/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file sdca_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_SDCA_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_SDCA_OPS_H_ #include "graph/operator.h" #include "graph/operator_reg.h" namespace ge { /** *@brief Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for *linear models with L1 + L2 regularization. As global optimization objective is *strongly-convex, the optimizer optimizes the dual objective at each step. The *optimizer applies each update one example at a time. Examples are sampled *uniformly, and the optimizer is learning rate free and enjoys linear convergence *rate . \n *@par Inputs: *@li sparse_example_indices: a list of vectors which contain example indices.It's a dynamic input. *@li sparse_feature_indices: a list of vectors which contain feature indices.It's a dynamic input. *@li sparse_feature_values: a list of vectors which contains feature value associated with each feature group.It's a dynamic input. *@li dense_features: a list of matrices which contains the dense feature values.It's a dynamic input. *@li example_weights: a vector which contains the weight associated with each example. *@li example_labels: a vector which contains the label/target associated with each example. *@li sparse_indices: a list of vectors where each value is the indices which has *corresponding weights in sparse_weights. This field maybe omitted for the dense approach.It's a dynamic input. *@li sparse_weights: a list of vectors where each value is the weight associated with a sparse feature group. *@li dense_weights: a list of vectors where the values are the weights associated with a dense feature group.It's a dynamic input. *@li example_state_data: a list of vectors containing the example state data. *@li loss_type: Type of the primal loss. Currently SdcaSolver supports logistic, squared and hinge losses. *@li l1: Symmetric l1 regularization strength. *@li l2: Symmetric l2 regularization strength. *@li num_loss_partitions: Number of partitions of the global loss function. *@li num_inner_iterations: Number of iterations per mini-batch . \n *@par Outputs: *y: A Returns a list of vectors containing the updated example state *data.a list of vectors where each value is the delta *weights associated with a sparse feature group.a list of vectors where the values are the delta *weights associated with a dense feature group . \n *@par Third-party framework compatibility * Compatible with tensorflow SdcaOptimizerV2 operator. */ REG_OP(SdcaOptimizerV2) .DYNAMIC_INPUT(sparse_example_indices, TensorType({DT_INT64})) .DYNAMIC_INPUT(sparse_feature_indices, TensorType({DT_INT64})) .DYNAMIC_INPUT(sparse_feature_values, TensorType({DT_FLOAT})) .DYNAMIC_INPUT(dense_features, TensorType({DT_FLOAT})) .INPUT(example_weights, TensorType({DT_FLOAT})) .INPUT(example_labels, TensorType({DT_FLOAT})) .DYNAMIC_INPUT(sparse_indices, TensorType({DT_INT64})) .DYNAMIC_INPUT(sparse_weights, TensorType({DT_FLOAT})) .DYNAMIC_INPUT(dense_weights, TensorType({DT_FLOAT})) .INPUT(example_state_data, TensorType({DT_FLOAT})) .OUTPUT(out_example_state_data, TensorType({DT_FLOAT})) .DYNAMIC_OUTPUT(out_delta_sparse_weights, TensorType({DT_FLOAT})) .DYNAMIC_OUTPUT(out_delta_dense_weights, TensorType({DT_FLOAT})) .ATTR(adaptive, Bool, false) .ATTR(num_sparse_features, Int, 0) .ATTR(num_sparse_features_with_values, Int, 0) .ATTR(num_dense_features, Int, 0) .ATTR(num_loss_partitions, Int, 1) .ATTR(num_inner_iterations, Int, 1) .ATTR(loss_type, String, "logistic_loss") .ATTR(l1, Float, 0.5) .ATTR(l2, Float, 0.5) .OP_END_FACTORY_REG(SdcaOptimizerV2) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_SDCA_OPS_H_