/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file bitwise_ops.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_BITWISE_OPS_H_ #define OPS_BUILT_IN_OP_PROTO_INC_BITWISE_OPS_H_ #include "graph/operator_reg.h" namespace ge { /** *@brief Element-wise computes the bitwise right-shift of x and y . \n *@par Inputs: *Input "x" is a k-dimensional tensor. Inputs "num_lower" and "num_upper" are 0D scalars. * @li x: A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16, uint32, uint64. * @li y: A Tensor. Has the same type as "x". \n *@par Outputs: * z: A Tensor. Has the same type as "x". \n *@attention Constraints: *Unique runs on the Ascend AI CPU, which delivers poor performance. \n *@par Third-party framework compatibility *Compatible with the TensorFlow operator RightShift. */ REG_OP(RightShift) .INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \ DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64})) .INPUT(y, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \ DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64})) .OUTPUT(z, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, \ DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64})) .OP_END_FACTORY_REG(RightShift) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_BITWISE_OPS_H_