/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "hybrid_model_executor.h" #include "graph/ge_context.h" #include "graph/runtime_inference_context.h" #include "graph/utils/tensor_utils.h" #include "common/dump/dump_manager.h" #include "common/profiling/profiling_manager.h" namespace ge { namespace hybrid { namespace { const int kIntBase = 10; const char *const kEnvProfilingLevel = "HYBRID_PROFILING_LEVEL"; } // namespace HybridModelExecutor::HybridModelExecutor(HybridModel *model, uint32_t device_id, rtStream_t stream) : model_(model), device_id_(device_id), stream_(stream) { } HybridModelExecutor::~HybridModelExecutor() { if (context_.rt_gen_context != nullptr) { (void) rtCtxDestroy(context_.rt_gen_context); } } Status HybridModelExecutor::Init() { GELOGD("Start to init HybridGraphEngine."); GE_CHK_STATUS_RET_NOLOG(InitExecutionContext()); GELOGD("HybridGraphEngine initialized successfully."); return SUCCESS; } Status HybridModelExecutor::Execute(HybridModelExecutor::ExecuteArgs &args) { GELOGD("Start to execute model."); auto root_graph_item = model_->GetRootGraphItem(); GE_CHECK_NOTNULL(root_graph_item); if (root_graph_item->IsDynamic()) { GE_CHK_STATUS_RET(CheckInputShapeByShapeRange(root_graph_item, args), "[%s] check input node shape by shape range failed.", root_graph_item->GetName().c_str()); } if (context_.global_step != nullptr) { GE_CHK_RT_RET(rtMemcpyAsync(context_.global_step, sizeof(uint64_t), &context_.iteration, sizeof(uint64_t), RT_MEMCPY_HOST_TO_DEVICE_EX, context_.stream)); } SubgraphExecutor executor(model_->GetRootGraphItem(), &context_); auto ret = ExecuteGraphInternal(executor, args); Cleanup(); RECORD_MODEL_EXECUTION_EVENT(&context_, "[Cleanup] End"); GELOGD("Model executed successfully."); if (context_.profiler != nullptr) { context_.profiler->Dump(std::cout); context_.profiler->Reset(); } context_.iteration += 1; if (ret == END_OF_SEQUENCE) { args.is_eos = true; } else { GE_CHK_STATUS_RET(ret, "[Invoke][ExecuteGraphInternal] Failed, ret:%d.", ret); } return SUCCESS; } Status HybridModelExecutor::ExecuteGraphInternal(SubgraphExecutor &executor, HybridModelExecutor::ExecuteArgs &args) { RECORD_MODEL_EXECUTION_EVENT(&context_, "[InitContext] Start"); GE_CHK_STATUS_RET_NOLOG(ResetExecutionContext(context_)); RECORD_MODEL_EXECUTION_EVENT(&context_, "[InitContext] End"); uint64_t index_id = context_.iteration + 1; uint64_t model_id = static_cast(model_->GetModelId()); int32_t device_id = static_cast(device_id_); auto &prof_mgr = ProfilingManager::Instance(); // tag_id 0 means step begin, 1 meas step end. if (!model_->IsSingleOp() && prof_mgr.ProfilingModelLoadOn()) { GE_CHK_STATUS_RET_NOLOG(prof_mgr.ProfileStepInfo(index_id, model_id, 0, stream_, device_id)); } HYBRID_CHK_STATUS_RET(executor.ExecuteAsync(args.inputs, args.input_desc, args.outputs), "Failed to execute partitioned call."); RECORD_MODEL_EXECUTION_EVENT(&context_, "[ExecuteAsync] End"); if (!model_->IsSingleOp() && prof_mgr.ProfilingModelLoadOn()) { GE_CHK_STATUS_RET_NOLOG(prof_mgr.ProfileStepInfo(index_id, model_id, 1, stream_, device_id)); } if (!model_->IsSingleOp()) { HYBRID_CHK_STATUS_RET(executor.Synchronize(), "Failed to sync root graph."); RECORD_MODEL_EXECUTION_EVENT(&context_, "[Synchronize] End"); } args.outputs.clear(); HYBRID_CHK_STATUS_RET(executor.GetOutputs(args.outputs, args.output_desc), "Failed to get outputs"); RECORD_MODEL_EXECUTION_EVENT(&context_, "[GetOutput] End"); return SUCCESS; } Status HybridModelExecutor::Cleanup() { GELOGD("Start to cleanup."); context_.callback_manager->Destroy(); RuntimeInferenceContext::DestroyContext(std::to_string(context_.context_id)); GELOGD("Cleanup successfully."); return SUCCESS; } Status HybridModelExecutor::InitExecutionContext() { GE_CHK_RT_RET(rtCtxGetCurrent(&context_.rt_context)); GE_CHK_RT_RET(rtCtxCreate(&context_.rt_gen_context, RT_CTX_GEN_MODE, 0)); GE_CHK_RT_RET(rtCtxSetCurrent(context_.rt_context)); context_.global_step = model_->GetGlobalStep(); context_.stream = stream_; context_.model = model_; context_.is_eos_ = false; context_.session_id = ::ge::GetContext().SessionId(); context_.ge_context = &GetThreadLocalContext(); GELOGD("session id from model = %lu, from context = %lu", model_->GetSessionId(), context_.session_id); context_.allocator = NpuMemoryAllocator::GetAllocator(device_id_); GE_CHECK_NOTNULL(context_.allocator); context_.callback_manager = std::unique_ptr(new(std::nothrow)CallbackManager()); GE_CHECK_NOTNULL(context_.callback_manager); context_.dump_properties = DumpManager::GetInstance().GetDumpProperties(context_.session_id); const char *profiling_level = std::getenv(kEnvProfilingLevel); if (profiling_level != nullptr) { context_.profiling_level = std::strtol(profiling_level, nullptr, kIntBase); GELOGD("Got profiling level = %ld", context_.profiling_level); if (context_.profiling_level > 0) { context_.profiler.reset(new(std::nothrow)HybridProfiler()); GE_CHECK_NOTNULL(context_.profiler); } } if (IsLogEnable(GE_MODULE_NAME, DLOG_DEBUG)) { context_.trace_enabled = true; } return SUCCESS; } Status HybridModelExecutor::ResetExecutionContext(GraphExecutionContext &context) { GE_CHK_STATUS_RET_NOLOG(context.callback_manager->Init()); string ctx_id = std::to_string(context.context_id); RuntimeInferenceContext::DestroyContext(ctx_id); GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::CreateContext(ctx_id), "Failed to Destroy RuntimeInferenceContext"); RuntimeInferenceContext *ctx = nullptr; GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(ctx_id, &ctx), "Failed to get context"); for (auto &host_tensor : context.model->GetHostTensors()) { auto node_id = host_tensor.first; for (const auto &output_idx_and_tensor : host_tensor.second) { auto output_idx = output_idx_and_tensor.first; GELOGD("Preload const host tensor, node_id = %ld, output id = %d", node_id, output_idx); ctx->SetTensor(node_id, output_idx, output_idx_and_tensor.second.Clone()); } } return SUCCESS; } Status HybridModelExecutor::CheckInputShapeByShapeRange(const GraphItem *graph_item, HybridModelExecutor::ExecuteArgs &args) { GE_CHECK_NOTNULL(graph_item); auto input_nodes = graph_item->GetInputNodes(); if (args.input_desc.size() < input_nodes.size()) { REPORT_INNER_ERROR("E19999", "[%s] Number of inputs [%zu] is not sufficient for graph which needs [%zu] inputs.", graph_item->GetName().c_str(), args.input_desc.size(), input_nodes.size()); GELOGE(INTERNAL_ERROR, "[%s] Number of inputs [%zu] is not sufficient for graph which needs [%zu] inputs.", graph_item->GetName().c_str(), args.input_desc.size(), input_nodes.size()); return INTERNAL_ERROR; } for (size_t i = 0; i < input_nodes.size(); ++i) { auto &input_node = input_nodes[i]; if (input_node == nullptr) { GELOGD("[%s] Input[%zu] is not needed by graph, skip it.", graph_item->GetName().c_str(), i); continue; } GeTensorDescPtr model_input_desc = input_node->MutableInputDesc(0); GE_CHECK_NOTNULL(model_input_desc); std::vector> shape_range; if (model_input_desc->GetShapeRange(shape_range) != SUCCESS) { REPORT_INNER_ERROR("E19999", "[%s] Input[%zu] get shape range failed", graph_item->GetName().c_str(), i); GELOGE(INTERNAL_ERROR, "[%s] Input[%zu] get shape range failed", graph_item->GetName().c_str(), i); return INTERNAL_ERROR; } if (shape_range.empty()) { GELOGD("[%s] Input[%zu] shape is not needed to check by shape range, skip it.", graph_item->GetName().c_str(), i); continue; } ConstGeTensorDescPtr args_tensor_desc = args.input_desc[i]; GE_CHECK_NOTNULL(args_tensor_desc); GeShape shape = args_tensor_desc->GetShape(); if (shape.IsUnknownShape()) { REPORT_INNER_ERROR("E19999", "[%s] Input desc shape [%zu] designed by user must be static.", graph_item->GetName().c_str(), i); GELOGE(INTERNAL_ERROR, "[%s] Input desc shape [%zu] designed by user must be static.", graph_item->GetName().c_str(), i); return INTERNAL_ERROR; } if (TensorUtils::CheckShapeByShapeRange(shape, shape_range) != SUCCESS) { GELOGE(PARAM_INVALID, "[Check][InputShape] [%s] check input [%zu] shape failed by shape range.", graph_item->GetName().c_str(), i); return PARAM_INVALID; } } return SUCCESS; } } // namespace hybrid } // namespace ge