/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file state_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_STATE_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_STATE_OPS_H_ #include "graph/operator_reg.h" namespace ge { /** *@brief Creates a variable tensor . \n *@par Inputs: *x: A tensor, used to assign a value to the variable tensor internally. The caller does not need to pass the value of the variable tensor . \n *@par Attributes: *@li index: An integer. Index of the input tensor. *@li value: A tensor, used to pass and record the value of the variable tensor. *@li container: A string. The container of the variable tensor. *@li shared_name: A string. The shared name of the variable tensor . \n *@par Outputs: *y: The created variable tensor . \n *@par Third-party framework compatibility *Compatible with the TensorFlow operator Variable. */ REG_OP(Variable) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, \ DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, \ DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE})) .ATTR(index, Int, 0) .ATTR(value, Tensor, Tensor()) .ATTR(container, String, "") .ATTR(shared_name, String, "") .OP_END_FACTORY_REG(Variable) /** *@brief Returns a temporary variable tensor. After the use of TemporaryVariable, pass the reference to the variable tensor to the matching DestroyTemporaryVariable op for destruction . \n *@par Attributes: *@li shape: A required list of int32 or int64. The shape of the variable tensor. *@li dtype: Required. The type of elements in the variable tensor. *@li var_name: An optional string. The name of the variable to be created . \n *@par Outputs: *y: The created variable tensor . \n *@par Third-party framework compatibility *Compatible with the TensorFlow operator TemporaryVariable. */ REG_OP(TemporaryVariable) .OUTPUT(y, TensorType::ALL()) .REQUIRED_ATTR(shape, ListInt) .REQUIRED_ATTR(dtype, Int) .ATTR(var_name, String, "") .OP_END_FACTORY_REG(TemporaryVariable) /** *@brief Destroys the temporary variable and returns its final value. All other uses of the temporary variable must have been executed before this op . \n *@par Inputs: *x: A reference to the temporary variable tensor . \n *@par Attributes: *var_name: A required string. Name of the temporary variable. Must be the same as the "var_name" attribute of the reference to the temporary variable tensor . \n *@par Outputs: *y: Final value of the reference to the temporary variable tensor . \n *@par Third-party framework compatibility *Compatible with the TensorFlow operator DestroyTemporaryVariable. */ REG_OP(DestroyTemporaryVariable) .INPUT(x, TensorType::ALL()) .OUTPUT(y, TensorType::ALL()) .ATTR(var_name, String, "") .OP_END_FACTORY_REG(DestroyTemporaryVariable) /** *@brief Checks whether a tensor has been initialized. Outputs boolean scalar indicating whether the tensor has been initialized . \n *@par Inputs: *x: A tensor . \n *@par Outputs: *y: A tensor, indicating whether "x" has been initialized . \n *@par Third-party framework compatibility *Compatible with the TensorFlow operator IsVariableInitialized. */ REG_OP(IsVariableInitialized) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_BOOL})) .OP_END_FACTORY_REG(IsVariableInitialized) /** *@brief Checks whether a tensor has been initialized. Outputs boolean scalar indicating whether the tensor has been initialized . \n *@par Inputs: *x: A tensor . \n *@par Outputs: *y: A tensor, indicating whether "x" has been initialized, and the data type is boolean . \n *@par Third-party framework compatibility *Compatible with the TensorFlow operator VarIsInitializedOp. */ REG_OP(VarIsInitializedOp) .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_BOOL})) .OP_END_FACTORY_REG(VarIsInitializedOp) /** *@brief Increments 'ref' until it reaches 'limit' . \n *@par Inputs: *Inputs include: *ref: A mutable Tensor. Must be one of the following types: int32, int64 . \n *@par Attributes: *limit: An int. If incrementing ref would bring it above limit, instead generates an 'OutOfRange' error . \n *@par Outputs: *y: A Tensor. Has the same type as ref . \n *@attention Constraints: *The implementation for CountUpTo on Ascend uses AICPU, with bad performance. *@par Third-party framework compatibility *@li compatible with tensorflow CountUpTo operator. */ REG_OP(CountUpTo) .INPUT(ref, TensorType({DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_INT32, DT_INT64})) .ATTR(limit, Int, 0) .OP_END_FACTORY_REG(CountUpTo) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_STATE_OPS_H_