/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "hybrid/model/hybrid_model_builder.h" #include #include "common/math/math_util.h" #include "graph/ge_context.h" #include "graph/build/memory/var_mem_assign_util.h" #include "graph/debug/ge_attr_define.h" #include "graph/load/model_manager/model_utils.h" #include "graph/load/model_manager/model_manager.h" #include "graph/manager/graph_var_manager.h" #include "graph/manager/host_mem_manager.h" #include "graph/manager/trans_var_data_utils.h" #include "graph/manager/graph_mem_allocator.h" #include "graph/manager/host_mem_allocator.h" #include "graph/utils/graph_utils.h" #include "hybrid/common/npu_memory_allocator.h" #include "hybrid/node_executor/node_executor.h" namespace ge { namespace hybrid { using domi::LogTimeStampDef; using domi::TaskDef; namespace { const uint32_t kSubgraphIndex = 0U; const uint32_t kVarOutputIndex = 0U; const uint64_t kProfilingFpStartLogid = 1U; const uint64_t kProfilingBpEndLogid = 2U; const uint64_t kProfilingIterEndLogid = 65535U; const int kBytes = 8; const uint32_t kStringHeadElems = 2; const char *const kOwnerGraphIsUnknown = "OwnerGraphIsUnknown"; const char *const kProfilingGraph = "ProfilingGraph"; const char *const kProfilingFpNode = "ProfilingFpNode"; const char *const kProfilingBpNode = "ProfilingBpNode"; const char *const kProfilingEndNode = "ProfilingEndNode"; const char *const kProfilingArNode = "ProfilingAllReduceNode"; const char *const kEngineNameRts = "DNN_VM_RTS_OP_STORE"; Status SetOutputNameAttr(ComputeGraph &graph) { vector output_names; for (const auto &node : graph.GetDirectNode()) { auto op_desc = node->GetOpDesc(); if (op_desc == nullptr) { continue; } auto op_type = op_desc->GetType(); if (op_type == NETOUTPUT) { for (InDataAnchorPtr &in_data_anchor : node->GetAllInDataAnchors()) { const OutDataAnchorPtr &peer_out_anchor = in_data_anchor->GetPeerOutAnchor(); GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue); NodePtr in_node = peer_out_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(in_node); output_names.push_back(in_node->GetName()); } } } GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListStr(&graph, ATTR_MODEL_OUT_NODES_NAME, output_names), GELOGE(FAILED, "SetListStr of ATTR_MODEL_OUT_NODES_NAME failed."); return FAILED); return SUCCESS; } int64_t CalcVarSizeInBytes(const GeTensorDesc &desc) { int64_t var_size = 0; auto data_type = desc.GetDataType(); if (data_type == DT_STRING) { (void) TensorUtils::GetSize(desc, var_size); return var_size; } if (TensorUtils::GetTensorMemorySizeInBytes(desc, var_size) != GRAPH_SUCCESS) { GELOGW("Failed to calc var data size"); return -1; } return var_size; } Status CollectDependenciesForFusedGraph(NodeItem &node_item, std::set &data_ops) { for (const auto &node : node_item.fused_subgraph->nodes) { auto op_desc = node->GetOpDesc(); GE_CHECK_NOTNULL(op_desc); const auto &depends = op_desc->GetOpInferDepends(); if (depends.empty()) { continue; } for (auto &input_name : depends) { auto input_index = op_desc->GetInputIndexByName(input_name); auto src_node = NodeUtils::GetInDataNodeByIndex(*node, input_index); GE_CHECK_NOTNULL(src_node); auto src_op_desc = src_node->GetOpDesc(); GE_CHECK_NOTNULL(src_op_desc); if (src_node->GetType() != DATA_TYPE) { GELOGE(UNSUPPORTED, "[%s::%s] Node in fused subgraph can only depend on Data nodes, but depend on %s", node_item.NodeName().c_str(), node->GetName().c_str(), src_node->GetType().c_str()); return UNSUPPORTED; } data_ops.emplace(src_op_desc.get()); } } return SUCCESS; } } // namespace HybridModelBuilder::HybridModelBuilder(HybridModel &hybrid_model) : hybrid_model_(hybrid_model), runtime_param_(hybrid_model.root_runtime_param_) { ge_root_model_ = hybrid_model_.ge_root_model_; } Status HybridModelBuilder::Build() { GE_CHK_STATUS_RET(ValidateParams(), "Failed to validate GeRootModel"); hybrid_model_.model_name_ = ge_root_model_->GetRootGraph()->GetName(); GELOGI("[%s] Start to build hybrid model.", GetGraphName()); GE_CHK_STATUS_RET(InitRuntimeParams(), "[%s] Failed to InitRuntimeParams", GetGraphName()); GE_CHK_STATUS_RET(RecoverGraphUnknownFlag(), "[%s] Failed to RecoverGraphUnknownFlag", GetGraphName()); GE_CHK_STATUS_RET(IndexSpecialNodes(), "[%s] Failed to index nodes", GetGraphName()); GE_CHK_STATUS_RET(IndexTaskDefs(), "[%s] Failed to index task defs", GetGraphName()); GE_CHK_STATUS_RET(LoadGraph(), "[%s] Failed to load graph", GetGraphName()); GE_CHK_STATUS_RET(AssignUninitializedConstantOps(), "[%s] Failed to assign uninitialized constants", GetGraphName()); GE_CHK_STATUS_RET(TransAllVarData(), "[%s] Failed to trans all var data", GetGraphName()); GE_CHK_STATUS_RET(CopyVarData(), "[%s] Failed to copy var data", GetGraphName()); GE_CHK_STATUS_RET(InitModelMem(), "[%s] Failed to init memory", GetGraphName()); GE_CHK_STATUS_RET(InitWeights(), "[%s] Failed to init weights", GetGraphName()); GE_CHK_STATUS_RET(InitConstantOps(), "[%s] Failed to init constant op", GetGraphName()); GE_CHK_STATUS_RET(InitVariableTensors(), "[%s] Failed to init variables", GetGraphName()); GE_CHK_STATUS_RET(LoadTasks(), "[%s] Failed to load tasks", GetGraphName()); GELOGI("[%s] Done building hybrid model successfully.", GetGraphName()); return SUCCESS; } Status HybridModelBuilder::BuildForSingleOp() { GE_CHK_STATUS_RET(ValidateParams(), "Failed to validate GeRootModel"); hybrid_model_.model_name_ = ge_root_model_->GetRootGraph()->GetName(); GELOGI("[%s] Start to build hybrid model.", GetGraphName()); auto ret = ge_root_model_->GetSubgraphInstanceNameToModel(); const GeModelPtr ge_model = ret[ge_root_model_->GetRootGraph()->GetName()]; GE_CHK_STATUS_RET(IndexTaskDefs(ge_root_model_->GetRootGraph(), ge_model), "[%s] Failed to index task defs", GetGraphName()); GE_CHK_STATUS_RET(LoadGraph(), "[%s] Failed to load graph", GetGraphName()); GE_CHK_STATUS_RET(InitWeights(), "[%s] Failed to init weights", GetGraphName()); GE_CHK_STATUS_RET(LoadTasks(), "[%s] Failed to load tasks", GetGraphName()); GELOGI("[%s] Done building hybrid model for single op successfully.", GetGraphName()); return SUCCESS; } Status HybridModelBuilder::ValidateParams() { GE_CHECK_NOTNULL(ge_root_model_); GE_CHECK_NOTNULL(ge_root_model_->GetRootGraph()); return SUCCESS; } Status HybridModelBuilder::BuildNodeItem(const NodePtr &node, NodeItem &node_item) { auto op_desc = node->GetOpDesc(); vector dependencies = node->GetOpDesc()->GetOpInferDepends(); GE_CHK_STATUS_RET(ParseDependentInputNodes(node_item, dependencies), "[%s] Failed to parse node dependencies.", node_item.NodeName().c_str()); node_item.outputs.resize(node_item.num_outputs); for (int i = 0; i < node_item.num_outputs; ++i) { auto out_data_anchor = node->GetOutDataAnchor(i); if (out_data_anchor == nullptr) { GELOGE(INTERNAL_ERROR, "out anchor[%d] of node %s is nullptr", i, node->GetName().c_str()); return INTERNAL_ERROR; } for (auto &dst_in_anchor: out_data_anchor->GetPeerInDataAnchors()) { auto dst_node = dst_in_anchor->GetOwnerNode(); if (dst_node == nullptr) { GELOGW("dst node is nullptr. out anchor = %d", out_data_anchor->GetIdx()); continue; } NodeItem *dst_node_item = nullptr; GE_CHK_STATUS_RET(GetOrCreateNodeItem(dst_node, &dst_node_item), "[%s] Failed to get or create node item.", dst_node->GetName().c_str()); int canonical_index; GE_CHK_STATUS_RET(dst_node_item->GetCanonicalInputIndex(dst_in_anchor->GetIdx(), canonical_index), "[%s] Failed to canonical input index", dst_node->GetName().c_str()); node_item.outputs[i].emplace_back(canonical_index, dst_node_item); } } GE_CHK_STATUS_RET_NOLOG(ResolveRefIo(node_item)); return SUCCESS; } Status HybridModelBuilder::ResolveRefIo(NodeItem &node_item) { bool is_ref = false; auto &op_desc = *node_item.op_desc; (void) AttrUtils::GetBool(op_desc, ATTR_NAME_REFERENCE, is_ref); if (!is_ref) { return SUCCESS; } auto inputs = op_desc.GetAllInputName(); auto outputs = op_desc.GetAllOutputName(); for (auto &output : outputs) { for (auto &input : inputs) { if (input.first == output.first) { int input_idx; GE_CHK_STATUS_RET_NOLOG(node_item.GetCanonicalInputIndex(input.second, input_idx)); auto output_idx = static_cast(output.second); node_item.reuse_inputs[output_idx] = input_idx; GELOGD("[%s] Output[%d] reuse input[%d]", node_item.NodeName().c_str(), output_idx, input_idx); } } } return SUCCESS; } Status HybridModelBuilder::GetOrCreateNodeItem(const NodePtr &node, NodeItem **node_item) { auto &node_items = hybrid_model_.node_items_; auto it = node_items.find(node); if (it != node_items.end()) { *node_item = it->second.get(); return SUCCESS; } std::unique_ptr new_node; GE_CHK_STATUS_RET(NodeItem::Create(node, new_node), "Failed to create node item"); GE_CHK_STATUS_RET_NOLOG(NodeExecutorManager::GetInstance().GetExecutor(*node, &new_node->node_executor)); // we do not need L2 Buffer const char *const kIsFirstNode = "is_first_node"; const char *const kIsLastNode = "is_last_node"; (void) AttrUtils::SetBool(new_node->op_desc, kIsFirstNode, false); (void) AttrUtils::SetBool(new_node->op_desc, kIsLastNode, false); new_node->node_id = node_index; new_node->op_desc->SetId(node_index); node_index += 1; NodeExecutorManager::ExecutorType executor_type = NodeExecutorManager::GetInstance().ResolveExecutorType(*node); new_node->is_profiling_report = (executor_type == NodeExecutorManager::ExecutorType::AICORE) || (executor_type == NodeExecutorManager::ExecutorType::AICPU_TF) || (executor_type == NodeExecutorManager::ExecutorType::AICPU_CUSTOM); *node_item = new_node.get(); node_items[node] = std::move(new_node); return SUCCESS; } Status HybridModelBuilder::ParseDependentInputNodes(NodeItem &node_item, const std::vector &dependencies) { std::set dependent_input_nodes; auto &ge_node = node_item.node; bool is_hccl_op = NodeExecutorManager::GetInstance().ResolveExecutorType(*ge_node) == NodeExecutorManager::ExecutorType::HCCL; // The input tensors become valid after computation is done for parent nodes of type DEPEND_COMPUTE. // Wait for these parent nodes before execution. for (const auto &in_anchor : ge_node->GetAllInDataAnchors()) { const auto &peer_anchor = in_anchor->GetPeerOutAnchor(); if (peer_anchor == nullptr) { GELOGD("[%s] Input[%d] do not have peer anchor", node_item.NodeName().c_str(), in_anchor->GetIdx()); continue; } auto src_node = peer_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(src_node); auto src_node_item = MutableNodeItem(src_node); GE_CHECK_NOTNULL(src_node_item); if (is_hccl_op) { GELOGD("[%s] Add input data dependent node [%s] due to engine type is HCCL", node_item.NodeName().c_str(), src_node_item->NodeName().c_str()); src_node_item->has_observer = true; node_item.dependents_for_execution.emplace_back(src_node); node_item.has_observer = true; for (auto &dst_node : ge_node->GetOutNodes()) { if (dst_node == nullptr) { continue; } NodeItem *dst_node_item = nullptr; GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(dst_node, &dst_node_item)); dst_node_item->dependents_for_execution.emplace_back(ge_node); } } else if (src_node_item->shape_inference_type == DEPEND_COMPUTE) { GELOGD("[%s] Add input data dependent node [%s] due to inference type = DEPEND_COMPUTE", node_item.NodeName().c_str(), src_node_item->NodeName().c_str()); src_node_item->has_observer = true; node_item.dependents_for_execution.emplace_back(src_node); } if (src_node_item->shape_inference_type == DEPEND_SHAPE_RANGE) { GELOGD("[%s] Add input shape dependent node [%s] due to inference type = DEPEND_SHAPE_RANGE", node_item.NodeName().c_str(), src_node_item->NodeName().c_str()); src_node_item->has_observer = true; dependent_input_nodes.emplace(src_node); } } // cond or branch need to be prepared before the execution of IF or CASE if (node_item.node_type == IF || node_item.node_type == STATELESSIF || node_item.node_type == CASE) { const auto &in_anchor = ge_node->GetInDataAnchor(0); GE_CHECK_NOTNULL(in_anchor); const auto &peer_anchor = in_anchor->GetPeerOutAnchor(); GE_CHECK_NOTNULL(peer_anchor); auto src_node = peer_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(src_node); auto src_node_item = MutableNodeItem(src_node); GE_CHECK_NOTNULL(src_node_item); src_node_item->has_observer = true; node_item.dependents_for_execution.emplace_back(src_node); GELOGD("[%s] Dependent added from %s for control op's cond/branch", node_item.NodeName().c_str(), src_node_item->NodeName().c_str()); } for (const auto &input_name : dependencies) { int input_index = node_item.op_desc->GetInputIndexByName(input_name); if (input_index < 0) { GELOGE(INTERNAL_ERROR, "[%s] Failed to get input index by name: %s", node_item.NodeName().c_str(), input_name.c_str()); return INTERNAL_ERROR; } const auto &in_anchor = ge_node->GetInDataAnchor(input_index); GE_CHECK_NOTNULL(in_anchor); const auto &peer_out_anchor = in_anchor->GetPeerOutAnchor(); GE_CHECK_NOTNULL(peer_out_anchor); const auto &src_node = peer_out_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(src_node); auto src_node_item = MutableNodeItem(src_node); src_node_item->to_const_output_id_list.emplace(peer_out_anchor->GetIdx()); src_node_item->has_observer = true; dependent_input_nodes.emplace(src_node); GELOGD("[%s] Dependent added from output of [%s:%d]", node_item.NodeName().c_str(), src_node_item->NodeName().c_str(), peer_out_anchor->GetIdx()); } for (const auto &dep_node : dependent_input_nodes) { node_item.dependents_for_shape_inference.emplace_back(dep_node); } GE_CHK_STATUS_RET(ParseDependentForFusedSubgraph(node_item)); return SUCCESS; } Status HybridModelBuilder::ParseDependentForFusedSubgraph(NodeItem &node_item) { if (node_item.fused_subgraph == nullptr) { return SUCCESS; } std::set data_ops; GE_CHK_STATUS_RET_NOLOG(CollectDependenciesForFusedGraph(node_item, data_ops)); for (auto &op_desc : data_ops) { uint32_t parent_index = 0; if (!AttrUtils::GetInt(*op_desc, ATTR_NAME_PARENT_NODE_INDEX, parent_index)) { GELOGE(INTERNAL_ERROR, "[%s] Failed to get attr [%s]", op_desc->GetName().c_str(), ATTR_NAME_PARENT_NODE_INDEX.c_str()); return INTERNAL_ERROR; } const auto &in_anchor = node_item.node->GetInDataAnchor(parent_index); GE_CHECK_NOTNULL(in_anchor); const auto &peer_out_anchor = in_anchor->GetPeerOutAnchor(); GE_CHECK_NOTNULL(peer_out_anchor); const auto &src_node = peer_out_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(src_node); NodeItem *src_node_item = nullptr; GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(src_node, &src_node_item)); op_desc->SetId(src_node_item->op_desc->GetId()); GELOGD("[%s::%s] Node id was set to that of outer src node's, src_node = %s", node_item.NodeName().c_str(), op_desc->GetName().c_str(), src_node_item->NodeName().c_str()); src_node_item->has_observer = true; src_node_item->to_const_output_id_list.emplace(peer_out_anchor->GetIdx()); auto &depends = node_item.dependents_for_shape_inference; if (std::find(depends.begin(), depends.end(), src_node) == depends.end()) { depends.emplace_back(src_node); GELOGD("[%s] Dependent added from output of [%s:%d]", node_item.NodeName().c_str(), src_node_item->NodeName().c_str(), peer_out_anchor->GetIdx()); } } return SUCCESS; } Status HybridModelBuilder::UpdateAnchorStatus(const NodePtr &node) { if (NodeUtils::SetAllAnchorStatus(node) != GRAPH_SUCCESS) { GELOGE(INTERNAL_ERROR, "[%s] NodeUtils::SetAllAnchorStatus failed.", node->GetName().c_str()); return INTERNAL_ERROR; } for (auto &anchor : node->GetAllInDataAnchors()) { auto peer_anchor = anchor->GetPeerOutAnchor(); if (peer_anchor == nullptr) { if (AnchorUtils::SetStatus(anchor, ANCHOR_SUSPEND) != GRAPH_SUCCESS) { GELOGE(INTERNAL_ERROR, "[%s] AnchorUtils::SetStatus failed.", node->GetName().c_str()); return INTERNAL_ERROR; } } else if (peer_anchor->GetOwnerNode()->GetType() == CONSTANT) { if (AnchorUtils::SetStatus(anchor, ANCHOR_CONST) != GRAPH_SUCCESS) { GELOGE(INTERNAL_ERROR, "[%s] AnchorUtils::SetStatus failed.", node->GetName().c_str()); return INTERNAL_ERROR; } } else { if (AnchorUtils::SetStatus(anchor, ANCHOR_DATA) != GRAPH_SUCCESS) { GELOGE(INTERNAL_ERROR, "[%s] AnchorUtils::SetStatus failed.", node->GetName().c_str()); return INTERNAL_ERROR; } } } return SUCCESS; } Status HybridModelBuilder::DoUnlinkDataAnchors(const OutDataAnchorPtr &out_data_anchor, const InDataAnchorPtr &in_data_anchor) { GE_CHK_GRAPH_STATUS_RET(out_data_anchor->Unlink(in_data_anchor), "Failed to unlink %s:%d from %s:%d", out_data_anchor->GetOwnerNode()->GetName().c_str(), out_data_anchor->GetIdx(), in_data_anchor->GetOwnerNode()->GetName().c_str(), in_data_anchor->GetIdx()); GELOGD("Succeeded in unlinking %s:%d from %s:%d", out_data_anchor->GetOwnerNode()->GetName().c_str(), out_data_anchor->GetIdx(), in_data_anchor->GetOwnerNode()->GetName().c_str(), in_data_anchor->GetIdx()); return SUCCESS; } Status HybridModelBuilder::DoLinkDataAnchors(OutDataAnchorPtr &out_data_anchor, InDataAnchorPtr &in_data_anchor) { GE_CHK_GRAPH_STATUS_RET(out_data_anchor->LinkTo(in_data_anchor), "Failed to link %s:%d to %s:%d", out_data_anchor->GetOwnerNode()->GetName().c_str(), out_data_anchor->GetIdx(), in_data_anchor->GetOwnerNode()->GetName().c_str(), in_data_anchor->GetIdx()); GELOGD("Succeeded in linking %s:%d to %s:%d", out_data_anchor->GetOwnerNode()->GetName().c_str(), out_data_anchor->GetIdx(), in_data_anchor->GetOwnerNode()->GetName().c_str(), in_data_anchor->GetIdx()); return SUCCESS; } Status HybridModelBuilder::MergeInputNodes(ComputeGraph &graph) { const auto &wrapped_node = graph.GetParentNode(); std::set root_nodes; for (const auto &node : graph.GetDirectNode()) { GE_CHECK_NOTNULL(node); if (node->GetType() != DATA_TYPE) { if (node->GetInDataNodes().empty()) { root_nodes.emplace(node); } continue; } auto data_op_desc = node->GetOpDesc(); GE_CHECK_NOTNULL(data_op_desc); uint32_t parent_index = 0; if (!AttrUtils::GetInt(data_op_desc, ATTR_NAME_PARENT_NODE_INDEX, parent_index)) { GELOGE(FAILED, "[%s] Failed to get attr [%s]", data_op_desc->GetName().c_str(), ATTR_NAME_PARENT_NODE_INDEX.c_str()); return FAILED; } auto wrapped_node_in_anchor = wrapped_node->GetInDataAnchor(parent_index); GE_CHECK_NOTNULL(wrapped_node_in_anchor); auto src_out_anchor = wrapped_node_in_anchor->GetPeerOutAnchor(); if (src_out_anchor == nullptr || src_out_anchor->GetOwnerNode() == nullptr) { continue; } wrapped_node_in_anchor->UnlinkAll(); // link src to outputs of DataNode for (auto &out_data_anchor : node->GetAllOutDataAnchors()) { GE_CHECK_NOTNULL(out_data_anchor); for (auto &peer_in_data_anchor : out_data_anchor->GetPeerInDataAnchors()) { auto dst_node = peer_in_data_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(dst_node); root_nodes.emplace(dst_node); GE_CHK_STATUS_RET_NOLOG(DoUnlinkDataAnchors(out_data_anchor, peer_in_data_anchor)); GE_CHK_STATUS_RET_NOLOG(DoLinkDataAnchors(src_out_anchor, peer_in_data_anchor)); } } } // transfer in control edges to all root nodes for (auto &root_node : root_nodes) { auto in_nodes = root_node->GetInAllNodes(); std::set in_node_set(in_nodes.begin(), in_nodes.end()); for (auto &in_control_node : wrapped_node->GetInControlNodes()) { if (in_node_set.count(in_control_node) == 0) { GELOGD("[%s] Restore control edge to [%s]", in_control_node->GetName().c_str(), root_node->GetName().c_str()); GE_CHECK_NOTNULL(in_control_node->GetOutControlAnchor()); (void) in_control_node->GetOutControlAnchor()->LinkTo(root_node->GetInControlAnchor()); } } } wrapped_node->GetInControlAnchor()->UnlinkAll(); return SUCCESS; } Status HybridModelBuilder::MergeNetOutputNode(ComputeGraph &graph) { const auto &parent_node = graph.GetParentNode(); const NodePtr &net_output_node = graph.FindFirstNodeMatchType(NETOUTPUT); if (net_output_node == nullptr) { GELOGD("Graph has no netoutput no need to merge."); return SUCCESS; } const auto &net_output_desc = net_output_node->GetOpDesc(); GE_CHECK_NOTNULL(net_output_desc); auto all_in_nodes = net_output_node->GetInAllNodes(); auto all_out_nodes = parent_node->GetOutAllNodes(); net_output_node->GetInControlAnchor()->UnlinkAll(); parent_node->GetOutControlAnchor()->UnlinkAll(); for (const auto &in_data_anchor : net_output_node->GetAllInDataAnchors()) { auto src_out_anchor = in_data_anchor->GetPeerOutAnchor(); GE_CHECK_NOTNULL(src_out_anchor); GE_CHECK_NOTNULL(src_out_anchor->GetOwnerNode()); GE_CHK_STATUS_RET_NOLOG(DoUnlinkDataAnchors(src_out_anchor, in_data_anchor)); auto index = in_data_anchor->GetIdx(); auto input_desc = net_output_desc->MutableInputDesc(index); if (input_desc == nullptr) { GELOGE(INTERNAL_ERROR, "[%s] Failed to get input desc[%d]", net_output_desc->GetName().c_str(), index); return INTERNAL_ERROR; } uint32_t parent_index = 0; if (!AttrUtils::GetInt(input_desc, ATTR_NAME_PARENT_NODE_INDEX, parent_index)) { GELOGW("SubGraph: %s NetOutput input tensor %d, attr %s not found.", graph.GetName().c_str(), index, ATTR_NAME_PARENT_NODE_INDEX.c_str()); continue; } const OutDataAnchorPtr &parent_out_anchor = parent_node->GetOutDataAnchor(parent_index); GE_CHECK_NOTNULL(parent_out_anchor); for (InDataAnchorPtr &dst_in_anchor : parent_out_anchor->GetPeerInDataAnchors()) { if (dst_in_anchor == nullptr) { continue; } GE_CHECK_NOTNULL(dst_in_anchor->GetOwnerNode()); GE_CHK_STATUS_RET_NOLOG(DoUnlinkDataAnchors(parent_out_anchor, dst_in_anchor)); GE_CHK_STATUS_RET_NOLOG(DoLinkDataAnchors(src_out_anchor, dst_in_anchor)); } } // transfer out control edges std::set in_node_set(all_in_nodes.begin(), all_in_nodes.end()); std::set out_node_set(all_out_nodes.begin(), all_out_nodes.end()); for (auto &src_node : in_node_set) { GELOGD("[%s] process in node.", src_node->GetName().c_str()); auto out_nodes = src_node->GetOutAllNodes(); std::set node_set(out_nodes.begin(), out_nodes.end()); for (auto &dst_node : out_node_set) { if (node_set.count(dst_node) == 0) { src_node->GetOutControlAnchor()->LinkTo(dst_node->GetInControlAnchor()); GELOGD("[%s] Restore control edge to [%s]", src_node->GetName().c_str(), dst_node->GetName().c_str()); } } } return SUCCESS; } Status HybridModelBuilder::UnfoldSubgraphs(ComputeGraph &root_graph, ComputeGraphPtr &merged_graph) { merged_graph = MakeShared("MergedGraph"); for (const auto &node : root_graph.GetDirectNode()) { GE_CHECK_NOTNULL(node); auto op_desc = node->GetOpDesc(); GE_CHECK_NOTNULL(op_desc); const auto &op_type = node->GetType(); if (op_type != PARTITIONEDCALL) { merged_graph->AddNode(node); GELOGD("[%s] Node added to merged graph.", op_desc->GetName().c_str()); continue; } auto subgraph = NodeUtils::GetSubgraph(*node, kSubgraphIndex); GE_CHECK_NOTNULL(subgraph); bool is_unknown_shape = subgraph->GetGraphUnknownFlag(); if (!is_unknown_shape) { merged_graph->AddNode(node); GELOGD("[%s] Known shape partitioned call added to merged graph.", op_desc->GetName().c_str()); continue; } if (op_desc->HasAttr(ATTR_STAGE_LEVEL)) { uint32_t stage_level = UINT32_MAX; if (AttrUtils::GetInt(node->GetOpDesc(), ATTR_STAGE_LEVEL, stage_level)) { for (const auto &stage_node : subgraph->GetAllNodes()) { GELOGD("Set ATTR_STAGE_LEVEL on node %s, stage_level=%u", stage_node->GetName().c_str(), stage_level); (void)AttrUtils::SetInt(stage_node->GetOpDesc(), ATTR_STAGE_LEVEL, stage_level); } } } GE_CHK_GRAPH_STATUS_RET(UnfoldSubgraph(root_graph, *merged_graph, *subgraph), "[%s] Failed to merge subgraph.", subgraph->GetName().c_str()); } // invoke before adding subgraphs. in case modify node id in known-shaped subgraphs. GE_CHK_GRAPH_STATUS_RET(merged_graph->TopologicalSorting(), "Failed to invoke TopologicalSorting on merged graph."); GE_DUMP(merged_graph, "hybrid_merged_graph_BeforeStageSort"); merged_graph->TopologicalSorting([](const NodePtr &a, const NodePtr &b) -> bool { uint32_t a_level = UINT32_MAX; (void)AttrUtils::GetInt(a->GetOpDesc(), ATTR_STAGE_LEVEL, a_level); uint32_t b_level = UINT32_MAX; (void)AttrUtils::GetInt(b->GetOpDesc(), ATTR_STAGE_LEVEL, b_level); return a_level < b_level; }); for (auto &remained_subgraph : root_graph.GetAllSubgraphs()) { GELOGD("Adding subgraph [%s] to merged-graph.", remained_subgraph->GetName().c_str()); GE_CHK_GRAPH_STATUS_RET(merged_graph->AddSubgraph(remained_subgraph), "Failed to add subgraph [%s]", remained_subgraph->GetName().c_str()); } return SUCCESS; } Status HybridModelBuilder::UnfoldSubgraph(ComputeGraph &root_graph, ComputeGraph &parent_graph, ComputeGraph &sub_graph) { auto parent_node = sub_graph.GetParentNode(); GE_CHECK_NOTNULL(parent_node); GE_CHK_STATUS_RET(MergeInputNodes(sub_graph), "[%s] Failed to merge data nodes for subgraph", sub_graph.GetName().c_str()); GE_CHK_STATUS_RET(MergeNetOutputNode(sub_graph), "[%s] Failed to merge net output nodes for subgraph", sub_graph.GetName().c_str()); GELOGD("[%s] Done merging subgraph inputs and outputs successfully.", sub_graph.GetName().c_str()); for (auto &sub_node : sub_graph.GetDirectNode()) { auto sub_op_type = sub_node->GetType(); if (sub_op_type == DATA_TYPE || sub_op_type == NETOUTPUT) { continue; } if (sub_op_type == PARTITIONEDCALL) { auto sub_sub_graph = NodeUtils::GetSubgraph(*sub_node, kSubgraphIndex); GE_CHECK_NOTNULL(sub_sub_graph); if (sub_sub_graph->GetGraphUnknownFlag()) { GE_CHK_STATUS_RET(UnfoldSubgraph(root_graph, parent_graph, *sub_sub_graph), "[%s] Failed to merge subgraph", sub_sub_graph->GetName().c_str()); continue; } } parent_graph.AddNode(sub_node); GELOGD("[%s::%s] added to parent graph: [%s].", sub_graph.GetName().c_str(), sub_node->GetName().c_str(), parent_graph.GetName().c_str()); } GELOGD("[%s] Done merging subgraph. remove it from root graph.", sub_graph.GetName().c_str()); root_graph.RemoveSubgraph(sub_graph.GetName()); return SUCCESS; } Status HybridModelBuilder::BuildOutputMapping(GraphItem &graph_item, const NodeItem &node_item, bool is_root_graph) { auto output_size = node_item.num_inputs; graph_item.output_edges_.resize(output_size); for (auto &in_data_anchor : node_item.node->GetAllInDataAnchors()) { auto peer_out_anchor = in_data_anchor->GetPeerOutAnchor(); GE_CHECK_NOTNULL(peer_out_anchor); auto src_node = peer_out_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(src_node); auto src_node_item = GetNodeItem(src_node); GE_CHECK_NOTNULL(src_node_item); auto output_idx = in_data_anchor->GetIdx(); auto output_offset = src_node_item->output_start + peer_out_anchor->GetIdx(); GELOGI("Output[%d], node = %s, output_index = %d, output_offset = %d ", output_idx, src_node_item->NodeName().c_str(), peer_out_anchor->GetIdx(), output_offset); GE_CHECK_LE(output_idx, output_size - 1); graph_item.output_edges_[output_idx] = {src_node_item, peer_out_anchor->GetIdx()}; } if (!is_root_graph) { for (uint32_t i = 0; i < static_cast(output_size); ++i) { uint32_t p_index = i; // Net output of Subgraph of while do not have parent index if (AttrUtils::GetInt(node_item.op_desc->GetInputDesc(i), ATTR_NAME_PARENT_NODE_INDEX, p_index)) { GELOGD("[%s] Parent index not set for input[%u].", node_item.NodeName().c_str(), i); } graph_item.output_index_mapping_.emplace_back(p_index); } } return SUCCESS; } Status HybridModelBuilder::LoadGraph() { auto root_graph = ge_root_model_->GetRootGraph(); if (!GetContext().GetHostExecFlag()) { std::shared_ptr merged_graph; GELOGI("Before merging subgraphs DirectNodesSize = %zu, GetAllNodesSize = %zu", root_graph->GetDirectNodesSize(), root_graph->GetAllNodesSize()); GE_CHK_GRAPH_STATUS_RET(UnfoldSubgraphs(*root_graph, merged_graph), "Failed to unfold subgraphs."); root_graph = std::move(merged_graph); GELOGI("After merging subgraphs DirectNodesSize = %zu, GetAllNodesSize = %zu", root_graph->GetDirectNodesSize(), root_graph->GetAllNodesSize()); GE_DUMP(root_graph, "hybrid_merged_graph"); } GE_CHK_STATUS_RET(LoadDynamicSubgraph(*root_graph, true), "Failed to load root graph."); GELOGD("Done loading root graph successfully."); GE_CHK_STATUS_RET(hybrid_model_.root_graph_item_->GroupNodes(), "Failed to group nodes for root graph"); for (auto &sub_graph : root_graph->GetAllSubgraphs()) { GE_CHECK_NOTNULL(sub_graph); GELOGD("Start to load subgraph [%s]", sub_graph->GetName().c_str()); auto parent_node = sub_graph->GetParentNode(); GE_CHECK_NOTNULL(parent_node); auto parent_node_item = MutableNodeItem(parent_node); // parent node is in another known subgraph if (parent_node_item == nullptr) { GELOGD("[%s] Subgraph is in another known shaped subgraph, skip it.", sub_graph->GetName().c_str()); continue; } if (sub_graph->GetGraphUnknownFlag()) { GE_CHK_STATUS_RET(LoadDynamicSubgraph(*sub_graph, false), "Failed to load subgraph: [%s]", sub_graph->GetName().c_str()); } else { GE_CHK_STATUS_RET(IdentifyVariableOutputs(*parent_node_item), "[%s] Failed to identify ref outputs.", parent_node_item->NodeName().c_str()); GE_CHK_STATUS_RET(IdentifySameInputs(*parent_node_item), "[%s] Failed to identify same outputs.", parent_node_item->NodeName().c_str()); // if parent is function control op. need add a virtual partitioned call if (parent_node_item->IsControlOp()) { GE_CHK_STATUS_RET(LoadKnownShapedSubgraph(*sub_graph, parent_node_item), "Failed to load function control op subgraph [%s]", sub_graph->GetName().c_str()); } } } GELOGI("Done loading all subgraphs successfully."); return SUCCESS; } const NodeItem *HybridModelBuilder::GetNodeItem(const NodePtr &node) const { return hybrid_model_.GetNodeItem(node); } NodeItem *HybridModelBuilder::MutableNodeItem(const NodePtr &node) { return hybrid_model_.MutableNodeItem(node); } Status HybridModelBuilder::VarNodeToTensor(const NodePtr &var_node, std::unique_ptr &tensor) { string var_name = var_node->GetName(); auto tensor_desc = var_node->GetOpDesc()->MutableOutputDesc(0); uint8_t *var_logic = nullptr; GE_CHK_STATUS_RET(var_manager_->GetVarAddr(var_name, *tensor_desc, &var_logic), "Failed to get var addr. var_name = %s, session_id = %ld", var_name.c_str(), hybrid_model_.GetSessionId()); rtMemType_t memory_type = RT_MEMORY_HBM; uint32_t mem_type = 0; if (AttrUtils::GetInt(var_node->GetOpDesc(), ATTR_OUTPUT_MEMORY_TYPE, mem_type) && (mem_type == 1)) { memory_type = RT_MEMORY_RDMA_HBM; } uint8_t *dev_mem = var_manager_->GetVarMemoryAddr(var_logic, memory_type); if (dev_mem == nullptr) { GELOGE(INTERNAL_ERROR, "Failed to copy var %s from device, cant not get " "var addr from logic addr %p", var_node->GetName().c_str(), var_logic); return INTERNAL_ERROR; } int64_t var_size = CalcVarSizeInBytes(*tensor_desc); // var size is only for checking, will not allocate any memory by it tensor.reset(new(std::nothrow)TensorValue(dev_mem, static_cast(var_size))); GE_CHECK_NOTNULL(tensor); GELOGI("Get var memory addr %p for node %s, size = %ld, mem_type=%u", dev_mem, var_name.c_str(), var_size, mem_type); return SUCCESS; } Status HybridModelBuilder::HandleDtString(const GeTensor &tensor, void *var_addr) { auto desc = tensor.GetTensorDesc(); if (desc.GetDataType() == DT_STRING) { GeShape tensor_shape = desc.GetShape(); /// if tensor is a scaler, it's shape size if zero, according ge_tensor.cc. /// the logic of GetShapeSize is wrong, the scaler tensor's GetShapeSize is zero /// and that of unknown shape is zero too. /// unknown shape will not appear here, so we can use zero judge a tensor is scalar or not int64_t elem_num = tensor_shape.GetShapeSize(); if (elem_num == 0 && tensor_shape.GetDims().empty()) { elem_num = 1; } auto &mutable_tensor = const_cast(tensor); uint64_t *buff = reinterpret_cast(mutable_tensor.MutableData().data()); GE_CHK_BOOL_RET_STATUS(ge::CheckInt64Uint32MulOverflow(elem_num, kBytes * kStringHeadElems) == SUCCESS, FAILED, "Shape size is invalid"); auto offset = static_cast(elem_num * kBytes * kStringHeadElems); auto hbm_raw_data_base_addr = static_cast(reinterpret_cast(var_addr) + offset); for (int64_t i = elem_num - 1; i >= 0; --i) { buff[i * kStringHeadElems] = hbm_raw_data_base_addr + (buff[i * kStringHeadElems] - buff[0]); } } return SUCCESS; } Status HybridModelBuilder::AssignUninitializedConstantOps() { if (GetContext().GetHostExecFlag()) { GELOGI("no need to assign when exec on host."); return SUCCESS; } for (auto &it : constant_op_nodes_) { const string &var_name = it.first; const NodePtr &var_node = it.second; auto tensor_desc = var_node->GetOpDesc()->MutableOutputDesc(0); if (!var_manager_->IsVarExist(var_name, *tensor_desc)) { // allocate constant GELOGD("[%s] Constant not allocated during graph building. now allocate it.", var_name.c_str()); GE_CHK_STATUS_RET(var_manager_->AssignVarMem(var_name, *tensor_desc, RT_MEMORY_HBM)); GE_CHK_STATUS_RET(var_manager_->SetAllocatedGraphId(var_name, runtime_param_.graph_id)); } } for (auto &it : hybrid_model_.device_variable_nodes_) { const string &var_name = it.first; const NodePtr &var_node = it.second; auto tensor_desc = var_node->GetOpDesc()->MutableOutputDesc(0); if (!var_manager_->IsVarExist(var_name, *tensor_desc)) { // allocate constant GELOGD("[%s] Constant not allocated during graph building. now allocate it.", var_name.c_str()); GE_CHK_STATUS_RET(var_manager_->AssignVarMem(var_name, *tensor_desc, RT_MEMORY_HBM)); GE_CHK_STATUS_RET(VarMemAssignUtil::AssignData2Fp32Var(var_node, runtime_param_.session_id)) GE_CHK_STATUS_RET(var_manager_->SetAllocatedGraphId(var_name, runtime_param_.graph_id)); } } return SUCCESS; } Status HybridModelBuilder::InitConstantOps() { for (auto &it : constant_op_nodes_) { const string &var_name = it.first; const NodePtr &var_node = it.second; auto op_desc = var_node->GetOpDesc(); auto v_weights = ModelUtils::GetWeights(op_desc); if (v_weights.empty()) { GELOGE(INTERNAL_ERROR, "[%s] Constant no not have value", var_node->GetName().c_str()); return INTERNAL_ERROR; } auto *ge_tensor = const_cast(v_weights[0].get()); std::unique_ptr var_tensor; if (GetContext().GetHostExecFlag()) { GE_CHECK_NOTNULL(ge_tensor); // Address for eigen kernel should be aligned with 16 bytes // Tensors return by api GetWeights share data with proto, whose addr is not confirmed to be aligned GeTensor aligned_tensor = ge_tensor->Clone(); GELOGD("Init tensor with host constant %s size = %zu", var_name.c_str(), aligned_tensor.MutableData().GetSize()); if (MemManager::Instance().HostMemInstance(RT_MEMORY_HBM).Malloc(aligned_tensor.GetAlignedPtr(), aligned_tensor.GetData().size()) == nullptr) { GELOGE(MEMALLOC_FAILED, "Malloc host memory for an existed GeTensor failed."); return MEMALLOC_FAILED; } var_tensor.reset(new(std::nothrow)TensorValue(aligned_tensor.MutableData().data(), aligned_tensor.GetData().size())); } else { GE_CHK_STATUS_RET_NOLOG(VarNodeToTensor(var_node, var_tensor)); GELOGD("Init const op tensor. name = %s, size = %ld", var_name.c_str(), var_tensor->GetSize()); var_tensor->SetName("ConstOp_" + var_name); auto v_output_size = var_tensor->GetSize(); auto v_output_addr = var_tensor->MutableData(); if (ge_tensor->GetData().size() > 0) { GE_CHK_STATUS_RET_NOLOG(HandleDtString(*ge_tensor, v_output_addr)); GELOGI("[IMAS]InitConstant memcpy graph_%u type[V] name[%s] output[%d] memaddr[%p] mem_size[%zu] datasize[%zu]", runtime_param_.graph_id, op_desc->GetName().c_str(), 0, v_output_addr, v_output_size, ge_tensor->GetData().size()); GE_CHK_RT_RET(rtMemcpy(v_output_addr, v_output_size, ge_tensor->GetData().data(), ge_tensor->GetData().size(), RT_MEMCPY_HOST_TO_DEVICE)); } else { GELOGI("[%s] Const op has no weight data.", op_desc->GetName().c_str()); } } hybrid_model_.variable_tensors_.emplace(var_name, std::move(var_tensor)); } return SUCCESS; } Status HybridModelBuilder::InitVariableTensors() { for (auto &it : hybrid_model_.device_variable_nodes_) { string var_name = it.first; NodePtr &var_node = it.second; std::unique_ptr tensor; GE_CHK_STATUS_RET_NOLOG(VarNodeToTensor(var_node, tensor)); GELOGD("Init variable tensor. name = %s, size = %ld, addr = %p", var_name.c_str(), tensor->GetSize(), tensor->GetData()); tensor->SetName("Var_" + var_name); hybrid_model_.variable_tensors_.emplace(var_name, std::move(tensor)); } for (const auto &it : hybrid_model_.host_variable_nodes_) { auto op_desc = it.second->GetOpDesc(); GE_CHECK_NOTNULL(op_desc); GeTensorDesc output_tensor = op_desc->GetOutputDesc(0); int64_t tensor_size = 0; if (TensorUtils::CalcTensorMemSize(output_tensor.GetShape(), output_tensor.GetFormat(), output_tensor.GetDataType(), tensor_size) != SUCCESS) { GELOGE(INTERNAL_ERROR, "Calculate variable size failed, node name:%s", it.first.c_str()); return INTERNAL_ERROR; } SharedMemInfo mem_info(it.first, tensor_size); if (HostMemManager::Instance().MallocSharedMemory(mem_info) != SUCCESS) { GELOGE(GE_GRAPH_MALLOC_FAILED, "Host variable [%s] malloc failed.", it.first.c_str()); return GE_GRAPH_MALLOC_FAILED; } if (MemManager::Instance().HostMemInstance(RT_MEMORY_HBM).Malloc(mem_info.host_aligned_ptr, tensor_size) == nullptr) { GELOGE(MEMALLOC_FAILED, "Malloc host memory for an existed GeTensor failed."); return MEMALLOC_FAILED; } GELOGD("Host variable [%s] malloc success, size=%ld.", it.first.c_str(), tensor_size); std::unique_ptr tensor(new (std::nothrow) TensorValue(mem_info.host_aligned_ptr->MutableGet(), tensor_size)); GE_CHECK_NOTNULL(tensor); hybrid_model_.variable_tensors_.emplace(it.first, std::move(tensor)); } return SUCCESS; } Status HybridModelBuilder::InitWeights() { // For constant in root graph const auto &root_graph = ge_root_model_->GetRootGraph(); const auto &subgraph_models = ge_root_model_->GetSubgraphInstanceNameToModel(); auto iter = subgraph_models.find(root_graph->GetName()); if (iter == subgraph_models.end()) { GELOGD("Root graph model not found"); return SUCCESS; } auto &root_model = iter->second; const auto &weight_buffer = root_model->GetWeight(); if (weight_buffer.GetSize() == 0) { GELOGD("weight is empty"); return SUCCESS; } auto allocator = NpuMemoryAllocator::GetAllocator(); GE_CHECK_NOTNULL(allocator); hybrid_model_.weight_buffer_ = TensorBuffer::Create(allocator, weight_buffer.size()); GE_CHECK_NOTNULL(hybrid_model_.weight_buffer_); auto weight_base = reinterpret_cast(hybrid_model_.weight_buffer_->GetData()); GE_CHK_RT_RET(rtMemcpy(weight_base, hybrid_model_.weight_buffer_->GetSize(), weight_buffer.GetData(), weight_buffer.GetSize(), RT_MEMCPY_HOST_TO_DEVICE)); GELOGI("Init weight mem successfully, weight base %p, weight size = %zu", weight_base, hybrid_model_.weight_buffer_->GetSize()); for (auto &node : root_graph->GetDirectNode()) { if (node->GetType() != CONSTANT) { continue; } auto op_desc = node->GetOpDesc(); auto v_weights = ModelUtils::GetWeights(op_desc); if (v_weights.empty()) { GELOGE(INTERNAL_ERROR, "[%s] Constant has no value", node->GetName().c_str()); return INTERNAL_ERROR; } auto *ge_tensor = const_cast(v_weights[0].get()); GE_CHECK_NOTNULL(ge_tensor); const GeTensorDesc &tensor_desc = ge_tensor->GetTensorDesc(); int64_t tensor_size = 0; GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetSize(*op_desc->MutableOutputDesc(0), tensor_size), "[%s] Failed to get tensor size", node->GetName().c_str()); int64_t data_offset = 0; GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetDataOffset(tensor_desc, data_offset), "[%s] Failed to get data offset", node->GetName().c_str()); GELOGD("[%s] Start to init Constant node [%s], size = %ld, offset = %ld", GetGraphName(), node->GetName().c_str(), tensor_size, data_offset); auto tensor_buffer = TensorBuffer::Create(weight_base + data_offset, tensor_size); GE_CHECK_NOTNULL(tensor_buffer); std::unique_ptr constant_tensor(new (std::nothrow)TensorValue(std::move(tensor_buffer))); GE_CHECK_NOTNULL(constant_tensor); constant_tensor->SetName("Constant_" + op_desc->GetName()); hybrid_model_.constant_tensors_.emplace(node, std::move(constant_tensor)); GELOGD("[%s] Constant node [%s] added, size = %ld", GetGraphName(), node->GetName().c_str(), tensor_size); } return SUCCESS; } Status HybridModelBuilder::LoadTasks() { GE_CHK_STATUS_RET(CheckAicpuOpList(), "Check Aicpu op failed."); for (auto &it : hybrid_model_.node_items_) { auto &node_item = it.second; auto &node_ptr = node_item->node; if (node_item->node_type == NETOUTPUT) { continue; } GELOGD("[%s] Start to build kernel task", node_ptr->GetName().c_str()); auto load_ret = node_item->node_executor->LoadTask(hybrid_model_, node_ptr, node_item->kernel_task); if (load_ret != UNSUPPORTED && load_ret != SUCCESS) { GELOGE(load_ret, "[%s] Failed to load task", node_ptr->GetName().c_str()); return load_ret; } GELOGD("[%s] Done loading task successfully.", node_ptr->GetName().c_str()); } return SUCCESS; } Status HybridModelBuilder::LoadGeModel(ComputeGraph &sub_graph, const GeModelPtr &ge_model) { auto parent_node = sub_graph.GetParentNode(); GE_CHECK_NOTNULL(parent_node); auto op_type = parent_node->GetType(); if (IsControlOp(op_type)) { GELOGD("Set ge_model for control op subgraph: [%s], task_size = %d", sub_graph.GetName().c_str(), ge_model->GetModelTaskDefPtr()->task_size()); subgraph_models_.emplace(sub_graph.GetName(), ge_model); } else { GELOGD("Set ge_model for subgraph: [%s], task_size = %d", sub_graph.GetName().c_str(), ge_model->GetModelTaskDefPtr()->task_size()); hybrid_model_.known_shape_sub_models_.emplace(parent_node, ge_model); } return SUCCESS; } Status HybridModelBuilder::IndexTaskDefs(const ComputeGraphPtr &sub_graph, const GeModelPtr &ge_model) { // index task defs GELOGD("To index tasks for subgraph: %s", sub_graph->GetName().c_str()); std::unordered_map node_map; for (const auto &node : sub_graph->GetDirectNode()) { GE_CHECK_NOTNULL(node); GE_CHECK_NOTNULL(node->GetOpDesc()); auto node_id = node->GetOpDesc()->GetId(); GELOGD("op_index = %ld, node_name = %s", node_id, node->GetName().c_str()); node_map.emplace(node_id, node); } auto tasks = ge_model->GetModelTaskDefPtr()->task(); for (int i = 0; i < tasks.size(); ++i) { const domi::TaskDef &task_def = tasks[i]; GELOGI("Task id = %d, task type = %d", i, task_def.type()); auto task_type = static_cast(task_def.type()); uint32_t op_index = -1; if (task_type == RT_MODEL_TASK_KERNEL) { op_index = task_def.kernel().context().op_index(); } else if (task_type == RT_MODEL_TASK_KERNEL_EX) { op_index = task_def.kernel_ex().op_index(); } else if (task_type == RT_MODEL_TASK_HCCL) { op_index = task_def.kernel_hccl().op_index(); } else if (task_type == RT_MODEL_TASK_ALL_KERNEL) { op_index = task_def.kernel_with_handle().context().op_index(); } else { GELOGD("Skip task type: %d", static_cast(task_type)); continue; } GELOGD("op_index = %u, task_type = %d.", op_index, task_type); auto iter = node_map.find(op_index); if (iter == node_map.end()) { GELOGE(INTERNAL_ERROR, "Failed to get node by op_index = %u.", op_index); return INTERNAL_ERROR; } auto &node = iter->second; if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) { ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(node->GetOpDesc()); } GELOGD("Task loaded for node: %s, task type = %d, op_index = %u.", node->GetName().c_str(), task_type, op_index); hybrid_model_.task_defs_[node].emplace_back(task_def); } return SUCCESS; } Status HybridModelBuilder::IndexTaskDefs() { const auto &root_graph = ge_root_model_->GetRootGraph(); if (SetOutputNameAttr(*root_graph) != SUCCESS) { GELOGW("Set output name attr failed."); } for (auto &it : ge_root_model_->GetSubgraphInstanceNameToModel()) { auto &name = it.first; auto &ge_model = it.second; GE_CHECK_NOTNULL(ge_model); const auto &sub_graph = root_graph->GetSubgraph(name); if (sub_graph == nullptr) { continue; } bool is_unknown_shape = sub_graph->GetGraphUnknownFlag(); if (!is_unknown_shape) { GE_CHK_STATUS_RET_NOLOG(LoadGeModel(*sub_graph, ge_model)); continue; } // index task defs GELOGD("To index tasks for subgraph: %s", name.c_str()); std::unordered_map node_map; for (const auto &node : sub_graph->GetDirectNode()) { GE_CHECK_NOTNULL(node); GE_CHECK_NOTNULL(node->GetOpDesc()); auto node_id = node->GetOpDesc()->GetId(); GELOGD("op_index = %ld, node_name = %s", node_id, node->GetName().c_str()); node_map.emplace(node_id, node); } auto tasks = ge_model->GetModelTaskDefPtr()->task(); for (int i = 0; i < tasks.size(); ++i) { const domi::TaskDef &task_def = tasks[i]; GELOGI("Task id = %d, task type = %d", i, task_def.type()); auto task_type = static_cast(task_def.type()); uint32_t op_index = -1; if (task_type == RT_MODEL_TASK_KERNEL) { op_index = task_def.kernel().context().op_index(); } else if (task_type == RT_MODEL_TASK_KERNEL_EX) { op_index = task_def.kernel_ex().op_index(); } else if (task_type == RT_MODEL_TASK_HCCL) { op_index = task_def.kernel_hccl().op_index(); } else if (task_type == RT_MODEL_TASK_ALL_KERNEL) { op_index = task_def.kernel_with_handle().context().op_index(); } else { GELOGD("Skip task type: %d", static_cast(task_type)); continue; } auto iter = node_map.find(op_index); if (iter == node_map.end()) { GELOGE(INTERNAL_ERROR, "Failed to get node by index = %u", op_index); return INTERNAL_ERROR; } auto &node = iter->second; if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) { ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(node->GetOpDesc()); } GELOGD("Task loaded for node: %s, task type = %d, op_index = %u", node->GetName().c_str(), task_type, op_index); hybrid_model_.task_defs_[node].emplace_back(task_def); } } return SUCCESS; } Status HybridModelBuilder::IndexSpecialNodes() { GELOGD("Start to index special nodes"); const auto &root_graph = ge_root_model_->GetRootGraph(); for (auto &node : root_graph->GetAllNodes()) { GE_CHECK_NOTNULL(node); GE_CHECK_NOTNULL(node->GetOpDesc()); auto op_type = node->GetType(); GELOGD("node name = %s, node type = %s", node->GetName().c_str(), node->GetType().c_str()); if (op_type == VARIABLE) { string placement; (void) AttrUtils::GetStr(node->GetOpDesc(), ATTR_VARIABLE_PLACEMENT, placement); if (placement == "host") { hybrid_model_.host_variable_nodes_.emplace(node->GetName(), node); } else { hybrid_model_.device_variable_nodes_.emplace(node->GetName(), node); } } else if (op_type == CONSTANTOP) { constant_op_nodes_.emplace(node->GetName(), node); } else if (op_type == DATA && node->GetOwnerComputeGraph() != root_graph) { NodePtr src_node; int peer_out_index = -1; GE_CHK_STATUS_RET_NOLOG(GetPeerNodeAcrossSubGraphs(node, src_node, peer_out_index)); GELOGD("Got peer node for data node %s, peer node = %s(%s)", node->GetName().c_str(), src_node->GetName().c_str(), src_node->GetType().c_str()); auto src_op_type = src_node->GetType(); if (src_op_type == CONSTANTOP || src_op_type == VARIABLE) { for (auto &dst_node_and_in_anchor : node->GetOutDataNodesAndAnchors()) { auto &dst_node = dst_node_and_in_anchor.first; auto &in_anchor = dst_node_and_in_anchor.second; node_ref_inputs_[dst_node].emplace_back(std::make_pair(in_anchor->GetIdx(), src_node)); } } } } return SUCCESS; } Status HybridModelBuilder::GetPeerNodeAcrossSubGraphs(const NodePtr &data_node, NodePtr &peer_node, int &peer_out_index) { auto sub_graph = data_node->GetOwnerComputeGraph(); GE_CHECK_NOTNULL(sub_graph); GELOGD("To get peer node of %s::%s", sub_graph->GetName().c_str(), data_node->GetName().c_str()); auto wrapped_node = data_node->GetOwnerComputeGraph()->GetParentNode(); if (wrapped_node == nullptr) { GELOGE(INTERNAL_ERROR, "[%s] Node is in root graph.", data_node->GetName().c_str()); return INTERNAL_ERROR; } auto data_op_desc = data_node->GetOpDesc(); uint32_t parent_index = 0; if (!AttrUtils::GetInt(data_op_desc, ATTR_NAME_PARENT_NODE_INDEX, parent_index)) { GELOGE(INTERNAL_ERROR, "[%s] Failed to get attr [%s]", data_op_desc->GetName().c_str(), ATTR_NAME_PARENT_NODE_INDEX.c_str()); return INTERNAL_ERROR; } auto wrapped_node_in_anchor = wrapped_node->GetInDataAnchor(parent_index); GE_CHECK_NOTNULL(wrapped_node_in_anchor); auto src_out_anchor = wrapped_node_in_anchor->GetPeerOutAnchor(); if (src_out_anchor == nullptr || src_out_anchor->GetOwnerNode() == nullptr) { GELOGE(INTERNAL_ERROR, "[%s] Parent node do not have peer anchor.", data_node->GetName().c_str()); return INTERNAL_ERROR; } auto src_wrapped_node_out_anchor = wrapped_node_in_anchor->GetPeerOutAnchor(); GE_CHECK_NOTNULL(src_wrapped_node_out_anchor); auto src_wrapped_node = src_wrapped_node_out_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(src_wrapped_node); // connected to root-graph's DATA auto src_node_type = src_wrapped_node->GetType(); if (src_node_type != PARTITIONEDCALL) { peer_node = src_wrapped_node; peer_out_index = kVarOutputIndex; GELOGD("[%s] Node is connected to root graph's node: %s", data_node->GetName().c_str(), peer_node->GetName().c_str()); return SUCCESS; } auto src_graph = NodeUtils::GetSubgraph(*src_wrapped_node, kSubgraphIndex); GE_CHECK_NOTNULL(src_graph); auto src_net_output_node = src_graph->FindFirstNodeMatchType(NETOUTPUT); GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(src_net_output_node == nullptr, return INTERNAL_ERROR, "Failed to find NetOutput in subgraph: %s", src_graph->GetName().c_str()); auto net_output_desc = src_net_output_node->GetOpDesc(); GE_CHECK_NOTNULL(net_output_desc); auto out_index = static_cast(src_wrapped_node_out_anchor->GetIdx()); GELOGD("src graph = %s, src parent output index = %u", src_graph->GetName().c_str(), out_index); // link src to outputs of DataNode auto input_size = net_output_desc->GetAllInputsSize(); GE_CHECK_LE(input_size, UINT32_MAX); for (uint32_t i = 0; i < static_cast(input_size); ++i) { uint32_t p_index = 0; if (!AttrUtils::GetInt(net_output_desc->GetInputDesc(i), ATTR_NAME_PARENT_NODE_INDEX, p_index)) { GELOGW("SubGraph: %s input tensor %u attr %s not found.", src_graph->GetName().c_str(), i, ATTR_NAME_PARENT_NODE_INDEX.c_str()); continue; } GELOGD("NetOutput's input[%u], parent_node_index = %u", i, p_index); if (p_index == out_index) { auto in_anchor = src_net_output_node->GetInDataAnchor(i); GE_CHECK_NOTNULL(in_anchor); auto peer_out_anchor = in_anchor->GetPeerOutAnchor(); GE_CHECK_NOTNULL(peer_out_anchor); peer_node = peer_out_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(peer_node); peer_out_index = peer_out_anchor->GetIdx(); GELOGD("Found peer node of Data node: %s::%s is %s::%s", sub_graph->GetName().c_str(), data_node->GetName().c_str(), src_graph->GetName().c_str(), peer_node->GetName().c_str()); return SUCCESS; } } GELOGE(FAILED, "Failed to find peer node for %s::%s", sub_graph->GetName().c_str(), data_node->GetName().c_str()); return FAILED; } Status HybridModelBuilder::InitRuntimeParams() { int64_t value = 0; bool ret = false; if (ge_root_model_->GetSubgraphInstanceNameToModel().empty()) { GELOGE(INTERNAL_ERROR, "Root model has no sub model"); return INTERNAL_ERROR; } // session id and var size is same for every model auto first_model = ge_root_model_->GetSubgraphInstanceNameToModel().begin()->second; ret = ge::AttrUtils::GetInt(first_model, ge::MODEL_ATTR_SESSION_ID, value); runtime_param_.session_id = ret ? static_cast(value) : 0; ret = ge::AttrUtils::GetInt(first_model, ATTR_MODEL_TASK_GEN_VAR_ADDR, value); runtime_param_.logic_var_base = ret ? static_cast(value) : 0; runtime_param_.graph_id = ge_root_model_->GetRootGraph()->GetGraphID(); value = 0; for (auto &it : ge_root_model_->GetSubgraphInstanceNameToModel()) { (void) ge::AttrUtils::GetInt(it.second, ATTR_MODEL_VAR_SIZE, value); if (value > 0) { runtime_param_.var_size = static_cast(value); break; } } GELOGI("InitRuntimeParams(), session_id:%lu, var_size:%lu. graph_id = %u", runtime_param_.session_id, runtime_param_.var_size, runtime_param_.graph_id); var_manager_ = VarManager::Instance(runtime_param_.session_id); GE_CHECK_NOTNULL(var_manager_); return SUCCESS; } Status HybridModelBuilder::IdentifySameInputs(NodeItem &node_item) { GELOGD("Start to parse same inputs on net output: %s", node_item.NodeName().c_str()); auto subgraph = NodeUtils::GetSubgraph(*node_item.node, kSubgraphIndex); GE_CHECK_NOTNULL(subgraph); auto net_output_node = subgraph->FindFirstNodeMatchType(NETOUTPUT); if (net_output_node == nullptr) { GELOGD("Subgraph [%s] does not have net output", subgraph->GetName().c_str()); return SUCCESS; } auto net_output_desc = net_output_node->GetOpDesc(); GE_CHECK_NOTNULL(net_output_desc); std::map connected_inputs; for (const auto &in_data_anchor : net_output_node->GetAllInDataAnchors()) { auto out_data_anchor = in_data_anchor->GetPeerOutAnchor(); if (out_data_anchor == nullptr) { continue; } auto src_node = out_data_anchor->GetOwnerNode(); GE_CHECK_NOTNULL(src_node); auto op_desc = src_node->GetOpDesc(); GE_CHECK_NOTNULL(op_desc); std::string input_key = std::to_string(op_desc->GetId()) + "_" + std::to_string(out_data_anchor->GetIdx()); auto it = connected_inputs.find(input_key); if (it == connected_inputs.end()) { connected_inputs.emplace(input_key, in_data_anchor->GetIdx()); } else { GELOGD("[%s] output [%d] reuse output [%d] input node = %s, idx = %d.", node_item.NodeName().c_str(), in_data_anchor->GetIdx(), it->second, src_node->GetName().c_str(), out_data_anchor->GetIdx()); node_item.reuse_outputs.emplace(in_data_anchor->GetIdx(), it->second); } } return SUCCESS; } Status HybridModelBuilder::IdentifyVariableOutputs(NodeItem &node_item) { GELOGD("Start to parse outputs of node: %s", node_item.NodeName().c_str()); auto subgraph = NodeUtils::GetSubgraph(*node_item.node, kSubgraphIndex); GE_CHECK_NOTNULL(subgraph); auto net_output_node = subgraph->FindFirstNodeMatchType(NETOUTPUT); if (net_output_node == nullptr) { GELOGD("[%s] Subgraph do not got net output", subgraph->GetName().c_str()); return SUCCESS; } auto net_output_desc = net_output_node->GetOpDesc(); GE_CHECK_NOTNULL(net_output_desc); // constant/variable connected to net output for (const auto &in_data_anchor : net_output_node->GetAllInDataAnchors()) { auto src_node = GetPeerNode(in_data_anchor); GE_CHECK_NOTNULL(src_node); auto src_op_type = src_node->GetType(); GELOGD("Node %s, output %d, src node = %s, src node type = %s", node_item.NodeName().c_str(), in_data_anchor->GetIdx(), src_node->GetName().c_str(), src_op_type.c_str()); if (src_op_type != CONSTANTOP && src_op_type != VARIABLE) { continue; } uint32_t parent_index = 0; GE_CHK_STATUS_RET_NOLOG(GetParentNodeOutputIndex(*net_output_desc, in_data_anchor->GetIdx(), parent_index)); GELOGD("Got parent output index = %u", parent_index); GE_CHECK_LE(parent_index, INT32_MAX); node_item.ref_outputs.emplace(static_cast(parent_index), src_node); } // Data nodes marked with REF_VAR_SRC_VAR_NAME // Using variable tensor as data's output for (auto &node : subgraph->GetDirectNode()) { if (node->GetType() != DATA) { continue; } string ref_var_name; (void) AttrUtils::GetStr(node->GetOpDesc(), REF_VAR_SRC_VAR_NAME, ref_var_name); if (ref_var_name.empty()) { continue; } GELOGD("Data node ref to variable: %s", ref_var_name.c_str()); NodePtr src_node; auto var_node = hybrid_model_.GetVariableNode(ref_var_name); GE_CHECK_NOTNULL(var_node); GELOGD("Found var node [%s] by ref_var_name [%s]", var_node->GetName().c_str(), ref_var_name.c_str()); int peer_output_index = -1; GE_CHK_STATUS_RET_NOLOG(GetPeerNodeAcrossSubGraphs(node, src_node, peer_output_index)); auto src_node_item = MutableNodeItem(src_node); GE_CHECK_NOTNULL(src_node_item); src_node_item->ref_outputs.emplace(peer_output_index, var_node); } return SUCCESS; } NodePtr HybridModelBuilder::GetPeerNode(const InDataAnchorPtr &in_data_anchor) { auto peer_out_anchor = in_data_anchor->GetPeerOutAnchor(); if (peer_out_anchor != nullptr) { return peer_out_anchor->GetOwnerNode(); } return nullptr; } Status HybridModelBuilder::GetParentNodeOutputIndex(const OpDesc &op_desc, int index, uint32_t &out_index) { auto input_desc = op_desc.MutableInputDesc(index); GE_CHECK_NOTNULL(input_desc); if (!AttrUtils::GetInt(input_desc, ATTR_NAME_PARENT_NODE_INDEX, out_index)) { GELOGE(INTERNAL_ERROR, "NetOutput input tensor %d, attr %s not found.", index, ATTR_NAME_PARENT_NODE_INDEX.c_str()); return INTERNAL_ERROR; } return SUCCESS; } Status HybridModelBuilder::InitModelMem() { hybrid_model_.var_mem_base_ = var_manager_->GetVarMemoryBase(RT_MEMORY_HBM); auto total_var_size = hybrid_model_.TotalVarMemSize(); if (total_var_size == 0 && !constant_op_nodes_.empty()) { total_var_size = var_manager_->GetVarMemSize(RT_MEMORY_HBM) > 0 ? var_manager_->GetVarMemMaxSize() : 0; GELOGD("Model var size = 0. but got uninitialized constant. set var size to %zu.", total_var_size); } if (total_var_size > 0 && hybrid_model_.var_mem_base_ == nullptr) { GE_CHK_STATUS_RET(var_manager_->MallocVarMemory(total_var_size), "Malloc Var Memory Fail."); hybrid_model_.var_mem_base_ = var_manager_->GetVarMemoryBase(RT_MEMORY_HBM); } runtime_param_.var_base = hybrid_model_.var_mem_base_; return SUCCESS; } Status HybridModelBuilder::TransAllVarData() { GELOGI("TransAllVarData start: session_id:%lu, graph_id: %u.", runtime_param_.session_id, runtime_param_.graph_id); rtContext_t ctx = nullptr; rtError_t rt_ret = rtCtxGetCurrent(&ctx); if (rt_ret != RT_ERROR_NONE) { GELOGE(RT_FAILED, "Failed to get current context, error_code is: 0x%X.", rt_ret); return RT_FAILED; } std::vector variable_node_list; for (auto &it : hybrid_model_.device_variable_nodes_) { variable_node_list.emplace_back(it.second); GELOGD("[%s] added for trans var data", it.first.c_str()); } GE_CHK_STATUS_RET(TransVarDataUtils::TransAllVarData(variable_node_list, runtime_param_.session_id, ctx, runtime_param_.graph_id), "TransAllVarData failed."); GELOGI("TransAllVarData success."); return SUCCESS; } Status HybridModelBuilder::CopyVarData() { GE_CHK_STATUS_RET(TransVarDataUtils::CopyVarData(ge_root_model_->GetRootGraph(), runtime_param_.session_id, hybrid_model_.device_id_), "CopyVarData failed."); GELOGI("CopyVarData success."); return SUCCESS; } Status HybridModelBuilder::LoadKnownShapedSubgraph(ComputeGraph &graph, NodeItem *parent_node_item) { GELOGD("Start to load known shaped subgraph [%s]", graph.GetName().c_str()); auto graph_item = std::unique_ptr(new(std::nothrow)GraphItem()); GE_CHECK_NOTNULL(graph_item); graph_item->is_dynamic_ = false; auto subgraph_name = graph.GetName(); auto wrapper_op_desc = MakeShared(subgraph_name + "_partitioned_call", PARTITIONEDCALL); GE_CHECK_NOTNULL(wrapper_op_desc); for (auto &node : graph.GetDirectNode()) { GE_CHECK_NOTNULL(node); auto op_desc = node->GetOpDesc(); GE_CHECK_NOTNULL(op_desc); const auto &op_type = node->GetType(); if (op_type == DATA) { int32_t data_index = 0; if (!AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, data_index)) { GELOGE(FAILED, "[%s] Failed to get attr [%s]", node->GetName().c_str(), ATTR_NAME_PARENT_NODE_INDEX.c_str()); return FAILED; } (void) wrapper_op_desc->AddInputDesc(op_desc->GetInputDesc(0)); graph_item->input_index_mapping_.emplace_back(data_index); } else if (op_type == NETOUTPUT) { int output_index = 0; for (const auto &output_desc : op_desc->GetAllInputsDescPtr()) { int32_t data_index = output_index++; if (!AttrUtils::GetInt(output_desc, ATTR_NAME_PARENT_NODE_INDEX, data_index)) { GELOGI("[%s] Failed to get attr [%s]", node->GetName().c_str(), ATTR_NAME_PARENT_NODE_INDEX.c_str()); } GE_CHK_GRAPH_STATUS_RET(wrapper_op_desc->AddOutputDesc(*output_desc), "[%s] Failed to add output desc. output index = %d", graph.GetName().c_str(), output_index); graph_item->output_index_mapping_.emplace_back(data_index); } } } auto temp_graph = MakeShared("temp"); GE_CHECK_NOTNULL(temp_graph); auto wrapper_node = temp_graph->AddNode(wrapper_op_desc); GeModelPtr ge_model = subgraph_models_[subgraph_name]; GE_CHECK_NOTNULL(ge_model); hybrid_model_.known_shape_sub_models_.emplace(wrapper_node, ge_model); NodeItem *node_item = nullptr; GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(wrapper_node, &node_item)); node_item->input_start = 0; node_item->output_start = 0; node_item->outputs.resize(node_item->num_outputs); graph_item->node_items_.emplace_back(node_item); graph_item->output_node_ = node_item; graph_item->total_inputs_ = node_item->num_inputs; graph_item->total_outputs_ = node_item->num_outputs; GELOGD("NodeItem create for known shape subgraph [%s], NodeItem = %s", graph.GetName().c_str(), node_item->DebugString().c_str()); GELOGD("Done parse known shape subgraph successfully. graph = [%s]", graph.GetName().c_str()); graph_item->SetName(graph.GetName()); GELOGD("Done loading known shape subgraph: [%s]", graph_item->GetName().c_str()); hybrid_model_.subgraph_items_.emplace(graph.GetName(), std::move(graph_item)); return SUCCESS; } Status HybridModelBuilder::RecoverGraphUnknownFlag() { const auto &root_graph = ge_root_model_->GetRootGraph(); for (auto &sub_graph : root_graph->GetAllSubgraphs()) { GE_CHECK_NOTNULL(sub_graph); for (const auto &node : sub_graph->GetDirectNode()) { bool is_unknown_shape = false; (void)AttrUtils::GetBool(node->GetOpDesc(), kOwnerGraphIsUnknown, is_unknown_shape); sub_graph->SetGraphUnknownFlag(is_unknown_shape); break; } } return SUCCESS; } Status HybridModelBuilder::GenerateFpProfilingTask(const OpDescPtr &op_desc, vector &task_def_list) { uint64_t jobid_log_id = ge::GetContext().TraceId(); GELOGD("The first FP operator is %s,, job_id %lu", op_desc->GetName().c_str(), jobid_log_id); TaskDef job_task_def; job_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); job_task_def.set_stream_id(op_desc->GetStreamId()); LogTimeStampDef *job_log_def = job_task_def.mutable_log_timestamp(); if (job_log_def != nullptr) { job_log_def->set_logid(jobid_log_id); job_log_def->set_notify(false); } task_def_list.emplace_back(job_task_def); TaskDef fp_task_def; fp_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); fp_task_def.set_stream_id(op_desc->GetStreamId()); LogTimeStampDef *fp_log_def = fp_task_def.mutable_log_timestamp(); if (fp_log_def != nullptr) { fp_log_def->set_logid(kProfilingFpStartLogid); fp_log_def->set_notify(false); } task_def_list.emplace_back(fp_task_def); return SUCCESS; } Status HybridModelBuilder::GenerateArProfilingTask(const OpDescPtr &op_desc, int64_t log_id, vector &task_def_list) { TaskDef ar_task_def; ar_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); ar_task_def.set_stream_id(op_desc->GetStreamId()); LogTimeStampDef *ar_log_def = ar_task_def.mutable_log_timestamp(); if (ar_log_def != nullptr) { ar_log_def->set_logid(log_id); ar_log_def->set_notify(false); } task_def_list.emplace_back(ar_task_def); return SUCCESS; } Status HybridModelBuilder::GenerateBpProfilingTask(const OpDescPtr &op_desc, vector &task_def_list) { TaskDef bp_task_def; bp_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); bp_task_def.set_stream_id(op_desc->GetStreamId()); LogTimeStampDef *bp_log_def = bp_task_def.mutable_log_timestamp(); GE_CHECK_NOTNULL(bp_log_def); bp_log_def->set_logid(kProfilingBpEndLogid); bp_log_def->set_notify(false); task_def_list.emplace_back(bp_task_def); return SUCCESS; } Status HybridModelBuilder::GenerateEndProfilingTask(const OpDescPtr &op_desc, vector &task_def_list) { TaskDef end_task_def; end_task_def.set_type(RT_MODEL_TASK_PROFILER_TRACE); end_task_def.set_stream_id(op_desc->GetStreamId()); LogTimeStampDef *end_log_def = end_task_def.mutable_log_timestamp(); GE_CHECK_NOTNULL(end_log_def); end_log_def->set_logid(kProfilingIterEndLogid); end_log_def->set_notify(true); task_def_list.emplace_back(end_task_def); return SUCCESS; } Status HybridModelBuilder::CreateProfilingNodeBefore(GraphItem &graph_item, const NodePtr &node) { GE_CHECK_NOTNULL(node); const OpDescPtr &op_desc = node->GetOpDesc(); GE_CHECK_NOTNULL(op_desc); const auto &compute_graph = MakeShared(kProfilingGraph); GE_CHECK_NOTNULL(compute_graph); NodePtr node_ptr = nullptr; map> node_task_map; // create fp node bool is_insert_fp_profiling_task = false; (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_FP_PROFILILNG_TASK, is_insert_fp_profiling_task); if (is_insert_fp_profiling_task) { vector task_def_list; (void)GenerateFpProfilingTask(op_desc, task_def_list); auto fp_desc = MakeShared(kProfilingFpNode, PROFILINGTRAININGTRACE); GE_CHECK_NOTNULL(fp_desc); fp_desc->SetOpKernelLibName(kEngineNameRts); node_ptr = compute_graph->AddNode(fp_desc); GE_CHECK_NOTNULL(node_ptr); node_task_map[node_ptr] = task_def_list; GELOGD("Create fp profiling node success before."); } // creat all reduce start node bool is_insert_bp_profiling_task = false; (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_BP_PROFILILNG_TASK, is_insert_bp_profiling_task); bool is_all_reduce = (op_desc->GetType() == HCOMALLREDUCE || op_desc->GetType() == HVDCALLBACKALLREDUCE); if (is_all_reduce && is_insert_bp_profiling_task) { vector task_def_list; int64_t log_id = 0; (void)ge::AttrUtils::GetInt(op_desc, ATTR_NAME_INSERT_PROFILILNG_TASK_LOG_ID, log_id); GELOGD("All reduce node profiling task log id: %ld before", log_id); (void) GenerateArProfilingTask(op_desc, log_id, task_def_list); string op_name = string(kProfilingArNode) + std::to_string(log_id); auto ar_desc_start = MakeShared(op_name, PROFILINGTRAININGTRACE); GE_CHECK_NOTNULL(ar_desc_start); ar_desc_start->SetOpKernelLibName(kEngineNameRts); node_ptr = compute_graph->AddNode(ar_desc_start); GE_CHECK_NOTNULL(node_ptr); node_task_map[node_ptr] = task_def_list; GELOGD("Create all reduce start profiling node success before."); } if (!node_task_map.empty()) { for (const auto &node_task : node_task_map) { NodePtr profiling_node = node_task.first; vector task_def_lists = node_task.second; for (const auto &task_def : task_def_lists) { hybrid_model_.task_defs_[profiling_node].emplace_back(task_def); } if (op_desc->HasAttr(ATTR_STAGE_LEVEL)) { uint32_t stage_level = UINT32_MAX; (void)ge::AttrUtils::GetInt(op_desc, ATTR_STAGE_LEVEL, stage_level); (void)ge::AttrUtils::SetInt(node_ptr->GetOpDesc(), ATTR_STAGE_LEVEL, stage_level); } NodeItem *node_item = nullptr; GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(profiling_node, &node_item)); GE_CHECK_NOTNULL(node_item); node_item->input_start = 0; node_item->output_start = 0; graph_item.node_items_.emplace_back(node_item); } } else { GELOGD("No need to create profiling node before."); } return SUCCESS; } Status HybridModelBuilder::CreateProfilingNodeAfter(GraphItem &graph_item, const NodePtr &node) { GE_CHECK_NOTNULL(node); const OpDescPtr &op_desc = node->GetOpDesc(); GE_CHECK_NOTNULL(op_desc); const auto &compute_graph = MakeShared(kProfilingGraph); GE_CHECK_NOTNULL(compute_graph); NodePtr node_ptr = nullptr; map> node_task_map; // Create all reduce end node bool is_insert_bp_profiling_task = false; (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_BP_PROFILILNG_TASK, is_insert_bp_profiling_task); bool is_all_reduce = (op_desc->GetType() == HCOMALLREDUCE || op_desc->GetType() == HVDCALLBACKALLREDUCE); if (is_all_reduce && is_insert_bp_profiling_task) { vector task_def_list; int64_t log_id = 0; (void)ge::AttrUtils::GetInt(op_desc, ATTR_NAME_INSERT_PROFILILNG_TASK_LOG_ID, log_id); GELOGD("All reduce node profiling task log id: %ld after", log_id); (void) GenerateArProfilingTask(op_desc, log_id + 1, task_def_list); string op_name = string(kProfilingArNode) + std::to_string(log_id + 1); auto ar_desc_end = MakeShared(op_name, PROFILINGTRAININGTRACE); GE_CHECK_NOTNULL(ar_desc_end); ar_desc_end->SetOpKernelLibName(kEngineNameRts); node_ptr = compute_graph->AddNode(ar_desc_end); GE_CHECK_NOTNULL(node_ptr); node_task_map[node_ptr] = task_def_list; GELOGD("Create all reduce end profiling node success after."); } // create bp node if (!is_all_reduce && is_insert_bp_profiling_task) { vector task_def_list; (void) GenerateBpProfilingTask(op_desc, task_def_list); auto bp_op_desc = MakeShared(kProfilingBpNode, PROFILINGTRAININGTRACE); GE_CHECK_NOTNULL(bp_op_desc); bp_op_desc->SetOpKernelLibName(kEngineNameRts); node_ptr = compute_graph->AddNode(bp_op_desc); GE_CHECK_NOTNULL(node_ptr); node_task_map[node_ptr] = task_def_list; GELOGD("Create bp profiling node success after."); } // create end node bool is_insert_end_profiling_task = false; (void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_INSERT_END_PROFILILNG_TASK, is_insert_end_profiling_task); if (is_insert_end_profiling_task) { vector task_def_list; (void)GenerateEndProfilingTask(op_desc, task_def_list); auto end_desc = MakeShared(kProfilingEndNode, PROFILINGTRAININGTRACE); GE_CHECK_NOTNULL(end_desc); end_desc->SetOpKernelLibName(kEngineNameRts); node_ptr = compute_graph->AddNode(end_desc); GE_CHECK_NOTNULL(node_ptr); node_task_map[node_ptr] = task_def_list; GELOGD("Create end profiling node success after."); } if (!node_task_map.empty()) { for (const auto &node_task : node_task_map) { NodePtr profiling_node = node_task.first; vector task_def_lists = node_task.second; for (const auto &task_def : task_def_lists) { hybrid_model_.task_defs_[profiling_node].emplace_back(task_def); } if (op_desc->HasAttr(ATTR_STAGE_LEVEL)) { uint32_t stage_level = UINT32_MAX; (void)ge::AttrUtils::GetInt(op_desc, ATTR_STAGE_LEVEL, stage_level); (void)ge::AttrUtils::SetInt(profiling_node->GetOpDesc(), ATTR_STAGE_LEVEL, stage_level); } NodeItem *node_item = nullptr; GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(profiling_node, &node_item)); GE_CHECK_NOTNULL(node_item); node_item->input_start = 0; node_item->output_start = 0; graph_item.node_items_.emplace_back(node_item); } } else { GELOGD("No need to create profiling node after."); } return SUCCESS; } Status HybridModelBuilder::LoadDynamicSubgraph(ComputeGraph &graph, bool is_root_graph) { GELOGD("Start to load subgraph [%s]", graph.GetName().c_str()); // for known partitioned call, load all nodes auto graph_item = std::unique_ptr(new(std::nothrow)GraphItem()); GE_CHECK_NOTNULL(graph_item); graph_item->is_dynamic_ = true; graph_item->node_items_.reserve(graph.GetDirectNodesSize()); int input_start = 0; int output_start = 0; std::vector data_nodes; for (auto &node : graph.GetDirectNode()) { GE_CHECK_NOTNULL(node); GE_CHECK_NOTNULL(node->GetOpDesc()); const auto &op_type = node->GetType(); if (op_type == NOOP) { GELOGD("[%s] Skip NoOp", node->GetName().c_str()); continue; } NodeItem *node_item = nullptr; GE_CHK_STATUS_RET_NOLOG(GetOrCreateNodeItem(node, &node_item)); GE_CHK_STATUS_RET_NOLOG(BuildNodeItem(node, *node_item)); GE_CHK_STATUS_RET_NOLOG(UpdateAnchorStatus(node)); // needed by FE generate task node_item->input_start = input_start; node_item->output_start = output_start; input_start += node_item->num_inputs; output_start += node_item->num_outputs; if (op_type == DATA_TYPE || op_type == AIPP_DATA_TYPE) { data_nodes.emplace_back(node_item); } else if (op_type == NETOUTPUT) { graph_item->output_node_ = node_item; GE_CHK_STATUS_RET_NOLOG(BuildOutputMapping(*graph_item, *node_item, is_root_graph)); } GE_CHK_STATUS_RET_NOLOG(CreateProfilingNodeBefore(*graph_item, node)); graph_item->node_items_.emplace_back(node_item); GE_CHK_STATUS_RET_NOLOG(CreateProfilingNodeAfter(*graph_item, node)); // parse var outputs GE_CHK_STATUS_RET_NOLOG(ParseVarOutputs(*node_item)); GELOGD("NodeItem created: %s", node_item->DebugString().c_str()); } graph_item->total_inputs_ = input_start; graph_item->total_outputs_ = output_start; GE_CHK_STATUS_RET_NOLOG(BuildInputMapping(*graph_item, data_nodes, is_root_graph)); if (is_root_graph) { graph_item->SetName("Root-Graph"); GELOGD("Done loading dynamic subgraph: [%s]", graph_item->GetName().c_str()); hybrid_model_.root_graph_item_ = std::move(graph_item); } else { graph_item->SetName(graph.GetName()); GELOGD("Done loading dynamic subgraph: [%s]", graph_item->GetName().c_str()); hybrid_model_.subgraph_items_.emplace(graph.GetName(), std::move(graph_item)); } return SUCCESS; } Status HybridModelBuilder::ParseVarOutputs(NodeItem &node_item) { for (int i = 0; i < node_item.num_outputs; ++i) { auto output_tensor_desc = node_item.op_desc->GetOutputDesc(i); std::string var_name; (void) AttrUtils::GetStr(output_tensor_desc, ASSIGN_VAR_NAME, var_name); if (!var_name.empty()) { auto var_node = hybrid_model_.GetVariableNode(var_name); GE_CHECK_NOTNULL(var_node); node_item.ref_outputs.emplace(i, var_node); } } return SUCCESS; } Status HybridModelBuilder::BuildInputMapping(GraphItem &graph_item, vector &data_nodes, bool is_root_graph) { uint32_t data_op_index = 0; for (auto &node_item : data_nodes) { auto node = node_item->node; int data_index = data_op_index; if (is_root_graph) { if (AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_INDEX, data_index)) { GELOGI("ge_train: get new index %u, old %u", data_index, data_op_index); } data_op_index++; } else { if (!AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, data_index)) { GELOGE(FAILED, "[%s] Failed to get attr [%s]", node->GetName().c_str(), ATTR_NAME_PARENT_NODE_INDEX.c_str()); return FAILED; } } if (graph_item.input_nodes_.size() <= static_cast(data_index)) { graph_item.input_nodes_.resize(data_index + 1); } graph_item.input_nodes_[data_index] = node_item; } return SUCCESS; } Status HybridModelBuilder::CheckAicpuOpList() { std::vector aicpu_optype_list; std::vector aicpu_tf_optype_list; std::set aicpu_optype_set; std::set aicpu_tf_optype_set; for (auto &it : ge_root_model_->GetSubgraphInstanceNameToModel()) { auto &ge_model = it.second; GE_CHECK_NOTNULL(ge_model); if (ge::AttrUtils::GetListStr(*ge_model, "needCheckCpu", aicpu_optype_list)) { aicpu_optype_set.insert(aicpu_optype_list.begin(), aicpu_optype_list.end()); } if (ge::AttrUtils::GetListStr(*ge_model, "needCheckTf", aicpu_tf_optype_list)) { aicpu_tf_optype_set.insert(aicpu_tf_optype_list.begin(), aicpu_tf_optype_list.end()); } } // reset list with set aicpu_optype_list.assign(aicpu_optype_set.begin(), aicpu_optype_set.end()); aicpu_tf_optype_list.assign(aicpu_tf_optype_set.begin(), aicpu_tf_optype_set.end()); GE_CHK_STATUS_RET(ModelManager::GetInstance()->LaunchKernelCheckAicpuOp(aicpu_optype_list, aicpu_tf_optype_list), "Launch check aicpu op type failed."); return SUCCESS; } } // namespace hybrid } // namespace ge