/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "host_kernels/reduce_prod_kernel.h" #include #include #include "common/math/math_util.h" #include "common/op/ge_op_utils.h" #include "common/types.h" #include "framework/common/debug/ge_log.h" #include "framework/common/ge_inner_error_codes.h" #include "host_kernels/kernel_utils.h" #include "graph/utils/type_utils.h" #include "inc/kernel_factory.h" namespace ge { namespace { const size_t kReduceProdDataIndex = 0; const size_t kReduceProdAxisIndex = 1; const size_t kReduceProdMaxAxisRank = 1; const size_t kReduceProdInputOnlyData = 1; const size_t kReduceProdInputSize = 2; const std::set kReduceProdSupportedType = {DT_INT32}; } // namespace Status ReduceProdKernel::ReduceProdCheck(const ge::OpDescPtr &op_desc_ptr, const std::vector &input) const { if (op_desc_ptr == nullptr) { GELOGW("Input opdesc is nullptr."); return PARAM_INVALID; } if (input.size() != kReduceProdInputSize) { if (input.size() == kReduceProdInputOnlyData) { // Input only data, which means calculate product for all elements in data_tensor. GELOGI("ReduceProd node input size is 1, which does not have param axis, node name %s", op_desc_ptr->GetName().c_str()); return NOT_CHANGED; } GELOGW("Unexpected ReduceProd node, node input size: %zu, node name: %s", input.size(), op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex); ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex); GE_CHECK_NOTNULL(data_tensor); GE_CHECK_NOTNULL(axis_tensor); if (axis_tensor->GetTensorDesc().GetShape().GetDimNum() > kReduceProdMaxAxisRank) { GELOGW("Axis must be at most rank 1, node: %s", op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } DataType data_type = data_tensor->GetTensorDesc().GetDataType(); if (kReduceProdSupportedType.find(data_type) == kReduceProdSupportedType.end()) { GELOGW("ReduceProdKernel data type %s not support, node name: %s", TypeUtils::DataTypeToSerialString(data_type).c_str(), op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } return SUCCESS; } Status ReduceProdKernel::AxisCal(const std::vector &input) { ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex); ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex); // support: compute for the first element of axis. vector data_dims = data_tensor->GetTensorDesc().GetShape().GetDims(); size_t data_dim_size = data_dims.size(); int32_t *axis = const_cast(reinterpret_cast(axis_tensor->GetData().GetData())); GE_CHECK_NOTNULL(axis); if (static_cast(*axis) >= data_dim_size) { GELOGW("axis is out of rank of data_dims, axis is %d.", *axis); return PARAM_INVALID; } axis_dim_ = data_dims[static_cast(*axis)]; head_dim_ = 1; end_dim_ = 1; bool axis_appear = false; for (size_t i = 0; i < data_dim_size; i++) { if (i == static_cast(*axis)) { axis_appear = true; continue; } // data_dims is the vector of dims, element in data_dims isn't negative. if (axis_appear) { if (data_dims[i] != 0 && end_dim_ > (INT64_MAX / data_dims[i])) { GELOGW("Product is overflow. multiplier 1: %ld. multiplier 2: %ld.", end_dim_, data_dims[i]); return INTERNAL_ERROR; } end_dim_ *= data_dims[i]; } else { if (data_dims[i] != 0 && head_dim_ > (INT64_MAX / data_dims[i])) { GELOGW("Product is overflow. multiplier 1: %ld. multiplier 2: %ld.", head_dim_, data_dims[i]); return INTERNAL_ERROR; } head_dim_ *= data_dims[i]; } } return SUCCESS; } Status ReduceProdKernel::DataCal(const std::vector &input, ge::GeTensorPtr output_ptr) { ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex); DataType data_dtype = data_tensor->GetTensorDesc().GetDataType(); if (data_dtype == DT_INT32) { int32_t *input_data = const_cast(reinterpret_cast(data_tensor->GetData().GetData())); GE_CHECK_NOTNULL(input_data); size_t data_num = data_tensor->GetData().size() / sizeof(int32_t); unique_ptr buf(new (std::nothrow) int32_t[data_num]()); if (buf == nullptr) { GELOGW("new buf failed"); return INTERNAL_ERROR; } int32_t tmp_x = 1; int32_t tmp_y = 1; for (int64_t i = 0; i < head_dim_; ++i) { for (int64_t j = 0; j < end_dim_; ++j) { // all index for input_data is less than size of input_data tmp_x = input_data[static_cast(i * end_dim_ * axis_dim_ + j)]; for (int64_t k = 1; k < axis_dim_; ++k) { tmp_y = input_data[static_cast(i * end_dim_ * axis_dim_ + j + k * end_dim_)]; if (ge::CheckInt32MulOverflow(tmp_x, tmp_y) != SUCCESS) { GELOGW("Product is overflow. multiplier 1: %d. multiplier 2: %d.", tmp_x, tmp_y); return INTERNAL_ERROR; } tmp_x *= tmp_y; } buf[static_cast(i * end_dim_ + j)] = tmp_x; } } GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast(buf.get()), static_cast(head_dim_ * end_dim_ * sizeof(int32_t))) != GRAPH_SUCCESS, GELOGW("set data failed"); return INTERNAL_ERROR); } return SUCCESS; } void ReduceProdKernel::ShapeCal(const ge::OpDescPtr &op_desc_ptr, const std::vector &input, ge::GeTensorPtr output_ptr) { ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex); ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex); vector data_dims = data_tensor->GetTensorDesc().GetShape().GetDims(); int32_t data_dim_size = static_cast(data_dims.size()); const uint8_t *axis_data = axis_tensor->GetData().GetData(); GE_CHECK_NOTNULL_EXEC(axis_data, return); int32_t axis = *(const_cast(reinterpret_cast(axis_data))); bool keep_dims = false; if (!AttrUtils::GetBool(op_desc_ptr, "keep_dims", keep_dims)) { GELOGI("Get the attr keep_dims was failed."); } if (keep_dims) { for (int32_t i = 0; i < data_dim_size; i++) { if (i == axis) { data_dims[i] = 1; } } } else { vector tmp_dims; for (int32_t i = 0; i < data_dim_size; i++) { if (i != axis) { tmp_dims.push_back(data_dims[i]); } } data_dims.clear(); data_dims = tmp_dims; } output_ptr->MutableTensorDesc().SetShape(GeShape(data_dims)); } Status ReduceProdKernel::ComputeNoAxis(const ge::OpDescPtr &op_desc_ptr, const std::vector &input, ge::GeTensorPtr output_ptr) { ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex); GE_CHECK_NOTNULL(data_tensor); if (data_tensor->GetData().size() == 0) { GELOGW("ReduceProdKernel data size of inputs is 0, node node: %s", op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } DataType data_type = data_tensor->GetTensorDesc().GetDataType(); if (kReduceProdSupportedType.find(data_type) == kReduceProdSupportedType.end()) { GELOGW("ReduceProdKernel data type %s not support, node name: %s", TypeUtils::DataTypeToSerialString(data_type).c_str(), op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } if (data_type == DT_INT32) { int32_t *input_data = const_cast(reinterpret_cast(data_tensor->GetData().GetData())); GE_CHECK_NOTNULL(input_data); size_t data_num = data_tensor->GetData().size() / sizeof(int32_t); unique_ptr buf(new (std::nothrow) int32_t[data_num]()); if (buf == nullptr) { GELOGW("new buf failed"); return INTERNAL_ERROR; } int32_t tmp_x = input_data[0]; int32_t tmp_y = 1; for (size_t k = 1; k < data_num; ++k) { tmp_y = input_data[k]; if (ge::CheckInt32MulOverflow(tmp_x, tmp_y) != SUCCESS) { GELOGW("Product is overflow. multiplier 1: %d. multiplier 2: %d.", tmp_x, tmp_y); return INTERNAL_ERROR; } tmp_x *= tmp_y; } buf[0] = tmp_x; GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast(buf.get()), sizeof(int32_t)) != GRAPH_SUCCESS, GELOGW("set data failed"); return INTERNAL_ERROR); output_ptr->MutableTensorDesc().SetDataType(data_type); output_ptr->MutableTensorDesc().SetShape(GeShape()); } return SUCCESS; } Status ReduceProdKernel::Compute(const ge::OpDescPtr op_desc_ptr, const std::vector &input, std::vector &v_output) { GELOGI("ReduceProdKernel in."); Status ret = ReduceProdCheck(op_desc_ptr, input); if (ret != SUCCESS && ret != NOT_CHANGED) { GELOGW("ReduceProdKernel input is invalid, failed to fold node."); return NOT_CHANGED; } // Index 0 can always gets a GeTensorDesc object from any OpDescPtr. auto output_tensor_desc = op_desc_ptr->GetOutputDesc(0); GeTensorPtr output_ptr = MakeShared(output_tensor_desc); if (output_ptr == nullptr) { GELOGW("make_shared ge::GeTensor failed, node name %s.", op_desc_ptr->GetName().c_str()); return NOT_CHANGED; } if (ret == NOT_CHANGED) { // compute output tensor when no param axis ret = ComputeNoAxis(op_desc_ptr, input, output_ptr); if (ret != SUCCESS) { return NOT_CHANGED; } } else if (input.at(kReduceProdAxisIndex)->GetData().size() == 0) { // axis tensor value is [], means no process for input output_ptr->MutableTensorDesc().SetShape(input.at(kReduceProdDataIndex)->GetTensorDesc().GetShape()); output_ptr->MutableTensorDesc().SetDataType(input.at(kReduceProdDataIndex)->GetTensorDesc().GetDataType()); if (output_ptr->SetData(input.at(kReduceProdDataIndex)->GetData()) != GRAPH_SUCCESS) { GELOGW("Compute: SetData failed"); } } else { // calculate axis to reduce ret = AxisCal(input); if (ret != SUCCESS) { return NOT_CHANGED; } // calculate and set shape ShapeCal(op_desc_ptr, input, output_ptr); // set data type output_ptr->MutableTensorDesc().SetDataType(input.at(kReduceProdDataIndex)->GetTensorDesc().GetDataType()); // data size == 0 means input tensor has zero in shape, and tensor value is []. if (input.at(kReduceProdDataIndex)->GetData().size() != 0) { // calculate data and data type ret = DataCal(input, output_ptr); if (ret != SUCCESS) { return NOT_CHANGED; } } } // print output tensor information, and will be deleted GELOGD("ReduceProd op %s output tensor data size is %zu", op_desc_ptr->GetName().c_str(), output_ptr->GetData().size()); vector data_dims = output_ptr->GetTensorDesc().GetShape().GetDims(); GELOGD("ReduceProd op %s output tensor dim size is %zu", op_desc_ptr->GetName().c_str(), data_dims.size()); v_output.emplace_back(output_ptr); GELOGI("ReduceProdKernel success."); return SUCCESS; } REGISTER_KERNEL(REDUCEPROD, ReduceProdKernel); } // namespace ge