!3918 modify initialization mode for random normal
Merge pull request !3918 from lilei/random_normal_0724pull/3918/MERGE
commit
054f2b3bbb
@ -0,0 +1,156 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_
|
||||
#include <securec.h>
|
||||
#include <math.h>
|
||||
#include <array>
|
||||
#include <iostream>
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
static constexpr int gResultNum = 4;
|
||||
class PhiloxGenerator {
|
||||
public:
|
||||
explicit PhiloxGenerator(uint64_t seed) {
|
||||
key_var_[0] = static_cast<uint32_t>(seed);
|
||||
key_var_[1] = static_cast<uint32_t>(seed >> 32);
|
||||
counter_[0] = 0;
|
||||
counter_[1] = 0;
|
||||
counter_[2] = static_cast<uint32_t>(seed);
|
||||
counter_[3] = static_cast<uint32_t>(seed >> 32);
|
||||
}
|
||||
|
||||
void Jump() {
|
||||
if ((++counter_[0] == 0) && (++counter_[1] == 0) && (++counter_[2] == 0)) {
|
||||
++counter_[3];
|
||||
}
|
||||
}
|
||||
|
||||
void JumpStep(uint64_t step) {
|
||||
uint64_t min_counter, max_counter;
|
||||
min_counter = static_cast<uint64_t>(counter_[1]);
|
||||
min_counter = min_counter << 32;
|
||||
min_counter += counter_[0];
|
||||
|
||||
max_counter = static_cast<uint64_t>(counter_[3]);
|
||||
max_counter = max_counter << 32;
|
||||
max_counter += counter_[2];
|
||||
min_counter += step;
|
||||
if (min_counter < step) {
|
||||
max_counter++;
|
||||
}
|
||||
counter_[0] = static_cast<uint32_t>(min_counter);
|
||||
counter_[1] = static_cast<uint32_t>(min_counter >> 32);
|
||||
counter_[2] = static_cast<uint32_t>(max_counter);
|
||||
counter_[3] = static_cast<uint32_t>(max_counter >> 32);
|
||||
}
|
||||
|
||||
static std::array<uint32_t, 4> Compute(const std::array<uint32_t, 4> &counter_,
|
||||
const std::array<uint32_t, 2> &key_var_) {
|
||||
std::array<uint32_t, 4> min_value;
|
||||
std::array<uint32_t, 4> max_value;
|
||||
for (uint32_t i = 0; i < gResultNum; i += 2) {
|
||||
uint64_t temp = static_cast<uint64_t>(keyConstant[i]) * counter_[i];
|
||||
min_value[i] = static_cast<uint32_t>(temp);
|
||||
max_value[i] = static_cast<uint32_t>(temp >> 32);
|
||||
}
|
||||
std::array<uint32_t, 4> result;
|
||||
result[0] = (max_value[2] ^ counter_[1] ^ key_var_[0]);
|
||||
result[1] = min_value[2];
|
||||
result[2] = (max_value[0] ^ counter_[3] ^ key_var_[0]);
|
||||
result[3] = min_value[0];
|
||||
return result;
|
||||
}
|
||||
|
||||
std::array<uint32_t, 4> operator()() {
|
||||
for (uint32_t i = 0; i < 10; i++) {
|
||||
counter_ = Compute(counter_, key_var_);
|
||||
key_var_[0] += keyConstant[1];
|
||||
key_var_[1] += keyConstant[3];
|
||||
}
|
||||
Jump();
|
||||
return counter_;
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<uint32_t, 4> counter_;
|
||||
std::array<uint32_t, 2> key_var_;
|
||||
static constexpr std::array<uint32_t, 4> keyConstant = {0xD2511F53, 0x9E3779B9, 0xCD9E8D57, 0xBB67AE85};
|
||||
};
|
||||
|
||||
template <class T, typename vartype>
|
||||
class NormalDistribution;
|
||||
template <class T>
|
||||
class NormalDistribution<T, float> {
|
||||
public:
|
||||
std::array<float, gResultNum> result;
|
||||
|
||||
bool UInt32ToFloat32(uint32_t input, float *output) {
|
||||
const uint32_t temp_value = input & 0x7fffffu;
|
||||
const uint32_t exp = static_cast<uint32_t>(127);
|
||||
const uint32_t val = (exp << 23) | temp_value;
|
||||
errno_t mem_ret;
|
||||
mem_ret = memcpy_s(output, sizeof(val), &val, sizeof(val));
|
||||
if (mem_ret != EOK) {
|
||||
std::cout << "UInt32ToFloat32 memcpy is failed" << std::endl;
|
||||
return false;
|
||||
}
|
||||
*output = *output - 1.0f;
|
||||
return true;
|
||||
}
|
||||
|
||||
std::array<float, gResultNum> operator()(T *generator) {
|
||||
std::array<uint32_t, 4> generate_value = (*generator)();
|
||||
const float PI = 3.14;
|
||||
for (uint32_t i = 0; i < gResultNum; i += 2) {
|
||||
float temp[2];
|
||||
UInt32ToFloat32(generate_value[i], &temp[0]);
|
||||
UInt32ToFloat32(generate_value[i + 1], &temp[1]);
|
||||
const float threshold = 1.0e-7f;
|
||||
temp[0] = temp[0] < threshold ? threshold : temp[0];
|
||||
temp[1] = temp[1] < threshold ? threshold : temp[1];
|
||||
result[i] = sqrt(-2.0 * log(temp[0])) * sin(2 * PI * temp[1]);
|
||||
result[i + 1] = sqrt(-2.0 * log(temp[0])) * cos(2 * PI * temp[1]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
template <class T>
|
||||
bool FillRandoms(PhiloxGenerator generator, float *output, int64_t vet_size, int64_t thread_Id) {
|
||||
T distribution;
|
||||
errno_t mem_ret;
|
||||
generator.JumpStep((vet_size * thread_Id + gResultNum - 1) / gResultNum);
|
||||
for (int32_t i = 0; i < vet_size; i += gResultNum) {
|
||||
auto outputResult = distribution(&generator);
|
||||
if (vet_size - i >= gResultNum) {
|
||||
mem_ret = memcpy_s(&output[i], gResultNum * sizeof(float), &outputResult[0], gResultNum * sizeof(float));
|
||||
} else {
|
||||
mem_ret = memcpy_s(&output[i], (vet_size - i) * sizeof(float), &outputResult[0], (vet_size - i) * sizeof(float));
|
||||
}
|
||||
if (mem_ret != EOK) {
|
||||
std::cout << "FillRandoms memcpy is failed" << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_
|
Loading…
Reference in new issue