/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_HCOM_OPS_H_ #define GE_OP_HCOM_OPS_H_ #include "graph/operator_reg.h" namespace ge { /** * @brief Outputs a tensor gathering all input tensors. * @par Inputs: * x: A tensor. Must be one of the following types: int8, int32, float16, * float32. * @par Attributes: * @li rank_size: An integer identifying the number of ranks participating in * the op. * @li group: A string identifying the group name of ranks participating in * the op. * @par Outputs: * y: A Tensor. Has the same type as "x". * @attention Constraints:\n * "group" is limited to 128 characters. Use "hccl_world_group" * as the name of a world group. */ REG_OP(HcomAllGather) .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .REQUIRED_ATTR(rank_size, Int) .REQUIRED_ATTR(group, String) .ATTR(alpha, Float, 1.0) .ATTR(beta, Float, 0.0) .OP_END_FACTORY_REG(HcomAllGather) /** * @brief Outputs a tensor containing the reduction across all input tensors * passed to op. * @par Inputs: * x: A tensor. Must be one of the following types: int8, int32, float16, * float32. * @par Attributes: * @li reduction: A string identifying the reduction operation to perform. \n * The supported operation are: "sum", "max", "min", "prod". * @li group: A string identifying the group name of ranks participating in * the op. * @li fusion: An optional integer identifying the fusion flag of the op. \n * 0: no fusion; other (default): fusion. * @par Outputs: * y: A Tensor. Has the same type as "x". * @attention Constraints: \n * "group" is limited to 128 characters. Use "hccl_world_group" * as the name of a world group. */ REG_OP(HcomAllReduce) .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .REQUIRED_ATTR(reduction, String) .REQUIRED_ATTR(group, String) .ATTR(fusion, Int, 1) .ATTR(alpha, Float, 1.0) .ATTR(beta, Float, 0.0) .OP_END_FACTORY_REG(HcomAllReduce) /** * @brief Broadcasts the input tensor in root rank to all ranks. * @par Inputs: * x: A tensor. Must be one of the following types: int8, int32, float16, * float32. * @par Attributes: * @li root_rank: An integer identifying the root rank in the op input of * this rank will be broadcast to other ranks. * @li group: A string identifying the group name of ranks participating in * the op. * @par Outputs: * y: A Tensor. Has the same type as "x". * @attention Constraints:\n * "group" is limited to 128 characters. Use "hccl_world_group" * as the name of a world group. */ REG_OP(HcomBroadcast) .DYNAMIC_INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .DYNAMIC_OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .REQUIRED_ATTR(root_rank, Int) .REQUIRED_ATTR(group, String) .ATTR(alpha, Float, 1.0) .ATTR(beta, Float, 0.0) .OP_END_FACTORY_REG(HcomBroadcast) /** * @brief Performs reduction across all input tensors, scattering in equal * blocks among ranks, each rank getting a chunk of data based on its rank * index. * @par Inputs: * x: A tensor. Must be one of the following types: int8, int32, float16, * float32. * @par Attributes: * @li reduction: A string identifying the reduction operation to perform. \n * The supported operation are: "sum", "max", "min", "prod". * @li group: A string identifying the group name of ranks participating in * the op. * @li rank_size: An integer identifying the number of ranks participating in * the op. * @par Outputs: * y: A Tensor. Has the same type as "x". * @attention Constraints:\n * "group" is limited to 128 characters. Use "hccl_world_group" * as the name of a world group. */ REG_OP(HcomReduceScatter) .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .REQUIRED_ATTR(reduction, String) .REQUIRED_ATTR(group, String) .REQUIRED_ATTR(rank_size, Int) .ATTR(alpha, Float, 1.0) .ATTR(beta, Float, 0.0) .OP_END_FACTORY_REG(HcomReduceScatter) /** * @brief Sends the input tensor to destination rank. * @par Inputs: * x: A tensor. Must be one of the following types: int8, int32, float16, * float32. * @par Attributes: * @li sr_tag: An integer identifying the send/recv message tag. The message * will be received by the HcomReceive op with the same "sr_tag". * @li dest_rank: An integer identifying the destination rank. * @li group: A string identifying the group name of ranks participating in * the op. * @par Outputs: * None. * @attention Constraints:\n * @li "group" is limited to 128 characters. Use * "hccl_world_group" as the name of a world group. * @li Operators HcomSend and HcomReceive have the same "sr_tag". * @see HcomReceive */ REG_OP(HcomSend) .INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .REQUIRED_ATTR(group, String) .REQUIRED_ATTR(sr_tag, Int) .REQUIRED_ATTR(dest_rank, Int) .ATTR(alpha, Float, 1.0) .ATTR(beta, Float, 0.0) .OP_END_FACTORY_REG(HcomSend) /** * @brief Receives the tensor from source rank. * @par Inputs: * None. * @par Attributes: * @li sr_tag: An integer identifying the send/recv message tag. The message * will be send by the HcomSend op with the same "sr_tag". * @li src_rank: An integer identifying the source rank. * @li group: A string identifying the group name of ranks participating in * the op. * @li shape: A list identifying the shape of the tensor to be received. * @li dtype: An integer identifying the type of the tensor to be received. \n * The supported types are: int8, int32, float16, float32. * @par Outputs: * y: A tensor with type identified in "dtype". * @attention Constraints:\n * @li "group" is limited to 128 characters. Use * "hccl_world_group" as the name of a world group. * @li Operators HcomSend and HcomReceive have the same "sr_tag". * @li "shape" should be same as the input tensor of HcomSend. * @li "dtype" should be same as the input tensor of HcomSend. * @see HcomSend */ REG_OP(HcomReceive) .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT8, DT_FLOAT16})) .REQUIRED_ATTR(group, String) .REQUIRED_ATTR(sr_tag, Int) .REQUIRED_ATTR(src_rank, Int) .REQUIRED_ATTR(shape, ListInt) .REQUIRED_ATTR(dtype, Type) .ATTR(alpha, Float, 1.0) .ATTR(beta, Float, 0.0) .OP_END_FACTORY_REG(HcomReceive) } #endif