diff --git a/model_zoo/official/cv/yolov3_darknet53/README.md b/model_zoo/official/cv/yolov3_darknet53/README.md index 89d46291b0..7c29311625 100644 --- a/model_zoo/official/cv/yolov3_darknet53/README.md +++ b/model_zoo/official/cv/yolov3_darknet53/README.md @@ -56,7 +56,7 @@ Dataset used: [COCO2014](https://cocodataset.org/#download) - Hardware(Ascend/GPU) - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. - Framework - - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/) + - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html) - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html) @@ -81,7 +81,7 @@ python train.py \ --T_max=320 \ --max_epoch=320 \ --warmup_epochs=4 \ - --train_shape=416 \ + --training_shape=416 \ --lr_scheduler=cosine_annealing > log.txt 2>&1 & # standalone training example(1p) by shell script diff --git a/model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py b/model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py index 84e6bd49a1..53793e09a0 100644 --- a/model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py +++ b/model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py @@ -16,6 +16,7 @@ import os import multiprocessing +import cv2 from PIL import Image from pycocotools.coco import COCO import mindspore.dataset as de @@ -143,6 +144,8 @@ class COCOYoloDataset: def create_yolo_dataset(image_dir, anno_path, batch_size, max_epoch, device_num, rank, config=None, is_training=True, shuffle=True): """Create dataset for YOLOV3.""" + cv2.setNumThreads(0) + if is_training: filter_crowd = True remove_empty_anno = True diff --git a/model_zoo/official/cv/yolov3_darknet53_quant/README.md b/model_zoo/official/cv/yolov3_darknet53_quant/README.md index 44306cbdcb..c4c714e3db 100644 --- a/model_zoo/official/cv/yolov3_darknet53_quant/README.md +++ b/model_zoo/official/cv/yolov3_darknet53_quant/README.md @@ -58,7 +58,7 @@ Dataset used: [COCO2014](https://cocodataset.org/#download) - Hardware(Ascend) - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. - Framework - - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/) + - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html) - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)