defaults to "0.0". \n *@par Outputs: *y: A Variable holding Tensor representing the dropout, has same shape and data type with x. \n */ REG_OP(Dropout) .INPUT(x, TensorType{DT_FLOAT}) .OUTPUT(y, TensorType{DT_FLOAT}) .ATTR(dropout_ratio, Float, 0.5) .ATTR(scale_train, Bool, true) .ATTR(alpha, Float, 1.0) .ATTR(beta, Float, 0.0) .OP_END_FACTORY_REG(Dropout) /** *@brief Shuffle index of no-zero element . \n *@par Inputs: include: *x:A tensor <= 5-D . \n *@par Attributes: *@li count:the count of output, if 0, out all no-zero elements. *@li seed:If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. *@li seed2:A second seed to avoid seed collision . \n *@par Outputs: *@li y:2-D tensor, no-zero element index. *@li mask:1-D, whether the corresponding index is valid . \n *@see RandomChoiceWithMask() */ REG_OP(RandomChoiceWithMask) .INPUT(x, TensorType({DT_BOOL})) .OUTPUT(y, TensorType({DT_INT32})) .OUTPUT(mask, TensorType({DT_BOOL})) .ATTR(count, Int, 0) .ATTR(seed, Int, 0) .ATTR(seed2, Int, 0) .OP_END_FACTORY_REG(RandomChoiceWithMask) /** *@brief Permutes data in the channel dimension of the input *@par Inputs: *Inputs including: * @li x: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64 . \n *@par Attributes: *@li group: A required int32, specifying the number of groups to split the channel dimension into. Defaults to "1" . \n *@par Outputs: *y: A required Tensor. Has same type and shape as "x". Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64 . \n *@attention Constraints: *@li "group" must be greater than 0 and must evenly divide the channel dimension size. *@li The format of input "x" must be NCHW. *@par Third-party framework compatibility * Compatible with the Caffe operator ShuffleChannel. */ REG_OP(ShuffleChannel) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64})) .ATTR(group, Int, 1) .OP_END_FACTORY_REG(ShuffleChannel) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_RANDOM_OPS_H_