/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef GE_OP_SET_OPS_H_ #define GE_OP_SET_OPS_H_ #include "graph/operator.h" #include "graph/operator_reg.h" namespace ge { /** *@brief Applies set operation along last dimension of 2 Tensor inputs. *@par Inputs: *Inputs include: \n * @li x1: A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16, string. * @li x2: A Tensor. Must have the same type as x1. *@par Attributes: *@li set_operation: A string. *@li validate_indices: An optional bool. Defaults to True. *@par Outputs: *@li y_indices: A Tensor of type int64. *@li y_values: A Tensor. Has the same type as x1. *@li y_shape: A Tensor of type int64. *@attention Constraints:\n *-The implementation for DenseToDenseSetOperation on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow DenseToDenseSetOperation operator. */ REG_OP(DenseToDenseSetOperation) .INPUT(x1, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x2, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .OUTPUT(y_indices, TensorType({DT_INT64})) .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .OUTPUT(y_shape, TensorType({DT_INT64})) .ATTR(set_operation, String, "") .ATTR(validate_indices, Bool, true) .OP_END_FACTORY_REG(DenseToDenseSetOperation) /** *@brief Applies set operation along last dimension of Tensor and SparseTensor. *@par Inputs: *Inputs include: \n * @li x1: A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16, string. * @li x2_indices: A Tensor of type int64. 2D Tensor, indices of a SparseTensor. * @li x2_values: A Tensor. Must have the same type as set1. 1D Tensor, values of a SparseTensor. * @li x2_shape: A Tensor of type int64. 1D Tensor, shape of a SparseTensor. *@par Attributes: *@li set_operation: A string. *@li validate_indices: An optional bool. Defaults to True. *@par Outputs: *@li y_indices: A Tensor of type int64. *@li y_values: A Tensor. Has the same type as x1. *@li y_shape: A Tensor of type int64. *@attention Constraints:\n *-The implementation for DenseToSparseSetOperation on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow DenseToSparseSetOperation operator. */ REG_OP(DenseToSparseSetOperation) .INPUT(x1, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x2_indices, TensorType({DT_INT64})) .INPUT(x2_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x2_shape, TensorType({DT_INT64})) .OUTPUT(y_indices, TensorType({DT_INT64})) .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .OUTPUT(y_shape, TensorType({DT_INT64})) .ATTR(set_operation, String, "") .ATTR(validate_indices, Bool, true) .OP_END_FACTORY_REG(DenseToSparseSetOperation) /** *@brief Applies set operation along last dimension of 2 SparseTensor inputs. *@par Inputs: *Inputs include: \n * @li x1_indices: A Tensor of type int64. 2D Tensor, indices of a SparseTensor. * @li x1_values: A Tensor. Must be one of the following types: int8, int16, \n int32, int64, uint8, uint16, string. 1D Tensor, values of a SparseTensor. * @li x1_shape: A Tensor of type int64. 1D Tensor, shape of a SparseTensor. * @li x2_indices: A Tensor of type int64. 2D Tensor, indices of a SparseTensor. * @li x2_values: A Tensor. Must have the same type as set1_values. 1D Tensor, values of a SparseTensor. * @li x2_shape: A Tensor of type int64. 1D Tensor, shape of a SparseTensor. *@par Attributes: *@li set_operation: A string. *@li validate_indices: An optional bool. Defaults to True. *@par Outputs: *@li y_indices: A Tensor of type int64. *@li y_values: A Tensor. Has the same type as x1_values. *@li y_shape: A Tensor of type int64. *@attention Constraints:\n *-The implementation for SparseToSparseSetOperation on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow SparseToSparseSetOperation operator. */ REG_OP(SparseToSparseSetOperation) .INPUT(x1_indices, TensorType({DT_INT64})) .INPUT(x1_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x1_shape, TensorType({DT_INT64})) .INPUT(x2_indices, TensorType({DT_INT64})) .INPUT(x2_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .INPUT(x2_shape, TensorType({DT_INT64})) .OUTPUT(y_indices, TensorType({DT_INT64})) .OUTPUT(y_values, TensorType({DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, \ DT_INT32, DT_INT64, DT_STRING})) .OUTPUT(y_shape, TensorType({DT_INT64})) .ATTR(set_operation, String, "") .ATTR(validate_indices, Bool, true) .OP_END_FACTORY_REG(SparseToSparseSetOperation) /** *@brief Number of unique elements along last dimension of input set. *@par Inputs: *Inputs include: \n * @li set_indices: A Tensor of type int64. 2D Tensor, indices of a SparseTensor. * @li set_values: A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16. * @li set_shape: A Tensor of type int64. 1D Tensor, shape of a SparseTensor. *@par Attributes: *validate_indices: An optional bool. Defaults to True. *@par Outputs: *size: A Tensor of type int32. *@attention Constraints:\n *-The implementation for SetSize on Ascend uses AICPU, with bad performance.\n *@par Third-party framework compatibility *@li compatible with tensorflow SetSize operator. */ REG_OP(SetSize) .INPUT(set_indices, TensorType({DT_INT64})) .INPUT(set_values, TensorType({DT_INT8, DT_INT16, \ DT_UINT8, DT_UINT16, DT_INT32, DT_INT64, DT_STRING})) .INPUT(set_shape, TensorType({DT_INT64})) .OUTPUT(size, TensorType({DT_INT32})) .ATTR(validate_indices, Bool, true) .OP_END_FACTORY_REG(SetSize) } // namespace ge #endif // GE_OP_SET_OPS_H_