/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "host_kernels/pack_kernel.h" #include #include #include "common/debug/log.h" #include "common/formats/utils/formats_trans_utils.h" #include "common/ge_inner_error_codes.h" #include "common/op/ge_op_utils.h" #include "framework/common/debug/ge_log.h" #include "graph/debug/ge_attr_define.h" #include "host_kernels/kernel_utils.h" #include "graph/utils/type_utils.h" #include "inc/kernel_factory.h" #include "framework/common/types.h" namespace { const int64_t kShapeItemNumMAX = 2000000000; } // namespace namespace ge { Status PackKernel::Compute(const ge::OpDescPtr op_desc_ptr, const std::vector &input, std::vector &v_output) { GELOGI("Pack kernel in."); Status validate_ret = ValidateKernelParams(op_desc_ptr, input); if (validate_ret != SUCCESS) { GELOGW("Pack kernel input is invalid , can not continue compute."); return NOT_CHANGED; } GeShape final_shape; ExpandDims(axis_, input, final_shape); // generate output GeTensorPtr output_ptr = MakeShared(op_desc_ptr->GetOutputDesc(0)); if (output_ptr == nullptr) { GELOGW("Fail to malloc output."); return OUT_OF_MEMORY; } Status ret = CopyOutputData(final_shape, input, output_ptr); if (ret != SUCCESS) { GELOGW("Pack inputs failed. Ignore pack kernel."); return NOT_CHANGED; } v_output.push_back(output_ptr); return SUCCESS; } Status PackKernel::ValidateKernelParams(const ge::OpDescPtr &op_desc_ptr, const std::vector &input) { if (op_desc_ptr == nullptr) { GELOGW("input opdesc is nullptr."); return PARAM_INVALID; } if (!(AttrUtils::GetInt(op_desc_ptr, PACK_ATTR_NAME_NUM, n_))) { n_ = 0; GELOGD("Attr %s is not set, default value %ld is used.", PACK_ATTR_NAME_NUM.c_str(), n_); } if (!(AttrUtils::GetInt(op_desc_ptr, ATTR_NAME_AXIS, axis_))) { GELOGW("Attr %s is not exist.", ATTR_NAME_AXIS.c_str()); return PARAM_INVALID; } if (input.empty()) { GELOGW("The number of input for Pack should be %ld, in fact it is %zu ", n_, input.size()); return NOT_CHANGED; } if (input.size() != static_cast(n_)) { GELOGW("The number of input for Pack should be %d, in fact it is %ld ", static_cast(n_), input.size()); return PARAM_INVALID; } data_type_ = op_desc_ptr->GetInputDesc(0).GetDataType(); GeShape shape = op_desc_ptr->GetInputDesc(0).GetShape(); if (axis_ < 0 || axis_ > (static_cast(shape.GetDimNum()) + 1)) { GELOGW("Axis is %ld ,which is out of range [0,R+1].", axis_); return NOT_CHANGED; } Status validate_ret = ValidateInputs(op_desc_ptr, input); if (validate_ret != SUCCESS) { GELOGW("Validate inputs failed.Ignore pack kernel."); return NOT_CHANGED; } return SUCCESS; } Status PackKernel::ValidateInputs(const ge::OpDescPtr &op_desc_ptr, const std::vector &input) { GeShape shape; for (int64_t i = 0; i < n_; i++) { if (input[i] == nullptr) { GELOGW("Input %ld of pack kernel %s is null.", i, op_desc_ptr->GetName().c_str()); return PARAM_INVALID; } if (i == 0) { // get first input shape shape = input[0]->GetTensorDesc().GetShape(); } GeTensorDesc tensor_desc = input[i]->GetTensorDesc(); // check datatype of inputs is same or not if (tensor_desc.GetDataType() != data_type_) { GELOGW("Data type of inputs %ld for pack not matched, data type should be %s, but actual datatype is %s", i, TypeUtils::DataTypeToSerialString(data_type_).c_str(), TypeUtils::DataTypeToSerialString(tensor_desc.GetDataType()).c_str()); return NOT_CHANGED; } // check shape of inputs is same or not auto dst_shape = tensor_desc.GetShape(); int64_t num = 1; for (auto dim : dst_shape.GetDims()) { if (dim < 0) { GELOGW("Invalid dim ld% in the shape %s", dim, formats::ShapeToString(shape).c_str()); return NOT_CHANGED; } num *= dim; if (num > kShapeItemNumMAX) { GELOGW("Shape overflow, the total count should be less than %ld!", kShapeItemNumMAX); return NOT_CHANGED; } } if (!formats::IsShapeEqual(shape, dst_shape)) { GELOGW("Shape of input %ld is not equal wiht input 0.", i); return NOT_CHANGED; } // check tensor data size is zero ot not if (input[i]->GetData().size() == 0 && num != 0) { GELOGW("Inputs %ld do not have value.", i); return NOT_CHANGED; } } return SUCCESS; } void PackKernel::ExpandDims(const int64_t axis, const std::vector &input, GeShape &final_shape) { // expand dims vector current_dims = input[0]->GetTensorDesc().GetShape().GetDims(); vector final_dims; final_dims.assign(current_dims.begin(), current_dims.end()); // expand dim of N // assume there are N inputs, and shape is [A,B,C], // if axis = 0, after pack, the output shape should be [N,A,B,C]. // if axis = 1, after pack, the output shape should be [A,N,B,C]. // ...etc // if axis = 3, after pack, the output shape should be [A,B,C,N] if (axis >= static_cast(final_dims.size())) { final_dims.emplace_back(n_); } else { final_dims.insert(final_dims.begin() + axis, n_); } final_shape = GeShape(final_dims); } Status PackKernel::CopyOutputData(const GeShape &final_shape, const std::vector &input, ge::GeTensorPtr &output_ptr) { output_ptr->MutableTensorDesc().SetShape(final_shape); output_ptr->MutableTensorDesc().SetDataType(DataType(data_type_)); if (final_shape.GetShapeSize() == 0 && final_shape.GetDims().size() != 0) { // means has zero in shape list, output tnesor data is []. return SUCCESS; } int64_t times = 1; int64_t unit = 1; // calculate data unit for (int64_t i = (axis_ + 1); i < static_cast(final_shape.GetDimNum()); i++) { unit *= final_shape.GetDim(static_cast(i)); } // calculate get times for (int64_t i = 0; i < axis_; i++) { times *= final_shape.GetDim(static_cast(i)); } GELOGD("Copy output data times is %ld, unit is %ld.", times, unit); uint32_t data_size = GetSizeByDataType(data_type_); // assume output shape is [A,N,B,C], time=A,unit=B*C // when copy data from input, we follow time*N*unit auto output_size = final_shape.GetShapeSize(); std::shared_ptr buf(new (std::nothrow) uint8_t[output_size * data_size], std::default_delete()); if (buf == nullptr) { GELOGW("malloc buf is null.Ignore pack kernel."); return NOT_CHANGED; } size_t dst_offset = 0; size_t src_offset = 0; // data copy follow times*N*offset, which offset = time*unit for (int64_t i = 0; i < times; i++) { for (int64_t j = 0; j < n_; j++) { // input range already check before. Range is [0,n_). const uint8_t *in_data = input[j]->GetData().data(); auto ret = memcpy_s(buf.get() + dst_offset, output_size * data_size - dst_offset, in_data + src_offset, data_size * unit); if (ret != EOK) { GELOGW("Memory copy failed."); return NOT_CHANGED; } dst_offset += data_size * unit; } src_offset += unit * data_size; } if (output_ptr->SetData(buf.get(), static_cast(output_size * data_size)) != GRAPH_SUCCESS) { GELOGW("CopyOutputData: SetData failed"); } return SUCCESS; } REGISTER_KERNEL(PACK, PackKernel); } // namespace ge