/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "hybrid/executor/hybrid_model_async_executor.h" #include "graph/load/model_manager/model_utils.h" #include "graph/utils/tensor_utils.h" #include "graph/utils/type_utils.h" #include "graph/ge_context.h" #include "omm/csa_interact.h" namespace ge { namespace hybrid { namespace { const int kDataOutputIndex = 0; } HybridModelAsyncExecutor::HybridModelAsyncExecutor(HybridModel *model) : model_(model), run_flag_(false) { } HybridModelAsyncExecutor::~HybridModelAsyncExecutor() { if (stream_ != nullptr) { GE_CHK_RT(rtStreamDestroy(stream_)); } } void HybridModelAsyncExecutor::SetDeviceId(uint32_t device_id) { device_id_ = device_id; } void HybridModelAsyncExecutor::SetModelId(uint32_t model_id) { model_id_ = model_id; } Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr &data) { GE_CHK_STATUS_EXEC(data_inputer_->Push(data), return domi::DATA_QUEUE_ISFULL, "Data queue is full, please call again later, model_id %u ", model_id_); GELOGD("EnqueueData successfully. model_id = %u, data_index = %u", data->GetInput().model_id, data->GetInput().index); return SUCCESS; } Status HybridModelAsyncExecutor::Start(const std::shared_ptr &listener) { GELOGD("HybridModelExecutor::Start IN, has listener = %d", listener != nullptr); std::lock_guard lk(mu_); GE_CHK_BOOL_RET_STATUS(!run_flag_, INTERNAL_ERROR, "Model already started."); run_flag_ = true; listener_ = listener; future_ = std::async(std::launch::async, [&]() -> Status { GetThreadLocalContext() = *executor_->GetContext()->ge_context; GetContext().SetSessionId(executor_->GetContext()->session_id); return RunInternal(); }); GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR, "Failed to start."); GELOGD("HybridModelExecutor::Start successfully"); return SUCCESS; } Status HybridModelAsyncExecutor::Stop() { std::lock_guard lk(mu_); run_flag_ = false; data_inputer_->Stop(); Status ret = SUCCESS; if (future_.valid()) { ret = future_.get(); } if (stream_ != nullptr) { GE_CHK_RT(rtStreamDestroy(stream_)); stream_ = nullptr; } return ret; } Status HybridModelAsyncExecutor::Init() { data_inputer_ = std::unique_ptr(new(std::nothrow) DataInputer()); GE_CHECK_NOTNULL(data_inputer_); GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT)); executor_ = std::unique_ptr(new(std::nothrow) HybridModelExecutor(model_, device_id_, stream_)); GE_CHECK_NOTNULL(executor_); GE_CHK_STATUS_RET(executor_->Init(), "Failed to init hybrid engine"); GE_CHK_STATUS_RET(InitInputDesc(), "Failed to init input tensors"); return SUCCESS; } Status HybridModelAsyncExecutor::PreRun(InputData ¤t_data, HybridModelExecutor::ExecuteArgs &args) { GE_CHK_STATUS_RET(SyncVarData(), "Failed to sync var data"); RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[SyncVarData] End"); GE_CHK_STATUS_RET(PrepareInputs(current_data, args), "Failed to copy input data to model"); RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[CopyInputData] End"); return SUCCESS; } Status HybridModelAsyncExecutor::RunInternal() { auto device_id = static_cast(device_id_); GELOGD("Hybrid model start. model_id = %u, device_id = %u", model_id_, device_id_); GE_CHK_RT_RET(rtSetDevice(device_id)); // DeviceReset before thread run finished! GE_MAKE_GUARD(not_used_var, [&] { GE_CHK_RT(rtDeviceReset(device_id)); }); while (run_flag_) { std::shared_ptr data_wrapper; Status ret = data_inputer_->Pop(data_wrapper); if (data_wrapper == nullptr || ret != SUCCESS) { GELOGI("data_wrapper is null!, ret = %u", ret); continue; } GELOGI("Getting the input data, model_id:%u", model_id_); GE_IF_BOOL_EXEC(!run_flag_, break); InputData current_data = data_wrapper->GetInput(); GELOGI("Model thread Run begin, model id:%u, data index:%u.", model_id_, current_data.index); RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] Start", iterator_count_); HybridModelExecutor::ExecuteArgs args; ret = PreRun(current_data, args); GE_CHK_BOOL_TRUE_EXEC_WITH_LOG( ret != SUCCESS, (void) HandleResult(ret, current_data.index, args, data_wrapper->GetOutput()); CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC); continue, "PreRun failed."); // [No need to check value] ret = executor_->Execute(args); ret = HandleResult(ret, current_data.index, args, data_wrapper->GetOutput()); if (ret != SUCCESS) { CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_RUNTIME, JOBSUBSTATE_GRAPH_EXEC); continue; } RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] End", iterator_count_); iterator_count_++; GELOGI("run iterator count is %lu", iterator_count_); } CsaInteract::GetInstance().WriteInternalErrorCode(); GELOGI("Model run end, model id:%u", model_id_); return SUCCESS; } Status HybridModelAsyncExecutor::HandleResult(Status exec_ret, uint32_t data_id, HybridModelExecutor::ExecuteArgs &args, OutputData *output_data) { GELOGD("Start to handle result. model id = %u, data index = %u, execution ret = %u", model_id_, data_id, exec_ret); std::vector output_tensor_info_list; if (args.is_eos) { GELOGI("End of sequence, model id = %u", model_id_); GE_CHK_STATUS_RET_NOLOG(OnComputeDone(data_id, END_OF_SEQUENCE, output_tensor_info_list)); return SUCCESS; } if (exec_ret != SUCCESS) { GELOGE(exec_ret, "Failed to execute graph. model_id = %u", model_id_); return OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list); } GE_CHECK_NOTNULL(output_data); auto ret = CopyOutputs(args, output_data, output_tensor_info_list); if (ret != SUCCESS) { OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list); return INTERNAL_ERROR; } GELOGD("Executed graph successfully, model id = %u, data_index = %u", model_id_, data_id); return OnComputeDone(data_id, SUCCESS, output_tensor_info_list); } Status HybridModelAsyncExecutor::SyncVarData() { GELOGI("Sync var data, model id:%u", model_id_); TensorValue *global_step_var = model_->GetVariable(NODE_NAME_GLOBAL_STEP); if (global_step_var != nullptr) { std::vector v_step; v_step.push_back(iterator_count_); GE_CHK_RT_RET(rtMemcpy(global_step_var->MutableData(), global_step_var->GetSize(), v_step.data(), v_step.size() * sizeof(uint64_t), RT_MEMCPY_HOST_TO_DEVICE)); } else { GELOGD("No GLOBAL_STEP variable was found."); } return SUCCESS; } Status HybridModelAsyncExecutor::PrepareInputs(const InputData ¤t_data, HybridModelExecutor::ExecuteArgs &args) { if (current_data.blobs.size() < input_tensor_desc_.size()) { GELOGE(PARAM_INVALID, "Blob size mismatches, expect at least %zu, but got %zu", input_tensor_desc_.size(), current_data.blobs.size()); return PARAM_INVALID; } auto allocator = NpuMemoryAllocator::GetAllocator(device_id_); GE_CHECK_NOTNULL(allocator); args.input_desc.resize(input_tensor_desc_.size()); const std::vector &blobs = current_data.blobs; for (size_t input_index = 0; input_index < input_tensor_desc_.size(); ++input_index) { auto tensor_size = input_sizes_[input_index]; if (is_input_dynamic_[input_index]) { if (input_index >= current_data.shapes.size()) { GELOGE(PARAM_INVALID, "Shape index out of range, index = %zu, shape size = %zu", input_index, current_data.shapes.size()); return PARAM_INVALID; } auto &tensor_desc = input_tensor_desc_[input_index]; tensor_desc->SetShape(GeShape(current_data.shapes[input_index])); args.input_desc[input_index] = tensor_desc; GELOGD("Update shape of input[%zu] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str()); GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size), "Failed to calc tensor size, index = %zu, shape = [%s]", input_index, tensor_desc->GetShape().ToString().c_str()); GELOGD("Input tensor[%zu] size = %zu", input_index, tensor_size); } GE_CHECK_GE(tensor_size, 0); AllocationAttr attr; if (GetContext().GetHostExecFlag()) { attr.SetMemType(HOST_DDR); } auto tensor_buffer = TensorBuffer::Create(allocator, tensor_size, &attr); GE_CHECK_NOTNULL(tensor_buffer); args.inputs.emplace_back(std::shared_ptr(tensor_buffer.release())); GELOGD("To copy input data for input[%zu]", input_index); const DataBuffer &data_buf = blobs[input_index]; auto mem_size = static_cast(tensor_size); GE_CHK_BOOL_RET_STATUS(mem_size >= data_buf.length, PARAM_INVALID, "input data size(%lu) does not match model required size(%lu), ret failed.", data_buf.length, mem_size); GELOGI("[IMAS]CopyPlainData memcpy graph_%u type[F] output[%zu] memaddr[%p] mem_size[%zu] datasize[%lu]", model_->root_runtime_param_.graph_id, input_index, args.inputs[input_index].GetData(), mem_size, data_buf.length); GE_CHK_RT_RET(rtMemcpy(args.inputs[input_index].MutableData(), mem_size, data_buf.data, data_buf.length, RT_MEMCPY_HOST_TO_DEVICE)); } return SUCCESS; } Status HybridModelAsyncExecutor::InitInputDesc() { int input_index = 0; for (const auto &input_node : model_->GetRootGraphItem()->GetInputNodes()) { GELOGD("Init input[%u], node = %s, is_dynamic = %d", input_index, input_node->NodeName().c_str(), input_node->is_dynamic); auto output_desc = input_node->MutableOutputDesc(kDataOutputIndex); GE_CHECK_NOTNULL(output_desc); int64_t tensor_size = -1; if (!input_node->is_dynamic) { GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetSize(*output_desc, tensor_size), "Failed to get size from %s", input_node->NodeName().c_str()); if (tensor_size == 0) { GELOGW("[%s] Tensor size == 0", input_node->NodeName().c_str()); GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*output_desc, tensor_size), "Failed to calc tensor size"); GELOGD("[%s] Tensor size updated to %ld", input_node->NodeName().c_str(), tensor_size); } } input_sizes_.emplace(input_index, tensor_size); input_tensor_desc_.emplace(input_index, output_desc); is_input_dynamic_.push_back(input_node->is_dynamic); input_index += 1; } return SUCCESS; } Status HybridModelAsyncExecutor::OnComputeDone(uint32_t data_index, uint32_t result_code, std::vector &outputs) { GELOGD("OnComputeDone. model id = %u, data index = %u, execution ret = %u", model_id_, data_index, result_code); if (listener_ != nullptr) { GE_CHK_STATUS(listener_->OnComputeDone(model_id_, data_index, result_code, outputs), "OnComputeDone failed"); } return result_code; } Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &args, OutputData *output_data, std::vector &outputs) { // copy output data from op to designated position std::vector &output_tensor_desc_list = args.output_desc; std::vector &output_tensors = args.outputs; if (output_tensor_desc_list.size() != output_tensors.size()) { GELOGE(INTERNAL_ERROR, "Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu", output_tensor_desc_list.size(), output_tensors.size()); return INTERNAL_ERROR; } GELOGD("Number of outputs = %zu", output_tensor_desc_list.size()); for (size_t i = 0; i < output_tensors.size(); ++i) { GELOGD("Start to process output[%zu]", i); auto &output_tensor = output_tensors[i]; auto &tensor_desc = output_tensor_desc_list.at(i); GE_CHECK_NOTNULL(tensor_desc); int64_t output_size = -1; GE_CHK_GRAPH_STATUS_RET(TensorUtils::CalcTensorMemSize(tensor_desc->GetShape(), tensor_desc->GetFormat(), tensor_desc->GetDataType(), output_size), "Failed to calc tensor size for output[%zu]. shape = [%s], type = %s, format = %s", i, tensor_desc->GetShape().ToString().c_str(), TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(), TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str()); GELOGD("Got tensor size for output[%zu] successfully. shape = [%s], type = %s, format = %s, size = %ld", i, tensor_desc->GetShape().ToString().c_str(), TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(), TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str(), output_size); GE_CHECK_GE(output_size, 0); GE_CHECK_LE(output_size, UINT32_MAX); if (output_tensor.GetSize() < static_cast(output_size)) { GELOGE(INTERNAL_ERROR, "output[%zu] tensor size(%zu) is not enough for output shape [%s]", i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str()); return INTERNAL_ERROR; } ge::OutputTensorInfo output; output.data_type = static_cast(tensor_desc->GetDataType()); output.dims = tensor_desc->GetShape().GetDims(); output.length = output_size; if (output_size > 0) { std::unique_ptr data_buf(new(std::nothrow) uint8_t[output_size]); GE_CHECK_NOTNULL(data_buf); GE_CHK_RT_RET(rtMemcpy(data_buf.get(), output_size, output_tensor.GetData(), output_size, RT_MEMCPY_DEVICE_TO_HOST)); output.data = std::move(data_buf); output_data->blobs.emplace_back(data_buf.get(), static_cast(output_size), false); } else { GELOGW("Output[%zu] is empty. shape = [%s]", i, tensor_desc->GetShape().ToString().c_str()); output.data = nullptr; output_data->blobs.emplace_back(nullptr, 0U, false); } outputs.emplace_back(std::move(output)); GELOGD("Output[%zu] added, type = %s, shape = [%s], size = %ld", i, TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(), tensor_desc->GetShape().ToString().c_str(), output_size); } return SUCCESS; } Status HybridModelAsyncExecutor::Execute(const std::vector &inputs, const std::vector &input_desc, std::vector &outputs, std::vector &output_desc) { GELOGI("Start to execute model."); HybridModelExecutor::ExecuteArgs args; args.inputs.resize(inputs.size()); for (size_t i = 0; i < inputs.size(); ++i) { TensorValue tensor_value(inputs[i].data, inputs[i].length); args.inputs[i] = tensor_value; } GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model."); for (const auto &output_tensor_desc : args.output_desc) { output_desc.emplace_back(*output_tensor_desc); } for (size_t i = 0; i < args.outputs.size(); ++i) { int64_t output_real_size = 0; ge::graphStatus graph_status = TensorUtils::GetTensorSizeInBytes(output_desc[i], output_real_size); if (graph_status != GRAPH_SUCCESS) { GELOGE(FAILED, "Get tensor size in bytes failed."); return FAILED; } if (output_real_size > 0) { if (outputs[i].length < static_cast(output_real_size)) { GELOGE(FAILED, "output idx[%zu], the memory size of output[%lu] given by " "user should be greater than or equal to the real size of output[%ld]", i, outputs[i].length, output_real_size); return FAILED; } GE_CHK_RT_RET(rtMemcpy(outputs[i].data, outputs[i].length, args.outputs[i].GetData(), output_real_size, RT_MEMCPY_DEVICE_TO_DEVICE)); } outputs[i].length = output_real_size; } return SUCCESS; } Status HybridModelAsyncExecutor::Execute(const vector &inputs, vector &outputs) { GELOGD("Start to execute model."); // prepare inputs InputData input_data; for (auto &tensor : inputs) { DataBuffer buffer; buffer.data = const_cast(tensor.GetData().GetData()); buffer.length = tensor.GetData().size(); input_data.blobs.emplace_back(buffer); input_data.shapes.emplace_back(tensor.GetTensorDesc().GetShape().GetDims()); } HybridModelExecutor::ExecuteArgs args; GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "Failed to copy input data to model"); GELOGD("Done copying input data successfully."); GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model."); std::vector output_tensor_info_list; OutputData output_data; GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list), "Failed to copy outputs."); GELOGD("Done copying output data successfully. output count = %zu", output_tensor_info_list.size()); int out_index = 0; outputs.resize(output_tensor_info_list.size()); for (auto &out_tensor_info : output_tensor_info_list) { auto &ge_tensor = outputs[out_index]; if (out_tensor_info.length > 0) { GE_CHK_GRAPH_STATUS_RET(ge_tensor.SetData(out_tensor_info.data.get(), out_tensor_info.length), "Failed to set output[%d].", out_index); } ge_tensor.MutableTensorDesc() = *args.output_desc[out_index]; GELOGD("Set output[%d], tensor size = %ld, shape = [%s]", out_index, out_tensor_info.length, ge_tensor.MutableTensorDesc().MutableShape().ToString().c_str()); ++out_index; } return SUCCESS; } } // namespace hybrid } // namespace ge