/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file ragged_conversion_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_RAGGED_CONVERSION_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_RAGGED_CONVERSION_OPS_H_ #include "graph/operator_reg.h" namespace ge { /** *@brief Converts a RaggedTensor into a SparseTensor with the same values . \n *@par Inputs: *Two inputs, including: *@li rt_nested_splits: A list of at least 1 Tensor objects with the same type in: int32, int64. The row_splits for the RaggedTensor. It's a dynamic input. *@li rt_dense_values: A Tensor. The flat_values for the RaggedTensor Must be one of the following types: bool, int8, int16, uint16, int32, int64, double, float, float16 . \n *@par Attributes: *@li RAGGED_RANK: the dynamic of input rt_nested_splits with type int. *@li Tsplits: A required attribute, the type is int64 . \n *@par Outputs: *@li sparse_indices: A Tensor of type int64. *@li sparse_values: A Tensor. Has the same type as rt_dense_values. *@li sparse_dense_shape: A Tensor of type int64 . \n *@par Third-party framework compatibility * Compatible with TensorFlow operator RaggedTensorToSparse. */ REG_OP(RaggedTensorToSparse) .DYNAMIC_INPUT(rt_nested_splits, TensorType({DT_INT32, DT_INT64})) .INPUT(rt_dense_values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .OUTPUT(sparse_indices, TensorType({DT_INT64})) .OUTPUT(sparse_values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .OUTPUT(sparse_dense_shape, TensorType({DT_INT64})) .ATTR(RAGGED_RANK, Int, 1) .ATTR(Tsplits, Type, DT_INT64) .OP_END_FACTORY_REG(RaggedTensorToSparse) /** *@brief Create a dense tensor from a ragged tensor, possibly altering its shape . \n *@par Inputs: *Six inputs, including: *@li shape:A `Tensor`. Must be one of the following types: `int64`, `int32`. *@li values:A 1D tensor representing the values of the ragged tensor. *@li default_value:A `Tensor`. Must have the same type as `values`. *@li row_partition_tensors:A list of at least 1 `Tensor` objects with the same type in: `int64`, `int32` . It's a dynamic input.\n *@par Attributes: *@li num_row_partition_tensors:Numbers of row partition tensors. *@li row_partition_types: A list of `strings`. The types of the row partition tensors. At present, these can be: * "ROW_SPLITS": the row_splits tensor from the ragged tensor. * "VALUE_ROWIDS": the value_rowids tensor from the ragged tensor. * "FIRST_DIM_SIZE": if value_rowids is used for the first dimension, then it is preceeded by "FIRST_DIM_SIZE" . \n *@par Outputs: *@li result: A `Tensor`. Has the same type as `values`. */ REG_OP(RaggedTensorToTensor) .INPUT(shape, TensorType({DT_INT32, DT_INT64})) .INPUT(values, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .INPUT(default_value, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .DYNAMIC_INPUT(row_partition_tensors, TensorType({DT_INT32, DT_INT64})) .OUTPUT(result, TensorType({DT_BOOL, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .REQUIRED_ATTR(num_row_partition_tensors, Int) .REQUIRED_ATTR(row_partition_types, ListString) .OP_END_FACTORY_REG(RaggedTensorToTensor) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_RAGGED_CONVERSION_OPS_H_