/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "subexpression_migration_pass.h" #include "graph/utils/node_utils.h" #include "ge_local_engine/engine/host_cpu_engine.h" #include "graph/passes/folding_pass.h" namespace ge { constexpr uint32_t kDataOutIndex = 0; constexpr uint32_t kCaseInputBase = 1; constexpr uint32_t kInvalidParent = 0x7fffffffU; bool IsSameTensor(ConstGeTensorDescPtr src_tensor, ConstGeTensorDescPtr dst_tensor) { if ((src_tensor == nullptr) && (dst_tensor == nullptr)) { return true; } if ((src_tensor == nullptr) || (dst_tensor == nullptr)) { return false; } if ((src_tensor->GetDataType() != dst_tensor->GetDataType()) || (src_tensor->GetFormat() != dst_tensor->GetFormat())) { return false; } const auto src_dims = src_tensor->GetShape().GetDims(); const auto dst_dims = dst_tensor->GetShape().GetDims(); if (src_dims != dst_dims) { return false; } const auto src_orig_dims = src_tensor->GetOriginShape().GetDims(); const auto dst_orig_dims = dst_tensor->GetOriginShape().GetDims(); if (src_orig_dims != dst_orig_dims) { return false; } return true; } bool IsSameOpDesc(const OpDescPtr &src_desc, const OpDescPtr &dst_desc) { if ((src_desc == nullptr) && (dst_desc == nullptr)) { return true; } if ((src_desc == nullptr) || (dst_desc == nullptr)) { return false; } if (src_desc->GetType() != dst_desc->GetType()) { return false; } if ((src_desc->GetInputsSize() != dst_desc->GetInputsSize()) || (src_desc->GetOutputsSize() != dst_desc->GetOutputsSize())) { return false; } for (uint32_t i = 0; i < src_desc->GetInputsSize(); ++i) { if (!IsSameTensor(src_desc->GetInputDescPtr(i), dst_desc->GetInputDescPtr(i))) { return false; } } for (uint32_t i = 0; i < src_desc->GetOutputsSize(); ++i) { if (!IsSameTensor(src_desc->GetOutputDescPtr(i), dst_desc->GetOutputDescPtr(i))) { return false; } } return true; } Status SubexpressionMigrationPass::Run(ComputeGraphPtr graph) { GE_CHECK_NOTNULL(graph); if (graph->GetParentGraph() != nullptr) { GELOGD("Subgraph %s skip the SubexpressionMigrationPass", graph->GetName().c_str()); return SUCCESS; } GELOGD("Begin to run Subexpression Migration on graph: %s", graph->GetName().c_str()); for (const auto &node : graph->GetDirectNode()) { if (node->GetType() != CASE) { continue; } const auto &func_desc = node->GetOpDesc(); if (!func_desc->HasAttr(ATTR_NAME_BATCH_NUM)) { GELOGD("Not multi-batch, Case: %s", node->GetName().c_str()); continue; } do { migration_append_ = false; map> graph_nodes; if (ClassifyDataNodes(graph, func_desc, graph_nodes) != SUCCESS) { return FAILED; } if (graph_nodes.empty()) { GELOGW("Graph: %s nodes is empty", graph->GetName().c_str()); break; } // {subgraph0, {{1, Data}, {2, Data}, {3, Data}, {4, Data}, ..., {n, Data}}} // {subgraph1, {{1, Data}, {2, Data}, {3, Data}, {4, Data}, ..., {n, Data}}} // {subgraph2, {{1, Data}, {2, Data}, {3, Data}, {4, Data}, ..., {n, Data}}} const auto base_nodes = graph_nodes.begin()->second; // Need copy. for (const auto &node_item : base_nodes) { if (GraphNodeMigration(graph, node, graph_nodes, node_item.second, node_item.first) != SUCCESS) { return FAILED; } } } while (migration_append_); } return SUCCESS; } /// /// @ingroup ge /// @brief Get all Data nodes for all subgraph. /// @param [in] graph: Root compute graph. /// @param [in] func_desc: functional OpDesc of Case. /// @param [out] graph_nodes: Data groups of subgraph. /// @return 0: SUCCESS / others: FAILED /// Status SubexpressionMigrationPass::ClassifyDataNodes(const ComputeGraphPtr &graph, const OpDescPtr &func_desc, map> &graph_nodes) { for (const auto &name : func_desc->GetSubgraphInstanceNames()) { const auto &subgraph = graph->GetSubgraph(name); if (subgraph == nullptr) { GELOGE(GE_GRAPH_EMPTY_SUBGRAPH, "Subgraph not found, name: %s", name.c_str()); return GE_GRAPH_EMPTY_SUBGRAPH; } auto &data_nodes = graph_nodes[subgraph]; for (auto &data : subgraph->GetDirectNode()) { if (data->GetType() != DATA) { continue; } uint32_t parent_index = 0; if (!AttrUtils::GetInt(data->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, parent_index)) { GELOGE(FAILED, "Parent index not found, name: %s", data->GetName().c_str()); return FAILED; } data_nodes[parent_index] = data; GELOGD("%s, Parent index: %u, Data: %s", subgraph->GetName().c_str(), parent_index, data->GetName().c_str()); } } for (const auto &data_nodes : graph_nodes) { if (data_nodes.second.size() != graph_nodes.begin()->second.size()) { GELOGE(FAILED, "Subgraph %s has invalid Data nodes[%zu != %zu]", data_nodes.first->GetName().c_str(), data_nodes.second.size(), graph_nodes.begin()->second.size()); return FAILED; } } return SUCCESS; } /// /// @ingroup ge /// @brief Get all Data nodes for all subgraph. /// @param [in] node: Node Directly to Data. /// @param [out] inputs: parent index of Input. /// @param [out] outputs: parent index of Output. /// @return true: SUCCESS / false: FAILED /// bool SubexpressionMigrationPass::GetAssociatedNodes(const NodePtr &node, map &inputs, map &outputs) { for (uint32_t i = 0; i < node->GetAllOutDataAnchorsSize(); ++i) { outputs[i] = kInvalidParent; } uint32_t out_index = 0; for (uint32_t i = 0; i < node->GetAllInDataAnchorsSize(); ++i) { const auto &in_anchor = node->GetInDataAnchor(i); const auto &out_anchor = in_anchor->GetPeerOutAnchor(); if (out_anchor == nullptr) { inputs[i] = kInvalidParent; continue; } // Has none Data input node, Can not move to parent. const auto &owner_node = out_anchor->GetOwnerNode(); if (owner_node->GetType() != DATA) { return false; } uint32_t parent_index = 0; if (!AttrUtils::GetInt(owner_node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, parent_index)) { return false; } // Input Data feed other Node, need add new Data. inputs[i] = parent_index; if ((out_index < outputs.size()) && (owner_node->GetOutDataNodesSize() == 1)) { outputs[out_index] = parent_index; ++out_index; } } return true; } /// /// @ingroup ge /// @brief Get all Data nodes for all subgraph. /// @param [in] graph_nodes: Data groups of subgraph. /// @param [in] base_node: Data Node for migration. /// @param [in] node_idx: Parent index of Data node. /// @param [in] anchor_idx: Anchor index of node. /// @return true: Same / false: not same /// bool SubexpressionMigrationPass::IsParallelNodeSame(const map> &graph_nodes, const NodePtr &base_node, uint32_t node_idx, uint32_t anchor_idx) { auto it = graph_nodes.begin(); for (++it; it != graph_nodes.end(); ++it) { const auto &data_nodes = it->second; auto data_it = data_nodes.find(node_idx); if (data_it == data_nodes.end()) { GELOGE(FAILED, "Data: %s not fount, index: %u", base_node->GetName().c_str(), node_idx); return false; } const auto &work_data = data_it->second; const auto &out_anchor = work_data->GetOutDataAnchor(kDataOutIndex); const auto &in_anchors = out_anchor->GetPeerInDataAnchors(); const auto &in_anchor = in_anchors.at(anchor_idx); if (in_anchor == nullptr) { GELOGE(FAILED, "Data anchor size: %u, anchor size: %zu", anchor_idx, in_anchors.size()); return false; } const auto &work_node = in_anchor->GetOwnerNode(); if (work_node == nullptr) { GELOGE(FAILED, "Data: %s not found, index: %u", base_node->GetName().c_str(), node_idx); return false; } if (!IsSameOpDesc(base_node->GetOpDesc(), work_node->GetOpDesc())) { GELOGI("OpDesc diff: %s %s", base_node->GetName().c_str(), work_node->GetName().c_str()); return false; } } return true; } /// /// @ingroup ge /// @brief Migration subgraph Node to Root /// @param [in] graph: Root compute graph. /// @param [in] func_node: functional Node of Case. /// @param [in] graph_nodes: Data groups of subgraph. /// @param [in] data_base: Data Node for migration. /// @param [in] data_idx: Data groups of subgraph. /// @return 0: SUCCESS / others: FAILED /// Status SubexpressionMigrationPass::GraphNodeMigration(const ComputeGraphPtr &graph, const NodePtr &func_node, map> &graph_nodes, const NodePtr &base_data, uint32_t base_idx) { bool can_extrapolation = false; do { can_extrapolation = false; const auto out_anchor = base_data->GetOutDataAnchor(kDataOutIndex); const auto in_anchors = out_anchor->GetPeerInDataAnchors(); for (size_t i = 0; i < in_anchors.size(); ++i) { const auto &in_anchor = in_anchors.at(i); const auto &base_node = in_anchor->GetOwnerNode(); GELOGD("Get Data direct node: %s", base_node->GetName().c_str()); if (!base_node->GetHostNode()) { continue; } // Get associated Data, if Data feed other nodes, need append new Data. map inputs; map outputs; if (!GetAssociatedNodes(base_node, inputs, outputs)) { continue; } if (!IsParallelNodeSame(graph_nodes, base_node, base_idx, i)) { continue; } GELOGI("Move to parent: %s, parent index: %u", base_node->GetName().c_str(), base_idx); if (AppendParallelNode(graph_nodes, func_node, outputs) != SUCCESS) { return FAILED; } if (MoveNodeToParent(graph, func_node, graph_nodes, i, inputs, outputs) != SUCCESS) { return FAILED; } can_extrapolation = true; break; } } while (can_extrapolation); return SUCCESS; } /// /// @ingroup ge /// @brief Append Input Tensor for functional node. /// @param [in] graph_nodes: Data groups of subgraph. /// @param [in] func_node: functional Node of Case. /// @param [in] outputs: Parent index of Node output. /// @return 0: SUCCESS / others: FAILED /// Status SubexpressionMigrationPass::AppendParallelNode(map> &graph_nodes, const NodePtr &func_node, map &outputs) { // If outputs index invalid, add Data and Input Tensor. for (auto &item : outputs) { if (item.second != kInvalidParent) { continue; } // Add Data to subgraph. map append_num; for (auto &groups : graph_nodes) { const auto &subgraph = groups.first; auto &data_nodes = groups.second; item.second = func_node->GetAllInDataAnchorsSize() + append_num[subgraph]; // Update to valid parent index. std::string data_name = subgraph->GetName() + "_data_" + std::to_string(item.second); OpDescBuilder op_builder(data_name, DATA); const OpDescPtr op_desc = op_builder.AddInput("x").AddOutput("y").Build(); if (op_desc == nullptr) { GELOGE(OUT_OF_MEMORY, "Create multi-batch case desc failed"); return OUT_OF_MEMORY; } uint32_t data_index = item.second - kCaseInputBase; if (!AttrUtils::SetInt(op_desc, ATTR_NAME_INDEX, data_index)) { GELOGE(FAILED, "Parent index not found, name: %s", op_desc->GetName().c_str()); return FAILED; } if (!AttrUtils::SetInt(op_desc, ATTR_NAME_PARENT_NODE_INDEX, item.second)) { GELOGE(FAILED, "Parent index not found, name: %s", op_desc->GetName().c_str()); return FAILED; } append_num[subgraph]++; data_nodes[item.second] = subgraph->AddNode(op_desc); GELOGI("Add Node: %s, parent index: %u", op_desc->GetName().c_str(), item.second); } // Add InputTensor to functional Node. GE_CHK_GRAPH_STATUS_RET(NodeUtils::AppendInputAnchor(func_node, item.second + 1), "Append input failed"); migration_append_ = true; } return SUCCESS; } /// /// @ingroup ge /// @brief Delete Node from all subgraph. /// @param [in] graph_nodes: Data groups of subgraph. /// @param [in] detach: Node will move to parent. /// @param [in] outputs: Parent index of Node output. /// @return 0: SUCCESS / others: FAILED /// Status SubexpressionMigrationPass::DetachParallelNode(const map &graph_datas, const NodePtr &detach, const map &outputs) { // Break Data and Move node. for (const auto &in_anchor : detach->GetAllInDataAnchors()) { const auto &out_anchor = in_anchor->GetPeerOutAnchor(); if (out_anchor == nullptr) { continue; } GE_CHK_GRAPH_STATUS_RET(GraphUtils::RemoveEdge(out_anchor, in_anchor), "Remove edge failed"); const auto &owner_node = out_anchor->GetOwnerNode(); GELOGI("Remove Edge: %s %s", owner_node->GetName().c_str(), detach->GetName().c_str()); } // Break Move and follow, Link Data and follow. for (uint32_t i = 0; i < detach->GetAllOutDataAnchorsSize(); ++i) { auto it_idx = outputs.find(i); if (it_idx == outputs.end()) { GELOGE(FAILED, "Node: %s parent index %u not found", detach->GetName().c_str(), i); return FAILED; } auto it_data = graph_datas.find(it_idx->second); if (it_data == graph_datas.end()) { GELOGE(FAILED, "Node: %s parent index %u not found", detach->GetName().c_str(), i); return FAILED; } const auto &data_node = it_data->second; const auto &out_anchor = detach->GetOutDataAnchor(i); const auto &out_desc = detach->GetOpDesc()->GetOutputDesc(i); const auto &data_desc = data_node->GetOpDesc(); (void)data_desc->UpdateInputDesc(kDataOutIndex, out_desc); // Set Data Input to new connect Node. (void)data_desc->UpdateOutputDesc(kDataOutIndex, out_desc); // Set Data Output to new connect Node. for (const auto &in_anchor : out_anchor->GetPeerInDataAnchors()) { if (in_anchor == nullptr) { continue; } GE_CHK_GRAPH_STATUS_RET(GraphUtils::RemoveEdge(out_anchor, in_anchor), "Remove edge failed"); const auto &owner_node = in_anchor->GetOwnerNode(); GELOGI("Remove Edge: %s %s", detach->GetName().c_str(), owner_node->GetName().c_str()); const auto &data_out_anchor = data_node->GetOutDataAnchor(kDataOutIndex); GE_CHK_GRAPH_STATUS_RET(GraphUtils::AddEdge(data_out_anchor, in_anchor), "Add edge failed"); GELOGI("Add Edge: %s %s", data_node->GetName().c_str(), owner_node->GetName().c_str()); } } return SUCCESS; } /// /// @ingroup ge /// @brief Move Node to Parent Graph. /// @param [in] graph: Parent compute graph. /// @param [in] func_node: functional Node of Case. /// @param [in] attach: Node will move to parent. /// @param [in] inputs: Parent index of Node input. /// @param [in] outputs: Parent index of Node output. /// @return 0: SUCCESS / others: FAILED /// Status SubexpressionMigrationPass::AttachParallelNode(const ComputeGraphPtr &graph, const NodePtr &func_node, const NodePtr &attach, const map &inputs, const map &outputs) { GE_CHECK_NOTNULL(attach); for (uint32_t i = 0; i < attach->GetAllInDataAnchorsSize(); ++i) { auto it_idx = inputs.find(i); if (it_idx == inputs.end()) { GELOGE(FAILED, "Node: %s parent index %u not found", attach->GetName().c_str(), i); return FAILED; } if (it_idx->second == kInvalidParent) { // Not connect, Skip. continue; } const auto &in_anchor = func_node->GetInDataAnchor(it_idx->second); const auto &out_anchor = in_anchor->GetPeerOutAnchor(); GE_CHK_GRAPH_STATUS_RET(GraphUtils::AddEdge(out_anchor, attach->GetInDataAnchor(i)), "Add edge failed"); const auto &owner_node = out_anchor->GetOwnerNode(); GELOGI("Add Edge: %s %s", owner_node->GetName().c_str(), attach->GetName().c_str()); } for (uint32_t i = 0; i < attach->GetAllOutDataAnchorsSize(); ++i) { auto it_idx = outputs.find(i); if (it_idx == outputs.end()) { return FAILED; } if (it_idx->second == kInvalidParent) { // Not connect, Skip. continue; } const auto &out_desc = attach->GetOpDesc()->GetOutputDesc(i); const auto &func_desc = func_node->GetOpDesc(); (void)func_desc->UpdateInputDesc(it_idx->second, out_desc); // Set Data Input to new connect Node. const auto &in_anchor = func_node->GetInDataAnchor(it_idx->second); const auto &out_anchor = in_anchor->GetPeerOutAnchor(); if (out_anchor != nullptr) { GE_CHK_GRAPH_STATUS_RET(GraphUtils::RemoveEdge(out_anchor, in_anchor), "Remove edge failed"); const auto &owner_node = out_anchor->GetOwnerNode(); GELOGI("Remove Edge: %s %s", owner_node->GetName().c_str(), func_node->GetName().c_str()); } GE_CHK_GRAPH_STATUS_RET(GraphUtils::AddEdge(attach->GetOutDataAnchor(i), in_anchor), "Add edge failed"); GELOGI("Add Edge: %s %s", attach->GetName().c_str(), func_node->GetName().c_str()); } (void)graph->AddNode(attach); (void)attach->SetOwnerComputeGraph(graph); GELOGI("Add Node: %s %s", graph->GetName().c_str(), attach->GetName().c_str()); return SUCCESS; } /// /// @ingroup ge /// @brief Move node to Parent graph. /// @param [in] graph: Root compute graph. /// @param [in] func_node: functional Node of Case. /// @param [in] graph_nodes: Data groups of subgraph. /// @param [in] anchor_idx: anchor index of move Node. /// @param [in] inputs: Parent index of Node input. /// @param [in] outputs: Parent index of Node output. /// @return 0: SUCCESS / others: FAILED /// Status SubexpressionMigrationPass::MoveNodeToParent(const ComputeGraphPtr &graph, const NodePtr &func_node, const map> &graph_nodes, uint32_t anchor_idx, const map &inputs, const map &outputs) { if (inputs.empty()) { GELOGE(FAILED, "Graph: %s, inputs is empty", graph->GetName().c_str()); return FAILED; } NodePtr move_node; uint32_t base_index = inputs.begin()->second; for (auto &groups : graph_nodes) { const auto &subgraph = groups.first; const auto &subnodes = groups.second; auto it = subnodes.find(base_index); if (it == subnodes.end()) { GELOGE(FAILED, "Graph: %s, Data: %u node not found", subgraph->GetName().c_str(), base_index); return FAILED; } const auto &base_data = it->second; const auto &out_anchor = base_data->GetOutDataAnchor(kDataOutIndex); const auto &in_anchors = out_anchor->GetPeerInDataAnchors(); const auto &in_anchor = in_anchors.at(anchor_idx); if (in_anchor == nullptr) { GELOGE(FAILED, "Data anchor index: %u, anchor size: %zu", anchor_idx, in_anchors.size()); return FAILED; } move_node = in_anchor->GetOwnerNode(); if (move_node == nullptr) { GELOGE(FAILED, "Data: %s not found, index: %u", base_data->GetName().c_str(), base_index); return FAILED; } if (DetachParallelNode(subnodes, move_node, outputs) != SUCCESS) { GELOGE(FAILED, "Data: %s not found, index: %u", base_data->GetName().c_str(), base_index); return FAILED; } GE_CHK_GRAPH_STATUS_RET(subgraph->RemoveNode(move_node), "Remove node failed"); GELOGI("Remove Node: %s %s", subgraph->GetName().c_str(), move_node->GetName().c_str()); } if (AttachParallelNode(graph, func_node, move_node, inputs, outputs) != SUCCESS) { return FAILED; } return SUCCESS; } } // namespace ge