/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file ctc_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_CTC_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_CTC_OPS_H_ #include "graph/operator.h" #include "graph/operator_reg.h" namespace ge { /** *@brief Calculates the CTC Loss (log probability) for each batch entry. Also calculates the gradient. \n *@par Inputs: *@li inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. *@li labels_indices: The indices of a `SparseTensor`. `labels_indices(i, :) == [b, t]` means `labels_values(i)` stores the id for `(batch b, time t)`. *@li labels_values: The values (labels) associated with the given batch and time. *@li sequence_length: A vector containing sequence lengths (batch). \n *@par Outputs: *@li loss: A vector (batch) containing log-probabilities. *@li gradient: The gradient of `loss`. 3-D, shape: `(max_time x batch_size x num_classes)`. \n *@par Attributes: *@li preprocess_collapse_repeated: Scalar, if true then repeated labels are collapsed prior to the CTC calculation.If not specified, defaults to false *@li ctc_merge_repeated: Scalar. If set to false, *during* CTC calculation repeated non-blank labels will not be merged and are interpreted as individual labels. This is a simplified version of CTC. If not specified, defaults to true. \n *@par Third-party framework compatibility * Compatible with TensorFlow CTCLoss operator. */ REG_OP(CTCLoss) .INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(labels_indices, TensorType({DT_INT64})) .INPUT(labels_values, TensorType({DT_INT32})) .INPUT(sequence_length, TensorType({DT_INT32})) .OUTPUT(loss, TensorType({DT_FLOAT, DT_DOUBLE})) .OUTPUT(gradient, TensorType({DT_FLOAT, DT_DOUBLE})) .ATTR(preprocess_collapse_repeated, Bool, false) .ATTR(ctc_merge_repeated, Bool, true) .ATTR(ignore_longer_outputs_than_inputs, Bool, false) .OP_END_FACTORY_REG(CTCLoss) /** *@brief Performs greedy decoding on the logits given in inputs. \n *@par Inputs: *@li inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. *@li sequence_length: A vector containing sequence lengths, size `(batch_size)`. \n *@par Attributes: *@li merge_repeated: If True, merge repeated classes in output. \n *@par Outputs: *@li decoded_indices: Indices matrix, size `(total_decoded_outputs x 2)`, of a `SparseTensor`. The rows store: [batch, time]. *@li decoded_values: Values vector, size: `(total_decoded_outputs)`, of a `SparseTensor`. The vector stores the decoded classes. *@li decoded_shape: Shape vector, size `(2)`, of the decoded SparseTensor. Values are: `[batch_size, max_decoded_length]`. *@li log_probability: Matrix, size `(batch_size x 1)`, containing sequence log-probabilities. \n *@par Third-party framework compatibility * Compatible with TensorFlow CTCGreedyDecoder operator. */ REG_OP(CTCGreedyDecoder) .INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(sequence_length, TensorType({DT_INT32})) .ATTR(merge_repeated, Bool, false) .OUTPUT(decoded_indices, TensorType({DT_INT64})) .OUTPUT(decoded_values, TensorType({DT_INT64})) .OUTPUT(decoded_shape, TensorType({DT_INT64})) .OUTPUT(log_probability, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(CTCGreedyDecoder) /** *@brief Performs beam search decoding on the logits given in input. \n *@par Inputs: *@li inputs: 3-D, shape: `(max_time x batch_size x num_classes)`, the logits. *@li sequence_length: A vector containing sequence lengths, size `(batch_size)`. \n *@par Attributes: *@li merge_repeated: If True, merge repeated classes in output. \n *@par Outputs: *@li decoded_indices: A list (length: top_paths) of indices matrices. Matrix j, size `(total_decoded_outputs[j] x 2)`, has indices of a `SparseTensor`. The rows store: [batch, time]. *@li decoded_values: A list (length: top_paths) of values vectors. Vector j, size `(length total_decoded_outputs[j])`, has the values of a `SparseTensor`. The vector stores the decoded classes for beam j. *@li decoded_shape: A list (length: top_paths) of shape vector. Vector j, size `(2)`, stores the shape of the decoded `SparseTensor[j]`. Its values are: `[batch_size, max_decoded_length[j]]`. *@li log_probability: A matrix, shaped: `(batch_size x top_paths)`. The sequence log-probabilities. \n *@par Third-party framework compatibility * Compatible with TensorFlow CTCBeamSearchDecoder operator. */ REG_OP(CTCBeamSearchDecoder) .INPUT(inputs, TensorType({DT_FLOAT, DT_DOUBLE})) .INPUT(sequence_length, TensorType({DT_INT32})) .REQUIRED_ATTR(beam_width, Int) .REQUIRED_ATTR(top_paths, Int) .ATTR(merge_repeated, Bool, true) .DYNAMIC_OUTPUT(decoded_indices, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(decoded_values, TensorType({DT_INT64})) .DYNAMIC_OUTPUT(decoded_shape, TensorType({DT_INT64})) .OUTPUT(log_probability, TensorType({DT_FLOAT, DT_DOUBLE})) .OP_END_FACTORY_REG(CTCBeamSearchDecoder) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_CTC_OPS_H_