/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_BOOSTED_TREES_OPS_H_ #define GE_OP_BOOSTED_TREES_OPS_H_ #include "graph/operator_reg.h" namespace ge { /** *@brief Bucketize each feature based on bucket boundaries. *@par Inputs: *The input float_values can be 1-D tensor, bucket_boundaries can be 1-D. Inputs include: \n * @li float_values: List of Rank 1 Tensor each containing float values for a single feature. \n * @li bucket_boundaries:List of Rank 1 Tensors each containing the bucket boundaries for a single. \n *@par Attributes: *@li num_features:number of features \n *@par Outputs: *@li y:List of Rank 1 Tensors each containing the bucketized values for a single feature. \n *@attention Constraints: \n *-The implementation for BoostedTreesBucketize on Ascend uses AI CPU, with bad performance. \n *@par Quantization supported or not *Not supported *@par Quantized inference supported or not *Supported *@par L2 convergence supported or not *@par Multiple batches supported or not */ REG_OP(BoostedTreesBucketize) .DYNAMIC_INPUT(float_values, TensorType({DT_FLOAT})) .DYNAMIC_INPUT(bucket_boundaries, TensorType({DT_FLOAT})) .DYNAMIC_OUTPUT(y, TensorType({DT_INT32})) .REQUIRED_ATTR(num_features, Int) .OP_END_FACTORY_REG(BoostedTreesBucketize) } // namespace ge #endif // GE_OP_BOOSTED_TREES_OPS_H_