/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file math_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_ #include "graph/operator_reg.h" #include "graph/operator.h" namespace ge { /** *@brief Computes the output as (shift + scale * x) ^ power . \n *@par Inputs: * x: A Tensor of type float16 or float32 . \n *@par Attributes: *@li power: Optional. Must be one of the following types: float32. Defaults to 1.0. *@li scale: Optional. Must be one of the following types: float32. Defaults to 1.0. *@li shift: Optional. Must be one of the following types: float32. Defaults to 0.0 . \n *@par Outputs: * y: A Tensor. Has the same type and shape as "x". *@par Third-party framework compatibility * Compatible with the Caffe operator Power. */ REG_OP(Power) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT})) .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT})) .ATTR(power, Float, 1.0) .ATTR(scale, Float, 1.0) .ATTR(shift, Float, 0.0) .OP_END_FACTORY_REG(Power); /** *@brief Compute the lower regularized incomplete Gamma function P(a, x) . \n *@par Inputs: *The input a and x must have the same type. Inputs include: *@li a:A Tensor. Must be one of the following types: float, double. *@li x:A Tensor. Must have the same type as a . \n *@par Outputs: *z:A Tensor. Has the same type as a . \n *@par Third-party framework compatibility. *Compatible with tensorflow Igamma operator. */ REG_OP(Igamma) .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(Igamma) /** *@brief Compute the upper regularized incomplete Gamma function Q(a, x) . \n *@par Inputs: *The input a and x must have the same type. Inputs include: *@li a:A Tensor. Must be one of the following types: float, float64. *@li x:A Tensor. Must have the same type as a . \n *@par Outputs: *z:A Tensor. Has the same type as a . \n *@par Third-party framework compatibility. *Compatible with tensorflow Igammac operator. */ REG_OP(Igammac) .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(Igammac) /** *@brief Compare values of input to threshold and pack resulting bits into a uint8 . \n *@par Inputs: *The input size must be a non-negative int32 scalar Tensor. Inputs include: *@li input:Values to compare against threshold and bitpack. *@li threshold:Threshold to compare against . \n *@par Outputs: *y:The bitpacked comparisons . \n *@attention Constraints: *Currently, the innermost dimension of the tensor must be divisible by 8. \n *@par Third-party framework compatibility *Compatible with tensorflow CompareAndBitpack operator */ REG_OP(CompareAndBitpack) .INPUT(x, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_INT8, \ DT_INT16, DT_INT32, DT_INT64, DT_BOOL })) .INPUT(threshold, TensorType({ DT_FLOAT, DT_FLOAT16, DT_DOUBLE, \ DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_BOOL })) .OUTPUT(y, TensorType(DT_UINT8)) .OP_END_FACTORY_REG(CompareAndBitpack) /** *@brief Counts the number of occurrences of each value in an integer array. Outputs a vector with length size and the same dtype as weights. If weights are empty, then index i stores the number of times the value i is counted in arr. If weights are non-empty, then index i stores the sum of the value in weights at each index . \n *@par Inputs: *The input size must be a non-negative int32 scalar Tensor. Inputs include: *@li array:int32 Tensor. *@li size:non-negative int32 scalar Tensor. *@li weights: is an int32, int64, float32, or double Tensor with the same shape as arr, or a length-0 Tensor, in which case it acts as all weights equal to 1 . \n *@par Outputs: *bins:1D Tensor with length equal to size. The counts or summed weights for each value in the range [0, size) . \n *@par Third-party framework compatibility *Compatible with tensorflow Bincount operator */ REG_OP(Bincount) .INPUT(array, TensorType(DT_INT32)) .INPUT(size, TensorType(DT_INT32)) .INPUT(weights, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE })) .OUTPUT(bins, TensorType({ DT_FLOAT, DT_INT32, DT_INT64, DT_DOUBLE })) .OP_END_FACTORY_REG(Bincount) /** *@brief Compute the regularized incomplete beta integral . \n *@par Inputs: *The input b and x must have the same types as a. Inputs include: *@li a:A Tensor. Must be one of the following types: float32, double. *@li b:A Tensor. Must have the same type as a. *@li x:A Tensor. Must have the same type as a . \n *@par Outputs: *z:A Tensor. Has the same type as a . \n *@par Third-party framework compatibility. *Compatible with tensorflow Betainc operator. */ REG_OP(Betainc) .INPUT(a, TensorType({DT_DOUBLE, DT_FLOAT})) .INPUT(b, TensorType({DT_DOUBLE, DT_FLOAT})) .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT})) .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT})) .OP_END_FACTORY_REG(Betainc) /** *@brief Compute the Hurwitz zeta function *@par Inputs: *The input q must be the same type as x. Inputs include: *@li x:A Tensor. Must be one of the following types: float32, double. *@li q:A Tensor. Must have the same type as x . \n *@par Outputs: *z:A Tensor. Has the same type as x . \n *@attention Constraints: *The implementation for Zeta on Ascend uses ai cpu, with bad performance. *@par Third-party framework compatibility. *Compatible with tensorflow Zeta operator. */ REG_OP(Zeta) .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT})) .INPUT(q, TensorType({DT_DOUBLE, DT_FLOAT})) .OUTPUT(z, TensorType({DT_DOUBLE, DT_FLOAT})) .OP_END_FACTORY_REG(Zeta) /** *@brief Bucketize 'input' based on 'boundaries'. For example, if the inputs are boundaries = [0, 10, 100] input = [[-5, 10000] [150, 10] [5, 100]] then the output will be output = [[0, 3] [3, 2] [1, 3]] *@par Inputs: *The dtype of input x int float double. Inputs include: *x:Any shape of Tensor contains with int or float type . \n *@par Attributes: *boundaries:A sorted list of floats gives the boundary of the buckets . \n *@par Outputs: *y:Same shape with 'input', each value of input replaced with bucket index . \n *@par Third-party framework compatibility. *Compatible with tensorflow Bucketize operator. */ REG_OP(Bucketize) .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT})) .OUTPUT(y, TensorType({DT_INT32})) .REQUIRED_ATTR(boundaries, ListFloat) .OP_END_FACTORY_REG(Bucketize) /** *@brief Computes the sum along sparse segments of a tensor . \n *@par Inputs: *The input indices and segment_ids must have same rank. Inputs include: *@li x:A Tensor. Must be one of the following types: float, double, int32, uint8, int16, int8, int64, uint16, uint32, uint64. *@li indices: A Tensor. Must be one of the following types: int32, int64. A 1-D tensor. Has same rank as segment_ids. *@li segment_ids: A Tensor of type int32. A 1-D tensor. Values should be sorted and can be repeated . \n *@par Outputs: *y:A Tensor. Has the same type as x . \n *@par Third-party framework compatibility *Compatible with tensorflow SparseSegmentSum operator */ REG_OP(SparseSegmentSum) .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(segment_ids, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_DOUBLE, DT_FLOAT, DT_FLOAT16})) .OP_END_FACTORY_REG(SparseSegmentSum) /** *@brief Computes the mean along sparse segments of a tensor . \n *@par Inputs: *The input indices and segment_ids must have same rank. Inputs include: *@li x: A Tensor. Must be one of the following types: float, double. *@li indices: A Tensor. Must be one of the following types: int32, int64. A 1-D tensor. Has same rank as segment_ids. *@li segment_ids: A Tensor of type int32. A 1-D tensor. Values should be sorted and can be repeated . \n *@par Outputs: *y:A Tensor. Has the same type as x . \n *@par Third-party framework compatibility *Compatible with tensorflow SparseSegmentMean operator */ REG_OP(SparseSegmentMean) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(segment_ids, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(SparseSegmentMean) /** *@brief Computes gradients for SparseSegmentMean . \n *@par Inputs: *The input grad must have be type float or double. Inputs include: *@li grad: A Tensor. Must be one of the following types: float, double. gradient propagated to the SparseSegmentMean op. *@li indices: A Tensor. Must be one of the following types: int32, int64. indices passed to the corresponding SparseSegmentMean op. *@li segment_ids: A Tensor of type int32. segment_ids passed to the corresponding SparseSegmentMean op. *@li output_dim0: A Tensor of type int32. dimension 0 of "x" passed to SparseSegmentMean op . \n *@par Outputs: *y:A Tensor. Has the same type as grad . \n *@par Third-party framework compatibility *Compatible with tensorflow SparseSegmentMeanGrad operator */ REG_OP(SparseSegmentMeanGrad) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(indices, TensorType({DT_INT32})) .INPUT(segment_ids, TensorType({DT_INT32})) .INPUT(output_dim0, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(SparseSegmentMeanGrad) /** *@brief Computes the gradient of igamma(a, x) wrt a *@par Inputs: *The input a and x must have the same type. Inputs include: *@li a:A Tensor. Must be one of the following types: float32, double. *@li x:A Tensor. Must have the same type as a . \n *@par Outputs: *y:A Tensor. Has the same type as a . \n *@par Third-party framework compatibility *Compatible with tensorflow IgammaGradA operator */ REG_OP(IgammaGradA) .INPUT(a, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(z, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(IgammaGradA) /** *@brief Initialize data process channel . \n *@par Attributes: *channel_name: A string. Default "" . \n *@par Third-party framework compatibility *Compatible with tensorflow InitData operator */ REG_OP(InitData) .ATTR(channel_name, String, "") .OP_END_FACTORY_REG(InitData) /** *@brief Get the next batch of data in data processing . \n *@par Attributes: *@li output_types: A nested structure of DType objects corresponding to each component of an element of this dataset. *@li output_shapes: A nested structure of TensorShape objects corresponding to each component of an element of this dataset. *@li channel_name: A string. Default "" . \n *@par Outputs: *y:A nested structure of Tensor objects . \n *@par Third-party framework compatibility *Compatible with tensorflow GetNext operator */ REG_OP(GetNext) .DYNAMIC_OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL})) .ATTR(output_types, ListInt, {}) .ATTR(output_shapes, ListListInt, {}) .ATTR(output_num, Int, 1) .ATTR(channel_name, String, "") .OP_END_FACTORY_REG(GetNext) /** *@brief End of sequence . \n *@par Inputs: *x: A Tensor of type uint8 . \n *@par Outputs: *y: A Tensor. Has the same type as "x". */ REG_OP(EndOfSequence) .INPUT(x, TensorType({DT_UINT8})) .OUTPUT(y, TensorType({DT_UINT8})) .OP_END_FACTORY_REG(EndOfSequence) /** *@brief: Computes the Gauss error function of `x` element-wise . \n *@par Inputs: *x: A Tensor of type float16, float32 or double. the format can be * [NCHW,NC1HWC0,NHWC,ND] *@par Outputs: *y: A Tensor. Has the same type and format as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator Erf. */ REG_OP(Erf) .INPUT(x, TensorType::FloatingDataType()) .OUTPUT(y, TensorType::FloatingDataType()) .OP_END_FACTORY_REG(Erf) /** *@brief: Computes the Gauss complementary error function of "x" element-wise . \n *@par Inputs: *x: A Tensor of type float16 ,float32, double . \n *@par Outputs: *y: A Tensor. Has the same type as "x" . \n *@par Third-party framework compatibility * Compatible with the TensorFlow operator Erfc. */ REG_OP(Erfc) .INPUT(x, TensorType::FloatingDataType()) .OUTPUT(y, TensorType::FloatingDataType()) .OP_END_FACTORY_REG(Erfc) /** *@brief This operation returns a rank 1 histogram counting the number of entries in `values` * that fell into every bin.The bins are equal width and determined by the arguments * 'value_range' and 'nbins' . \n *@par Inputs: *Three inputs, including: *@li x: A Tensor of type float32, float16, int32, int64. *@li range: A Tensor of type float32,float16,int32, int64. *@li nbins: A Tensor of type int32 . \n *@par Attributes: * dtype: An optional attribute. Defaults to "int32" . \n *@par Outputs: *y: A Tensor. A Tensor of type int32 or int64 . \n *@par Third-party framework compatibility * Compatible with TensorFlow operator HistogramFixedWidth. */ REG_OP(HistogramFixedWidth) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64})) .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64})) .INPUT(nbins, TensorType({DT_INT32})) .OUTPUT(y, TensorType({DT_INT32})) .ATTR(dtype, String, "int32") .OP_END_FACTORY_REG(HistogramFixedWidth) /** *@brief This operation returns a rank 1 histogram counting the number of entries in `values` * that fell into every bin.The bins are equal width and determined by the arguments * 'value_range' and 'nbins' . \n *@par Inputs: *Two inputs, including: *@li x: A Tensor of type float32,float16,int32, int64. *@li range: A Tensor of type float32,float16,int32, int64 . \n *@par Attributes: *@li dtype: An optional attribute. Defaults to "int32". *@li nbins: A required attribute,the type is int32 . \n *@par Outputs: *y: A Tensor. A Tensor of type int32 . \n *@par Third-party framework compatibility * Compatible with TensorFlow operator HistogramFixedWidth. * * @par Restrictions: * Warning: THIS FUNCTION IS DEPRECATED. Please use HistogramFixedWidth instead. */ REG_OP(HistogramFixedWidthD) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64})) .INPUT(range, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT64})) .OUTPUT(y, TensorType({DT_INT32})) .REQUIRED_ATTR(nbins, Int) .ATTR(dtype, String, "int32") .OP_END_FACTORY_REG(HistogramFixedWidthD) /** *@brief Returns the next representable value of x1 in the direction of x2, element-wise . \n *@par Inputs: *The input X1 and x2 must have the same type. Inputs include: *@li x1:A Tensor. Must be one of the following types: float32, double. *@li x2:A Tensor. Must have the same type as x1 . \n *@par Outputs: *output:A Tensor. Has the same type as x1 . \n *@par Third-party framework compatibility *Compatible with tensorflow NextAfter operator */ REG_OP(NextAfter) .INPUT(x1, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(x2, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(NextAfter) /** * *@brief Compute element-wise finiteness, return a boolean tensor. * * *@par Inputs: * *x:A Tensor. * * *@par Outputs: * *y:A Tensor. Has the same shape as x. * * *@par Third-party framework compatibility. * *Compatible with tensorflow IsFinite operator. * */ REG_OP(IsFinite) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_BOOL})) .OP_END_FACTORY_REG(IsFinite) /** * *@brief Compute element-wise infiniteness, return a boolean tensor. * * *@par Inputs: * *x:A Tensor. * * *@par Outputs: * *y:A Tensor. Has the same shape as x. * * *@par Third-party framework compatibility. * *Compatible with tensorflow IsInf operator. * */ REG_OP(IsInf) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_BOOL})) .OP_END_FACTORY_REG(IsInf) /** * *@brief Computes the complex absolute value of a tensor. * * *@par Inputs: * *x:A Tensor. * * *@par Outputs: * *y:A tensor of type `float` or `double` that is the absolute value of each element in `x`. * * *@par Third-party framework compatibility. * *Compatible with tensorflow ComplexAbs operator. * */ REG_OP(ComplexAbs) .INPUT(x, TensorType({DT_COMPLEX64, DT_COMPLEX128})) .OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE})) .ATTR(Tout, Type, DT_FLOAT) .OP_END_FACTORY_REG(ComplexAbs) /** * *@brief Returns which elements of x are NaN. * * *@par Inputs: * *x:A Tensor. * * *@par Outputs: * *y:A Tensor. Has the same shape as x. * * *@par Third-party framework compatibility. * *Compatible with tensorflow IsNan operator. * */ REG_OP(IsNan) .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE})) .OUTPUT(y, TensorType({DT_BOOL})) .OP_END_FACTORY_REG(IsNan) /** * *@brief Returns the real part of a complex number. * * *@par Inputs: * *input:A Tensor. * * *@par Outputs: * *output:A Tensor. Has the same shape as input. * * *@par Third-party framework compatibility. * *Compatible with tensorflow Real operator. * */ REG_OP(Real) .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128})) .OUTPUT(output, TensorType({DT_FLOAT, DT_DOUBLE})) .ATTR(Tout, Type, DT_FLOAT) .OP_END_FACTORY_REG(Real) /** * *@brief Returns the complex conjugate of a complex number. * * *@par Inputs: * *input:A Tensor. * * *@par Outputs: * *output:A Tensor. Has the same shape as input. * * *@par Third-party framework compatibility. * *Compatible with tensorflow output operator. * */ REG_OP(Conj) .INPUT(input, TensorType({DT_COMPLEX64, DT_COMPLEX128})) .OUTPUT(output, TensorType({DT_COMPLEX64, DT_COMPLEX128})) .OP_END_FACTORY_REG(Conj) /** *@brief The negative log likelihood loss . \n *@par Inputs: *The input x and weight must have the same type. Inputs include: *@li x: A Tensor dtype of float32. *@li target: A Tensor dtype of int32. *@li weight: A Tensor dtype of float32 . \n *@par Attributes: *reduction: An optional attribute. Defaults to "mean" . \n *@par Outputs: *@li y: A Tensor dtype of float32. *@li total_weight: A Tensor dtype of float32 . \n *@par Third-party framework compatibility *Compatible with pytorch NLLLoss operator */ REG_OP(NLLLoss) .INPUT(x, TensorType({DT_FLOAT})) .INPUT(target, TensorType({DT_INT32})) .INPUT(weight, TensorType({DT_FLOAT})) .OUTPUT(y, TensorType({DT_FLOAT})) .OUTPUT(total_weight, TensorType({DT_FLOAT})) .ATTR(reduction, String, "mean") .OP_END_FACTORY_REG(NLLLoss) /** *@brief The negative log likelihood loss grad . \n *@par Inputs: *@li x:A Tensor dtype of float32. *@li y_grad:A Tensor dtype of float32. *@li target:A Tensor dtype of int32. *@li weight:A Tensor dtype of float32. *@li total_weight:A Tensor dtype of float32 . \n *@par Attributes: *reduction: An optional attribute. Defaults to "mean" . \n *@par Outputs: *x_grad: A Tensor. Must be the following type: float32 . \n *@par Third-party framework compatibility *Compatible with pytorch NLLLossGrad operator */ REG_OP(NLLLossGrad) .INPUT(x, TensorType({DT_FLOAT})) .INPUT(y_grad, TensorType({DT_FLOAT})) .INPUT(target, TensorType({DT_INT32})) .INPUT(weight, TensorType({DT_FLOAT})) .INPUT(total_weight, TensorType({DT_FLOAT})) .OUTPUT(x_grad, TensorType({DT_FLOAT})) .ATTR(reduction, String, "mean") .OP_END_FACTORY_REG(NLLLossGrad) /** *@brief The ifmr . \n *@par Inputs: *@li data:A Tensor of feature map *@li data_min:A Tensor of min value of feature map. *@li data_max:A Tensor of max value of feature map. *@li cumsum:A Tensor of cumsum bin of data . \n *@par Attributes: *min_percentile: min init percentile. *max_percentile: max init percentile. *search_range: search range. *search_step: step size of searching. *with_offset: whether using offset . \n *@par Outputs: *scale: optimal scale. *offset: optimal offset . \n *@par Third-party framework compatibility *Compatible with mindspore */ REG_OP(IFMR) .INPUT(data, TensorType({DT_FLOAT16, DT_FLOAT})) .INPUT(data_min, TensorType({DT_FLOAT16, DT_FLOAT})) .INPUT(data_max, TensorType({DT_FLOAT16, DT_FLOAT})) .INPUT(cumsum, TensorType({DT_INT32})) .OUTPUT(scale, TensorType({DT_FLOAT})) .OUTPUT(offset, TensorType({DT_FLOAT})) .REQUIRED_ATTR(min_percentile, Float) .REQUIRED_ATTR(max_percentile, Float) .REQUIRED_ATTR(search_range, ListFloat) .REQUIRED_ATTR(search_step, Float) .REQUIRED_ATTR(with_offset, Bool) .OP_END_FACTORY_REG(IFMR) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_MATH_OPS_H_