/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file matrix_calculation_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_ #include "graph/operator_reg.h" namespace ge { /** *@brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n *@par Inputs: *Three inputs, including: * @li x1: A matrix Tensor. 2D. Must be one of the following types: float16, * float32, int32. Has format [ND, NHWC, FRACTAL_NZ]. * @li x2: A matrix Tensor. 2D. Must be one of the following types: float16, * float32, int32. Has format [ND, NHWC, FRACTAL_NZ]. * @li bias: A optional 1D Tensor. Must be one of the following types: float16, * float32, int32. Has format [ND, NHWC] . \n *@par Attributes: *@li transpose_a: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. *@li transpose_b: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n *@par Outputs: *y: The result matrix Tensor. 2D. Must be one of the following types: float16, * float32, int32. Has format [ND, NHWC, FRACTAL_NZ] . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator BatchMatmul. */ REG_OP(MatMul) .INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .ATTR(transpose_x1, Bool, false) .ATTR(transpose_x2, Bool, false) .OP_END_FACTORY_REG(MatMul) /** *@brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n *@par Inputs: *Two inputs, including: * @li x1: A matrix Tensor. 2D. Must be one of the following types: float16, * float32, int32. Has format [ND, NHWC, FRACTAL_NZ]. * @li x2: A matrix Tensor. 2D. Must be one of the following types: float16, * float32, int32. Has format [ND, NHWC, FRACTAL_NZ]. * @li bias: A 1D Tensor. Must be one of the following types: float16, * float32, int32. Has format [ND, NHWC] . \n *@par Attributes: *@li transpose_a: A bool. If True, changes the shape of "x1" from [M, K] to [K, M]. *@li transpose_b: A bool. If True, changes the shape of "x2" from [M, K] to [K, M] . \n *@par Outputs: *y: The result matrix Tensor. 2D. Must be one of the following types: float16, * float32, int32. Has format [ND, NHWC, FRACTAL_NZ] . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator BatchMatmul. */ REG_OP(MatMulV2) .INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) .INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8})) .OPTIONAL_INPUT(bias, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) .ATTR(transpose_x1, Bool, false) .ATTR(transpose_x2, Bool, false) .ATTR(offset_x, Int, 0) .OP_END_FACTORY_REG(MatMulV2) /** *@brief Performs Matrix-to-matrix Multiply, producing c=alpha[0]*a*b+beta[0]*c . \n *@attention Constraints: * For better performance, The k-axis must be aligned to 16 (input type * is float16) or 32 (input type is int8). \n *@par Inputs: *Five inputs, including: *@li a: A matrix Tensor. Must be one of the following types: float16, int8. * Has format [ND, FRACTAL_NZ]. 2D(ND) or 4D(FRACTAL_NZ). *@li b: A matrix Tensor. Must be one of the following types: float16, int8. * Has format [ND, FRACTAL_NZ, FRACTAL_Z]. 2D(ND) or 4D(FRACTAL_NZ, FRACTAL_Z). *@li c: A matrix Tensor. Must be one of the following types: float16, int32, * float32. has format [ND, FRACTAL_NZ]. 2D(ND) or 4D(FRACTAL_NZ). *@li alpha: A 1D Tensor. The shape of alpha is [1].Must be one of the following * types: float16, int32, float32. Has format [ND]. *@li beta: A 1D Tensor. The shape of beta is [1]. Must be one of the following * types: float16, int32, float32. Has format [ND]. * The format of a, b, c has restriction:\n * When type of a is int8 and type of c is int32, the format of a, b, c should * all be ND, or a is FRACTAL_NZ and b is FRACTAL_Z and c is ND.\n * When type of a is int8 and type of c is float32, the format of a, b, c should * all be ND or a is FRACTAL_NZ and b is FRACTAL_Z and c is FRACTAL_NZ.\n * When type of a is float16 and type of c is float16, the format of a, b, c * should all be ND or FRACTAL_NZ.\n * When type of a is float16 and type of c is float32, the format of a, b, c * should all be ND or FRACTAL_NZ . \n *@par Attributes: *Two attributes, including: *@li transpose_a: Optional. A bool. If True, changes the shape of "a" from * [M, K] to [K, M]. *@li transpose_b: Optional. A bool. If True, changes the shape of "b" from * [K, N] to [N, K] . \n *@par Outputs: *y: The result matrix Tensor. Must be one of the following types: float16, * float32, int32. Has format [ND, FRACTAL_NZ], the format should be equal to a. * 2D(ND) or 4D(FRACTAL_NZ). */ REG_OP(GEMM) .INPUT(a, TensorType({DT_FLOAT16, DT_INT8})) .INPUT(b, TensorType({DT_FLOAT16, DT_INT8})) .INPUT(c, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .INPUT(alpha, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .INPUT(beta, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .ATTR(transpose_a, Bool, false) .ATTR(transpose_b, Bool, false) .OP_END_FACTORY_REG(GEMM) /** *@brief Multiplies matrix "a" by matrix "b", producing "a * b" . \n *@par Inputs: *Three inputs, including: * @li x1: A matrix Tensor. Must be one of the following types: float16, * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ]. * @li x2: A matrix Tensor. Must be one of the following types: float16, * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ] . \n *@par Attributes: *@li adj_x: A bool. If True, changes the shape of "x1" from [B, M, K] to [B, K, M]. *@li adj_y: A bool. If True, changes the shape of "x2" from [B, M, K] to [B, K, M] . \n *@par Outputs: *y: The result matrix Tensor. 2D or higher. Must be one of the following types: float16, * float32, int32. 2D or higher. Has format [ND, NHWC, FRACTAL_NZ]. Has the same shape length as "x1" and "x2" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator BatchMatmul. */ REG_OP(BatchMatMul) .INPUT(x1, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .INPUT(x2, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .ATTR(adj_x1, Bool, false) .ATTR(adj_x2, Bool, false) .OP_END_FACTORY_REG(BatchMatMul) /** *@brief Computes half the L2 norm of a tensor without the sqrt . \n *@par Inputs: * x: A Tensor. * TensorType::FloatingDataType() . \n *@par Outputs: *y: A Tensor. Has the same type as "x". *@par Third-party framework compatibility *Compatible with the TensorFlow operator L2Loss. */ REG_OP(L2Loss) .INPUT(x, TensorType::FloatingDataType()) .OUTPUT(y, TensorType::FloatingDataType()) .OP_END_FACTORY_REG(L2Loss) /** *@brief: Returns a batched diagonal tensor with a given batched diagonal values . \n *@par Inputs: *x: A Tensor. Must be one of the following types: * float16, float32, double, int32, uint8, int16, int8, complex64, int64, * qint8, quint8, qint32, uint16, complex128, uint32, uint64 . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator MatrixDiag. */ REG_OP(MatrixDiag) .INPUT(x, TensorType::BasicType()) .OUTPUT(y, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixDiag) /** *@brief: Returns a batched diagonal tensor with a given batched diagonal values . \n *@par Inputs: * Two inputs, including: *@li x: A Tensor. Must be one of the following types: float16, float32, int32, int8, uint8. *@li assist: A Tensor of the same type as "x" . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator MatrixDiag. * * @par Restrictions: * Warning: THIS FUNCTION IS DEPRECATED. Please use MatrixDiag instead. */ REG_OP(MatrixDiagD) .INPUT(x, TensorType::BasicType()) .INPUT(assist, TensorType::BasicType()) .OUTPUT(y, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixDiagD) /** *@brief: Returns the batched diagonal part of a batched tensor . \n *@par Inputs: *x: A Tensor. Must be one of the following types: * float16, float32, double, int32, uint8, int16, int8, complex64, int64, * qint8, quint8, qint32, uint16, complex128, uint32, uint64 . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator MatrixDiagPart. */ REG_OP(MatrixDiagPart) .INPUT(x, TensorType::BasicType()) .OUTPUT(y, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixDiagPart) /** *@brief: Returns the batched diagonal part of a batched tensor . \n *@par Inputs: * Two inputs, including: *@li x: A Tensor. Must be one of the following types: float16, float32, int32, int8, uint8. *@li assist: A Tensor of the same type as "x" . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator MatrixDiagPart. * * @par Restrictions: * Warning: THIS FUNCTION IS DEPRECATED. Please use MatrixDiagPart instead. */ REG_OP(MatrixDiagPartD) .INPUT(x, TensorType::BasicType()) .INPUT(assist, TensorType::BasicType()) .OUTPUT(y, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixDiagPartD) /** *@brief: Returns a batched matrix tensor with new batched diagonal values . \n *@par Inputs: * Two inputs, including: *@li x: A Tensor. Must be one of the following types: * float16, float32, double, int32, uint8, int16, int8, complex64, int64, * qint8, quint8, qint32, uint16, complex128, uint32, uint64. *@li diagonal: A Tensor of the same type as "x" . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator MatrixSetDiag. */ REG_OP(MatrixSetDiag) .INPUT(x, TensorType::BasicType()) .INPUT(diagonal, TensorType::BasicType()) .OUTPUT(y, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixSetDiag) /** *@brief: Returns a batched matrix tensor with new batched diagonal values . \n *@par Inputs: * Three inputs, including: *@li x: A Tensor. Must be one of the following types: float16, float32, int32, int8, uint8. *@li diagonal: A Tensor of the same type as "x". *@li assist: A Tensor of the same type as "x" . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator MatrixSetDiag. * * @par Restrictions: * Warning: THIS FUNCTION IS DEPRECATED. Please use MatrixSetDiag instead. */ REG_OP(MatrixSetDiagD) .INPUT(x, TensorType::BasicType()) .INPUT(diagonal, TensorType::BasicType()) .INPUT(assist, TensorType::BasicType()) .OUTPUT(y, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixSetDiagD) /** *@brief Applies sparse "updates" to individual values or slices in a Variable . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor. *Must be one of the following types: float16, float32, int8, uint8, double, * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, * uint64 *@li indices: An ND Tensor. *Must be one of the following types: int32, int64 *@li updates: An ND Tensor. *Must be one of the following types: float16, float32, int8, uint8, double, * int64, complex64, qint8, quint8, qint32, uint16, complex128, half, uint32, * uint64 *@par Attributes: *use_locking: An optional bool. Defaults to "False". If "True", * the operation will be protected by a lock . \n *@par Outputs: *var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterNdUpdate. */ REG_OP(ScatterNdUpdate) .INPUT(var, TensorType::BasicType()) .INPUT(indices, TensorType::IndexNumberType()) .INPUT(updates, TensorType::BasicType()) .OUTPUT(var, TensorType::BasicType()) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterNdUpdate) /** *@brief Applies sparse addition to individual values or slices in a Variable . \n *@par Inputs: * Three inputs, including: *@li x: An ND Tensor. \n *Must be one of the following types: float16, float32, bool, int8, uint8 *@li indices: An ND Tensor. \n *Must be one of the following types: int32 *@li updates: An ND Tensor. \n *Must be one of the following types: float16, float32, bool, int8, uint8 *@par Outputs: *y: A Tensor. Has the same type and format as input "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator TensorScatterUpdate. */ REG_OP(TensorScatterUpdate) .INPUT(x, TensorType::BasicType()) .INPUT(indices, TensorType::IndexNumberType()) .INPUT(updates, TensorType::BasicType()) .OUTPUT(y, TensorType::BasicType()) .OP_END_FACTORY_REG(TensorScatterUpdate) /** *@brief Adds sparse "updates" to a variable reference . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor . \n *Must be one of the following types: float16, float32, int32, int8, uint8 *@li indices: An ND Tensor of type int32 or int64. *@li updates: An Tensor. format:NCHW, NHWC . \n *Must be one of the following types: float16, float32, int32, int8, uint8 *@par Attributes: * use_locking: An optional bool. Defaults to "False". If "True", the operation * will be protected by a lock . \n *@par Outputs: *var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterAdd. */ REG_OP(ScatterAdd) .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType::IndexNumberType()) .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterAdd) /** *@brief Divides a variable reference by sparse updates . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@li indices: An ND Tensor. *Must be one of the following types: int32 *@li updates: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@par Attributes: *@li use_locking: An optional bool. Defaults to "False". If "True", * the operation will be protected by a lock . \n *@par Outputs: *var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterDiv. */ REG_OP(ScatterDiv) .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterDiv) /** *@brief Applies sparse addition to individual values or slices in a Variable . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@li indices: An ND Tensor. *Must be one of the following types: int32 *@li updates: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@par Attributes: *use_locking: An optional bool. Defaults to "False". If "True", * the operation will be protected by a lock . \n *@par Outputs: *var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterNdAdd. */ REG_OP(ScatterNdAdd) .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType::IndexNumberType()) .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterNdAdd) /** *@brief Applies sparse addition to individual values or slices in a Variable . \n *@par Inputs: * Three inputs, including: *@li x: An ND Tensor. \n *Must be one of the following types: float16, float32, int32, int8, uint8 *@li indices: An ND Tensor. \n *Must be one of the following types: int32 *@li updates: An ND Tensor. \n * Must be one of the following types: float16, float32, int32, int8, uint8 *@par Outputs: *y: A Tensor. Has the same type and format as input "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator TensorScatterAdd. */ REG_OP(TensorScatterAdd) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType::IndexNumberType()) .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OP_END_FACTORY_REG(TensorScatterAdd) /** *@brief Applies sparse subtraction to individual values or slices in a Variable . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@li indices: An ND Tensor. *Must be one of the following types: int32, int64 *@li updates: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@par Attributes: *use_locking: An optional bool. Defaults to "False". If "True", * the operation will be protected by a lock . \n *@par Outputs: * var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterNdSub. */ REG_OP(ScatterNdSub) .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType::IndexNumberType()) .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterNdSub) /** *@brief Applies sparse addition to individual values or slices in a Variable . \n *@par Inputs: * Three inputs, including: *@li x: An ND Tensor. \n *Must be one of the following types: float16, float32, int32, int8, uint8 *@li indices: An ND Tensor. \n *Must be one of the following types: int32 *@li updates: An ND Tensor. \n *Must be one of the following types: float16, float32, int32, int8, uint8 *@par Outputs: * y: A Tensor. Has the same type and format as input "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator TensorScatterSub. */ REG_OP(TensorScatterSub) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType::IndexNumberType()) .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OP_END_FACTORY_REG(TensorScatterSub) /** *@brief Subtracts sparse updates to a variable reference . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@li indices: An ND Tensor. *Must be one of the following types: int32, int64 *@li updates: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@par Attributes: *use_locking: An optional bool. Defaults to "False". If "True", * the operation will be protected by a lock . \n *@par Outputs: * var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterSub. */ REG_OP(ScatterSub) .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType::IndexNumberType()) .INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterSub) /** *@brief: Returns the batched diagonal part of a batched tensor with "assist" . \n *@par Inputs: * Two inputs, including: * @li x: A Tensor of type float16, float32, or int32. * @li assist: A Tensor of the same type as "x" . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator DiagPart. * * @par Restrictions: * Warning: THIS FUNCTION IS DEPRECATED. Please use DiagPart instead. */ REG_OP(DiagPartD) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .INPUT(assist, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32})) .OP_END_FACTORY_REG(DiagPartD) /** *@brief: Returns the batched diagonal part of a batched tensor . \n *@par Inputs: *x: A Tensor. Must be one of the following types: * float16, float32, int32, int64, double, complex64, complex128 . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator DiagPart. */ REG_OP(DiagPart) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128})) .OP_END_FACTORY_REG(DiagPart) /** *@brief Also known as a "fully-connected" layer, computes an inner product with a set of learned weights, and (optionally) adds biases . \n *@par Inputs: * Four inputs, including: *@li x: A Tensor of type float16, int8. *@li w: A weight matrix of type float16, int8. *@li b: A Tensor of type float16, int32, float32. *@li offset_w: A Tensor of type int8 . \n *@par Attributes: *@li num_output: Reserved. *@li transpose: A bool, specifying weight whether to transpose, either "true" or "false". Defaults to "false". *@li axis: Optional. A int, 1 or 2, specifying which dimension the input "K" starts from. Defaults to 1. * The product of the subsequent dimensions starting form first dimension or the second dimension is "K". *@li offset_x: Reserved . \n *@par Outputs: *y: The result tensor of type float16, int32, float32 . \n *@par Third-party framework compatibility * Compatible with the Caffe operator InnerProduct . \n *@par Quantization supported or not * Yes */ REG_OP(FullyConnection) .INPUT(x, TensorType({DT_FLOAT16, DT_INT8})) .INPUT(w, TensorType({DT_FLOAT16, DT_INT8})) .OPTIONAL_INPUT(b, TensorType({DT_FLOAT16, DT_INT32,DT_FLOAT32})) .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32,DT_FLOAT32})) .REQUIRED_ATTR(num_output, Int) .ATTR(transpose, Bool, false) .ATTR(axis, Int, 1) .ATTR(offset_x, Int, 0) .OP_END_FACTORY_REG(FullyConnection) /** *@brief Also known as a "fully-connected-compress" layer, computes an inner product with a set of learned weights, and (optionally) adds biases . \n *@par Inputs: * Four inputs, including: *@li x: A Tensor of type uint8, int8. *@li w: A weight matrix of type int8, int8. *@li w: A compress index matrix of type int8, int8. *@li b: A Tensor of type float16, int32, int32. *@li offset_w: A Tensor of type int8.i *@par Attributes: *@li num_output: Reserved. *@li transpose: A bool, specifying whether to transpose, either "true" or "false". Defaults to "false". *@li axis: Reserved. *@li offset_x: Reserved . \n *@par Outputs: *y: The result tensor of type int32 . \n *@par Third-party framework compatibility * Compatible with the Caffe operator InnerProduct . \n *@par Quantization supported or not * Yes */ REG_OP(FullyConnectionCompress) .INPUT(x, TensorType({DT_UINT8, DT_INT8})) .INPUT(w, TensorType({DT_INT8})) .INPUT(comress_index, TensorType({DT_INT8})) .OPTIONAL_INPUT(b, TensorType({DT_INT32})) .OPTIONAL_INPUT(offset_w, TensorType({DT_INT8})) .OUTPUT(y, TensorType({DT_INT32})) .REQUIRED_ATTR(num_output, Int) .ATTR(transpose, Bool, false) .ATTR(axis, Int, 1) .ATTR(offset_x, Int, 0) .OP_END_FACTORY_REG(FullyConnectionCompress) /** *@brief Computes the confusion matrix from predictions and labels . \n *@par Inputs: * Three inputs, including: *@li labels: A Tensor. Must be one of the following types: float16, float32, * int32, int8, uint8. *@li predictions: A Tensor. Must be one of the following types: float16, * float32, int32, int8, uint8. *@li weights: A Tensor. Must be one of the following types: float16, float32, * int32, int8, uint8 . \n *@par Attributes: *@li num_classes: An integer for the shape of the output matrix. * No default value. *@li dtype: Data type of the confusion matrix. No default value . \n *@par Outputs: *y: A Tensor. Has the same type and format as input "labels" *@attention Constraints: *@li "weights", "labels", and "predictions" are 1D tensors. *@li The output is with shape (num_classes, num_classes), * where, 1 <= num_classes <= 4096 . \n *@see Region() *@par Third-party framework compatibility * Compatible with the TensorFlow operator ConfusionMatrix. */ REG_OP(ConfusionMatrix) .INPUT(labels, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16, DT_INT8, DT_UINT8})) .INPUT(predictions, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16, DT_INT8, DT_UINT8})) .OPTIONAL_INPUT(weights, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16, DT_INT8, DT_UINT8})) .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16, DT_INT8, DT_UINT8})) .REQUIRED_ATTR(num_classes, Int) .REQUIRED_ATTR(dtype, String) .OP_END_FACTORY_REG(ConfusionMatrix) /** *@brief Multiplies sparse updates into a variable reference . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor. *Must be one of the following types: float16, float, int32, int8, uint8 *@li indices: An ND Tensor. *Must be one of the following types: int32 *@li updates: An ND Tensor . \n *Must be one of the following types: float16, float, int32, int8, uint8 *@par Attributes: *use_locking: An optional bool. Defaults to "False". If "True", the operation * will be protected by a lock . \n *@par Outputs: *var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterMul. */ REG_OP(ScatterMul) .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32,DT_INT8,DT_UINT8})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterMul) /** *@brief Reduces sparse updates into a variable reference using * the "min" operation . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor. *Must be one of the following types: float16, float, int32 *@li indices: An ND Tensor. *Must be one of the following types: int32 *@li updates: An ND Tensor. *Must be one of the following types: float16, float, int32 *@par Attributes: *use_locking: An optional bool. Defaults to "False". If "True", the operation * will be protected by a lock . \n *@par Outputs: *var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterMin. */ REG_OP(ScatterMin) .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterMin) /** *@brief Reduces sparse updates into a variable reference using the "max" operation . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor . \n *Must be one of the following types: float16, float, int32 *@li indices: An NCHW, NHWC, or ND Tensor . \n *Must be one of the following types: int32 *@li updates: An NCHW, NHWC, or ND Tensor . \n *Must be one of the following types: float16, float, int32 *@par Attributes: *use_locking: An optional bool. Defaults to "False". * If "True", the operation will be protected by a lock . \n *@par Outputs: *var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterMax. */ REG_OP(ScatterMax) .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT32})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterMax) /** *@brief Applies sparse updates to a variable reference . \n *@par Inputs: * Three inputs, including: *@li var: An ND Tensor . \n *Must be one of the following types: float16, float, int32, int8, uint8 *@li indices: An ND Tensor . \n *Must be one of the following types: int32 *@li updates: An ND Tensor . \n *Must be one of the following types: float16, float, int32, int8, uint8 *@par Attributes: *use_locking: An optional bool. Defaults to "False". If "True", * the operation will be protected by a lock . \n *@par Outputs: *var: A Tensor. Has the same type and format as input "var" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterUpdate. */ REG_OP(ScatterUpdate) .INPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(updates, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) .OUTPUT(var, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8})) .ATTR(use_locking, Bool, false) .OP_END_FACTORY_REG(ScatterUpdate) /** *@brief Returns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched `input` . \n *@par Inputs: * Three inputs, including: *@li input: Rank `r` tensor where `r >= 2`. \n *@li k: \n *Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main \n *diagonal, and negative value means subdiagonals. `k` can be a single integer \n *(for a single diagonal) or a pair of integers specifying the low and high ends \n *of a matrix band. `k[0]` must not be larger than `k[1]`. \n *@li padding_value: The value to fill the area outside the specified diagonal band with. \n *@par Outputs: *diagonal: The extracted diagonal(s) . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterUpdate. */ REG_OP(MatrixDiagPartV2) .INPUT(input, TensorType::BasicType()) .INPUT(k, TensorType({DT_INT32})) .INPUT(padding_value, TensorType::BasicType()) .OUTPUT(diagonal, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixDiagPartV2) /** *@brief Returns a batched matrix tensor with new batched diagonal values . \n *@par Inputs: * Three inputs, including: *@li input: "Rank `r+1`, where `r >= 1`. \n *@li diagonal: Rank `r` when `k` is an integer or `k[0] == k[1]`. Otherwise, it has rank `r+1`. \n *@li k: *Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main \n *diagonal, and negative value means subdiagonals. `k` can be a single integer \n *(for a single diagonal) or a pair of integers specifying the low and high ends \n *of a matrix band. `k[0]` must not be larger than `k[1]`. \n *@par Outputs: *output: Rank `r+1`, with `output.shape = input.shape` . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterUpdate. */ REG_OP(MatrixSetDiagV2) .INPUT(input, TensorType::BasicType()) .INPUT(diagonal, TensorType::BasicType()) .INPUT(k, TensorType({DT_INT32})) .OUTPUT(output, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixSetDiagV2) /** *@brief Returns a batched diagonal tensor with given batched diagonal values . \n *@par Inputs: * Five inputs, including: *@li diagonal: Rank `r`, where `r >= 1` \n *@li k: *Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main \n *diagonal, and negative value means subdiagonals. `k` can be a single integer \n *(for a single diagonal) or a pair of integers specifying the low and high ends \n *of a matrix band. `k[0]` must not be larger than `k[1]`. \n *@li num_rows: *The number of rows of the output matrix. If it is not provided, the op assumes \n *the output matrix is a square matrix and infers the matrix size from k and the \n *innermost dimension of `diagonal`. \n *@li num_cols: An NCHW, NHWC, or ND Tensor. *The number of columns of the output matrix. If it is not provided, the op \n *assumes the output matrix is a square matrix and infers the matrix size from \n *k and the innermost dimension of `diagonal`. \n *@li padding_value: The number to fill the area outside the specified diagonal band with. \n *@par Outputs: *output: Has rank `r+1` when `k` is an integer or `k[0] == k[1]`, rank `r` otherwise . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator ScatterUpdate. */ REG_OP(MatrixDiagV2) .INPUT(diagonal, TensorType::BasicType()) .INPUT(k, TensorType({DT_INT32})) .INPUT(num_rows, TensorType({DT_INT32})) .INPUT(num_cols, TensorType({DT_INT32})) .INPUT(padding_value, TensorType::BasicType()) .OUTPUT(output, TensorType::BasicType()) .OP_END_FACTORY_REG(MatrixDiagV2) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_MATRIX_CALCULATION_OPS_H_