/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "host_kernels/concat_v2_kernel.h" #include #include #include "common/debug/log.h" #include "common/fp16_t.h" #include "common/op/ge_op_utils.h" #include "framework/common/debug/ge_log.h" #include "host_kernels/kernel_utils.h" #include "graph/utils/type_utils.h" #include "inc/kernel_factory.h" #include "framework/common/types.h" namespace ge { namespace { const size_t kConcatV2InputNum = 3; const int kSupportEmptyTensorRank = 1; const std::set concatv2_supported_type = {DT_INT32, DT_FLOAT}; template void GetOutputData(std::vector &y_data, int64_t loop, size_t &input_size, const std::vector &input) { for (int64_t i = 0; i < loop; i++) { for (size_t k = 0; k < input_size; k++) { GeShape datak_shape = input.at(k)->GetTensorDesc().GetShape(); auto buffer = input.at(k)->GetData(); const T *datak = reinterpret_cast(buffer.data()); if (datak == nullptr || buffer.size() == 0) { GELOGW("input[%zu] is with no data", k); continue; } int64_t gapk = datak_shape.GetShapeSize() / loop; // [2,3] is 6/loop for (int64_t j = 0; j < gapk; j++) { y_data.push_back(datak[j + gapk * i]); } } } } #define SET_OUTPUT(DTYPE, TYPE) \ case DTYPE: \ GetOutputData(y_data_##TYPE, loop, input_size, input); \ (void)output_ptr->SetData(reinterpret_cast(y_data_##TYPE.data()), y_data_##TYPE.size() * length); \ break; } // namespace Status ConcatV2Kernel::Compute(const ge::OpDescPtr op_desc_ptr, const vector &input, vector &v_output) { GELOGI("ConcatV2Kernel in."); if (op_desc_ptr == nullptr) { GELOGE(PARAM_INVALID, "input opdesc is nullptr."); return PARAM_INVALID; } int tidx = -1; ConstGeTensorPtr tensor = nullptr; Status ret = ConcatV2PreCompute(input, tidx, tensor); if (ret != SUCCESS) { return ret; } size_t input_size = input.size(); // N + 1 input_size--; // N GE_CHECK_NOTNULL(tensor); DataType data_type = tensor->GetTensorDesc().GetDataType(); uint32_t length = 0; if (!TypeUtils::GetDataTypeLength(data_type, length)) { GELOGW("Can't GetDataTypeLength of data_type: %s", TypeUtils::DataTypeToSerialString(data_type).c_str()); return NOT_CHANGED; } std::vector y_data_int32_t; std::vector y_data_float; // Index 0 can always gets a GeTensorDesc object from any OpDescPtr. auto output_tensor_desc = op_desc_ptr->GetOutputDesc(0); GeTensorPtr output_ptr = MakeShared(output_tensor_desc); if (output_ptr == nullptr) { GELOGE(MEMALLOC_FAILED, "MakeShared failed."); return MEMALLOC_FAILED; } GeShape data0_shape = tensor->GetTensorDesc().GetShape(); int64_t loop = 1; for (int i = 0; i < tidx; i++) { loop *= data0_shape.GetDim(i); } switch (data_type) { SET_OUTPUT(DT_INT32, int32_t) SET_OUTPUT(DT_FLOAT, float) default: break; } output_ptr->MutableTensorDesc().SetDataType(data_type); output_ptr->MutableTensorDesc().SetShape(GeShape({op_desc_ptr->GetOutputDesc(0).GetShape()})); v_output.push_back(output_ptr); GELOGI("ConcatV2Kernel success."); return SUCCESS; } Status ConcatV2Kernel::ConcatV2PreCompute(const std::vector &input, int &tidx, ConstGeTensorPtr &tensor) { size_t input_size = input.size(); // N + 1 is greater than or equal to 3 if (input_size < kConcatV2InputNum) { GELOGI("The number of input for ConcatV2 must not be less than %zu.", kConcatV2InputNum); return NOT_CHANGED; } bool has_empty_tensor = false; input_size--; for (size_t i = 0; i < input_size; i++) { if (input[i] == nullptr) { GELOGI("Input%zu must not be null.", i); return NOT_CHANGED; } if (input.at(i)->GetData().size() == 0) { GELOGW("input[%zu] is with no data.", i); has_empty_tensor = true; continue; } if (tensor == nullptr) { tensor = input.at(i); // get first valid tensor with data } } GE_CHECK_NOTNULL(tensor); DataType data_type = tensor->GetTensorDesc().GetDataType(); for (size_t i = 1; i < input_size; i++) { if (data_type != input.at(i)->GetTensorDesc().GetDataType()) { GELOGI("Data type of N inputs for ConcatV2 not the same, check input %zu failed.", i); return NOT_CHANGED; } } // check if input data type is supported if (concatv2_supported_type.find(data_type) == concatv2_supported_type.end()) { GELOGI("ConcatV2 does not support this Data type: %s.", TypeUtils::DataTypeToSerialString(data_type).c_str()); return NOT_CHANGED; } ConstGeTensorPtr tensor_axis = input.at(input_size); GE_CHECK_NOTNULL(tensor_axis); const int *axis = reinterpret_cast(tensor_axis->GetData().data()); GE_CHECK_NOTNULL(axis); tidx = axis[0]; // [-rank(values), rank(values)) int rank = static_cast(tensor->GetTensorDesc().GetShape().GetDimNum()); // rank if (tidx < 0) { tidx += rank; } // 1. tidx should in range [0,rank) // 2. empty tensor only support case: [n],[m],[] // case: [[],[]] ,[[],[]] ,[] or other case when rank >=2 is not supported if (tidx < 0 || tidx >= rank || (has_empty_tensor && rank > kSupportEmptyTensorRank)) { GELOGW("ConcatV2 info: tidx[%d]_rank[%d]_has_empty_tensor[bool:%d] cannot be supported, skip fold.", tidx, rank, has_empty_tensor); return NOT_CHANGED; } return SUCCESS; } REGISTER_KERNEL(CONCATV2, ConcatV2Kernel); } // namespace ge