/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file hvd_ops.h * \brief Horovod collective communication library ops. */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_HVD_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_HVD_OPS_H_ #include "graph/operator_reg.h" namespace ge { /** * @brief Outputs a tensor gathering all input tensors. * @par Inputs: * x: A tensor. Must be one of the following types: uint8, int8, uint16, int16, int32, int64, float16, bool. * @par Attributes: * @li rank_size: A required integer identifying the number of ranks participating in the op. * @par Outputs: * y: A Tensor. Has the same type as "x". */ REG_OP(HorovodAllgather) // GE not support float64 currently .INPUT(x, TensorType({DT_UINT8, DT_INT8, DT_UINT16, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_BOOL})) .OUTPUT(y, TensorType({DT_UINT8, DT_INT8, DT_UINT16, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_BOOL})) // add rank_size attr .REQUIRED_ATTR(rank_size, Int) .OP_END_FACTORY_REG(HorovodAllgather) /** * @brief Outputs a tensor containing the reduction across all input tensors passed to op. * @par Inputs: * x: A tensor. Must be one of the following types: int32, int64, float16, float32 @par Attributes: * @li reduce_op: A required int identifying the reduction operation to perform.The supported operation are: "sum", "max", "min", "prod". * @par Outputs: * y: A Tensor. Has the same type as "x". */ REG_OP(HorovodAllreduce) .INPUT(x, TensorType({DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT})) .OUTPUT(y, TensorType({DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT})) .REQUIRED_ATTR(reduce_op, Int) .OP_END_FACTORY_REG(HorovodAllreduce) /** * @brief Broadcasts the input tensor in root rank to all ranks. * @par Inputs: * x: A list of dynamic input tensor. Must be one of the following types: int8, int32, float16, float32. * @par Attributes: * @li root_rank: A required integer identifying the root rank in the op input of this rank will be broadcast to other ranks. * @par Outputs: * y: A list of dynamic output tensor. Has the same type and length as "x". */ REG_OP(HorovodBroadcast) .INPUT(x, TensorType({DT_UINT8, DT_INT8, DT_UINT16, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_BOOL})) .OUTPUT(y, TensorType({DT_UINT8, DT_INT8, DT_UINT16, DT_INT16, DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_BOOL})) .REQUIRED_ATTR(root_rank, Int) .OP_END_FACTORY_REG(HorovodBroadcast) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_HVD_OPS_H_